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Abstract—This paper presents an efficient method to compute
the dispersion diagram of periodic and uniform structures with
generic anisotropic media. The method takes advantage of the
ability of full-wave commercial simulators to deal with finite
structures having anisotropic media. In particular, the proposed
method ¡extends the possibilities of commercial eigenmode solvers
in the following ways:¡ (i) anisotropic materials with non-diagonal
permittivity and permeability tensors can be analyzed; (ii) the
attenuation constant can easily be computed in both propagating
and stopband regions and lossy materials can be included in
the simulation; and (iii) unbounded and radiating structures
such as leaky-wave antennas can be treated. The latter feature
may be considered the most remarkable, since the structures
must be forcefully bounded with electric/magnetic walls in the
eigensolvers of most commercial simulators. In this work, the
proposed method is particularized for the study of liquid crystals
(LCs) in microwave and antenna devices. Thus, the dispersion
properties of a great variety of LC-based configurations are
analyzed, from canonical structures, such as waveguide and
microstrip, to complex reconfigurable phase shifters in ridge gap-
waveguide technology and leaky-wave antennas. Our results have
been validated with previously reported works in the literature
and with commercial software CST and HFSS.

Index Terms—Liquid crystal, periodic structures, uniform
structures, dispersion diagram, reconfigurable devices, gap
waveguide, microstrip, phase shifter, leaky-wave antenna.

I. INTRODUCTION

PERIODIC structures are commonly used in many fields
of science and engineering. By modifying the geometrical

parameters of the unit cell, the propagation of electromagnetic
waves throughout the structure can easily be tailored. The
addition of tunable materials such as graphene [1], ferro-
electrics [2] or liquid crystal [3] brings an extra degree of
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reconfigurability to periodic structures. As an example, the
radiation properties of antennas [4]–[6] and the phase response
of guiding structures [7]–[9] can be electronically controlled,
as usually demanded to fulfill the technological challenges of
last generation communication systems [10].

The dispersion diagram is the usual scenario to analyze the
wave propagation in periodic structures [11], [12]. It gives
useful information on the phase velocity, attenuation, radiation
losses, coupling between high-order modes, etc. Unfortunately,
the anisotropic behavior of the vast majority of tunable
materials hampers the computation of dispersion diagrams
by general-purpose commercial simulators, even for lossless
scenarios. Furthermore, the complex nature of the propagation
constant (real and imaginary parts) in lossy and/or radiating
structures brings an extra difficulty. In this paper, we propose
the use of a multi-modal transfer-matrix method to overcome
these weaknesses of the frequency-domain eigenmode solvers
of common commercial simulators. The proposed method-
ology is based on the computation of the general transfer
matrix and the resolution of an eigenvalue problem derived
from a Floquet analysis [12]–[24]. In particular, the use of the
proposed multi-modal approach offers three main advantages
over the eigensolver tools of commercial simulators when
analyzing periodic structures with generic anisotropic media:

1) Anisotropic materials with non-diagonal permittivity and
permeability tensors can be considered. It should be
noted that most commercial simulators normally deal
with anisotropic materials with diagonal tensors. How-
ever, for some particular configurations involving non-
diagonal tensors, commercial simulators find difficulties.

2) The attenuation constant can easily be computed with
the multi-modal method in both propagating and stop-
band regions. Furthermore, lossy materials can be in-
cluded in the computation. This will be exploited in
Sec. V for the analysis of a reconfigurable phase shifter
based on a liquid crystal.

3) Unbounded and radiating structures can be treated,
unlike what happens in most commercial simulators
where the structure has to be bounded with perfect elec-
tric/magnetic conditions. This is a remarkable feature
that will be exploited in Sec. VI for the analysis and
optimization of a reconfigurable leaky-wave antenna that
uses a liquid crystal as a tunable material.

Liquid crystal is one of the most promising tunable materi-
als for applications in the microwave range [25]. However,
the study of the wave propagation in liquid-crystal-based
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periodic structures is a complex task due to the anisotropic
and lossy nature of the material, accounted for by a non-
diagonal permittivity tensor [26]. As a consequence, the multi-
modal transfer-matrix method arises as an interesting option
to analyze periodic structures with liquid crystal material in
the design of electronically reconfigurable devices.

The paper is organized as follows. Sec. II describes the
formulation of the multi-modal transfer-matrix method for
periodic structures in general anisotropic media. Then, we
particularize to the use of liquid crystal and the main properties
of this material are summarized. In Sec. III the dispersion
properties of rectangular and parallel-plate waveguides filled
with liquid crystal are analyzed. Sec. IV analyzes the dis-
persion properties of microstrip lines suspended on liquid
crystal substrates. The analysis of the dispersion properties
of an electrically reconfigurable phase shifter in ridge gap-
waveguide technology is carried out in Sec.V. In Sec. VI the
design of a electrically reconfigurable leaky-wave antenna is
discussed. It should be remarked that the results presented in
Secs. III-VI have been validated with previously reported data
in the literature and with the Eigenmode solver of CST. Finally,
the main conclusions of the work are drawn in Sec. VII.

II. THEORETICAL FRAMEWORK

A. Multi-modal Analysis

The Multi-Modal Transfer-Matrix Method (MMTMM) ap-
plied to the computation of periodic structures in anisotropic
media is briefly outlined in this section. For the sake of
simplicity, we focus on the study of 1-D periodic structures,
although the analysis can be straightforwardly extended to 2-D
periodic structures [23], [24].

For a 1-D periodic structure, the eigenvalue problem that
leads to the dispersion relation is [12]

[T]

[
V
I

]
= eγp

[
V
I

]
(1)

where [T] is the 2N × 2N multi-modal transfer matrix, with
N being the number of modes considered in the computation,
V and I are N ×1 arrays containing the voltages and currents
at the output ports, γ = α + jβ is the propagation constant,
α is the attenuation constant, β is the phase constant, and
p is the period of the unit cell. The transfer matrix, which is
partitioned in four N ×N submatrices [A], [B], [C], and [D]
as can be derived from the generalized multi-mode scattering
matrix [S], as detailed in [27], [28] or, alternatively, by means
of the algebraic manipulations presented, for instance, in [19,
Eq. (1)].

In the case that the structure under study is symmetrical
and reciprocal ([A] = [D]H , [B] = [B]H , [C] = [C]H ), the
original 2N -rank eigenvalue problem in (1) can be simplified
to the N -rank eigenvalue problem [24]

[A]V = cosh(γp)V . (2)

The multi-modal scattering matrix [S] of a periodic structure
can be computed via full-wave simulations of a single unit
cell. Inter-cell coupling effects are taken into account through

(a) (b)

Fig. 1. Molecular reorientation in a nematic liquid crystal enclosed by two
metallic plates when a (a) low-intensity and (b) high-intensity quasi-static
electric field E is applied. Unit vector n̂ represents the average director and
θm the average tilt angle.

the higher-order modes used in the multi-mode representa-
tion [22]. Commercial simulators or in-house codes can be
utilized for this purpose. In this work, we make use of the
commercial software CST and Ansys HFSS for the extraction
of the scattering matrix [S]. It should be remarked that the
scattering parameters of finite structures can be computed in
anisotropic media (including losses and non-diagonal tenso-
rial materials) with the time-domain and frequency-domain
solvers of CST. However, the dispersion diagrams of the
periodic structure cannot directly be computed with the CST
Eigenmode solver, unless the anisotropic material is lossless
and defined by a diagonal tensor. Therefore, the proposed
hybrid implementation benefits from the use of commercial
simulators to obtain the multi-modal transfer matrix and then
compute the dispersion properties of periodic structures in
anisotropic media by solving the corresponding eigenvalue
problem.

B. Liquid Crystal

As is well known, liquid crystal (LC) is a state of matter that
combines properties of liquids and solid crystals. The elon-
gated rod-like shape of molecules in LCs gives the material
its characteristic anisotropic behavior, defined by the fast and
slow propagation axes. Depending on the type of order of the
molecules, there exist different states or mesophases in which
LCs can be found: nematic, smetic and cholesteric [26], [29].
From all the mentioned states, nematic LCs have demonstrated
to be particularly useful for the design of reconfigurable radio-
frequency devices, such as filters [30]–[32], antennas [6], [33]–
[35], frequency selective surfaces [36], [37] and phase shifters
[9], [38], [39]. In a nematic LC, molecules are oriented in
the same average direction, represented by the director n̂ and
the average tilt angle θm. Molecules can be reoriented with
the use of magnetic or electric fields [26], [29]. If LCs are
enclosed between metallic plates, which could be the case of
waveguides, parallel plates and microstrip lines (see Fig. 1),
quasi-static electric fields are normally used for simplicity
to polarize the material. Molecules tend to orient parallel
to the metallic plates when a low-intensity electric field is
applied [Fig. 1(a)] whereas molecules orient perpendicular to
the metallic plates when a high-intensity electric field is
applied [Fig. 1(b)].

The uniaxial permittivity tensor that characterizes the elec-
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trical properties of the LC can be expressed as [3], [26]

ε =

ε⊥ 0 0
0 ε⊥ + ∆ε cos2 θm ∆ε cos θm sin θm
0 ∆ε cos θm sin θm ε⊥ + ∆ε sin2 θm

 (3)

where ∆ε = ε‖ − ε⊥ is the dielectric anisotropy, ε‖ is
the parallel permittivity and ε⊥ is the perpendicular permit-
tivity. The loss tangent tensor is calculated analogously, by
replacing ∆ε and ε⊥ in (3) by the anisotropic loss tangent
∆ tan δ = tan δ‖ − tan δ⊥ and the perpendicular loss tangent
tan δ⊥, respectively. As previously stated, θm represents the
average tilt angle of the molecules. This angle is a function
of the elastic constants kii [40], the dielectric anisotropy
at the bias frequency ∆εb, the intensity of the quasi-static
electric field and the pretilt angle θp ' 0. That is, θm =
θm(k11, k22, k33,∆ε

b, V, θp). A detailed study particularized
to LCs enclosed in parallel-plate waveguides, showing the
relation between θm and the parameters presented above, can
be found in [41], [42].

The permittivity tensor (3) becomes a diagonal tensor for
the extreme cases of θm = 0o and θm = 90o, when the
LC is polarized with V = 0 V (with θp = 0), and an
hypothetical infinite voltage V∞, respectively. As previously
discussed, eigensolver tools of commercial simulators find
difficulties when computing the dispersion diagram of periodic
structures composed by anisotropic materials that are defined
by non-diagonal permittivity and permeability tensors; that is,
whenever θm 6= 0, 90o in the case of working with liquid
crystals. Furthermore, losses can easily be included with the
proposed method.

C. Practical Considerations

As detailed in Sec. II-A, the scattering parameters can be
computed via full-wave simulations with either in-house codes
or commercial simulators. In this work, we take advantage
of the ability of the commercial simulators CST and Ansys
HFSS to deal with arbitrary geometries and materials. In these
simulators, two different solvers are offered to compute the
scattering parameters of a single unit cell: time-domain solver
and frequency-domain solver. Some relevant characteristics
of these solvers are detailed next (these characteristics are
referred to version CST 2020 and HFSS 18, and can differ
for other software and/or versions).

(1) Time-domain solvers: CST can only deal with diagonal
tensors in the simulation, only the extreme polarization states
θm = 0, 90º can be computed (see Sec. II-B). Losses can
be included in the computation of the scattering parameters.
Input and output ports can be directly placed at the surface of
the anisotropic material (i.e., liquid crystal in our case). The
Transient solver of HFSS is not able to analyze anisotropic
materials.

(2) Frequency-domain solvers: CST can deal with non-
diagonal permittivity/permeability tensors via the macro “Full
Tensor Material”. Losses can be included in the computation.
However, input and output ports cannot be directly placed at
the surface of the anisotropic material. It means that isotropic
layers have to be added to feed the structure, which requires

a de-embedding process to characterize the structure under
study. In HFSS, when a driven modal solution is set, it is
also able to perform simulations with anisotropic materials
including losses. The de-embedding process is not required as
long as the tensor is diagonal.

In this work, as long as only extreme polarization states
(θm = 0, 90°) need to be simulated, we have opted to use the
time-domain solver of CST because the de-embedding of the
ports can be avoided. Both HFSS and CST frequency-domain
solvers offer a greater versatility, as they allow for dealing with
non-diagonal tensors. However, in the case of using CST, it is
required to perform a de-embedding of the input and output
ports.

In general, the correct choice of the input/output modes
in the unit cell of the periodic structure plays a fundamental
role when applying the MMTMM. In this choice, it should be
considered that some of the modes which are excited at the
input/output ports do not have a physical correspondence with
the Bloch modes that actually propagate in the unit cell. As
the virtual waveguides associated with the input/output ports
are constrained by the boundary conditions imposed to these
ports, the modes of these virtual waveguides are often hardly
related to the actual modes of the periodic structure. In order
to ensure a correct convergence of the method, these irrelevant
modes should not be considered [24].

In most practical cases, the exciting ports inside the com-
mercial simulator cannot be directly placed at the interface of
an anisotropic material. For that reason, we are usually forced
to add two de-embedding (isotropic) layers at the input and
output sections of the structure. Fortunately, most commercial
software offer the possibility to change the reference planes of
the input and output ports. Geometrical and electrical parame-
ters of the de-embedding blocks should be carefully chosen in
order to minimize the error and avoid unwanted resonances.
First, it is recommended to set the length of the de-embedding
layers as short as possible. Secondly, their relative permittivity
and permeability should be selected to match the average
(effective) value of the tensors that model the electromagnetic
behavior of the considered anisotropic material. In the case of
liquid crystals, the relative permeability of the de-embedding
layers is set to 1 and the relative permittivity to

εeff =
√

(ε‖ sin θm)2 + (ε⊥ cos θm)2 . (4)

Slight variations of the mentioned values could apply for a
finer adjustment.

Concerning the case of open and/or radiating structures,
both HFSS and CST simulators intrinsically bound the input
and output ports with electric or magnetic walls in order
to properly excite the considered structure. Of course, these
boundary conditions lead to a discrete spectrum and, sub-
sequently, there is always an intrinsic approximation in the
estimation of the spectrum of open (radiating) structures,
as detailed in [24]. Nonetheless, if the port dimensions are
correctly selected, it is found that the MMTMM can accurately
compute the dispersion properties in a wide variety of practical
designs, such as the LC-based leaky-wave antenna presented
in Sec. VI.
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TABLE I
GUIDE WAVELENGTH, λg , AS A FUNCTION OF THE FREE-SPACE

WAVELENGTH, λ0 , BOTH IN MM, FOR THE TEST CASE PRESENTED IN [44]

λ0 N = 1 N = 2 N = 3 [44]
7 0.6512 0.5886 0.5878 0.5852

8.5 0.8525 0.7953 0.7948 0.7932
10 1.1410 1.0787 1.0756 1.0680
12 1.8487 1.7782 1.7573 1.6496
15 j3.6047 j4.9223 j4.9478 j5.0090

A good selection of the port should ensure that most of
the radiated energy (or field intensity) is allocated within the
enclosure of the input and output ports. Under this basic
assumption, we can take advantage of the a priori physical
knowledge about the modes that can propagate in the structure
to set the port dimensions. As an example, the excited TEM
mode in a parallel-plate structure with a small plate aperture
is expected to be confined in the area between the metallic
plates. However, the field intensity in microstrip and coplanar
structures is less confined around the main line(s), so the port
size should be larger compared to a parallel-plate configura-
tion. Once the input/output ports are set, it is advisable to
check that further increase in the port dimensions does not
affect the results of the scattering parameters.

III. METALLIC WAVEGUIDE

The study of metallic waveguides filled with skew uni-
axial dielectrics has been a topic of continuous interest in
microwave/antennas engineering [43]–[45]. It is well known
that, in general, these waveguides support hybrid modes, and
only in some particular cases there exist pure TE/TM modes
in the waveguide. In our LC case under study, given the
structure of the permittivity tensor in (3), the modes of the
LC-filled waveguide will be hybrid when θm 6= 0, 90º, thus
requiring the MMTMM to obtain accurate solutions. Here it
should be noted that, although the MMTMM is originally
posed to deal with periodic structures, it can also be applied
to the computation of the dispersion diagram of uniform (non-
periodic) structures. This computation is found sufficiently
accurate provided that the phase shift, βL, is not close to
the edges of the first Brillouin zone, where L is the length of
the considered waveguide section. It is then advisable to use
small values of L when computing the scattering parameters
of the waveguide in the commercial simulator.

Before studying the LC-filled waveguides, a validation of
the method will be carried out by comparing the results
reported in [44, Table I] for a metallic waveguide filled
with a strongly anisotropic skew uniaxial dielectric with the
ones provided by the MMTMM. This comparison is shown
in Table I, where our results with N = 1 means that only
the TE10 is employed in the input/output port, N = 2 stands
for an additional TE01 mode, and N = 3 for an additional
TE21 mode. This consecutive addition of modes follows the
rationale in [44] for the first, second, and third approximations
there discussed. In particular, the column data from [44] in the
table correspond to the third approximation.

The computation of the generalized scattering matrix from
the commercial simulator has followed the general recommen-
dations given in Section II.C. Thus, two short isotropic layers
(see Fig. 2) have been placed at the input and output sections
in order to properly feed the anisotropic waveguide. The
whole structure has been simulated with the frequency-domain
solver in CST and Ansys HFSS. Our results show a good
convergence as N increases as well as a good agreement with
those from [44]. As commented in [44], the skew anisotropy
actually requires the hybrid modal solutions of the waveguide
to be constructed in general with multiple TE and TM modes
(the required number to achieve accuracy will depend on the
operation frequency). However, in situations where the off-
diagonal elements of the permittivity tensors are smaller than
the diagonal ones, the number of required modes could be
reduced to a pair of modes or even just a single mode.

Fig. 2. Dispersion diagram of a metallic rectangular waveguide filled with
lossless liquid crystal. N = 2 modes have been used for the computation of
the hybrid mode in the case θ = 45o. Two de-embedding (isotropic) layers
are placed to correctly feed the structure. The electrical field distribution at the
input and output de-embedding layers is shown in the figure. The electrical
and geometrical parameters of the liquid crystal cell are: ε⊥ = 2.7, ∆ε = 2,
L = 0.01 mm, w = 5 mm, h = 2.5 mm.

Once the MMTMM has been conveniently validated, it will
be used to analyze the dispersion properties of a uniform
metallic waveguide (along the x-direction) filled with a LC.
Fig. 2 shows the dispersion diagram of both the phase (β) and
attenuation (α) constants for different values of the average
orientation of the molecules in the LC. When θm = 0, 90º,
the permittivity tensor is diagonal and, according to [44], [45],
pure TE and TM modes exist. In particular, when the optic
axis is oriented along the y axis (θm = 0º), the fundamental
mode is the TMY 10, following the notation of [45]. When
the optic axis is oriented along the z axis (θm = 90º), the
fundamental mode is the TEZ10. Both TMY 10 and TEZ10

modes have correspondence with the TE10 mode in a con-
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ventional waveguide loaded with an homogeneous isotropic
dielectric [45]. This means that only one mode (N = 1)
is required in the MMTMM to obtain accurate results in
both θm = 0, 90º cases. In fact, an excellent agreement is
observed in Fig. 2 between the proposed method and commer-
cial software CST and HFSS for these cases. Only the phase
constant of these two extreme cases can be computed with
the eigenmode solver of CST, corresponding to the situations
in which the tensor is diagonal and no losses are considered.
Furthermore, the eigenmode solver of CST cannot compute the
attenuation constant in periodic structures, not even in lossless
and bounded isotropic scenarios. On the other hand, the eigen-
solver of HFSS is able to include losses in the computation
and deal with non-diagonal tensors. By post-processing the
so-called “complex frequencies”, the attenuation constant can
be extracted from this software. However, the eigensolver of
HFSS cannot compute the complex frequencies (and therefore,
neither the attenuation constant) in the stopband regions of
periodic structures and in the cutoff region of a waveguide,
as detailed in [46]. For that reason, when θm 6= 0, 90º, no
comparison with HFSS results is provided for the attenuation
constant α in Fig. 2. Nonetheless, the Driven Modal solver
of HFSS can be efficiently used to compute the complex
propagation constant in uniform structures, such as the LC-
filled waveguide shown in Fig. 2, as long as the permittivity
and permeability tensors are expressed in diagonal form. Good
agreement is observed between the driven modal solution of
HFSS and our MMTMM.

The proposed multi-modal approach can help us in these
situations, providing accurate results for both phase and at-
tenuation constants in all polarization states of the LC. In
the case shown in Fig. 2 for θm = 45o, N = 2 modes in
the input/output ports suffice to achieve convergence in the
considered frequency range; namely, the TE10 and the TE01

modes at the isotropic interfaces. Good agreement is observed
between the MMTMM and the eigensolver of HFSS for the
computation of the phase constant in the case θm = 45o. Note
that HFSS cannot compute the attenuation constant in this
particular case, since cannot provide the complex frequency
in the cutoff region of the waveguide.

IV. MICROSTRIP-LIKE LINE

Previous works have reported complex numerical techniques
to study the wave propagation in microstrip lines filled with
liquid crystal [47], [48]. In this section, we show that the
dispersion properties of a LC-based microstrip lines can be
analyzed in an alternative and easier manner with the use of
the MMTMM. Specifically, the structure analyzed in [47] is
now analyzed with the MMTMM and the results compared
with measurement and numerical (Finite Elements Method,
FEM) data provided in [47].

A 3-D view of the microstrip structure under study is
depicted in Fig. 3(a) with Fig. 3(b) showing a transversal cut
with the different layers and dimensions. A Merck E7 liquid
crystal of electrical parameters ε⊥ = 2.78, ∆ε = 0.47,
k11 = 11.1 pN, k22 = 10.0 pN, k33 = 17.1 pN, θp = 2o

and ∆εb(1 kHz) = 13.8 was chosen in [47]. Note that the

(a)

(b)

Fig. 3. Microstrip section filled with liquid crystal presented in [47]: (a) 3-D
view, (b) transversal cut.

Fig. 4. Dispersion diagram of the lossless microstrip-like line with a
liquid crystal cell presented in [47] for the extreme and some intermediate
polarization stages (N = 1 mode). The electrical field distribution of the
considered mode is shown in the figure. The electrical parameters of the
liquid crystal cell and dielectrics are ε⊥ = 2.78, ∆ε = 0.47, k11 = 11.1
pN, k22 = 10.0 pN, k33 = 17.1 pN, θp = 2o, ∆εb(1 kHz) = 13.8,
θp = 2o, εdiel1r = 3.27, and εdiel2r = 9.8.

elastic constants kii, the pretilt angle θp and the dielectric
anisotropy at the bias frequency ∆εb (see Sec. II-B) are given
in this case to relate a determined polarization voltage V
with the resulting average tilt angle θm. Two dielectrics of
permittivity εdiel1

r = 3.27, and εdiel2
r = 9.8 are used to

encapsulate the LC. For the computation, the length of the
microstrip section is L = 1 mm. As in [47], the structure is
shielded by applying electric boundary conditions to the edges
of Fig. 3(b), represented by black dashed lines.

The dispersion diagram of the lossless LC-based microstrip
section presented in [47] is shown in Fig. 4 for different
polarization voltages. The scattering parameters were extracted
from a frequency-domain simulation in commercial software
CST. In our computations with the MMTMM, it is found
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Fig. 5. Effective relative permittivity at 60 GHz for different polarization
voltages. A comparison is made with the numerical results and mesurements
presented in [47]. N = 1 mode is used for the computation. The elec-
trical parameters of the liquid crystal cell and dielectrics are ε⊥ = 2.78,
∆ε = 0.47, k11 = 11.1 pN, k22 = 10.0 pN, k33 = 17.1 pN, θp = 2o,
∆εb(1 kHz) = 13.8, θp = 2o, εdiel1r = 3.27, and εdiel2r = 9.8.

that the use of just the fundamental propagating qTEM mode
(N = 1) suffices to provide accurate enough results. This
is confirmed with the good agreement found with the results
extracted from the eigenmode solver of CST as well as the ob-
taining of a negligible attenuation constant (α/k0 < 5×10−3)
in all the considered frequency range. Additionally, it should
be remarked that a null polarization voltage (V = 0) does not
represent in this particular case a diagonal tensor, since the
pretilt angle is different from zero (θp = 2º) here. Thus, the
average tilt angle associated with a null polarization voltage
will be approximately θm ≈ θp = 2º, resulting in a non-
diagonal tensor. As a consequence, the CST Eigenmode solver
cannot actually compute the case V = 0, although it can be
approximated with almost negligible error to a diagonal tensor
(θm ≈ 0º).

In order to form the permittivity tensor (3) and then compute
the S-parameters of the structure in CST, a conversion between
the polarization voltage V and the average tilt angle θm has to
be done. This conversion has been carried out with the formu-
las of [42], which can also be applied in microstrip structures
as long as fringing-field effects are not relevant. Looking at
the phase constant in Fig. 4, it can be appreciated that the
structure becomes denser as the polarization voltage increases.
Furthermore, the LC is almost saturated (with respect to V∞)
for a very low voltage values such as V = 2 V due to the
elevated dielectric anisotropy ∆εb that Merck E7 LC possesses
at the bias frequency.

In Fig. 5, the relative effective permittivity of the structure
at 60 GHz is shown for different polarization voltages. This
permittivity is computed as εr,eff(f) = β2(f)/k2

0(f), which is
directly extracted from the dispersion diagrams in Fig. 4. An
excellent agreement is observed with the FEM and measure-
ment data reported in [47]. As previously discussed, the effec-
tive permittivity rapidly saturates for low polarization voltages
due to the elevated dielectric anisotropy at the bias frequency.
Note that the maximum effective relative permittivity would
be approximately εr,eff ≈ ε‖ = 3.25 for V → ∞, and that
εr,eff(V = 8 V) = 3.18 is already close to this value.

(a) (b)

Fig. 6. Liquid-crystal-based reconfigurable phase shifter in ridge gap-
waveguide technology.

V. RECONFIGURABLE PHASE SHIFTER

In this section we present the design and analysis of a
LC-based reconfigurable phase shifter in ridge gap-waveguide
technology. The dispersion properties of the reconfigurable
phase shifter in lossless and lossy scenarios are computed by
means of the MMTMM. This task could be of potential interest
for the development of efficient tunable phase shifters applied
to the design of phased array antennas.

An schematic of the phase shifter in ridge gap-waveguide
technology and its transversal cut view are shown in Figs. 6(a)
and (b), respectively. Waves ideally propagate inside the LC
between the two metallic parallel plates that form the ridge
and the upper plate. The phase shift is then electronically
controlled by polarizing the LC and changing the orientation
of the molecules. Similarly to the design recently proposed
in [38], a container made of Rexolite is employed to confine
the LC and prevent its leakage. The bed of nails inserted at
both sides of the liquid crystal acts as an artificial magnetic
conductor (AMC), creating a high impedance surface condi-
tion. For computation purposes, an LC mixture GT3-23001 has
been used: ε⊥ = 2.46, ∆ε = 0.82, tan δ⊥ = 0.0143, tan δ‖ =
0.0038, and Rexolite of electrical parameters εRexo

r = 2.33 and
tan δRexo = 0.00066 [38].

Figs. 7(a) and (b) show the dispersion diagrams of the
reconfigurable phase shifter in lossless and lossy scenarios,
respectively, for different average tilt angles θm. Both dia-
grams have been computed with N = 3 modes in a time-
domain simulation in CST. No de-embeding layers are utilized
in this case, since we are essentially working with diagonal
tensors (cases θm = 0, 90o) and the off-diagonal permittivity
terms, εyz = εzy , are negligible in this configuration for
the case θm = 45o. The electric field distributions of the
three modes considered in the input/output ports are displayed
in the figures. Note that modes #2 and #3 are included to
take into account wave propagation along the pins and ensure
a correct convergence of the method. The cutoff frequency
of the propagating quasi-TEM mode, located approximately
at 2.95 GHz, is evidenced in both subfigures. Below the
cutoff, even and odd quasi-TEM modes can propagate between
the pins and the upper metal plate with a high attenuation
constant [49].

In Fig. 7(a), the values of the phase and attenuation con-
stants computed with the MMTMM in a lossless and bounded
(PEC as lateral boundaries) structure are shown and compared
with the data provided by the CST eigenmode solver. A good
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(a)

(b)

Fig. 7. Dispersion diagram of a (a) lossless and (b) lossy ridge gap
waveguide phase shifter filled with liquid crystal. The results are obtained with
N = 3 modes. The electric field distribution of the three considered modes is
displayed in the figure. The electrical and geometrical parameters of the unit
cell are: ε⊥ = 2.46, ∆ε = 0.82, tan δ⊥ = 0.0143, tan δ‖ = 0.0038,
εRexo
r = 2.33, tan δRexo = 0.00066, p = 1.76 mm, wLC = 2 mm,
hLC = 80µm, wp = 0.96 mm, hp = 2.64 mm, and wr = 0.8 mm.

agreement is found between both set of results. Although the
qTEM mode should have a null attenuation constant (α = 0)
in the propagating frequency range (due to the absence of
losses), small values of attenuation appear in the MMTMM
due to inevitable numerical noise.

Fig. 7(b) presents a more realistic scenario, where the phase
and attenuation constants are computed in a lossy and open
(PML as lateral boundaries) structure. Material losses have
been included in the liquid crystal and in the Rexolite, and
PEC layers have been replaced by aluminium. As the CST
eigenmode solver does not provide the dispersion diagram
in lossy and open structures, no comparison with CST ap-
pears in Fig. 7(b). Three different values of θm have been
considered: 0º, 45º and 90º. The structure becomes denser
as θm increases as a consequence of the corresponding in-
crement of the the effective permittivity of the LC. Also, it
is observed a progressive increase of the attenuation constant
as frequency increases, associated with the longer electrical
length that the wave has to travel at higher frequencies. The
case θm = 0 shows the highest attenuation constant, since for

(a)

(b) (c)

Fig. 8. (a) Liquid-crystal-based reconfigurable leaky-wave antenna presented
in [50]. (b) Transversal cut view showing its forming layers. (c) Unit cell.

TABLE II
GEOMETRICAL PARAMETERS OF THE LC-BASED LWA.

Parameters lm wm lmm wmm lin
Value (mm) 4 6.5 2.8 4.8 1.4
Parameters h wl lp wp lf
Value (mm) 0.5 0.5 1.5 1.5 1.8
Parameters win wf gf hLC hdiel
Value (mm) 0.6 0.4 0.3 0.25 0.762

this configuration the effective term of the loss tangent tensor
(tan δzz = tan δ⊥) has the greatest value.

VI. RADIATING STRUCTURES: LC-BASED LWA

In this section, by following the recommendations given in
Sec. II.C for open and radiating structures, we show that the
MMTMM can be efficiently applied for the computation of the
dispersion properties of reconfigurable leaky-wave antennas
(LWAs) based on the use of liquid crystal. For validation
purposes, we replicate and analyze the design presented
in [50], which is one of the few LC-based LWAs reported in
the literature that has been manufactured and experimentally
measured. Fig. 8 shows the schematic of the LWA; namely,
a composite right/left-handed (CRLH) LWA implemented in
microstrip technology, the substrate of which is a LC to
provide reconfigurability. The radiation angle of the LWA is
controlled by polarizing the LC and, therefore, changing the
average orientation of the molecules (θm). To confine the
LC and prevent its leakage, there is a groove on the metal
base forming a cavity [see Fig. 8(b)] in combination with a
dielectric slab above the LC. The geometrical parameters of
the LC-based LWA are given in Table II. The LC utilized here
is TUD-649 (ε⊥ = 2.46, ∆ε = 0.82) and the dielectric slab
has a relative permittivity εdiel

r = 3.66 [50].

A. Dispersion diagram and radiation properties

Fig. 9 shows the 3-D radiation patterns of the LC-based
LWA at different frequencies for the extreme polarization



8

(a)

(b)

Fig. 9. 3-D radiation pattern of the liquid-crystal-based reconfigurable leaky-
wave antenna presented in [50] for (a) V = 0 and (b) V → ∞ at different
frequencies. Input and output ports are located on the left and right side of
the structure, respectively.

voltages V = 0 (θm = 0o) and V → ∞ (θm = 90o).
For computational purposes, six unit cells are concatenated
and the time-domain solver of CST is used. As shown, the
antenna is able to radiate at broadside direction [12.60 GHz in
Fig. 9(a) and 11.60 GHz in Fig. 9(b)] due to the capacitance of
the interdigitated structure placed at the center of the unit cell
and the shunt inductance obtained by the stub lines connected
to the square patches [see Fig. 8(c)]. Below and above the
broadside frequency, the antenna scans in backward (BW) and
forward (FW) radiation angles.

The dispersion diagrams of the lossless LC-based LWA are
shown in Figs. 10(a) and (b) when a null and a hypotheti-
cal infinite voltage is applied to the LC, respectively. The
generalized scattering parameters of the unit cell have been
extracted by performing a time-domain simulation in CST. No
de-embedding layers have been included in this case, since
we are only considering the extreme polarization states of
the LC, where the permittivity tensor is diagonal. The results
extracted from the MMTMM are in good agreement with the
data provided in [50]. Since the structure is not symmetric, it
is expected that modes of even and odd parity are required to
ensure the convergence of the attenuation and phase constants.
In this case, two modes (N = 2) are required to achieve that
convergence. The combination of modes in the input/output
ports that provides the best results includes the modes #1, #4,
and #5 depicted in the top panel of Fig. 10. The results in this
figure show that mode #4 has relevance in the computation,
due to its even nature and the high field intensity near the
area of the microstrip line where the qTEM mode propagates.
Modes #2 and #3 strongly depend on the size of the bounded
input/output ports and, therefore, are hardly correlated to the
Floquet modes that can physically propagate in the unbounded
periodic structure.

Backward, forward, and stopband regions are shadowed in
Fig. 10. In Fig. 10(a), the broadside frequency (corresponding
to β = 0) is observed at 12.65 GHz, which is in good
agreement with the central frequency of the 3-D pattern
displayed in Fig. 9(a). At 11.97 GHz, the light line crosses
the backward mode (β = −k0). This frequency point is
associated to backfire radiation in the antenna, which is also
evidenced in Fig. 9(a) at 11.90 GHz. Furthermore, note that the

(a)

(b)

Fig. 10. Dispersion diagrams of the liquid-crystal-based reconfigurable
leaky-wave antenna presented in [50] for (a) V = 0 and (b) V → ∞.
The electrical parameters of the LC are: ε⊥ = 2.43, ∆ε = 0.79.

TABLE III
GEOMETRICAL PARAMETERS OF THE OPTIMIZED LWA.

Parameters lm wm lmm wmm lin
Value (mm) 4.5 6.5 2.9 5.4 0.75
Parameters h wl lp wp lf
Value (mm) 0.6 0.5 1.55 1.55 1.8
Parameters win wf gf hLC hdiel
Value (mm) 0.55 0.4 0.3 0.25 0.762

reduced slope of the phase constant in the backward region
indicates that the scan angle rapidly changes in Fig. 9(a) from
backfire to broadside radiation. On the contrary, the slope
of the phase constant is higher in the forward region, which
indicates a large scanning bandwidth. At 14.35 GHz, the light
line crosses the forward mode (β = k0). This frequency point
is associated with endfire radiation in the antenna, which can
be observed at 14.60 GHz in Fig. 9(a). In Fig. 10(b), backfire,
broadside, and endfire frequencies are located at 11 GHz,
11.60 GHz, and 12.80 GHz, respectively, in good agreement
with the radiation patterns shown in Fig. 9(b).

B. Optimization of the LWA via the Multi-modal Technique

Up to this point, the MMTMM has been used only as an
analysis tool, that is, to extract the dispersion properties of
the structures under consideration. Next, we will show that the
MMTMM has also potential to be used as a design tool; in this
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(a)

(b)

Fig. 11. (a) Dispersion diagram of the optimized LC-based leaky-wave
antenna for V = 0. (b) Radiation efficiency of the optimized antenna for
V = 0 when 8 unit cells are cascaded. The electrical parameters of the LC
are: ε⊥ = 2.43, ∆ε = 0.79.

case, to increase the leakage rate and, therefore, the radiation
efficiency of the previously analyzed leaky-wave antenna. The
results of this study led us to the geometrical parameters of the
optimized leaky-wave antenna shown in Table III. To make a
fair comparison, the original shape of the unit cell and thick-
nesses of the LC and dielectric have been preserved; that is,
no additional microstrip sections have been added to the unit
cell. The dispersion diagram of the optimized LWA is shown
in Fig. 11(a). It can be observed in that figure that the phase
constant of the optimized antenna shows a similar behavior
as the original antenna and, consequently, the radiation angles
of both antennas are similar. However, the leakage rate α has
been enhanced considerably, specially in the forward region,
which directly translates in a higher efficiency of the optimized
antenna. This fact is evidenced in Fig. 11(b), where the radi-
ation efficiencies of the original and optimized antennas are
compared. The radiation efficiency is improved an 11% in the
forward region and kept similar in the backward region. The
drop in the efficiency observed around 12.5 GHz in Fig. 11(b)
for both antennas can be related to the appearance of the
so-called open stopbands [51], [52]. This stopband appears
in many periodic LWAs when the beam is scanned through
broadside and gives rise to peaks in the attenuation constant,
as the ones appearing in Fig. 11(a) around 12.7 GHz. The
frequency shift found between the efficiency drop in Fig. 11(b)
and the attenuation peaks in Fig. 11(a) is associated with
the finite size (eight cells) of the periodic LWA analyzed
in Fig. 11(b) versus the infinite nature of the periodic structure
considered in the dispersion diagram of Fig. 11(a). A paramet-

ric study revealed that the open stopband, in agreement with
the rationale reported in [51], [52], cannot be easily suppressed
with the current configuration of the unit cell. A modified
configuration of the antenna would be needed, which could be
conveniently analyzed by means of the proposed MMTMM.

VII. CONCLUSION

The use of the multi-modal transfer-matrix method to
compute the dispersion diagram of periodic structures in-
volving general anisotropic media has been discussed in this
work. We have particularized the study to the case of liquid
crystals due to its promising properties for the design of
electronically reconfigurable devices. The proposed method,
which combines the use of commercial simulators and an-
alytical post-processing, overcomes the common limitations
of general commercial eigenmode solvers when dealing with
anisotropic materials. Specifically, the proposed multi-modal
method shows three interesting properties:

1) Anisotropic materials with non-diagonal permittivity and
permeability tensors can be analyzed. This is an interest-
ing feature that has been exploited throughout the text,
since commercial eigenmode solvers find difficulties
when computing the complex propagation constant in
some configurations involving non-diagonal tensorial
materials.

2) The attenuation constant can be easily computed. This
is of capital relevance in order to analyze the stopband
regions of periodic structures. Furthermore, the method
allows to include lossy materials in the computation.
This is a very appreciated feature in LC-based structures
in order to take into account the lossy nature of the
material.

3) Unbounded and radiating structures can be analyzed.
From the aforementioned statements, this is the most
remarkable feature of the proposed method. Conversely,
in most of commercial eigenmode solvers the struc-
ture must be forcefully shielded with perfect elec-
tric/magnetic boundary conditions. This fact prevents
that periodic leaky wave antennas can be typically
analyzed in commercial software.

Some relevant works in the literature were selected to test
the method. We started with the study of canonical waveguide
and microtrip sections. Afterwards, we apply the multi-modal
method to analyze the dispersion properties (phase shift,
radiation angle, leaky rate, etc.) of more advanced designs,
such as a reconfigurable phase shifter in ridge gap-waveguide
technology and a leaky-wave antenna. All results were in
good agreement with previously reported works and with
commercial software CST and Ansys HFSS, demonstrating
that the multi-modal method has potential application in the
analysis and design of periodic and uniform structures that
includes liquid crystal or other generic anisotropic materials.
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