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Abstract
In this paper we propose a novel methodology to construct Optimal Classification
Trees that takes into account that noisy labels may occur in the training sample. The
motivation of this new methodology is based on the superaditive effect of combining
together margin based classifiers and outlier detection techniques. Our approach rests
on two main elements: (1) the splitting rules for the classification trees are designed
to maximize the separation margin between classes applying the paradigm of SVM;
and (2) some of the labels of the training sample are allowed to be changed during the
construction of the tree trying to detect the label noise. Both features are considered
and integrated together to design the resultingOptimal Classification Tree.We present
a Mixed Integer Non Linear Programming formulation for the problem, suitable to
be solved using any of the available off-the-shelf solvers. The model is analyzed and
tested on a battery of standard datasets taken from UCI Machine Learning repository,
showing the effectiveness of our approach. Our computational results show that in
most cases the new methodology outperforms both in accuracy and AUC the results
of the benchmarks provided by OCT and OCT-H.
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1 Introduction

Discrete Optimization has experienced a tremendous growth in the last decades, both
in its theoretical and practical sides, partially provoked by the emergence of new
computational resources as well as real-world applications that have boosted this
growth. This impulse has also motivated the use of Discrete Optimization models to
deal with problems involving a large number of variables and constraints, that years
beforewould have not been possible to be dealtwith.One of the fields inwhichDiscrete
Optimization has caused a larger impact is in Machine Learning. The incorporation
of binary decisions to the classical approaches as Support Vector Machine Cortes
and Vapnik (1995), Classification Trees Breiman et al. (1984), Linear Regression and
Clustering, amongst other, has considerably enhanced their performance in terms of
accuracy and interpretability (see e.g. Benati et al. (2017, 2021); Bertsimas and Dunn
(2017); Blanco et al. (2020a, c, 2018); Blanquero et al. (2020a, b); Drucker et al.
(1997); Gaudioso et al. (2017)). In particular, one of the most interesting applications
of Machine Learning is that related with Supervised Classification.

Supervised classification aims at finding hidden patterns from a training sample
of labeled data in order to predict the labels of out-of-sample data. Several methods
have been proposed in order to construct highly predictive classification tools. Some
of the most widely used methodologies are based on Deep Learning mechanisms
Agarwal et al. (2018), k-Nearest Neighborhoods Cover and Hart (1967); Tang and
Xu (2016), Naïve Bayes Lewis (1998), Classification Trees Breiman et al. (1984);
Friedman et al. (2001) and Support Vector Machines Cortes and Vapnik (1995). The
massive use of these tools has induced, in many situations, that malicious adversaries
adaptively manipulate their data to mislead the outcome of an automatic analysis, and
new classification rules must be designed to handle the possibility of this noise in
the training labels. A natural example are the spam filters for emails, where malicious
emails are becomingmore difficult to automatically be detected since they have started
to incorporate patterns that typically appear in legitimate emails (see e.g., Guzella and
Caminhas (2009); Yu and Xu (2008)). As a consequence, the development of robust
methods against these kind of problems has attracted the attention of researchers (see
e.g., Bertsimas et al. (2019); Blanco et al. (2020b)).

In the context of binary classification problems, Support Vector Machines (SVM),
introduced by Cortes and Vapnik Cortes and Vapnik (1995), builds the decision rule by
means of a separating hyperplane with large margin between classes. This hyperplane
can be obtained by solving a convex quadratic optimization problem, in which the
goal is to separate data by their two differentiated classes, maximizing the margin
between them and minimizing the misclassification errors. Duality properties of this
optimization problem allowone to extend themethodology to find nonlinear separators
bymeans of kernels. In Classification andRegression Trees (CART), firstly introduced
by Breiman et. al Breiman et al. (1984), one constructs the decision rule based on a
hierarchical relation among a set of nodes which is used to define paths that lead
observations from the root node (highest node in the hierarchical relation), to some of
the leaves in which a class is assigned to the data. These paths are obtained according
to different optimization criteria over the predictor variables of the training sample.
The decision rule comes up naturally, the classes predicted for new observations are
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Robust optimal classification trees under noisy labels 157

the ones assigned to the terminal nodes in which observations fall in. Historically,
CART is obtained heuristically through a greedy approach, in which each level of
the tree is sequentially constructed: starting at the root node and using the whole
training sample, the method minimizes an impurity measure function obtaining as
a result a split that divides the sample into two disjoint sets which determine the
two descendant nodes. This process is repeated until a given termination criterion is
reached (minimum number of observations belonging to a leaf, maximum depth of
the tree, or minimum percentage of observations of the same class on a leaf, among
others). In this approach, the tree grows following a top-down greedy approach, an
idea that is also shared in other popular decision treemethods like C4.5Quinlan (1993)
or ID3 Quinlan (1996). The advantage of these methods is that the decision rule can
be obtained rather quickly even for large training samples, since the whole process
relies on solving manageable problems at each node. Furthermore, these rules are
interpretable since the splits only take into account information about lower or upper
bounds on a single feature. Nevertheless, there are some remarkable disadvantages in
these heuristic methodologies. The first one is that they may not obtain the optimal
classification tree, since they look for the best split locally at each node, not taking
into account the splits that will come afterwards. Thus, these local branches may not
capture the proper structure of the data, leading to misclassification errors in out-
of-sample observations. The second one is that, specially under some termination
criteria, the solutions provided by these methods can result into very deep (complex)
trees, resulting in overfitting and, at times, loosing interpretability of the classification
rule. This difficulty is usually overcome by pruning the tree as it is being constructed by
comparing the gain on the impurity measure reduction with respect to the complexity
cost of the tree.

Mixing together the powerful features of standard classification methods and Dis-
crete Optimization has motivated the study of supervised classification methods under
a new paradigm (see Bertsimas and Dunn (2019)). In particular, recently, Bertsimas
and Dunn Bertsimas and Dunn (2017) introduced the notion of Optimal Classifica-
tion Trees (OCT) by approaching CART under optimization lens, providing a Mixed
Integer Linear Programming formulation to optimally construct Classification Trees.
In this formulation, binary variables are introduced to model the different decisions
to be taken in the construction of the trees: deciding whether a split is applied and
if an observation belongs to a terminal node. Moreover, the authors proved that this
model can be solved for reasonable size datasets, and equally important, that for many
different real datasets, significant improvements in accuracy with respect to CART
can be obtained. In contrast to the standard CART approach, OCT builds the tree by
solving a single optimization problem taking into account (in the objective function)
the complexity of the tree, avoiding post pruning processes. Moreover, every split
is directly applied in order to minimize the misclassification errors on the terminal
nodes, and hence, OCTs are more likely to capture the essence of the data. Further-
more, OCTs can be easily adapted in the so-called OCT-H model to decide on splits
based on hyperplanes (oblique) instead of on single variables. Another remarkable
advantage of using optimization tools in supervised classification methods is that fea-
tures such as sparsity or robustness, can be incorporated to the models by means of
binary variables and constraints Günlük et al. (2018). The interested reader is refereed
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to the recent survey Carrizosa et al. (2020). We would like to finish this discussion
pointing out one of the main differences between SVM and Classification Trees: SVM
accounts for misclassification errors based on distances (to the separating hyperplane),
i.e., the closer to the correct side of the separating hyperplane, the better, whereas in
Classification Trees all misclassified observations are equally penalized.

Recently, Blanco et. al Blanco et al. (2020b) proposed different SVM-based meth-
ods that provide robust classifiers under the hypothesis of label noises. The main idea
supporting those methods is that labels are not reliable, and in the process of building
classification rules it may be beneficial to flip some of the labels of the training sample
to obtain more accurate classifiers. With this paradigm, one of the proposed methods,
RE-SVM, is based on constructing a SVM separating hyperplane, but simultaneously
allowing observations to be relabeled during the training process. The results obtained
by this method, in datasets in which noise was added to the training labels, showed that
this strategy outperforms, in terms of accuracy, classical SVM and other SVM-based
robust methodologies. See Bertsimas et al. (2019) for alternative robust classifiers
under label noise.

In this paper we propose a novel binary supervised classification method, called
Optimal Classification Tree with Support Vector Machines (OCTSVM), that profits
both from the ideas of SVM and OCT to build classification rules. Specifically, our
method uses the hierarchical structure of OCTs, which leads to easily interpretable
rules, but splits are based on SVM hyperplanes, maximizing the margin between
the two classes at each node of the tree. The fact that the combination of SVM and
classification tree tools provides enhanced classifiers is not new. A similar approach
can be found in Bennett and Blue (1998). Nevertheless, in that paper the authors
analyze the greedy CART strategy by incorporating, sequentially the maximization
of the margin, over known assignments of observations to the leaves of the tree.
Opposite to that, OCTSVM does not assume those assumptions and it performs an
exact optimization approach. Moreover, this new method also incorporates decisions
on relabeling observations in the training dataset, making it specially suitable for
datasets where adversary attacks are suspected. The results of our experiments show
that OCTSVM outperforms other existing methods under similar testing conditions.
In contrast to the robust classifiers under label noise provided in Bertsimas et al.
(2019), our method is not based on the worst-case paradigm commonly used in the
field of robust optimization, but in the convenience of finding good classifiers under
the presence of unknown noisy labels.

The rest of the paper is organized as follows. In Sect. 2we recall themain ingredients
of our approach, in particular, SVM, RE-SVM and OCTs, as well as the notation used
through the paper. Section 3 is devoted to introduce our methodology, and presents
a valid Mixed Integer Non Linear Programming (MINLP) formulation. In Sect. 4
we report the results obtained in our computational experiments, in particular, the
comparison of our method with OCT, OCT-H and the greedy CART. Finally, some
conclusions and further research on the topic are drawn in Sect. 5.
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2 Preliminaries

In this section we recall the main ingredients in the approach that will be presented
in Sect. 3 which allows us to construct robust classifiers under label noises, namely,
SupportVectorMachineswithRelabeling (RE-SVM)andOptimalClassificationTrees
with oblique splits (OCT-H).

All through this paper, we consider that we are given a training sample X =
{(x1, y1) , . . . (xn, yn), } ⊆ R

p × {−1,+1}, in which p features have been measured
for a set of n individuals (x1, . . . , xn) as well as a ±1 label is also known for each
of them (y1, . . . , yn). The goal of supervised classification is, to derive, from X , a
decision rule DX : R

p → {−1, 1} capable to accurately predict the right label of
out-sample observations given only the values of the features. We assume, without
loss of generality that the features are normalized, i.e., x1, . . . , xn ∈ [0, 1]p.

2.1 Support vector machines

One of the most used optimization-based method to construct classifiers for binary
labels is SVM Cortes and Vapnik (1995). This classifier is constructed by means of a
separating hyperplane in the feature space, H = {

z ∈ R
p : ω′z + ω0 = 0

}
, such that

the decision rule becomes:

DSVM
X (z) =

{−1 if ω′z + ω0 < 0,
1 if ω′z + ω0 ≥ 0.

To construct such a hyperplane, SVM chooses the one that simultaneously maximizes
the separation between classes and minimizes the errors of misclassified observations.
These errors are measured proportional to the distances (in the feature space) from
the observations to their label half-space. SVM can be formulated as a convex non
linear programming (NLP) problem. This approach allows one for the use of a kernel
function as a way of embedding the original data in a higher dimension space where
the separation may be easier without increasing the difficulty of solving the problem
(the so-called kernel trick).

2.2 Relabeling

On the other hand, SVMhas also been studied in the context of robust classification. In
Blanco et al. (2020b) three newmodels derived fromSVMare developed to be applica-
ble to datasets in which the observations may have wrong labels in the training sample.
This characteristic is incorporated into the models by allowing some of the labels to
be swapped (relabelled) at the same time that the separating hyperplane is built. Two
of these models combine SVM with cluster techniques in a single optimization prob-
lem while the third method, the so-called RE-SVM, relabels observations based on
misclassification errors without using clustering techniques, what makes it easier to
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train. The RE-SVM problem can be formulated as:

min
1

2
‖ω‖22 + c1

n∑

i=1

ei + c2

n∑

i=1

ξi (RE-SVM)

s.t. (1 − 2ξi )yi (ω
′xi + ω0) ≥ 1 − ei , ∀i = 1, . . . , n, (1)

ω ∈ R
p, ω0 ∈ R,

ei ∈ R
+, ξi ∈ {0, 1} , ∀i = 1, . . . , n,

where ξi takes value 1 if the i th observation of the training sample is relabelled, and
0 otherwise and ei is the misclassifying error defined as the hinge loss:

ei =
{
max{0, 1 − yi (ω′xi + ω0)} if observation i is not relabelled
max{0, 1 + yi (ω′xi + ω0)} if observationi is relabelled ,

for i = 1, . . . , n. The costs parameters c1 and c2 (unit cost per misclassifying error
and per relabelled observation) allow one to find a trade-off between large separation
between classes: c1 and c2 are parametersmodelling the unit cost ofmisclassified errors
and relabelling, respectively. (‖ · ‖2 stands for the Euclidean norm inRp.) Constraints
(1) assures the correct definition of the hinge loss and relabelling variables.

The problem above can be reformulated as a Mixed Integer Second Order Cone
Optimization (MISOCO) problem, for which off-the-shelf optimization solvers such
as CPLEX or Gurobi are able to solve medium size instances in reasonable CPU time.

2.3 Optimal classification trees

Classification Trees (CT) are a family of classificationmethods based on a hierarchical
relation among a set of nodes. The decision rule for CTmethods is built by recursively
partitioning the feature space bymeans of hyperplanes.At the first stage, a root node for
the tree is considered where all the observations belongs to. Branches are sequentially
created by splits on the feature space, creating intermediate nodes until a leaf node is
reached. Then, the predicted label for an observation is given by the majority class of
the leaf node where it belongs to.

Specifically, at each node, t , of the tree a hyperplaneHt = {z ∈ R
p : ω′

t z+ωt0 = 0}
is constructed and the splits are defined asω′

t z+ωt0 < 0 (left branch) andω′
t z+ωt0 ≥ 0

(right branch). In Fig. 1 we show a simple classification tree with depth two, for a small
dataset with 6 observations, that are correctly classified on the leaves.

The most popular method to construct Classification Trees from a training dataset
is CART, introduced by Brieman et. al Breiman et al. (1984). CART is a greedy
heuristic approach, which myopically constructs the tree without further foreseen to
deeper nodes. Starting at the root node, it decides the splits by means of hyperplanes
minimizing an impurity function in each node. Each split results in two new nodes,
and this procedure is repeated until a stopping criterion is reached (maximal depth,
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Fig. 1 Decision tree of depth two

minimum number of observations in the same node, etc). Deep CART trees may lead
to overfitting in out-of-sample observations, and therefore trees are normally subject
to a prune process based on the trade-off between the impurity function reduction
and a cost-complexity parameter. The main advantage of CART is that it is easy to
implement and fast to train.

On the other hand, Bertsimas and Dunn Bertsimas and Dunn (2017) have recently
proposed an optimal approach to build CTs by solving a mathematical programming
problem which builds the decision tree in a compact model considering its whole
structure and at the same timemaking decisions onpruning or not pruning the branches.

Given a maximum depth, D, for the Classification Tree it can have at most T =
2D+1 − 1 nodes. These nodes are differentiated in two types:

– Branch nodes: τB = {1, . . . , 	T /2
} are the nodes where the splits are applied.
– Leaf nodes: τL = {�T /2�, . . . , T } are the nodeswhere predictions for observations
are performed.

We use the following notation concerning the hierarchical structure of a tree:

– p(t): parent of node t , for t = 1, . . . , T .
– τbl : set of nodes that follow the left branch on the path from their parent nodes.
Analogously,wedefine τbr as the set of nodeswhose right branchhas been followed
on the path from their parent nodes.

– u: set of nodes that have the same depth inside the tree. We represent by U the
whole set of levels. The root node is the zero-level, u0, hence, for a given depth D
we have D + 1 levels, being uD the set of leaf nodes.
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OCTs are constructed by minimizing the following objective function:

∑

t∈τL

Lt + α
∑

t∈τB

dt ,

where Lt stands for themisclassification errors at the leaf t (measured as the number of
wrongly classified observations in the leaf), and dt is a binary variable that indicates if a
split is produced at t . Therefore, the constant α is used to regulate the trade-off between
the complexity (depth) and the accuracy (misclassifying errors of the training sample)
of the tree. In its simplest version, motivated by what it is done in CART, the splits are
defined by means of a single variable, i.e., in the form x j ≤ ω j0. Nevertheless, OCT
can be extended to a more complex version where the splits are hyperplanes defined
by their normal vector, a ∈ R

p which is known as OCT-H. Moreover, a robust version
of OCT has also been studied under the noise label scenario Bertsimas et al. (2019).

3 Optimal classification trees with SVM splits and relabeling
(OCTSVM)

This section is devoted to introduce our new classification methodology, namely
OCTSVM. The rationale of this approach is to combine the advantage of hierarchi-
cal classification methods such as Classification Trees, with the benefits from using
distance-based classification errors, by means of hyperplanes maximizing the margin
between them (SVM paradigm). Therefore, this new model rests on the idea of con-
structing an optimal classification tree in which the splits of the nodes are performed
by following the underlying ideas of model (RE – SVM): (1) the splits are induced by
hyperplanes in which the positive and the negative classes are separated maximizing
the margin between classes, (2) minimizing the classification errors, and (3) allowing
observations to be relabeled along the training process. In contrast to what it is done
in other Classification Tree methods, OCTSVM does not make a distinction (beyond
the hierarchical one) between branch and leaf nodes, in the sense that RE-SVM based
splits are sequentially applied in each node, and the final classification for any obser-
vation comes from the hyperplanes resulting at the last level of the tree, in case there
are no pruned branches, or at the last node where a split was made in case of a pruned
branch.

As it has been pointed out before, OCT-H is a classification tree that allows the use
of general (oblique) hyperplane splits, which is built by solving a single optimization
problem that takes into account the whole structure of the tree. Nevertheless, despite
the good results this method has proven to obtain in real classification problems, a
further improvement is worth to be considered. In Fig. 2 we see a set of points in
the plane differentiated by geometrical elements (triangles and circles) in two classes.
Looking at the left picture, one can see one of the optimal solutions of OCT-H for
depth equal to two, where the red hyperplane is the split applied at the root node and
the black ones are applied on the left and right descendants, which define the four
leaves. This solution is optimal, for a certain value of the cost-complexity parameters,
since it does not make any mistakes on the final classification. Nevertheless, since
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Fig. 2 Optimal solutions for OCT-H with D = 2 (left) and OCTSVM with D = 1 (right)

this method does not have any kind of control on the distances from points to the
hyperplanes, one can observe that the blue class has very tiny margins at the leaves,
and hence, for this class, misclassification errors are more likely to occur in out-of-
sample observations. On the other hand, on the right side of Fig. 2 one sees another
possible optimal solution for the OCTSVM model with depth equal to one (note that
unlike OCT-H, OCTSVM constructs a final SVM-based classifier at each of the leaf
nodes, which may be identified with an extra depth). Again, the red hyperplane is the
split applied at the root node and the black ones are the classification splits applied at
the two leaves. Despite these two methods are obtaining a perfect classification on the
training sample, Fig. 2 shows that OCTSVM provides a more balanced solution than
OCT-H since it has wider margins between both classes, what could be translated into
a higher accuracy for out-of-sample observations.

In order to formulate the OCTSVM as a MINLP, we will start describing the ratio-
nale of its objective function that must account for the margins induced by the splits
at all nodes, the classification errors, the penalty paid for relabelling observations and
the cost-complexity of the final classification tree. To formulate the above concepts
we need different sets of variables. First of all, we consider continuous variables:
ωt ∈ R

p, ωt0 ∈ R, t = 1, . . . , T , which represent the coefficients and the intercept
of the hyperplane performing the split at node t . Taking into account that the margin of
the hyperplaneHt = {z : ωt z + ωt0 = 0} is given by 2

||ωt || , maximizing the minimum
margin between classes induced by the splits can be done introducing an auxiliary
variable δ ∈ R (that will be minimized in the objective function) which is enforced
by the following constraints:

1

2
||ωt ||2 ≤ δ ∀t = 1, . . . , T . (2)

Once the maximization of the margin is set, we have to model the minimization
of the errors at the nodes, whereas at the same time we minimize the number of rela-
belled observations. These two tasks are accomplished by the variables eit ∈ R, i =
1, . . . , n, t = 1, . . . , T , that account for the misclassification error of observation i at
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node t , and ξi t ∈ {0, 1} binary variables modelling whether observation i is relabeled
or not at node t . If c1 and c2 are the unit costs of misclassification and relabelling,
respectively, our goal is achieved adding to the objective function the following two
terms:

c1

n∑

i=1

T∑

t=1

eit + c2

n∑

i=1

T∑

t=1

ξi t .

The correct meaning of these two sets of variables must be enforced by some families
of constraints that we describe next. Nevertheless, for the sake of readability before
describing those constraints modeling these eit and ξi t , we must introduce another
family of variables the βi t ∈ R

p, βi0 ∈ R, i = 1, . . . , n, t = 1, . . . , T , which are
continuous variables equal to the coefficients of the separating hyperplane at node t
when observation i is relabelled, and equal to zero otherwise. In addition, we consider
binary variables zit ∈ {0, 1} needed to control whether observation i belongs to node t
of the tree. Now, putting all these elements together, as it is done in RE-SVM, we can
properly define the splits and their errors at each node of the tree using the following
constraints:

yi (ω
′
t xi + ωt0) − 2yi (β

′
t xi + βi t0) ≥ 1 − eit − M(1 − zit ),

{∀i = 1, . . . , n,

t = 1, . . . , T ,

(3)

βi t j = ξi tωt j , ∀i = 1, . . . , n, t = 0, . . . , T , j = 0, . . . , p.
(4)

Constraints (4), which can be easily linearized, are used to define the βi t variables:
they equal the ωt variables when the observation i is relabelled (ξi = 1), and are equal
to zero otherwise (ξi = 0). On the other hand, constraints (3) control the relabelling at
each node of the tree. If an observation i is in node t (zit = 1), and ξi = 0, we obtain
the standard SVM constraints for the separating hyperplane. Nevertheless, if ξi = 1,
then the separating constraints are applied for the observation i as if its class were the
opposite to its actual one, i.e., as if observation i is relabeled. Moreover, since M is
a big enough constant, these constraints do not have any kind of impact in the error
variables of node t if observation i does not belong to this node (zit = 0).

On the other hand, there are still some details left that must be imposed to make
the model to work as required. In the decision tree, observations start at the root node
and they advance descending through the levels of the tree until they reach a leaf or a
pruned node. Hence, we have to guarantee that observations must belong to one, and
only one, node per level. By means of the zit variables, this can be easily done by the
usual assignment constraints applied in each level, u ∈ U , of the tree:

∑

t∈u
zit = 1, ∀i = 1, . . . , n, u ∈ U . (5)

Moreover, for consistency in the relation between a node and its ancestor, it is clear
that if observation i is in node t (zit = 1), then, observation i must be also in the parent
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of node t (zip(t) = 1), with the only exception of the root node. Besides, if observation
i is not in node t (zit = 0), then i can not be in its successors, and this is modeled by
adding the following constraints to the problem:

zit ≤ zip(t), ∀i = 1, . . . , n, t = 2, . . . , T . (6)

So far, the OCTSVM model has everything it needs to properly perform the splits by
following the RE-SVM rationale described in (RE – SVM), taking into consideration
the tree complexity, and maintaining the hierarchical relationship among nodes. The
last element that we need to take care of, to assure the correct performance of the
whole model, is to define how observations follow their paths inside the tree. We
get from constraints (6) that observations move from parent to children (nodes), but
every non terminal node has a left and a right child node, and we need to establish how
observations take the left or the right branch. Since the splits aremade by the separating
hyperplane, we force observations that lie on the positive half space of a hyperplane to
follow the right branch of the parent node, and observations that lie on the negative one
to take the left branch. This behavior is modeled with the binary variables θi t ∈ {0, 1},
that are used to identify whether observation i lies in the positive half space of the
separating hyperplane at node t , θi t = 1, or if observation i lies on the negative half
space, θi t = 0. By considering M a big enough constant, the correct behavior of the
path followed by the observations is enforced by the following constraints:

ω′
t xi + ωt0 ≥ −M(1 − θi t ), ∀i = 1, . . . , n, t = 1, . . . , T , (7)

ω′
t xi + ωt0 ≤ Mθi t , ∀i = 1, . . . , n, t = 1, . . . , T . (8)

Hence, by making use of these θi t variables, and distinguishing between nodes that
come from left splits, τbl (nodes indexed by even numbers), and right splits, τbr (nodes
indexed by odd numbers), we control that the observations follow the paths through
the branches in the way we described above throughout the following constraints:

zip(t) − zit ≤ θi p(t), ∀i = 1, . . . , n, t ∈ τbl (9)

zip(t) − zit ≤ 1 − θi p(t), ∀i = 1, . . . , n, t ∈ τbr (10)

According to constraints (9), if an observation i is on the parent node of an even node
t (zip(t) = 1), and i lies on the negative half space of the hyperplane defining the
split on p(t) (θi p(t) = 0), then zit is forced to be 1. Hence, θi p(t) = 0 implies that
observation i takes the left branch to the child node t ∈ τbl . Moreover, we can see that
this constraint is consistent since if zip(t) = 1, but observation i is not in the left child
node, zit = 0, t ∈ τbl , then θi p(t) equals 1, what means that observation i lies on the
positive half space of the hyperplane of p(t). On the other hand, constraints (10) are
similar but for the right child nodes, τbr . If an observation i is in the parent node of
an odd node t ∈ τbr , and i lies on the positive half space of the hyperplane of p(t)
(θi p(t) = 1), then, zit = 1 what means that observation i has to be on node t .

The final term to be included in the objective function of the problem is the com-
plexity of the resulting tree. Following the approach in OCT and OCT-H, we consider
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binary variables dt ∈ {0, 1} , t = 1, . . . , T , that control whether a separating split
is applied at node t . Thus, to control the tree complexity resulting of the process, we
minimize the sum of these variables multiplied by a cost penalty c3. Gathering all the
components together, the objective function to be minimized in our problem results
in

δ + c1

n∑

i=1

T∑

t=1

eit + c2

n∑

i=1

T∑

t=1

ξi t + c3

T∑

t=1

dt .

According to this, it is important to make a distinction between the methods that use,
or the ones that do not use, SVM based splits. When a model does not use SVM based
splits, taking into account that the binary variable dt = 1 implies that a hyperplane
is being used to split the points in node t , complexity can be easily regulated by just
imposing ‖ωt‖2 ≤ Mdt in all the branch nodes. Nevertheless, when using a SVM
based method such as the one we are presenting here, the previous constraint would
be in conflict with constraints (3). This is due to the fact that dt = 0 would imply
‖ωt‖2 = 0, and under this scenario, observations in this node would have to pay
for the margin violation error eit = 1, even though these errors are not justified since
points are not being separated at this node. To overcome this issue,we need to add some
other constraints to the model, but before getting into the mathematical formulation,
we would like to emphasize the different aspects that explain the difficulty of the
problem. The objective function accounts for the complexity cost of node t (dt = 1)
when a hyperplane is actually built so as to split the points in node t . In case we do
not pay the complexity cost in node t (dt = 0), it does not necessarily mean that a
hyperplane is not built at this node, it could simply turn out to be a hyperplane that
leaves all the observations at one of the half spaces it creates, i.e., a hyperplane that
is not splitting the points. These non splitting hyperplanes do not affect the training
set at all, and more importantly, they would not affect out of sample observations
since predictions will occur in leaf nodes or in the first branch node in which dt = 0.
Going back to the formulation, the first step now is to introduce some binary variables,
hit ∈ {0, 1} , i ∈ N , t ∈ τb, that will be relaxed afterwards, defined by hit = zitθi t .
These variables tell us which observations belong to node t and at the same time lie on
the positive half space of the split created in t . It is important to define these variables
because they are used to measure whether the hyperplane is splitting the points in
node t or not. This is going to be done by means of some new binary variables
vt ∈ {0, 1} , t ∈ τb, that will be equal to zero in case all the points in node t belong
to the positive half space of the hyperplane built in this node, Ht , and one otherwise.
For the definition of the dt variables to make sense, the following constraints must
simultaneously be considered:

hit = zitθi t ∀i = 1, . . . , n, t = 1, . . . , T , (11)
n∑

i=1

(1 − hit ) ≤ Mvt ∀t = 1, . . . , T , (12)
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n∑

i=1

hit − M(1 − vt ) ≤ Mdt ∀t = 1, . . . , T , (13)

where M is a big enough constant. The reader should observe that (11) is the definition
of the hit variables as the product of zit by θi t . These constraints can be easily linearized
by the usual tricks. On the other hand, taking into account that vt variables would tend
to be zero (by the effects on constraints (13)), constraints (12) stand for the definition
of the vt variables, since these variables could be equal to zero just in case all the hit
are equal to one, what means that all the observations belong to the positive half space
of Ht . Finally, we obtain through constraints (13) the definition of the dt variables.
Since these variables are being minimized in the objective function, they would try to
be equal to zero. Nevertheless, this can just happen if vt = 0, what means that all the
observations belong to the positive half space of Ht , or if

∑

i∈N
hit = 0 in case vt = 1,

what means that all the observations belong to the negative half space of Ht . Hence,
dt is equal to one if and only if the points in node t are being actually separated byHt .

Finally, another point that it is important to remark about the dt variables is that
once a non-leaf node does not split (that is, the corresponding branch is pruned at
this node), the successors of node t can not make splits either to maintain the correct
hierarchical structure of the tree. Recalling that p(t) is the parent node of node t , we
can guarantee this relationship throughout the following constraints

dt ≤ dp(t), ∀t = 2, . . . , T . (14)

Some of the constraints discussed above require big-M constants. The value of these
constants can be adjusted once we know the dimension (n, p) of the dataset involved
in the optimization problem. Recall that xi ∈ [0, 1]p, therefore it is well known that the
maximum distance between two points in such a domain is

√
p. Hence, the maximum

distance from a point to a hyperplane is also
√
p. According to this, the big-M constant

in constraints (3), (6) and (7) is actually
√
p.

On the other hand, the hit variables are upper bounded by one, and therefore
n∑

i=1

hit

is upper bounded by n. As a result, the big-M constant involved in constraints (11)
and (12) is n as well.

Gathering all the constraints together, and substituting the generic big-M constants
by those estimated in our discussion above, the OCTSVM is obtained by solving the
following MINLP:

min δ + c1

n∑

i=1

T∑

t=1

eit + c2

n∑

i=1

T∑

t=1

ξi t + c3

T∑

t=1

dt (OCTSVM)
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s.t.
1

2
||ωt ||2 ≤ δ, ∀t = 1, . . . , T ,

yi (ω
′
t xi + ωt0) − 2yi (β

′
t xi + βi t0) ≥ 1 − eit − √

p(1 − zit ), ∀i = 1, . . . , n, t = 1, . . . , T ,

βi t j = ξi tωt j , ∀i = 1, . . . , n, t = 0, . . . , T , j = 0, . . . , p, (15)
∑

t∈u
zit = 1, ∀i = 1, . . . , n, u ∈ U ,

zit ≤ zip(t), ∀i = 1, . . . , n, t = 2, . . . , T ,

ω′
t xi + ωt0 ≥ −√

p(1 − θi t ), ∀i = 1, . . . , n, t = 1, . . . , T ,

ω′
t xi + ωt0 ≤ √

pθi t , ∀i = 1, . . . , n, t = 1, . . . , T ,

zip(t) − zit ≤ θi p(t), ∀i = 1, . . . , n, t ∈ τbl ,

zip(t) − zit ≤ 1 − θi p(t), ∀i = 1, . . . , n, t ∈ τbr ,

hit = zitθi t ∀i = 1, . . . , n, t = 1, . . . , T , (16)
n∑

i=1

(1 − hit ) ≤ nvt ∀t = 1, . . . , T ,

n∑

i=1

hit − n(1 − vt ) ≤ ndt ∀t = 1, . . . , T ,

dt ≤ dp(t) ∀t = 2, . . . , T ,

eit ∈ R
+, βi t ∈ R

p, βi t0 ∈ R, ξi t , zit , θi t , hit ∈ {0, 1} , ∀i = 1, . . . , n, t = 1, . . . , T ,

ωt ∈ R
p, ωt0 ∈ R, dt , vt ∈ {0, 1} ,∀t = 1, . . . , T .

The reader may note that the above formulation has two families of bilinear con-
straints, namely (15) and (16), that can be easily linearized giving rise to a mixed
integer second order cone formulation.

In Table 1we summarize the variables, index sets and parameters used in ourmodel.

4 Experiments

In this section we present the results of our computational experiments. Five different
classification tree-basedmethods are compared,CART,OCT,OCT-H,OCT+SVMand
OCTSVM, on nine popular real-life datasets from UCI Machine Learning Repository
Dua and Graff (2017). Notice that OCT+SVM is a modification of our OCTSVM in
which the ξi t variables are fixed to zero, i.e., no relabeling is allowed in the model.
This method is included so as to assess the isolated effect of using margin-based splits,
without relabeling, within the classification trees. The considered datasets together
with their names and dimensions (n: number of observations, p: number of features)
are reported in the three tables of this section.

Our computational experiments focus on the analysis of the accuracy and AUC
(area under the ROC curve) of the different classification tree-based methods. This
analysis is based in four different experiments for each one of the nine considered
dataset. Our goal is to analyze the usefulness of the different methods for classifying
data affected by label noise. Therefore, in our experiments we use, apart from the
original datasets, three different modifications where in each one of them a percentage
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of the labels in the sample are randomly flipped. The percentages of flipped labels
range in {0%, 20%, 30%, 40%}, where 0% indicates that the original training data set
is used to construct the tree.

Weperforma 4-fold cross-validation scheme, i.e., datasets are split into four random
train-test partitions. One of the folds is used for training the model while the rest are
used for testing. When testing the classification rules, we compute the accuracy, in
percentage, on out of sample data:

ACC = #Well Classified Test Observations
#Test Observations · 100.

as well as the AUC, which provides an aggregate measure of performance across all
possible classification thresholds. One way of interpreting AUC is as the probability
that the model ranks a random positive example more highly than a random negative
example.

The CART method was coded in R using the rpart library. OCT, OCT-
H, OCT+SVM and OCTSVM mathematical programming models were coded in
Python and solved using Gurobi 8.1.1 on a PC Intel Core i7-7700 processor at
2.81 GHz and 16GB of RAM. A time limit of 30 seconds was set for training. Not
all the problems were solved to optimality, nevertheless, this time limit was enough
in order to obtain good classifiers. The average gap of the experiments is reported in
table 4.

The calibration of the parameters of the different optimization-based models com-
pared in these experiments was set as follows:

– For OCTSVM we used a grid on
{
10i : i = −5, . . . , 5

}
for the constants c1 and

c2, and a smaller one
{
10i : i = −2, . . . , 2

}
for c3. For OCT+SVM c2 is not used

since all the ξi t variables are set to zero.
– For OCT, in order to check every possible optimal subtree of a maximal tree for
a given depth D, we did the predictions in two steps. We first set up a grid on
the parameter c1 = {

1, . . . , 2D − 1
}
and solved a slightly different OCT model

in which the objective function did not take into account the complexity term,
since complexity was already considered in the model by adding the following
constraint

∑

t∈τB

d(t) ≤ c1. The resulting solutions that were optimal for a certain

c1 of the original OCT problem were afterwards computed. This methodology
was not used in OCT-H since the grid of the modified problem should have been
extended to c1 = {

1, . . . , p(2D − 1)
}
, therefore we used the same grid that we

used for c1 in OCTSVM directly into OCT-H formulation. On the other hand, the
minimum number of observations per leaf was set to a 5% of the training sample
size.

– CART trees were post-processed to satisfy any depth constraint as it was done
with OCT. The minimum number of observations per leaf was the same 5% of the
training sample size that we used for OCT and OCT-H.

Last to mention, the depth, D, considered in these experiments was set equal to three
for CART, OCT and OCT-H, whereas for OCTSVM and OCT+SVM we fixed depth
equal to two, creating consequently trees with 3 levels, to set a fair comparison among
the different methods.
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For each dataset, we replicate each experiment four times. In Table 2 we show the
average (± standard deviation) accuracies for each one of the methods and datasets.
In addition, Table 3 shows the average (± standard deviation) AUC results. The best
results are highlighted (boldfaced). The first column stands for the percentage of
flipped labels (FL) of the training sets. On the other hand, the last column shows the
mean difference (Diff) between OCTSVM and the best result among OCT and OCT-
H. Finally, in Table 4 we report the average MINLP gaps obtained by the models at
the end of the training time limit.

Observe that when 0% of the training labels are flipped (i.e., the original dataset),
one realizes of a general trend in accuracy and AUC of the different models: CART
< OCT < OCT-H < OCTSVM, with the only exceptions of Wholesale and
Banknote in which OCT-H obtains a non-meaningful slightly larger average accu-
racy. We would like to emphasize that these results are not surprising. Indeed, on
the one hand, OCT is an optimal classification version of the CART algorithm, and
hence better results should be expected from this model, as already shown in the
computational experience in Bertsimas and Dunn (2017), and also evidenced in our
experiments. Moreover, OCT is just a restricted version of OCT-H, in that in the latter,
the set of admissible hyperplanes is larger than in the former. Also, as already pointed
out in Fig. 2, OCTSVM goes one step further and, apart from allowing oblique hyper-
planes based trees, has a more solid structure due to the margin maximization, the
distance based errors and the possibility of relabeling points. All together results in
higher accuracy and AUC results as shown in our experiments. In some datasets the
comparison of the different methods gives rather similar results, however in some
others OCTSVM is above the other methods more than 5% percent both in accuracy
and AUC. The simplified methodology based on OCTSVM in which no relabeling is
allowed, named OCT+SVM, shows a similar performance in both accuracy and AUC
than OCT-H.

Turning to the results on datasets with flipped labels on the training dataset,
OCTSVM clearly outperforms the rest of methods and consistently keeps its advan-
tage in terms of accuracy and AUC with respect to the other methods. OCT, OCT-H
and OCT+SVM, which are both above CART, alternate higher-lower results among
the different datasets. Our method, namely OCTSVM, clearly is capable to capture the
wrongly labeled observations and constructs classification rules able to reach higher
accuracies and AUC, even when 40% of the labels were flipped, while other methods,
give rise to classifiers that significantly worsen their performance in terms of accuracy
and AUC in the test sample.

Concerning theMINLPGaps obtained with the optimization-basedmethods (Table
4) one can observe that within the 30 seconds of time limit, most of the instances, for all
the methods, are not optimally solved, but still good quality classifiers are constructed
in all cases. In particular, OCT, OCT-H and OCTSVMfinish the CPU time for training
with large gaps, which indicates the computational complexity of the problems. In
contrast, the gaps obtained with OCT+SVM are considerably smaller with respect to
OCT-H and OCTSVM, but of the same size than OCT, which shows that the decision
on relabeling observations makes the problem harder to solve.
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Table 4 Average MINLP Gaps of the optimization-based models to construct classification trees, within
the time limit

% FL OCT OCT-H OCT+SVM OCTSVM

0 12.50 85.36 27.33 91.59

Australian 20 18.75 97.50 30.01 86.80

(690,14) 30 68.75 99.23 45.31 82.92

40 62.50 99.66 35.84 85.53

0 100.00 78.00 76.64 82.53

Banknote 20 68.75 99.99 75.16 93.65

(1372,5) 30 56.25 99.99 76.69 91.75

40 43.75 99.70 73.77 85.20

0 56.25 80.62 19.19 79.40

BreastCancer 20 56.04 87.50 54.07 78.17

(683,9) 30 81.09 94.81 37.54 81.35

40 82.89 98.26 23.57 86.62

0 66.93 88.86 29.55 68.34

Heart 20 54.68 93.78 45.09 81.01

(270,13) 30 54.97 93.22 36.63 90.98

40 99.06 96.82 32.54 85.05

0 68.33 75.00 47.23 84.15

Ionosphere 20 61.42 85.94 52.38 100.00

(351,34) 30 80.80 89.63 74.39 84.16

40 75.00 92.42 46.26 78.52

0 12.25 97.09 24.99 78.19

MONK’s 20 37.22 97.03 18.68 68.73

(415,17) 30 24.77 99.75 12.09 90.95

40 62.01 96.41 21.62 83.78

0 34.52 76.15 36.61 89.07

Parkinson 20 55.92 79.91 40.15 85.52

(240,40) 30 43.75 87.07 40.79 97.06

40 36.97 88.49 41.49 84.54

0 50.00 75.63 19.88 77.73

Sonar 20 68.75 81.94 39.45 79.17

(208,60) 30 68.75 83.00 30.48 88.75

40 75.00 78.62 38.71 91.91

0 31.25 38.67 28.71 32.34

Wholesale 20 30.88 96.20 14.22 94.26

(440,7) 30 31.25 95.07 7.39 91.25

40 75.00 88.35 6.34 97.52
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5 Conclusions and further research

Supervised classification is a fruitful field that has attracted the attention of researchers
formanyyears.Oneof themethods that has experienced amore in depth transformation
in the last years is classification trees. Since the pioneer contribution by Breiman et
al. Breiman et al. (1984), where CART was proposed, this technique has included
tools from mathematical optimization giving rise to the so called OCT Bertsimas and
Dunn (2017); Bertsimas et al. (2019), methods that are optimal in some sense. In spite
of that, there is still some extra room for further improvements, in particular making
classifiers more robust against perturbed datasets. Our contribution is this paper goes
in that direction and it augments the catalogue of classification tree methods able to
handle noise in the labels of the dataset.

We have proposed a new optimal classification tree approach able to handle label
noise in the data. Two main elements support our approach: the splitting rules for the
classification trees are designed to maximize the separation margin between classes
and wrong labels of the training sample are detected and changed at the same time
that the classifier is built. The method is encoded on a Mixed Integer Second Order
Cone Optimization problem so that one can solve medium size instances by any
of the nowadays available off-the-shelf solvers. We report intensive computational
experiments on a battery of datasets taken from UCI Machine Learning repository
showing the effectiveness and usefulness of our approach.

Future research lines on this topic include the analysis of nonlinear splits when
branching in OCTSVM, both using kernel tools derived from SVM classifiers or
specific families of nonlinear separators. This approach will result into more flexible
classifiers able to capture the nonlinear trends of many real-life datasets. Additionally,
we also plan to address the design ofmath-heuristic algorithmswhich keep the essence
of OCTs but capable to train larger datasets and the analysis of a multiclass version
of our approach.
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