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The purpose of this paper is to give a characterization of families of expander graphs
via right-angled Artin groups. We prove that a sequence of simplicial graphs {Γi}i∈N

forms a family of expander graphs if and only if a certain natural mini-max invariant
arising from the cup product in the cohomology rings of the groups {A(Γi)}i∈N agrees
with the Cheeger constant of the sequence of graphs, thus allowing us to characterize
expander graphs via cohomology. This result is proved in the more general framework
of vector space expanders, a novel structure consisting of sequences of vector spaces
equipped with vector-space-valued bilinear pairings which satisfy a certain mini-max
condition. These objects can be considered to be analogues of expander graphs in the
realm of linear algebra, with a dictionary being given by the cup product in cohomology,
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and in this context represent a different approach to expanders that those developed by
Lubotzky–Zelmanov and Bourgain–Yehudayoff.

Keywords: Right-angled Artin groups; expander graphs; Cheeger constant; cohomology
algebra.

Mathematics Subject Classification: 20F36, 05C48, 05C50, 20J06

1. Introduction

Expander graphs, which are infinite sequences of graphs of bounded valence which
are uniformly difficult to disconnect, are of fundamental importance in discrete
mathematics, graph theory, knot theory, network theory, and statistical mechan-
ics, and have a host of applications in computer science including to probabilistic
computation, data organization, computational flow, amplification of hardness, and
construction of hash functions [6, 13, 16]. Many constructions of graph expander
families are now known, though originally explicit constructions were few despite
the fact that their existence is relatively easy to prove through probabilistic methods
(see [1, 23, 26] for discussions of both explicit and probabilistic constructions).

In this paper, we provide a new perspective on graph expander families that
relates them to fundamental objects in geometric group theory, and which allows
them to be probed in a novel way through linear algebraic methods. In particular,
we characterize families of expander graphs through their associated right-angled
Artin groups, and in the process, define the notion of vector space expander families.

Recall that a simplicial graph (sometimes known in the literature as a simple
graph) is an undirected graph with no double edges between any pair of vertices and
with no edges whose source and target coincide. If Γ is a finite simplicial graph with
vertex set Vert(Γ) and edge set Edge(Γ), we define the right-angled Artin group on
Γ by

A(Γ) = 〈Vert(Γ) | [vi, vj ] = 1 if and only if {vi, vj} ∈ Edge(Γ)〉.
It is well known that the isomorphism type of a finite simplicial graph is uniquely

determined by the corresponding right-angled Artin group, and thus all the combi-
natorial properties one may assign to Γ should be reflected in the intrinsic algebra
of A(Γ) [10, 21, 22, 28].

If A(Γ) is given via a presentation as above (as opposed to as an abstract
group), then there is a trivial way to pass between the graph Γ and elements of the
group A(Γ). Indeed, the vertices of Γ are then identified with the generators in the
presentation, and the adjacency relation in Γ is exactly the commutation relation
among generators of A(Γ). The problem with this perspective is that a choice of
generators of A(Γ) is not canonical. For instance, it is possible to find a generating
set of A(Γ) that such that commutation relations between generators have nothing
to do with the combinatorics of Γ. The point of this paper is to translate between
the combinatorics of Γ and the algebraic structure of A(Γ) in a way that is intrinsic
to A(Γ). Specifically, we wish to characterize graph expander families in a canonical
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algebraic way, and in particular without any reference to specific generators of the
right-angled Artin group. Some examples of this principle are as follows:

(1) A(Γ) decomposes as a nontrivial direct product if and only if Γ is a nontrivial
join [29].

(2) A(Γ) decomposes as a nontrivial free product if and only if Γ is disconnnected
[4, 21].

(3) A(Γ) contains a subgroup isomorphic to a product F2 × F2 of nonabelian
free groups if and only if Γ has a full subgraph which is isomorphic to a
square [18, 19].

(4) The poly-free length of A(Γ) is two if and only if Γ admits an independent set
D of vertices such that every cycle in Γ meets D at least twice [15].

(5) A(Γ) is obtained from infinite cyclic groups through iterated free products and
direct products if and only if Γ contains no full subgraph which is isomorphic
to a path of length three [19, 20].

(6) A(Γ) is a semidirect product of two free groups of finite rank if and only if Γ is
a finite tree or a finite complete bipartite graph [15].

(7) There is a finite nonabelian group acting faithfully on A(Γ) by outer automor-
phisms if and only if Γ admits a nontrivial automorphism [11].

(8) A graph Γ with n vertices is k-colorable if and only if there is a surjective map

A(Γ) →
k∏

i=1

Fi,

where for 1 ≤ i ≤ k the group Fi is a free group of rank mi, and where∑k
i=1 mi = n [12].

In this paper, we develop this dictionary by characterizing graph expander fam-
ilies through the intrinsic algebra of right-angled Artin groups. Recall that a family
{Γi}i∈N of finite graphs is called a graph expander family if the number of vertices in
Γi tends to infinity as i tends to infinity, if the valence of each vertex of Γi is bounded
independently of i, and if a certain isoperimetric invariant called the Cheeger con-
stant (or expansion constant) of each Γi is uniformly bounded away from zero.
We refer the reader to Sec. 2 for precise definitions. We remark that in general,
graph expander families are not assumed to consist of simplicial graphs, though
for the purposes of the algebraic dictionary we develop here, we will retain a blan-
ket assumption that all graphs under consideration are simplicial unless explicitly
noted otherwise.

The main result of this paper is to give an intrinsic algebraic characterization
of graph expander families via right-angled Artin groups, without any reference to
distinguished generating sets. In order to achieve this, one must define a certain
analogue hV of the Cheeger constant that can be described from the data of the
right-angled Artin group. This constant is constructed in terms of the triple

{(H1(A(Γ), L), H2(A(Γ), L), �)},
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where Hi(A(Γ), L) is the ith cohomology group of A(Γ) with coefficients in a field
L, and � the cup product restricted to H1(A(Γ), L) (see 2.2.1). The following
result, which is a central pillar of this paper, establishes the link between the two
versions of the Cheeger constant:

Proposition 1.1. (cf. Theorem 4.1) Let Γ be a finite simplicial graph, let hΓ denote
the Cheeger constant of Γ, and let hV denote the Cheeger constant of the triple

{(H1(A(Γ), L), H2(A(Γ), L), �)}.
Then hΓ = hV .

Proposition 1.1 is the key in establishing a group-theoretic description of
expander graphs. Our main result is therefore as follows:

Theorem 1.2. Let {Γi}i∈N be a family of finite simplicial graphs, let {A(Γi)}i∈N

denote the corresponding family of right-angled Artin groups, and let L be an arbi-
trary field. Then {Γi}i∈N is a graph expander family if and only if:

(1) The rank (i.e. size of the smallest generating set) of A(Γi) tends to infinity as
i tends to infinity.

(2) The rank of the centralizer of each nontrivial element of A(Γi) is bounded inde-
pendently of i.

(3) The Cheeger constant of the family

{(H1(A(Γi), L), H2(A(Γi), L), �)}i∈N,

is bounded away from zero.

This result is proved in the more general framework of vector space expanders
(with a precise definition in Sec. 2.2). This is a certain sequence of triples
{(Vi, Wi, qi)}i∈N, each of which is defined over a fixed field L, where each Vi is
a finite-dimensional vector space such that dim Vi → ∞ as i → ∞. Each Wi is an
L-vector space, and qi is a symmetric or anti-symmetric Wi-valued bilinear pairing
on Vi. The family {(Vi, Wi, qi)}i∈N is a vector space expander family if the pair-
ings {qi}i∈N satisfy certain linear algebraic criteria called bounded qi-valence and
bounded Cheeger constant in a uniform way. As mentioned already, the Cheeger
constant is defined generally for the data (V, W, q) (see Sec. 2.2).

In this context, the previous theorem can be restated succinctly as follows:

Theorem 1.3. Let {Γi}i∈N be a family of finite simplicial graphs, and let
{A(Γi)}i∈N denote the corresponding family of right-angled Artin groups. Then
{Γi}i∈N is a graph expander family if and only if

{(H1(A(Γi), L), H2(A(Γi), L), �)}i∈N,

is a vector space expander family.
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Observe that connectedness of the graphs in the family is not assumed as a
hypothesis of the stated theorems, nor shall it be for us in the definition of a graph
expander family. Instead, connectedness of the graphs in both cases is a consequence
of the Cheeger constant being nonzero. We remark that whereas the cohomology
vector spaces of a right-angled Artin group depend on the field over which they are
defined, the property of being a graph expander family or a vector space expander
family is independent of the choice of field. As a further remark concerning the
fields occurring in the previous results, it will become apparent to the reader that
not only can L be arbitrary, but it need not be fixed as the index i varies. Indeed,
the numerical invariants used to define vector space expanders are all either related
to the non-degeneracy of the bilinear pairing or to dimension, both of which are
blind to the intrinsic structure of the field of definition.

The Cheeger constant of a finite graph is an invariant that is computable from
the adjacency matrix of the graph. The Cheeger constant of a vector space equipped
with a pairing is less obviously computable, since its definition quantifies over all
subspaces of up to half the dimension of the ambient space (see Sec. 2.2). However,
the reader will note that the methods in Sec. 4 are explicit and constructive, and
they do in fact effectively yield the Cheeger constant of the relevant vector spaces.

The notion of a vector space expander family is more flexible than that of a
graph expander family, and we will illustrate this with an example of a vector space
expander family which does not arise from the cohomology of the right-angled Artin
groups associated to a graph expander family. This is a reflection of the relatively
lax hypotheses on the input data of a vector space expander family. For instance,
the vector space valued bilinear pairing is more or less arbitrary other than being
assumed to be (anti)-symmetric, which relaxes much of the inherent structure of the
cup product on the cohomology of a right-angled Artin group. The authors expect
that the flexibility of vector space expanders will contribute to their applicability.

There is another linear-algebraic version of expanders, called dimension
expanders, which were proven to exist by Lubotzky–Zelmanov in the case of charac-
teristic zero fields [27], and by Bourgain–Yehudayoff in the case of finite fields [2, 3].
Here, one considers a finite-dimensional vector space V and a collection of k linear
maps {Ti : V → V }1≤i≤k. This data is called an ε-dimension expander if for all
subspaces W ⊂ V of dimension at most half of that of V , the dimension of

W +
k∑

i=1

Ti(W ),

is at least (1+ ε) dimW . The construction of dimension expanders (with ε bounded
away from zero, k bounded above, and the dimension of V tending to infinity) is
much harder over finite fields than over fields of characteristic zero, whereas the
constructions in this paper are independent of the base field. One bridge between
graph expander families and dimension expanders arises from interpretation of reg-
ular graphs of even valence as Schreier graphs, from which one can use finitary
versions of Kazhdan’s property (T ) to construct the suitable linear maps. The
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authors do not know how to relate dimension expanders to vector space expanders,
since a general right-angled Artin group does not usually admit any natural endo-
morphisms of its first cohomology.

The paper is organized as follows. Section 2 introduces the definitions of the
objects considered in this paper. Section 3 discusses the cohomology of right-angled
Artin groups, and the circle of ideas relating connectedness of graphs, pairing-
connectedness, q-valence, graph valence, and ranks of centralizers of elements in
a right-angled Artin group. Section 4 establishes the main technical result of the
paper, namely that the linear-algebraic Cheeger constant associated to a vector
space with an (anti)-symmetric bilinear pairing agrees with the Cheeger constant
of a finite simplicial graph in the case that the vector space is the first cohomology
of the right-angled Artin group on the graph, and the bilinear pairing is the cup
product. Section 5 builds an example of a vector space expander family not arising
from the cohomology of right-angled Artin groups on a graph expander family.

2. Graph and Vector Space Expanders

In this section, we recall some relevant facts about graph expander families and
define vector space expander families.

2.1. Graph expander families

The literature on graph expander families and their applications is enormous. The
reader may consult [16, 23, 24, 26] and the references therein, for example. For the
sake of brevity, we will only discuss the combinatorial definition of an expander
family.

Let Γ be a finite graph, not necessarily simplicial, with vertex set Vert(Γ) and
edge set Edge(Γ). We assume that Γ is undirected. If A ⊂ Vert(Γ), we write ∂A for
the neighbors of A. That is, ∂A consists of the vertices of Vert(Γ) which are not
contained in A but which are adjacent to a vertex in A.

If in addition |A| ≤ |Vert(Γ)|/2, we consider the isoperimetric invariant

hA =
|∂A|
|A| .

The Cheeger constant hΓ is defined to be

hΓ = min
A

hA,

where the minimum is taken over all subsets of Vert(Γ) satisfying |A| ≤ |Vert(Γ)|/2.
Let {Γi}i∈N be a sequence of connected graphs such that |Vert(Γi)| → ∞, such

that each vertex in Γi has valence which is bounded independently of i. We say
that {Γi}i∈N is a graph expander family if infi hΓi > 0.

We note that as is well known, the bound infi hΓi > 0 makes any connectivity
assumption of the graphs {Γi}i∈N redundant. Indeed, if Γ is disconnected then
there is a component Λ of Γ that contains at most half of the vertices of Γ. Setting
A = Vert(Λ), we obtain ∂A = ∅, and so hΓ = 0.
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2.2. Vector space expander families

Throughout this section and for the rest of the paper, we fix a field L over which all
vector spaces will be defined. All bilinear pairings are assumed to be symmetric or
anti-symmetric, so that for all suitable vectors v and w, we have q(v, w) = ±q(w, v).
Our reasons for adopting this assumption are that it mirrors an intrinsic property
of the cup product pairing, and because otherwise the orthogonal complement of F

may be asymmetric depending on which side it is defined. An asymmetric orthogo-
nal complement would result in an unnecessary layer of subtlety and complication
that would not enrich the theory at hand.

2.2.1. The Cheeger constant

Let V be a collection {(Vi, Wi, qi)}i∈N of finite dimensional vector spaces Vi equipped
with vector space valued bilinear pairings

qi : Vi × Vi → Wi.

The Cheeger constant of V is defined by analogy to graphs. To begin, let V be
a fixed finite-dimensional vector space and let

q : V × V → W,

be a vector space valued bilinear pairing on V . Let F ⊂ V be a vector subspace
such that 0 < dim F ≤ (dim V )/2. We write C for the orthogonal complement of F

in V , so that

C = {v ∈ V | q(f, v) = 0 for all f ∈ F}.

Clearly C is a vector subspace of V . The Cheeger constant of F is defined to be

hF =
dimV − dimF − dimC + dim(C ∩ F )

dim F
.

The Cheeger constant of V is defined by

hV = inf
dim F≤(dim V )/2

hF .

We will call hV the Cheeger constant of the triple (V, W, q). We will suppress W

and q from the notation for the Cheeger constant if no confusion can arise.
We note that whereas the Cheeger constant hV may appear strange at first, it

is defined in such a way as to reflect the Cheeger constant of a graph. To see this
last statement illustrated more explicitly, see Lemma 4.2.
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2.2.2. The q-valence of a vector space

Let V be a finite-dimensional vector space, and let q be a vector space valued
bilinear pairing on V . If ∅ �= S ⊂ V and B is a basis for V , we write

dB(S) = max
s∈S

|{b ∈ B | q(s, b) �= 0}|, d(S) = min
B a basis

dB(S),

d(V ) = min
S spans V

d(S).

We call d(V ) the q-valence of V .

2.2.3. Pairing-connectedness

Let V and q be as before. We say that V is pairing-connected if whenever V ∼= V0⊕V1

is a nontrivial direct sum decomposition of V , then there are vectors v0 ∈ V0 and
v1 ∈ V1 such that q(v0, v1) �= 0.

2.2.4. Defining vector space expanders

We are now ready to give the definition of a vector space expander family.

Definition 2.1. We say that V is a vector space expander family if the following
conditions are satisfied:

(1) We have

lim
i→∞

dimVi = ∞.

(2) There exists an N such that for all i, we have d(Vi) ≤ N .
(3) We have

h = inf
i

hVi > 0.

The reader may note that the first condition is analogous to the requirement
that the number of vertices in a family of expander graphs tends to infinity. The
second condition is analogous to the finite valence condition in a family of expander
graphs.

As with the connectedness assumption for graph expander families, the pairing-
connectedness of a vector space V is a formal consequence of hV > 0. Precisely, we
have the following proposition.

Proposition 2.2. Let (V, W, q) be as above, and suppose hV > 0. Then V is
pairing-connected.

Proof. Suppose the contrary, so that V = V0 ⊕ V1 is a nontrivial splitting of V

witnessing the failure of pairing-connectedness. Without loss of generality, dim V0 ≤
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dimV/2. Set F = V0. Note then that V1 ⊂ C, the orthogonal complement of F . If
C ∩ F �= 0 then dim C ≥ dimV1 + dim(C ∩ F ). It follows that

dimV − dim F − dimC + dim(C ∩ F ) ≤ dimV − dimV0 − dimV1 = 0,

which proves the proposition.

As we will show in Sec. 3, pairing-connectedness for the triple

(H1(A(Γ), L), H2(A(Γ), L), �),

is equivalent to connectedness of Γ.

3. Cohomology, q–Valence and Pairing–Connectedness

In this section, we establish a generator-free characterization of bounded valence in
a graph through cohomology of the corresponding right-angled Artin group.

3.1. The cohomology ring of a right-angled Artin group

A general reference for this section is [21], for instance. Let Γ be a finite simplicial
graph and A(Γ) the corresponding right-angled Artin group. The group A(Γ) is
naturally the fundamental group of a locally CAT(0) cube complex, called the
Salvetti complex S(Γ) of Γ. The space S(Γ) is a classifying space for A(Γ), so that

H∗(S(Γ), R) ∼= H∗(A(Γ), R),

over an arbitrary ring R. The complex S(Γ) can be built from the unit cube in
R

|Vert(Γ)|, with the coordinate directions being identified with the vertices of Γ. One
includes the face spanned by a collection of edges if the corresponding vertices span
a complete subgraph of Γ. Finally, one takes the image inside R

|Vert(Γ)|/Z
|Vert(Γ)|,

so that S(Γ) is a subcomplex of a torus.
With this description, it is clear that one can build S(Γ) out of a collection

of tori of various dimensions, one for every complete subgraph of Γ, and by gluing
these tori together along distinguished coordinate subtori. The reader may compare
with the description of the Salvetti complex given in [7].

Let L be a field, viewed as a trivial A(Γ)–module. We have that

H∗((S1)n, L) ∼= Λ(Ln),

the exterior algebra of Ln. Via Poincaré duality, coordinate subtori of tori making up
S(Γ) give rise to preferred cohomology generators in various degrees of the exterior
algebra, and the gluing data of the subtori determines how the exterior algebras
corresponding to complete subgraphs assemble into the cohomology algebra of S(Γ).

To give slightly more detail, let Λ ⊂ Γ be a subgraph. For us, a subgraph
is always full, in the sense that if λ1, λ2 ∈ Vert(Λ) and {λ1, λ2} ∈ Edge(Γ) then
{λ1, λ2} ∈ Edge(Λ). Full subgraphs are sometimes called induced. It is a well known
and standard fact that A(Λ) is naturally a subgroup of A(Γ) [7]. It is not difficult
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to see that A(Λ) is in fact a retract of A(Γ). The homology of A(Γ) is easy to
compute from the Salvetti complex, and the cohomology with trivial coefficients
in a field can be easily computed using the Universal Coefficient theorem. Each
complete subgraph Λ of Γ gives an exterior algebra as a subring of H∗(A(Γ), L)
via pullback along the retraction map A(Γ) → A(Λ), and a dimension count shows
that this accounts for all the cohomology of A(Γ).

We are mostly concerned with H1(A(Γ), L) and H2(A(Γ), L), together with
the cup product pairing on H1(A(Γ), L). We remark that the cohomology of right-
angled Artin groups and related groups with nontrivial coefficient modules has been
investigated extensively (see [9, 17] for example), but for our purposes we do not
need any machinery beyond trivial coefficients. The next proposition follows easily
from the description of the cohomology of the Salvetti complex above, and from
the structure of exterior algebras.

Proposition 3.1. Let Γ be a finite simplicial graph.

(1) We have isomorphisms of vector spaces :

H1(A(Γ), L) ∼= L|Vert(Γ)|, H2(A(Γ), L) ∼= L|Edge(Γ)|.

(2) There is a basis {v∗1 , . . . , v∗|Vert(Γ)|} for H1(A(Γ), L) which is in bijection with the
set {v1, . . . , v|Vert(Γ)|} of vertices of Γ, and there is a basis {e∗1, . . . , e∗|Edge(Γ)|} of
H2(A(Γ), L) which is in bijection with the set {e1, . . . , e|Edge(Γ)|} of edges of Γ.

(3) The bases in the previous item can be chosen to have the following property: if
e = {vi, vj} ∈ Edge(Γ) then v∗i � v∗j = ±e∗, and if {vi, vj} /∈ Edge(Γ) then
v∗i � v∗j = 0.

If {e1, . . . , es} denotes the set of edges of Γ, then Proposition 3.1 implies that
H2(A(Γ)) is generated (over any field) by the dual vectors {e∗1, . . . , e∗s}, and that
these vectors are linearly independent. We fix the basis {e∗1, . . . , e∗s} for H2 once
and for all, so that if d is a 2-cohomology class then

d =
s∑

i=1

λie
∗
i .

With respect to this fixed basis, we call the elements e∗i for which λi �= 0 the
support of d, so that d is supported on the e∗i for which λi �= 0. We will also fix
the basis {v∗1 , . . . , v∗|Vert(Γ)|} for H1 once and for all, and all computations involving
cohomology classes will implicitly be with respect to these bases unless explicitly
noted to the contrary.

3.2. Centralizers in right-angled Artin groups

Recall that a graph J is called a join if its complement is disconnected. Equivalently,
there are two nonempty subgraphs J1 and J2 of J which partition the vertices of
J , and such that every vertex in J1 is adjacent to every vertex in J2. We write
J = J1 ∗ J2.
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Let Γ be a finite simplicial graph and let 1 �= x ∈ A(Γ) be a nontrivial ele-
ment, which is expressed as a word in the vertices {v1, . . . , v|Vert(Γ)|} of Γ and their
inverses. We say that x is reduced if it is freely reduced with respect to the operation
of commuting adjacent vertices. That is, x cannot be shortened by applying moves
of the form:

• Free reduction: · · ·a · v±1
i v∓1

i · b · · · −→ · · · a · b · · ·;
• Commutation of adjacent vertices: · · · v±1

i v±1
j · · · → · · · v±1

j v±1
i . . . , provided

{vi, vj} spans an edge of Γ.

An element of A(Γ) is nontrivial if and only if it cannot be reduced to the identity
via applications of these two moves [5, 8, 14]. We say that x is cyclically reduced if
all cyclic permutations of x are also freely reduced. The centralizer of x is described
by a theorem of Servatius [29].

Theorem 3.2. Suppose that x is nontrivial, cyclically reduced, and has non-cyclic
centralizer. Then there is a join J = J1∗J2∗· · ·∗Jn ⊂ Γ such that x ∈ A(J) < A(Γ),
and such that Ji does not decompose as a nontrivial join for 1 ≤ i ≤ n. Moreover

(1) The element x can be uniquely represented as a product x1x2 · · ·xn where xi ∈
A(Ji).

(2) Up to re-indexing, the centralizer of x is given by

Z
k × A(Jk+1) × · · · × A(Jn),

where xi is nontrivial for i ≤ k and trivial for i > k.

Let J = J1 ∗J2 ∗ · · ·∗Jn be a join and let v be a vertex in J1. Then v is adjacent
to each vertex of Ji for i ≥ 2, whence it follows that the valence of v is at least

n∑

i=2

|Ji|.

The following consequence is now straightforward.

Corollary 3.3. Let N denote the maximum valence of a vertex in Γ and let R(x)
denote the rank of the centralizer of a nontrivial element of x ∈ A(Γ). Then

N + 1 = max
1�=x∈A(Γ)

R(x).

In Corollary 3.3, the rank of a group is the minimal cardinality of a set of
generators.

Remark 3.4. Note that Corollary 3.3 gives an intrinsic bound on valence of ver-
tices in the defining graph of a right-angled Artin group without any reference to
a set of generators.
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3.3. Centralizers and q-valence

Let L be a fixed field. In this section, we prove the following linear algebraic version
of valence in a graph:

Lemma 3.5. Let V = H1(A(Γ), L), let W = H2(A(Γ), L)}, and let q denote the
cup product pairing

� : H1(A(Γ), L) × H1(A(Γ), L) → H2(A(Γ), L).

Then the q-valence d(V ) coincides with the maximum valence of a vertex in Γ.

Proof. We write d(Γ) for the maximum valence of a vertex in Γ. Let

B = S = {v∗1 , . . . , v∗|Vert(Γ)|},
be the basis for V furnished by Proposition 3.1. Then clearly

d(Γ) = max
s∈S

|{b ∈ B | q(s, b) �= 0}|,

whence it follows that d(V ) ≤ d(Γ).
We now consider the reverse inequality. Note first that we need only consider

sets S which are bases for V , since if B is fixed and if S ⊂ S′ then dB(S) ≤ dB(S′).
Let S be an arbitrary basis for V , and let v1 be the vertex of Γ with highest

valence. If s ∈ S then we may write s in terms of the basis {v∗1 , . . . , v∗|Vert(Γ)|}. Since
S forms a basis for V , there is some s ∈ S such that the corresponding coefficient
for v∗1 is nonzero. We fix such an s for the remainder of the proof.

Write {w1, . . . , wk} for the vertices of Γ which are adjacent to v1, with corre-
sponding duals {w∗

1 , . . . , w
∗
k}, and let B be another arbitrary basis for V . Observe

first that q(v∗1 , w∗
i ) �= 0 for {1 ≤ i ≤ k}. Moreover, the set

{q(v∗1 , w∗
i )}1≤i≤k,

is linearly independent in W . It follows that the set

{q(s, w∗
i )}1≤i≤k,

is linearly independent in W .
Thus, we may consider the linear map

qs : V → W,

given by qs(v) = q(s, v). Clearly this is a linear map and its image is a vector sub-
space of W . The considerations of the previous paragraph show that the dimension
of qs(V ) is at least k, which coincides with the valence of v1 and hence with d(Γ).
Suppose that there were fewer than k elements b ∈ B for which q(s, b) �= 0. Then
qs(B) ⊂ W would span a subspace of dimension strictly less than k. However, B

is a basis, so that the span of qs(B) coincides with qs(V ), which is a contradic-
tion. Thus, we have that dB(S) ≥ d(Γ). Since B and S were arbitrary, we have
d(V ) ≥ d(Γ).
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3.4. Pairing-connectedness

In this section, we show that pairing-connectedness, which was already shown to
be implied by positive Cheeger constant hV > 0 by Proposition 2.2, is equivalent
to the connectedness of Γ under the assumptions

V = H1(A(Γ), L), W = H2(A(Γ), L), q =� .

Lemma 3.6. Let Γ be a finite simplicial graph, let V = H1(A(Γ), L), and let q be
the cup product pairing on V . The vector space V is pairing-connected if and only
if the graph Γ is connected.

Proof. Let {v1, . . . , vn} be the vertices of Γ, so that the dual vectors {v∗1 , . . . , v∗n}
form a basis for V . Suppose that Γ is not connected. Then after reindexing, we may
write B0 = {v∗1 , . . . , v∗j } and B1 = {v∗j+1, . . . , v

∗
n} with j < n, and where there is no

edge in Γ of the form {vi, vk} with i ≤ j and k > j. We let V0 be the span of B0

and V1 be the span of B1. Note that V = V0 ⊕ V1. It is clear that if w0 ∈ V0 and
w1 ∈ V1 then q(w0, w1) = 0, so that V is not pairing-connected.

Conversely, suppose that Γ is connected, and suppose that V ∼= V0 ⊕ V1 is an
arbitrary nontrivial direct sum decomposition. We assume for a contradiction that
for all pairs w0 ∈ V0 and w1 ∈ V1, we have q(w0, w1) = 0. We argue by induction
that either V0 = 0 or V1 = 0, using a sequence {b1, . . . , bm} of vertices of Γ, such
that each vertex of Γ appears in this sequence, and such that for all i < m we have
{bi, bi+1} spans an edge of Γ. We write b∗i ∈ V for the vector dual to the vertex bi.
Note that it is possible for there to be repeats on the list {b1, . . . , bm}, since Γ may
not contain a Hamiltonian path.

Before starting the induction, we explain the inductive step. Let w0 ∈ V0 and
w1 ∈ V1, and write

w0 =
n∑

i=1

λiv
∗
i , w1 =

n∑

i=1

μiv
∗
i .

Suppose that {vi, vj} spans an edge in Γ. By expanding the cup product q(w0, w1) =
0, we see that we must have λiμj = λjμi. If these products are nonzero, it follows
that the pairs (λi, λj) and (μi, μj) must satisfy a proportionality relation (i.e. there
is a nonzero α such that (λi, λj) = (αμi, αμj)). The vector space V is a free L–
module on {v∗1 , . . . , v∗n}, so that there are vectors in V whose coefficients do not
satisfy this proportionality relation. Therefore there exist vectors

w′
0 =

n∑

i=1

λ′
iv

∗
i ∈ V0 or w′

1 =
n∑

i=1

μ′
iv

∗
i ∈ V1,

such that (λ′
i, λ

′
j) is not proportional to (λi, λj) or (μ′

i, μ
′
j) is not proportional to

(μi, μj). Indeed, since V is spanned by V0 and V1, if there were no such vectors in
both V0 and V1 then every vector in V would satisfy this proportionality relation,
which is not the case. We then see that either q(w′

0, w1) �= 0 or q(w0, w
′
1) �= 0,
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which contradicts the assumption that q(w0, w1) = 0 for all w0 ∈ V0 and w1 ∈ V1.
It follows that λiμj = λjμi = 0.

We can now begin the induction. Suppose that w0 ∈ V0 is expressed with respect
to the basis {v∗1 , . . . , v∗n}. After relabeling, we may assume v1 = b1 and v2 = b2.
Assume that the coefficient λ1 of v∗1 = b∗1 is nonzero; if no such vector exists then
we simply choose one in V1 and proceed in the following argument with the roles
of V0 and V1 switched. Let w1 ∈ V1 be similarly expressed, and suppose that the
coefficient μ2 corresponding to b∗2 is nonzero. Then we must have λ1μ2 = λ2μ1,
and these products are both nonzero. The argument of the inductive step shows
that since V0 ⊕ V1 = V , we cannot have λ1μ2 = λ2μ1 �= 0. It follows that μ2 = 0.
Since w1 was arbitrary, the vanishing of this coefficient holds for all vectors in V1.
Again using the fact that V0 and V1 span V , there is a vector w′

0 ∈ V0 which has a
nonzero coefficient λ′

2 for b∗2. Arguing symmetrically shows that the coefficient μ1

of b∗1 vanishes for all vectors in V1.
By induction on m and using the fact that each vertex of Γ occurs on the list

{b1, . . . , bm}, it follows that if w1 ∈ V1 then all coefficients of w1 with respect to
the basis {v∗1 , . . . , v∗n} vanish, so that V1 is the zero vector space. This contradicts
the assumption that V ∼= V0 ⊕ V1 was a nontrivial direct sum decomposition.

4. Graph and Vector Space Cheeger Constants

In this section, we show that a vector space equipped with a vector space valued
bilinear pairing can compute the Cheeger constant of a graph, which will allow us
to establish Theorem 1.3 and its consequences.

4.1. Comparing Cheeger constants

The main technical result of this section is the following, which provides a precise
correspondence between Cheeger constants in the combinatorial and linear algebraic
contexts:

Theorem 4.1. Suppose that Γ is a connected simplicial graph and let A(Γ) be
the corresponding right-angled Artin group. Let hΓ denote the Cheeger constant
of Γ, and let hV denote the Cheeger constant of the triple (V, W, q), where V =
H1(A(Γ), L), where W = H2(A(Γ), L), and where q denotes the cup product. Then
hΓ = hV .

The proof of Theorem 4.1 is rather involved, and so will be broken up into
several more manageable lemmata. We begin by proving that the Cheeger constant
associated to a subspace F ⊂ V generated by duals of the vertex generators is given
by the Cheeger constant associated to the corresponding subgraph. To fix notation,
let {v1, . . . , vn} denote the vertices of Γ, and let {v∗1 , . . . , v∗n} be the corresponding
dual generators of V . If B = {v1, . . . , vj}, we write B∗ = {v∗1 , . . . , v∗j } and use ∂B
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to denote the vertices Γ which do not lie in B but which are adjacent to vertices
in B.

Lemma 4.2. Let 0 �= F ⊂ V be generated by B∗ = {v∗1 , . . . , v∗j }. Then

hF =
|∂B|
|B| .

Proof. Recall that we use the notation C for the orthogonal complement of B∗

with respect to q. The subspace C ⊂ V is generated by vertex duals {y∗
1 , . . . , y

∗
m},

where for each i either yi /∈ B ∪ ∂B or yi is an isolated vertex of B (i.e. yi is not
adjacent to any other vertex of B).

To see this, note that {y∗
1 , . . . , y

∗
m} ⊂ C. Conversely, suppose that x ∈ C and

write

x = a1v
∗
1 + · · · + anv∗n,

where a1 �= 0. If v1 is adjacent to a vertex w ∈ B then clearly q(x, w∗) �= 0, since
the resulting cohomology class will be supported on the dual of the edge connecting
v1 and w (see Sec. 3.1 for a discussion of the definition of support). It follows that
if x ∈ C then v1 is either an isolated vertex of B or v1 /∈ B ∪ ∂B.

We now claim that

hF =
|∂B|
|B| .

To establish this claim, note that C ∩ F is generated by the duals {v∗1 , . . . , v∗� } of
singleton vertices of B. Write |∂B| = k. It follows now that

dim C − dim(C ∩ F ) = n − |B ∪ ∂B| = n − k − j.

We thus obtain the string of equalities

|∂B|
|B| =

k

j
=

n − j − (n − k − j)
j

=
dimV − dimF − dimC + dim(C ∩ F )

dim F
= hF ,

which establishes the lemma.

The following lemma clearly implies Theorem 4.1.

Lemma 4.3. Let 0 �= F ⊂ V be of dimension j. Then there exists a subspace F ′ ⊂
V of dimension j with a basis contained in {v∗1 , . . . , v∗n}, and such that hF ′ ≤ hF .

Observe that in order to establish Lemma 4.3, if we write C′ for the complement
of F ′ with respect to q, it suffices to show that

dim C − dim(C ∩ F ) ≤ dim C′ − dim(C′ ∩ F ′).

Proving Lemma 4.3 is also rather complicated, so we will gather some prelim-
inary results and terminology first. We will call a j-tuple {v∗i1 , . . . , v∗ij

} admissible
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if for each index ik, there is a vector wik
contained in the linear span of

{v∗1 , . . . , v∗n}\{v∗i1 , . . . , v∗ij
},

so that the vectors of the form fik
= v∗ik

+ wik
form a basis for F . Such bases

for F will be called admissible bases. Note that if {v∗i1 , . . . , v∗ij
} is admissible then

the vectors wik
are uniquely determined for 1 ≤ k ≤ j. It is straightforward to

determine whether a tuple is admissible: indeed, express an arbitrary basis for F

in terms of the basis {v∗1 , . . . , v∗n}, the latter of which we view as the columns of
a matrix. A tuple is admissible if and only if the corresponding j × j minor is
invertible.

Let

E∗ = {v∗1 , . . . , v∗j } ⊂ {v∗1 , . . . , v∗n},
be admissible, and let E = {v1, . . . , vj} be the corresponding set of vertices. We
write ΓE for the subgraph of Γ spanned by E, and E0 for the set of isolated vertices
in E. For a given subspace F , there are many possible admissible tuples E∗ we might
consider. Among those, we will always focus our attention on those for which |E0|
is minimized. Such a choice of E∗ may of course not be unique.

Returning to an admissible basis for F , after re-indexing the vertices of Γ if
necessary, we will fix a basis for V now of the form

{f1, . . . , fj, v
∗
j+1, . . . , v

∗
n},

where fi = v∗i + wi as before. Such a basis for V will be called standard relative to
F , and E∗ will be the corresponding admissible tuple.

We will fix the following notation in the sequel. Suppose F ⊂ V has dimension j.
If {f1, . . . , fj , v

∗
j+1, . . . , v

∗
n} is a standard basis of V relative to F , write F ′ for the

span of {v∗1 , . . . , v∗j }, write C′ for its orthogonal complement with respect to q, and
let Y denote the span of {v∗j+1, . . . , v

∗
n}.

We will in fact prove the following lemma, which implies Lemma 4.3.

Lemma 4.4. If F ⊂ V has dimension j then there exists a standard basis

{f1, . . . , fj, v
∗
j+1, . . . , v

∗
n},

of V relative to F such that if x ∈ C and F ∩ C = 0 then x ∈ C′ ∩ Y, and if
F ∩ C �= 0 then

x ∈ (C ∩ F ) + (C′ ∩ Y ).

Lemma 4.4 implies Lemma 4.3, since then

dim C ≤ dimC′ − dim(C′ ∩ F ′) + dim(C ∩ F ).

We first establish it in the simpler cases where dim F = 1 and in the case where
there exists an admissible basis for F with E0 = ∅.
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Proof of Lemma 4.4. When dimF = 1 Clearly we may assume that dim V ≥ 2.
Suppose F is the span of a ∈ V . Observe that F ⊂ C. We write {f1, v

∗
2 , . . . , v∗n} for

a standard basis for V relative to F . We have that a is a nonzero multiple of f1,
and F ′ is the span of v∗1 . If x ∈ C then we may write

x = λ1f1 +
n∑

i=2

λiv
∗
i .

We write w = x−λ1f1 and we assume λm �= 0 for some m ≥ 2. Note that q(f1, x) =
q(f1, w). If q(v∗1 , v∗m) �= 0 then q(f1, x) has λ1λm as the coefficient appearing before
the vector dual to the edge {v1, vm}. So, if x ∈ C then q(v∗1 , v∗m) = 0, whence
it follows that v∗m ∈ C′. Since m was chosen arbitrarily subject to the condition
λm �= 0, we have that w ∈ C′ ∩ Y , where Y is the span of {v∗2 , . . . , v∗n}. This
establishes the lemma in this case.

Proof of Lemma 4.4. When E0 = ∅ Let {f1, . . . , fj , v
∗
j+1, . . . , v

∗
n} be a standard

basis relative to F , where the admissible tuple E∗ satisfies E0 = ∅. Each component
of ΓE consists of at least two vertices. We write {F ′, C′, Y } as before. Let x ∈ C

be written as
j∑

i=1

λifi +
n∑

i=j+1

λiv
∗
i .

Suppose first that λm �= 0 for some m ≤ j. The vertex vm ∈ E is adjacent to
a vertex vk ∈ E, so that q(λmfm, fk) �= 0, whence it follows that q(x, fk) �= 0,
contradicting the fact that x ∈ C. We conclude that λm = 0 for m ≤ j, so that we
may write

x =
n∑

i=j+1

λiv
∗
i .

Mimicking the proof in the case dimF = 1, we have that x ∈ C′ ∩ Y , as desired.

Now let us consider a standard basis

B = {f1, . . . , fk, fk+1, . . . , fj, v
∗
j+1, . . . , v

∗
n},

relative to F , where the vertices in the admissible tuple E with indices 1 ≤ i ≤ k

are precisely those which are not isolated in ΓE . We remind the reader that we
assume here and henceforth that B is chosen in such a way that |E0| is minimized.

By the proofs of the cases of Lemma 4.4 given so far, we may assume that k < j.
Let x ∈ C as before, and write

x =
j∑

i=1

λifi +
k∑

i=j+1

λiv
∗
i .

As argued in the proof in the case E0 = ∅, we have that λm = 0 for m ≤ k.

Lemma 4.5. Let B be as above. If k + 1 < m ≤ j then q(fk+1, fm) = 0.
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Proof. Write

fk+1 = v∗k+1 +
n∑

s=j+1

μk+1
s v∗s , fm = v∗m +

n∑

t=j+1

μm
t v∗t .

By assumption, we have that q(v∗k+1, v
∗
m) = 0, since the corresponding vertices are

isolated. If q(fk+1, fm) �= 0 then one of the three following cases must occur.

(1) The coefficient μk+1
s is nonzero for a suitable s > j with q(v∗s , v∗m) �= 0.

(2) The coefficient μm
t is nonzero for a suitable t > j with q(v∗k+1, v

∗
t ) �= 0.

(3) We have μk+1
s μm

t �= μk+1
t μm

s for suitable indices s, t > j with s �= t and
q(v∗s , v∗t ) �= 0.

In the first of these possibilities, we write

E′ = (E\{vk+1}) ∪ {vs}.
We claim that (E′)∗ remains admissible. This is straightforward to check. Indeed,
we record an n × n matrix M whose columns are labeled by {v∗1 , . . . , v∗n}, whose
rows are labeled by {f1, . . . , fj , v

∗
j , . . . , v∗n}, and whose entries are the v∗� coefficient

mi,� of the ith row basis element. We have that the j × j block in the upper left
hand corner is the identity matrix. Exchanging vk+1 for vs corresponds to switching
the (k + 1)st and sth columns of M . The (k + 1)st row of the sth column reads
μk+1

s �= 0. Thus after exchanging these two columns, the upper left hand j × j

block remains invertible. Moreover, q(v∗s , v∗m) �= 0, whence vs and vm are no longer
isolated vertices. It follows that |E′

0| < |E0|, which contradicts the minimality of
|E0|. Thus, the first item is ruled out. We may rule out the second of these items
analogously.

To rule out the third item, we let E′′ = E\{vk+1, vm} ∪ {vs, vt}. It suffices
to show that (E′′)∗ is admissible, since vs and vt are adjacent in Γ under the
assumptions of the third item. We switch the columns with labels k + 1 and s, and
with labels m and t. Since μk+1

s μm
t �= μk+1

t μm
s , the determinant of the upper left

hand j × j block remains nonzero. This establishes the lemma.

In order to complete the proof of Lemma 4.4, we will need to describe a process of
modifying a given standard basis B to obtain one with more advantageous features.
Specifically, we will transform B into a standard basis Bk+1 such that if x ∈ C is
expressed with respect to Bk+1, then the first k + 1 coefficients of x must vanish.
To this end, suppose fr /∈ C for r > k. Without loss of generality, r = k + 1.

By Lemma 4.5, we see that there is an index m < k+1 such that q(fm, fk+1) �= 0.
Since vk+1 is isolated, we have q(v∗k+1, v

∗
m) = 0. Again we write

fk+1 = v∗k+1 +
n∑

s=j+1

μk+1
s v∗s , fm = v∗m +

n∑

t=j+1

μm
t v∗t .

Observe that at least one of items 1, 2, or 3 in the proof of Lemma 4.5 above must
occur for this pairing to be nonzero. We now proceed to modify B to obtain a new
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standard basis Bk+1 as follows, according to the reason for which q(fm, fk+1) �= 0.
Namely:

(1) If μm
t �= 0 for some index t with q(v∗k+1, v

∗
t ) �= 0, then we set Bk+1 = B.

(2) If the previous item does not hold but if there exists an index s with μk+1
s �= 0

and q(v∗m, v∗s ) = 0 then we substitute v∗s for v∗k+1 to obtain an admissible tuple
as in Lemma 4.5. We then set Bk+1 to be the standard basis associated to the
corresponding admissible tuple.

(3) If both of the previous items do not hold then at least one of the products
μk+1

s μm
t and μk+1

t μm
s is nonzero for suitable choices of indices s and t with

q(v∗s , v∗t ) �= 0. We substitute v∗s for v∗k+1. As before, the resulting tuple is admis-
sible. We then write Bk+1 for the corresponding standard basis.

As before, these exchanges do not change the size of |E0|. We now write

Bk+1 = {fk+1
1 , . . . , fk+1

j , ej+1, . . . , en},
where indices have been renumbered after any substitutions. Note the following
observation.

Observation 4.6. For r ≤ j and r �= k + 1, we have that fk+1
r differs from fr by

a (possibly zero) multiple of fk+1, and fk+1
k+1 = fk+1.

If x ∈ C, we write it with respect to this new basis, so that

x =
j∑

i=1

λk+1
i fk+1

i +
n∑

i=j+1

λk+1
i v∗i .

The previous considerations show that λk+1
i = 0 for i ≤ k.

Lemma 4.7. The following hold.

(1) If x ∈ C is as above, then λk+1
k+1 = 0.

(2) For k + 1 ≤ r, s ≤ j, we have q(fk+1
r , fk+1

s ) = 0.

Proof. Suppose now that λk+1
k+1 �= 0, and consider the index m as before which was

chosen so that q(fm, fk+1) �= 0. Then for a suitable constant α, we have

q(fk+1
m , fk+1

k+1 ) = q(fm + αfk+1, fk+1) = q(fm, fk+1) �= 0.

Moreover, q(fk+1
m , fk+1

k+1 ) is supported on the dual vector to the edge {vm, vk+1} or
{vt, vk+1} (which was the edge {vm, vs} or the edge {vt, vs} before the vertices were
re-indexed in the definition of Bk+1). No other summand making up the vector x

(i.e. λif
k+1
i for i ≥ k + 2 or λk+1

i v∗i for i ≥ j + 1) is supported on v∗k+1. It follows
that if λk+1

k+1 �= 0 then q(x, fk+1
m ) �= 0, which is a contradiction. We may therefore

conclude that λk+1
k+1 = 0.
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For the second claim of the lemma, note that for

k + 1 ≤ r, s ≤ j,

we have q(fr, fs) = 0 by Lemma 4.5, which implies that q(fk+1
r , fk+1

s ) = 0 as well
since both of these vectors differ from fr and fs, respectively, by a multiple of
fk+1.

Now suppose that fk+1
i /∈ C for some k+2 ≤ i ≤ j, and without loss of generality

we may assume that i = k + 2. Repeating the procedure for the construction of
Bk+1, we may add multiples of fk+1

k+2 to the basis vectors which are distinct from
fk+1

k+2 itself in order to obtain a new basis

Bk+2 = {fk+2
1 , . . . , fk+2

j , v∗j+1, . . . , v
∗
n}.

Since q(fk+1
k+2 , fk+2

i ) = 0 for i ≥ k+1, we must have that q(fk+1
r , fk+1

k+2 ) �= 0 for some
r ≤ k. As before, if x ∈ C, we express x in this basis with coefficients {λk+2

i }1≤i≤n

and observe that the coefficients satisfy λk+2
i = 0 for i ≤ k and λk+2

k+2 = 0. It is
conceivable that in the course of this modification we may find that λk+2

k+1 �= 0, a
conclusion which we wish to rule out.

Lemma 4.8. If x ∈ C is expressed with respect to the basis Bk+2, then we have
λk+2

k+1 = 0.

Proof. We consider a vector fk+1
m which satisfies q(fk+1

m , fk+1
k+1 ) �= 0, and for suit-

able constants α and β, we obtain expressions

fk+2
m = fk+1

m + αfk+1
k+2 , fk+2

k+1 = fk+1
k+1 + βfk+1

k+2 .

Computing, we have

q(fk+2
m , fk+2

k+1 ) = q(fk+1
m , fk+1

k+1 ) + βq(fk+1
m , fk+1

k+2 ),

using the orthogonality of fk+1
k+1 and fk+1

k+2 .

It follows that q(fk+2
m , fk+2

k+1 ) is supported on the vector dual to the edge
{vk+1, vr} for a suitable r, as this was already true of q(fk+1

m , fk+1
k+1 ). Then, as

we argued for Bk+1 in Lemma 4.7, we have that λk+2
k+1 = 0 again.

We can now complete the argument.

Proof of Lemma 4.4. We inductively construct a sequence of distinct bases for
V and corresponding admissible tuples which we write as

{Bk+2, Bk+3, . . .}, {(Ek+2)∗, (Ek+3)∗, . . .},
which have the property that if x ∈ C is written with respect to the basis Bk+s

then the coefficients λk+s
� of fk+s

� are trivial for � ≤ k + s. We are able to construct
Bk+s+1 from Bk+s precisely when there is an index k + s ≤ i ≤ j such that
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fk+s
i /∈ C. Since F is finite dimensional, the sequence will terminate after finitely

many terms. This will happen either for k + s = j or for some s < j − k.
In the first case, we see that C ∩ F = 0. In the second case, the basis vectors

{fk+s
k+s+1, . . . , f

k+s
j } are orthogonal to F . To complete the proof of the lemma, we

set fi = fk+s
i for 1 ≤ i ≤ j, and F ′ is the span of the associated admissible

tuple (Ek+s)∗. As in the statement of the lemma, we write Y for the span of
{v∗j+1, . . . , v

∗
n}. If x ∈ C then

x =
j∑

i=k+s+1

λk+s
i fi + y,

for a suitable vector y ∈ Y . Note that by assumption, we have x − y ∈ C, which
implies that y ∈ C. This shows that y ∈ C′ ∩ Y , since q(y, fi) = 0 for all i ≤ j and
hence q(y, v∗i ) = 0 for i ≤ j. It follows that if C ∩ F = 0 then x = y ∈ C′ ∩ Y , and
otherwise that x ∈ (C ∩ F ) + (C′ ∩ Y ), which completes the proof.

4.2. Proof of the main results

Theorems 1.2 and 1.3 now follow almost immediately. The size of the set of vertices
of Γi tending to infinity is equivalent to the dimension of Vi = H1(A(Γ)) tending
to infinity, over any field. Bounded qi-valence of Vi, bounded valence of Γi, and
bounded centralizer rank in A(Γ) are all equivalent by Corollary 3.3 and Lemma 3.5.
Finally, Theorem 4.1 implies that the Cheeger constant of Γi is equal to the Cheeger
constant of the triple (H1(A(Γ)), H2(A(Γ)), q), over any field. This establishes the
main results.

4.3. Generalizations to higher dimension

By considering cohomology of right-angled Artin groups beyond dimension two,
one can use vector space expanders to generalize graph expanders to higher dimen-
sions. Unfortunately, this does not seem to give much new information, as might
be expected; indeed, the cohomology of a right-angled Artin group is completely
determined by its behavior in dimension one and the cup product pairing therein.
This can easily be seen through a suitable generalization of Proposition 3.1 to
higher-dimensional cohomology: the cohomology of the right-angled Artin group
A(Γ) in each dimension is determined by the corresponding number of cells in the
flag complex of Γ (with a dimension shift), and the cup product pairing is deter-
mined by the face relation. The flag complex, moreover, is completely determined
by its 1-skeleton. In particular, there does not seem to be a meaningful connection
to more fruitful notions of higher-dimensional expanders (cf. [25], for instance).
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5. A Vector Space Expander Family that Does Not Arise
from a Graph Expander Family

In this section, we give a method for producing families of vector space expanders
that do not arise from the cohomology rings of right-angled Artin groups of graph
expanders.

Let {Γi}i∈N be a family of finite connected simplicial graphs which form a graph
expander and let L be an arbitrary field. We will write

Vi = H1(A(Γi), L), Wi = H2(A(Γi), L), qi =�,

where � denotes the cup product in the cohomology ring of the corresponding
group. For each i, we choose an arbitrary vertex vi of Γi. We set V ′

i = Vi, and
we let Wi = W ⊕ L, where the summand L is generated by a vector z∗i . We set
q′i = qi ⊕ q0,i, where q0,i((vi)∗, (vi)∗) = z∗i , and where q0,i vanishes on inputs of all
other basis vectors arising from duals of vertices, in both arguments. That is, let
{vi

1, . . . , v
i
n} be the vertices of Γi, and without loss of generality we may assume

that vi = vi
1. We set q0,i((vi

j)
∗, (vi

k)∗) = 0 unless both vi
j and vi

k are equal to vi
1,

and we extend by bilinearity.

Proposition 5.1. If V ′ = {(V ′
i , W ′

i , q
′
i)}i≥0 is as above then:

(1) The family V ′ is a vector space expander.
(2) The family V ′ does not arise from the cohomology of the right-angled Artin

groups associated to a sequence of graphs.

The second item of Proposition 5.1 means that there is no family of finite con-
nected simplicial graphs {Λi}i∈N such that

V ′
i = H1(A(Λi), L), W ′

i = H2(A(Λi), L), q′i =� .

Proof of Proposition 5.1. Since V ′
i = Vi, we have that dimV ′

i → ∞. Now
consider q′i-valence, which we denote by di, and we compare with the graph valence
d(Γi) of Γi. By setting B = S = (Vert(Γi))∗ in the definition of q′i-valence, we see
that di(V ) ≤ d(Γi) + 1. Thus, V ′ has uniformly bounded valence. For each i, the
vector space V ′

i is already pairing-connected with respect to the pairing qi, and
qi(v, w) �= 0 implies q′i(v, w) �= 0, so that V ′

i is pairing-connected with respect to
the pairing q′i.

We now need to estimate the Cheeger constants of V ′. We suppress the i index,
and write {v∗1 , . . . , v∗n} for a basis of V ′ consisting of dual vectors of vertices of Γ.
We assume v1 to be the distinguished vertex of Γ such that q0(v∗1 , v∗1) �= 0. Let
0 �= F ⊂ V ′ be a subspace of dimension at most (dim V ′)/2, and let h0 be the
infimum of the Cheeger constants of the family V ′ with respect to q, the usual cup
product. We denote by Cq the orthogonal complement of F with respect to q, by
C0 the orthogonal complement of F with respect to q0, and by C the orthogonal
complement of F with respect to q′. Clearly, C = Cq ∩ C0.
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Now, let f ∈ F be written as

f =
n∑

i=1

μiv
∗
i

and let x ∈ V be written as

x =
n∑

i=1

λiv
∗
i .

It follows by definition that q0(v∗i , x) = 0 for i �= 1, so that q0(f, x) = λ1μ1.
Thus, the span of {v∗2 , . . . , v∗n} is always contained in C0, and consequently C0 has
dimension either n or n − 1. Thus, dim C is either equal to dim Cq or dimCq − 1.
Similarly, x ∈ C ∩ F if and only if x ∈ Cq ∩ C0 ∩ F , so that dim(C ∩ F ) is either
equal to dim(Cq ∩ F ) or dim(Cq ∩ F ) − 1.

Suppose that dim(C ∩ F ) = dim(Cq ∩ F ) − 1. Then C �= Cq, so that dimC =
dimCq − 1. In this case,

dimC − dim(C ∩ F ) = dimCq − 1 − (dim(Cq ∩ F ) − 1) = dimCq − dim(Cq ∩ F ).

It follows that dimC − dim(C ∩F ) ≤ dimCq − dim(Cq ∩F ), and the difference
between these is at most 1. Writing N = dimV ′ − dim F , the Cheeger constant of
F satisfies

hF =
N − dim C + dim(C ∩ F )

dim F
≥ N − dimCq + dim(Cq ∩ F )

dim F
.

This proves that the Cheeger constant of V ′ is bounded away from zero, which
proves that V ′ is a vector space expander family.

To see that V ′ does not arise from a graph expander family, we note that the
cup product satisfies v∗1 � v∗1 = 0, and q′ is constructed so that q′(v∗1 , v∗1) �= 0. This
establishes the proposition.

Many variations on the construction in this section can be carried out, which
illustrates the fact that vectors space expander families are indeed significantly
more flexible than graph expander families.
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Birkhäuser Classics (Birkhäuser Verlag, Basel, 2010).

25. A. Lubotzky, High dimensional expanders, in Proc. Int. Cong. Mathematicians—Rio
de Janeiro 2018, Plenary Lectures, Vol. 1 (World Scientific Publication, Hackensack,
New Jersey, 2018), pp. 705–730.

26. A. Lubotzky, Ralph Phillips, and Peter Sarnak, Ramanujan graphs, Combinatorica 8
(1988) 261–277.

27. A. Lubotzky and E. Zelmanov, Dimension expanders, J. Algebra 319 (2008) 730–738.
28. L. Sabalka, On rigidity and the isomorphism problem for tree braid groups, Groups

Geom. Dyn. 3 (2009) 469–523.
29. H. Servatius, Automorphisms of graph groups, J. Algebra 126 (1989) 34–60.

J.
 T

op
ol

. A
na

l. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
SE

V
IL

L
E

 o
n 

06
/3

0/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.


	Introduction
	Graph and Vector Space Expanders
	Graph expander families
	Vector space expander families
	The Cheeger constant
	The q-valence of a vector space
	Pairing-connectedness
	Defining vector space expanders


	Cohomology, q--Valence and Pairing--Connectedness
	The cohomology ring of a right-angled Artin group
	Centralizers in right-angled Artin groups
	Centralizers and q-valence
	Pairing-connectedness

	Graph and Vector Space Cheeger Constants
	Comparing Cheeger constants
	Proof of the main results
	Generalizations to higher dimension

	A Vector Space Expander Family that Does Not Arise from a Graph Expander Family


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 900
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


