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Abstract
Alongside the particular need to explain the behavior of black box artificial intelligence (AI) systems, there is a general need
to explain the behavior of any type of AI-based system (the explainable AI, XAI) or complex system that integrates this type
of technology, due to the importance of its economic, political or industrial rights impact. The unstoppable development of
AI-based applications in sensitive areas has led to what could be seen, from a formal and philosophical point of view, as
some sort of crisis in the foundations, for which it is necessary both to provide models of the fundamentals of explainability
as well as to discuss the advantages and disadvantages of different proposals. The need for foundations is also linked to
the permanent challenge that the notion of explainability represents in Philosophy of Science. The paper aims to elaborate a
general theoretical framework to discuss foundational characteristics of explaining, as well as how solutions (events) would be
justified (explained). The approach, epistemological in nature, is based on the phenomenological-based approach to complex
systems reconstruction (which encompasses complex AI-based systems). The formalized perspective is close to ideas from
argumentation and induction (as learning). The soundness and limitations of the approach are addressed from Knowledge
representation and reasoning paradigm and, in particular, from Computational Logic point of view. With regard to the latter,
the proposal is intertwined with several related notions of explanation coming from the Philosophy of Science.

Keywords Complex systems · Explainable artificial intelligence · Epistemological modeling · Formal concept analysis

Introduction

Alongside the particular need to explain the behavior of black
box Artificial Intelligence (AI) systems, there is a general
need to explain the behavior of any type of AI-based system
(the explainable AI, XAI) or complex system, that integrate
this type of technology, due to the importance of its eco-
nomic, political or industrial rights impact. In either case, the
AI component might not be isolated, but possibly part of a
broader treatment of information, or integrated into a broader
Complex System (CS). The integration complicates the task
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of explaining systems behavior, which can be so complex that
traditional systems theory thinking becomes insufficient. In
areas where it is important (or even critical) to monitor the
behavior of a system that includes AI-based modules, such
as systems for Big Data (BD), Internet of Things, or Cloud
Computing, some kind of specification of the behavior of
such module or at least an explanation of the decisions taken
will be needed. Please note that the need is not generalized,
not every automatic or even AI-based system should be con-
trolled. Still, there exist cases (for example when people’s
rights are affected) in which the system must be subject to
some form of certification, traceability, and assessment of
both applicability and performance. Also, theXAI itself aims
for the achievement ofmany goals different in nature (cf. [1]).

It is clear that not every system that makes an automated
decision is AI, nor every AI is Machine Learning (ML),
nor everything that is announced as AI is actually AI-based
there is an evident hype on the subject and the term is often
used as a marketing resource or for justifying business strate-
gies. This hype around certain techniques does not refute the
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above-mentioned fact of the current ubiquity and power of
AI-based systems, which makes it very common for them to
be used to improve other systems. The latter inherits poten-
tial explainability problems from the former, in any of the
three notions (levels) of Explainable AI (XAI) that actually
exist, according Doran et al. [2]: opaque systems that offer
no insight into its algorithmicmechanisms; interpretable sys-
tems where users can mathematically analyze its algorithmic
mechanisms; and comprehensible systems that emit sym-
bols enabling user-driven explanations of how a conclusion
is reached.

The challenges that comes with Explainability (and
its impact or relationship on diagnosis or debugging—
verification—for example) are similar (of course, bridging
the gap) to a crisis of foundations proper to the dizzying
advance of a branch of knowledge (as occurredwith the emer-
gence of Set Theory in the last century, for example). A crisis
that affects the validity of the results is usually confronted
by going back to the analysis of the capacity of fundamental
models of formalization and their properties. However, even
sharing similarities with older challenges in Mathematics,
there are some characteristics of XAI that make the prob-
lem somewhat transversal in nature. For example, its (social,
psychological) inter-agent nature and its relationship with
system correction.

Two natural strategies used to address the problem of
XAI namely, using interpretable models or, if it is not pos-
sible, with post hoc explaining, by argumenting/explaining
the result once it is obtained—may be insufficient. As argued
by Miller [3], the creation of explainable intelligent systems
requires addressing major issues. Firstly, Explainability can
be a question interactive in nature between humans and the
(automated or semi-automated) AI system; and secondly, it
is peremptory the design of representations that support the
articulation of the explanations is required. Tuning up more,
Weld and Bansal [4] require a good explanation to be sim-
ple, easy to understand, and faithful (accurate), conveying
the true cause of the event. Therefore a balancing problem
between two demands (Miller’s versus Weld and Bansal’s
ones) is faced.

The Knowledge Representation and Reasoning paradigm
faces other issues that increase the complexity of the chal-
lenge. Mainly that one comes from the difficulty of trans-
lating some sort of logical explanation into a language that
is acceptable and intelligible by the non-expert. In fact, we
could consider that two elements need to be translated fre-
quently, for example, when it is necessary to justify the
decision taken (i.e. a complete argument). Of course the con-
clusion, but also the part of the Knowledge Base (KB) that
has been used to entail it, that is, the initial hypotheses beside
the inference links. As for the justification process itself, it
should also be translated or adapted when it is not legible for
the explainee (cf. [5]).

Working in a massive data framework can exacerbate the
problem of Explaining. It implies dealingwith problemswith
thousands of features (among other issues [6]), thus per-
formance requirements are likely to force the adoption of
methods that are difficult or impossible to explain in par-
ticular scenarios such as deep neural networks or enhanced
decision forests [7]. It is often the case that post hoc expla-
nations of events may be the only way to facilitate human
understanding; such kind of explanations could be more eas-
ily accepted if some common human reasoning patterns,
which are not direct variants of purely logical reasoning, are
selected.

The use of surrogate models1 could simplify certain
aspects to make possible to explain the event/result to a
wider audience as well as to discuss the reasons why con-
crete results are predicted or occur. The explanation could
even go as far as using economic arguments such as the cost-
effectiveness of the decision, to estimate the economic cost
of each possibility (true/false or positive/negative outputs).

Naturally, it is not the only option. For example, other
approach to research is based on treating AI instruments as
biological entities, studying them from that point of view.
For example, considering neural networks as experimental
objects in biology, rather than as analytical and purely math-
ematical objects (see e.g. Bornstein’s [8]). The approach
would involve, for example, analyzing the individual com-
ponents, disturbing some inputs or sectioning parts in order
to check their role and the elasticity of the model according
to the ideas from Neuroscience.

The construction of models to support explanation—
especially for ML-based intelligent systems—is a challenge
that embraces several techniques ranging from logical causal
models (as the alreadymentioned tradition of classical Expert
Systems) to those specialized in deep learning (cf. [9]). To
approach the issue from Knowledge Level (KL), the need
to reconcile two levels of (representation and) reasoning
(for the explainer and the explainee) through some kind of
accepted, consensual models, becomes more pressing. What
can Newell’s KL [10] paradigm offers to meet the chal-
lenge of explainability? Mainly explanation, interpretation,
and justification, which are activities deeply rooted in AI
research, as they provide reliability in systems with auton-
omy in the decision-making process. At KL, a first source of
explanation comes from KL’s paradigm itself.

The idea of surrogation can bridge several levels of sophis-
tication between predictions and experiments. By helping to
understand the event or system, the surrogate model helps
to interpret or justify decision making by drawing from data
source. In the case at hand, the gap would be epistemologi-
cal in nature. A KL-based surrogate model should bridge the

1 This term is used to denote the general idea of simulating the behavior
of a given model.
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response offered by the AI-based system and those that are
acceptable to humans. For example, expert systems can be
considered as surrogate models for human expertise. As well
as trying to reproduce the expert’s results, they also map and
make explicit both the knowledge used and acquired.

In KL paradigm, agents/systems work mainly with logi-
cal formulas or symbolic expressions that seek to represent
information from theworld, to obtain conclusions about it, by
mechanized symbolic manipulations without any intended
meaning. All that is needed is to specify what the agent
knows or believes and what its goals are. Therefore, by
considering the idea of KL-based surrogate models, the
separation between the logical abstraction and the imple-
mentation details (including the implementation of the infer-
ence/decision process itself) has to be assumed. Newell’s
proposal for KL was intended to clarify the elements that
should be considered in order to formalize the idea of ratio-
nal agent by separating the two modules for the purpose of
studying without ambiguity two problems: Knowledge Rep-
resentation and Reasoning (KRR) problems. Davis et al. [11]
explicit as one of the roles of the Knowledge Representation
that of surrogate, which serves as a substitute for the orig-
inal, to reason about the world and infer the decision to be
made. Of course it is not the only one. It is also useful to
represent ontological commitments (including background
knowledge) and serves as theories for reasoning. And the
one that will interest us for the paper: an environment in
which information can be organized and where agents can
think. More elaborate theories on knowledge taxonomy such
as Addis’ [12] (p. 46) further break down these roles.

Classic surrogate models are useful for the expert. How-
ever, their adaptation to face the problem of explainability
can raise questions with differentiating nuances. On the one
hand, the qualitative nature of human reasoning, its cog-
nitive and functional limitations, make rational conceptual
and qualitative explanations easier to follow and accept by
non-specialists (clients/users, legislators, planners, product
validationmanagers, etc.). Therefore, any numerical solution
should be adapted to one of those if possible. On the other
hand, this type of explanation is approximate, and tends to
sacrifice rigor for the benefit of its understanding. It might be
difficult to find a balance between the robustness of quanti-
tative models and the local, qualitative, approximate, or even
example-based ones that can be used in the KRR paradigm.

Focusing on the model that supports our explanation,
similar questions to other situations where other kinds of
surrogate models are considered arise [13]. Among those
of interest for the paper, and thinking for explaining: What
data and sample are used for the explanation provided by
the surrogate model?What approximation method should be
used? How is the surrogate model that produces the expla-
nation? What if there’s a discrepancy between two different
explanations? The soundness of a surrogate model designed

to bring the theoretical model closer to an explainable one
will, therefore, depend on an adequate response to each of
the questions.

The considerations set out so far are intended to outline the
challenge of formalization that XAI represents. From a broad
perspective, factors of very different nature influence the
treatment of explainability and make clear the need for foun-
dational (and also interdisciplinary) analyses. A desirable
objective would be to accommodate formal and philosophi-
cal discussions and proposals in the same model. Although it
is utopian in its generality, any model that serves as a partial
solution would be welcomed by the scientific community.

Motivation and aim of the paper

As it can be guessed from the introduction above, the paper
discusses some foundational ideas from Knowledge Repre-
sentation in AI for explainability, as well as how these could
be studied from a formal point of view, despite their various
edges and implications. The paper is devoted to the design
of an epistemological model to support some of the notions
discussed in the first part. The model is the basis for the
different activities that epistemology applied to CS states:
from the representation of systems from a qualitative point of
view to the simulation and subsequent prediction about their
future. The aim is to show that the model can be an useful
tool for representing both the theoretical concepts involved
in the process of explainability and for addressing associ-
ated problems. Ideas toward a formal epistemological model
for foundations of explaining are discussed, as well as how
related issues are represented in such a model, and philo-
sophical considerations. We believe that it is necessary, to
soundly outline a general vision of the document, to briefly
review this model, which will be addressed in detail in the
second part of the document.

Towards an abstract epistemological model

As stated above, the main motivation of the paper is to
establish a common formal framework to serve as theoreti-
cal model that can be used to discuss foundational (formal,
philosophical) issues in Explaining. Starting from a purely
perceptual scenario, a model for specifying several notions
is built. Due to the heterogeneity of the different types of
CS (which include some of the more sophisticated AI-based
systems), there are no general mechanisms for addressing
issues related to systems that may be essentially different
in nature and purpose. However, if an abstraction with the
language of events and observations is made, it is possible
to provide a mathematical model that allows illustrating, in
a logical-mathematical language, some foundational proper-
ties. Partial versions of the framework have been presented
by authors and applied in several case studies of a different
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Fig. 1 FCA-basedmodel for (qualitative) reasoningwithComplex Sys-
tems

nature [14–18]. However, until now we had not presented a
unified vision of the model, as well as its contextualization
within the problem of explanation. Its theoretical character
aims to clarify some of the ideas and issues discussed in the
paper, thus providing a framework and/or a set of guidelines
to be followed for themodeling and qualitative analysis of CS
and related problems. In Fig. 1, the proposal (which comes
from the philosophical and computational study of CS) is
depicted. For now, it is enough to say that the idea is to math-
ematize the universe of data that comes from perception and
the need to contextualize the part of that information that will
be transformed into ’knowledge’ to reason about the system.
Step 1: Extracting and fusing data

The model starts from raw data (right arrow in the top,
Fig. 1), understanding this as everything that is perceived
and analyzed, as raw information (at the bit level, if desired).
In other words, information is accumulated with the max-
imum possible granularity and then fused into knowledge.
This way we do not presuppose a conceptual representa-
tion and reasoning language beyond the one that comes
from direct perception since, as argued, prefixing it would
limit the vision of the events. Some questions arise imme-
diately, as Why avoiding any high-level specification in the
first instance? Why resorting to bit-level event observation
(including input–output data) to indicate their basic proper-
ties? The answer is that it is not desired to limit the model
by the selection of a language, beyond one denoting the very
basic attributes of perceived signals.Also,we intend to offer a
universalmodel for justification of notions and thus it is not to
presuppose features inherited from a previous choice of lan-
guage. The idea is that conceptual language emerges from
the analysis and selection of characteristics, and its descrip-
tion (and further explanation) should be easy to accept by the
observer.
Step 2: Contextual selection

Selecting the right context in which to find the explanation
(fusing the associated information) is the basis that would

serve to build perspectives using an algorithmic combina-
tion of the raw information. With this aim, Formal Concept
Analysis (FCA) [19] has been chosen as a building tool (box,
downright in Fig. 1). It will be used, for example, as an
interface between the perceptions and the system that gen-
erates the response (explanation in our case), building what
one might call event/observational concepts. Some concepts
are spontaneously activated or made available for use solely
basedon a subject’s being in a certain perceptual state [20]. To
avoid the so-called content inflation [20], the analysis should
be delimited, thus a sub-context is selected from the global
context of all perceptions (right down arrow, Fig. 1). In this
way, the explaining synthesis is confined to what the agent
believes or decides that plays some role in the explanation.
Step 3: Explaining:Machine Learning tools ideas are applied
on the contextual selection and using FCA-based semantics.

Please note that the paper should not be considered a
research work on FCA. Such theory is used as tool to for-
malize some of the notions through an abstraction of the
epistemological reconstruction ofCS fromavailable observa-
tions. This type of approach allows the simulation, validation
and prediction tasks to be carried out based on themodel. Fur-
thermore, justifications based on logical mechanisms with
relatively less complex representations, enabling the use of
traditional KRR techniques such as Inductive Logic Pro-
gramming (ILP), will be presented. In short, a theoretical
model is proposed, with a foundational vision, to design a
surrogate meta-model based on the KL paradigm that allows
formalizing and discussing some of the (philosophical and
formal) notions about observability, justification, argumen-
tation and explanation that we will be dealing with in the
paper. It could be considered general methods that allow us
evaluating the quality of the models (both their structure and
the information they contain).

Structure of the paper

After the preceding introduction, the paper starts noting some
observations about the role Bounded Rationality (BR) can
play in solving the explanation problem.Thus, the factors that
influence what the explanation under BR would be and how
the explanation techniques could be applied in that case are
analyzed, including the perspectivist nature of explanation
inherited from BR’s role in the process, and their relation-
ship with the so-called data curation (see “Perspectivism as
explaining strategy”). “Towards a theoretical general model
for explaining phenomena: background” is dedicated tomoti-
vating the choice of FCA as a tool free of specific semantic
ties to analyze the problem, and to make the paper largely
self-contained—the basic elements of FCA are introduced.
“A toolbox for specifying explanations in complex systems”
represents the formalization of the model and the introduc-
tion of a basic explanation format inspired by ideas from
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the Argumentation. From this notion, and combining it with
others of Inductive Logic Programming, the different ele-
ments are represented. The foundational nature of the paper
is highlighted through the analysis of the model’s behavior in
the face of the extension of available information. The paper
ends with some considerations about the proposal and future
direction of the extension of the work.

Some notes on bounded rationality and
explaining

Contextual selection (and possibly subsequent reasoning)
will be guided by techniques that reduce the search space
and decrease the complexity of reasoning. For example, those
based on bounded rationality [21] may be useful. Although
it is not the aim of this paper to break down such techniques
(nor to specialize them to our specific model), we do believe
it is interesting to comment on certain issues in this respect.

Following the analysis carried out in Lewis et al.’s paper
[22], three types of explanations that could be produced
by an explainer agent can be distinguished: Optimality
explanations (no machine bounds), Ecological-optimality
explanations (the environment where actions are decided
upon responding to a given distribution but there are no
limitations to the processing of the information), Bounded-
optimality explanations (limitation to information process-
ing, which reduces the repertoire of accessible solutions
and the associated explanation, the policies), and lastly the
Ecological-bounded-optimality explanations (in which both
policy space and information processing are constrained).
Therefore, to the extent that the expected behavior or the
structure of the policy resulting from the analysis corre-
sponds to the observed behavior, then the behavior has been
explained in each context of explainability.

Formal epistemology, complex systems and BR

Data collection and processing are key daily tasks in CS with
the aimof to obtain a reasonably accurate and concise approx-
imation of the system and its behavior (that could lead us to a
surrogate model), so that we can understand it to some extent
[23]. If one wishes to explain the events that perceives, it is
natural to consider an approach similar to formal epistemol-
ogy. Moreover, if one wants to extract actionable knowledge,
the natural approachwould be theApplied Epistemology that
KL would represent.

It has already justified that the use of techniques and ideas
from BR provide interesting advantages, since they aim to
obtain results similar to those humans conclude. An adequate
choice of key features and their specification is a first step
in order to reconstruct the (complex) phenomena. In Fig. 2,
a schema of the main activities aimed at the study of CS

is shown, with emphasis on the phenomenological recon-
struction phase based on the data available, since this is a
fundamental tool for the construction of explanations. The
tasks can be grouped into three levels or phases: Reconstruc-
tion of the system (modeling), Simulation of the system from
the dynamics reconstructed in the first phase, and finally,
experimental Validation of the simulated behavior with the
real behavior of the system. After the last phase, it is possible
to reconsider the reconstruction initially obtained in the first
phase to bring another more similar with reality, more accu-
rate model. The theoretical reconstruction of CS could cover
only those relevant aspects that are related to the explanation
of the phenomenon of interest. It is, therefore, a valuable tool
for event explanation.

A phenomenological-based methodology suggested by
the application of ideas from BR has been applied to study
and simulateCS in previous papers (see, e.g. [14,24]) roughly
subsumed in Fig. 1. The first step of the methodology is the
selection of relevant attributes fromall the available attributes
to obtain good predictions, classifications, or explanations on
CS. The second step is the use of a sound reasoning method
on the selected elements.

Perspectivism as explaining strategy

The application of BR techniques that inherently limit the
search for solutions (explanations), outlines a framework
where both the search space and, ultimately, the way of see-
ing the system or event to be explained is implicitly limited
by the elaboration of aggregate information from the data.
We could say then that a particular perspective is created.
This point of view is not free of problems.

If AI engineer assists stakeholders with AI-based sys-
tems, what is the plausible explaining acceptable by them?
Explanations that focus on a (necessarily) partial view do not
necessarily provide the best answer, or even a right answer.
Therefore, it is reasonable to think that systems do not offer
general solutions to the problem of explanation (or justifi-
cation of the proposed decision). It is necessary to measure
the question from the perspective we are led to by the selec-
tive access to (massive) data as well as the inevitable biased
selection of dimensions, features anddatasets. In our case, the
perspective might be strongly based on data for its curation
and exploration. This basis compromises the desired inde-
pendence of the observer’s information.

Introduced by Leibniz (and further developed by Niet-
zsche) Perspectivism starts from the premise that all percep-
tion and ideation takes place from a particular perspective (a
particular cognitive point of view). Therefore the existence
of possible conceptual schemes (perspectives) influencing
how the phenomenon is understood and the judgment of its
veracity, is assumed. It is important to note that, although it
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Fig. 2 Tasks in Formal andApplied Epistemology involved in the study
of complex systems (from [23])

is assumed that there is no single true perspective to explain
the world, it is not necessarily proposed that all perspectives
are equally valid.

In a perspectivist view, Science is primarily observer-
dependent. Moreover, we see a growing acknowledgment
in science studies that all scientific knowledge is perspec-
tival [25]; i.e., that the context established by a scientific
discipline is decisive for the kind of observations that can
be made. The same phenomenon occurs intra-theory, that is,
between different contextual observations sharing the same
theory. Hence, it can be concluded that explanations will be
in many cases inherently perspectivist artifacts. The perspec-
tivist point of view proposes the existence of many different
scientific perspectiveswithwhich to analyze a complex prob-
lem, all of which can bring value to the study, similar to the
fact that a single scientific discipline cannot provide ade-
quate solutions to complex problems. The perspectivist view
represents a powerful tool supporting mutual respect and
relationship between even very different scientific perspec-
tives [25].

Perspectivism and data curation

The taking of perspective and the use of BR techniques
entails in most cases the intended selection of the data for the
task of explanation, data curation. In document [26] DARPA
agency motivates the focus on Data Science in Explanabil-
ity Challenge because decisions assisted by BD analytics
need from such a selection of which resources will be the
study objective to support evidence in their analysis. Such
selection could lead to failures or errors that must be ana-
lyzed to refine both the procedure and the curation of the
content. It is clear that the provision of effective explana-
tions would greatly help with all these tasks [26]. Actually,
what might hide Data Curation (particularly selection and
interpretation) is the practice of data hermeneutics [27,28];
the entire process is accompanied by information that could
become explanations of both, the result and the extraction

and curation policies. There is a clear need for this to be
documented.

Another risk that comes from data curation is that data
bias may lead to the inability to replicate studies, compro-
mising their ability to be reused or generalized as well as the
acceptability of the explanation itself [29]. Still, the level of
abstraction of the explaining can determine its generalizabil-
ity, because to consider a too abstract level can compromise
both its real understanding and its practical value. Abstrac-
tions can simplify explanations, but automating the discovery
of abstractions is very challenging (also both sharing your
understanding and sharing them) [30]. Suchdifficulties could
lead to a greater gap between scientific rigor and practical
relevance. The generalization of explanations, understood as
their reusability for several case studies would be strength-
ened by the availability of more data from multiple sources.
This generalization can influence the issue of the preservation
of data curation criteria (which could accompany the expla-
nation, since they provide insight). This would also allow
the development of richer models and greater understanding.
Each model is a reduction of reality and the modeler needs to
make choices in light of limited resources for data collection
and modeling. However, when more data are available, mod-
els often become more complex and too detailed to interpret,
unless they possess certain semantic features. For example,
instead of trying to confirm the theory through purely deduc-
tive approaches, resources such as Linked Data can facilitate
the search and analysis of counterfactuals [29], instead of just
gathering a representative data sample to confirm our theory.

Perspectivism versus veracity

The adoption of perspectives could affect the veracity (of the
explanation given or the model itself). It is adopted here the
notion of Veracity as how precise or true a dataset can be. It is
referred to as thefidelity of the data concerning the reality that
they represent. In the context of Data Science, it takes addi-
tional meaning, namely how reliable the data source is, and
the confidence in the type and processing of the data. Such
aspects need to be studied since they are essential for issues
such as avoiding biases, abnormalities, inconsistencies, and
others associated with processing such as duplication and
volatility. It is a critical issue to be studied in new systems
[31], and mandatory if one wants to abandon the idea that
ML is data alchemy.

It is particularly interesting the distinction between Verac-
ity in general on one side and the concepts associated with
the correctness and validity of the results on the other side.
Since databases can be understood at a certain level as mod-
els of the definition schemes that govern them, and these are
in turn formal theories that represent the universe fromwhich
the data are extracted, veracity is very much related to clas-
sic problems in Knowledge Engineering (or, if we demand a
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certain discipline in the database definition schemes, with the
Semantic Web [32]). Therefore, veracity also depends on the
quality, safety, accuracy, completeness of the information,
etc.

Towards a theoretical general model for
explaining phenomena: background

The issue to be addressed now is whether the elements and
ideas formerly discussed can be formalized (from a logical,
foundational point of view in nature). It should be noted that
the aim is to provide a proof of concept, a common framework
on which—at least theoretically—one could compare differ-
ent approaches for explaining. The proposed model is data
driven and intended for information fusion from input mod-
ules, to meet the conditions outlined in the previous sections.
It will be a sort of universal KRR-based (phenomenological)
surrogate model. The idea is that any other surrogate model
coming from data could be considered immersed within
this. Bridging the considerable gap, it is a modest proposal
towards a model for XAI similar to what was done in other
areas such as ZFC (actually, its so-called Inner Models) that
allowed to establish basic elements of Set Theory by means
providing a common formal framework.

Our aim is to address the question whether it is possible
to consider a universal surrogate model that encompasses
any surrogate model and enable the production of accept-
able explanations, including those under BR (which limits
both options/choices and inferences). It is important to note
that both the question (a meta-epistemological question) and
the answer (a mathematical approach) are epistemological in
nature and based on phenomenological reconstruction phi-
losophy sketched in “Formal epistemology, complex systems
and BR”. It is not intended here to demonstrate the benefits
in practice of this approach, beyond its role as a facilitator
of formalizations of some of the issues we have discussed
so far (although some of its most important mathematical
properties will be demonstrated).

The idea of a universal model for the phenomenologi-
cal reconstruction of CS is not completely original from the
paper (in principle, it can be considered a case of the gen-
eral strategy of addressing the CS study). The first time it was
sketched was in a case study in the specific field of sports bet-
ting [14] that clearly illustrated some of the characteristics
that the model should have.

The method offers a description of the relationships
between the observed data (the basic attributes that can be
considered as raw data) and system of logic implications
(which can be seen as Horn clauses, which will make it eas-
ier to formalize the explanation). The model composed by
the elements obtained (a network of concepts and a system
of rules) can be considered a surrogate model for explaining

qualitative grounded relationships of the System. Mathemat-
ical results justify the soundness and completeness of the
model concerning the raw data coming from the CS, always
from the foundational vision of the problem. The shift to the
use ofmore complex properties should be formalized bywhat
is called formal perspectives (see “The monster context”).

In order to present the ideas within a common framework,
the notions that have been discussed so far, Formal Concept
Analysis (FCA) [19] has been selected. FCA is a mathemat-
ical theory for the analysis of qualitative data, hence it is an
ideal tool for our purposes Since its origins, with the pio-
neering works by Rudolph Wille from the 1980s, FCA has
experienced an outstanding development in both its theoreti-
cal [33] and applied sides [34]. For the reader’s convenience,
in Table 1 a summary of frequently used notations is pre-
sented.

The choice of FCA as basis theory to describe the model
is due to, among other reasons, the fact that FCA does not
prefix the language of concepts. So, one could start from vari-
ables denoting the basic attributes (considering the latter as
data coming from perception and output, for example). FCA
allows the extraction of concepts, in the following sense: it
is mathematized the philosophical understanding of a con-
cept as a unit of thought, comprising its extent and its intent.
The extent covers all objects belonging to the concept, and
the intent comprises all common attributes valid for all the
objects under consideration.

FCA provides algorithms to extract, from data, all units of
knowledgewithmeaning in the sense of the above-mentioned
concept notion, as well as it also allows the computation of
concept hierarchies from data tables. In short, FCA theory
and techniques represents a method for both Data Analy-
sis (organization, exploration, visualization) and Knowledge
Retrieval, among other applications. At the computational-
logic level, it also provides tools to extract patterns (rules)
of behavior from the data and reason with them. One could
summarize the reasons that lead us to choose FCA in that two
of our objectives resemble two FCA main goals: conceptual
clusters extraction (formal concepts endowed with seman-
tic network structure) and data dependencies (implications
between attributes) analysis.

Next subsection the basic elements of FCA will be briefly
described, as well as the notation that will be used in the rest
of the paper, in an effort tomake the paper self-contained. The
reader is referred to [19] to get both more technical details
and a more comprehensive view of FCA.

Formal contexts

The information format used in FCA is organized in an ob-
ject–attribute table specifying whether an object have an
attribute. This table is called Formal Context. It is a three
elements set K = (G,M, I ), where G is a non-empty set
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Table 1 Frequently used
notations throughout the paper

Notation Definition (and reference)

K Formal context (Paragraph 41)

M Monster model (a formal context, Paragraph 56)

L (LK) Implication sets (for K)

L1 |� L2 L2 is consequence of L1 (Definition 1)

L1 ≡ L2 L1 and L2 are equivalent (Definition 1)

limi Li Limit of a sequence {Li }i∈N of implication sets (Paragraph 89)

K1 ∼B K2 K1 and K2 share a common B-approximation (Definition 9)

K1 ≡B K2 K1 and K2 are B-equivalent (Definition 9)

K1 ∼= K2 K1 and K2 are isomorphic (Definition 10)

Fig. 3 Formal context on fish, and its associated concept lattice

of objects (events), M is a non-empty set of attributes, and
I ⊆ G × M is a (object–attribute) relation. In the table
representation of the formal context, objects and attributes
correspond to table rows and columns, respectively, and
(g,m) ∈ I denotes that object g has attribute m. Figure 3
(left) shows a formal context describingfishes (objects) living
on different aquatic ecosystems (attributes) is shown. Please
note that attributes can be considered as Boolean functions
on the set of objects. Any attribute a ∈ M defines a function
fa : X → B where B = {0, 1} as fa(o) = 1 if and only if
(o, a) ∈ I .

A formal context K = (G,M, I ) induces a pair of oper-
ators, which we will call here derivation operators. Given
A ⊆ G and B ⊆ M , they are defined by

A′ = {a ∈ M | (o, a) ∈ I for all o ∈ A}

(that is, the set of attributes shared by all the objects in A)
and reciprocally

B ′ = {o ∈ G | (o, a) ∈ I for all a ∈ B}

(the objects that have all the attributes of B).
The mathematical instantiation in FCA of the philosoph-

ical definition of concept is called formal concept. A formal
concept is defined by means of the derivation operators: it is
a pair (A, B) of object and attribute sets (called the extent
and the intent of the concept, respectively) such that A′ = B

and B ′ = A. That is, the definition by intention characterizes
all the elements that satisfy that definition, and vice versa:
the definition by intention contains all the attributes common
to those objects. Sometimes concepts are referred to by their
intent, which are the so called closed sets. An attribute set
B is closed if B ′′ = B (or equivalently, is the intent of a
concept).

Concept lattice

The set of concepts of a context givenK can be endowedwith
themathematical structure of lattice, bymeans of the subcon-
cept relationship. For example, the concept lattice associated
with the formal context on fishes of Fig. 3 left is shown in
Fig. 3, right2.

In this representation, each node is a concept, and its intent
(extent resp.) is formed by the set of attributes (objects resp.)
included along the path to the top (bottom resp.) concept. For
example, the bottom concept ({eel}, {Coast, Sea, River})
is a concept that could be interpreted as euryhaline-fish (this
is not a term of the language represented by attribute set,
is something new). This is an example of how FCA does
not limit the concepts considered by the chosen language of
attributes, and how it induces the discovery of new ones (con-
cepts that do not fit with the extension of any attribute). A
more complex example, where the authors analyzed concept
lattices about sentiments in social networks [35], in particular
on Twitter. The aim was to show that the conceptual struc-
ture associated with a large set of aggregated opinions on the
same topic can provide an interesting overview of the collec-
tive opinion on that subject. From the retrieved conceptual
structure it can analyze, at the language level, the evolution
of the opinion lexicon in social networks. The work shows
how concepts about feelings are not adequately represented
with most of the sentiment lexicon used in Social Media [36]
arise.

2 What is represented actually is a Hasse diagram (a graph representing
a partial order from bottom to top) induced by the partial order relation
among concepts C1 ⊂ C2 and there is not any intermediate concept.
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An important feature is that basic FCA algorithms extract
all concepts from the formal context, which can lead to very
complex concept lattices. If a selection of these is desired,
more refined algorithms, that focus on the most general or
important concepts according to some measure, can be used
(see e.g. [37]). The refinementwould allow focusing the anal-
ysis on an easy-to-handle attribute set, but without losing
(as far as possible) the original relations among these. For
instance, it is possible to simplify the concept structure but
keeping important properties (see, e.g. [38] or [39]). Along
with the concept lattice, it is also possible to obtain a KB
extracted from the formal context that uses the attributes as
representation language using an implication logic.

Implication basis

In FCA, the format of the logical expressions denoting rela-
tions among properties (the attributes) is very similar to
Horn’s clauses. An attribute implication L (over a set M
of attributes) is an expression A → B, where A, B ⊆ M .
The set of implications on M is denoted by Imp(M).

The semantics of implications is inherited from the nat-
ural interpretation of implications in propositional logic but
relativized to consider the formal context as the universe of
all objects (understanding each set of attributes {g}′ associ-
ated with an object g as an interpretation, that is, the set of
true attributes). Formally, it is said that A → B is valid for
a set T of attributes (or T is a model of the implication),
written T |� A → B, if the following condition is satisfied:
If A ⊆ T then B ⊆ T . The implication A → B is valid in
the context K = (G,M, I ), denoted by K |� A → B, if
{g}′ |� A → B for any object g ∈ G (that is to say, the set
of attributes of any object in the context formal models the
implication). For instance, the implication

River , Sea → Coast

(any fish that lives in both rivers and the sea also live in
the coast) is valid within the context of Fig. 3, whilst the
implication River → Coast does not.

Once semantic truth has been defined, it is possible to
formalize the derived notion of entailment.

Definition 1 Let K = (G,M, I ) be a formal context, L be
an implication set and L be an implication. It is said that

1. L follows from L (or L is consequence of L, denoted
by L |� L) if each model (subsets of attributes) of L
also models L . Similarly, it will be written L |� L′ every
implication from L′ is consequence of L.

2. It is said that L and L′ are equivalent, L′ ≡ L, if L |� L′
and L′ |� L.

Fig. 4 Context from observation (left) and stem basis (right)

Fig. 5 Two examples of representation of cell state and its neighbour
by means the so-called geometric attributes (left) and two examples of
representation of cell state and its neighbour by means the attributes
induced by Conway’s original formulation (right)

3. L is complete for K if for every implication L

If K |� L then L |� L

4. L is non-redundant if for each L ∈ L, L \ {L} 
|� L .
5. L is an implication basis for K if L is both complete for

K and non-redundant.

The computation of implication bases can be studied from
amore general setting, within the field of Lattice theory [40].
A particular basis is the so called Duquenne–Guigues Basis,
also called Stem Basis (SB) [41], which is extracted from
a type of attribute sets (pseudo-intents) [19]. Figure 4 show
a context and its associated Stem basis. Actually, working
with complete implication sets would be enough. Regard-
ing implication bases, there exist relatively few solutions to
compute them from the formal context. One of the most pop-
ular algorithms is Ganter’s construction of canonical basis
that is a modification of his Next-Closure method for com-
puting concept sets (see e.g. [42] for a discussion on the
topic). Stem basis computation, based on pseudo-closed sets
computation, also suffers of theoretical complexity barriers.
For instance, deciding pseudo-closedness of attribute sets is
coNP-complete.

As for any logical implication, forward reasoning is
defined in the natural way. The entailment relationship based
on the classic production system style will be denoted by�p.
In formal terms, without specifying any particular algorithm,
the definition that captures the usual rule-firing closure:

Definition 2 Let K = (G,M, I ) and L ⊆ Imp(M) and
H ⊆ M . The implicational closure of H , with respect to L,
L[H ], is the smallest set B ⊆ M such that:
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– H ⊆ B
– If there exists Y1 → Y2 ∈ L such that Y1 ⊆ B, then

Y2 ⊆ B

GivenC a subset of attributes, it will be denoted byL∪H �p

C if C ⊆ L[H ].
The logical soundness and completeness, with respect to

the entailment, is based on the following result:

Theorem 1 Let L be an implication basis for K and let
{a1, . . . , an} ∪ Y be a set of attributes of K. The following
statements are equivalent:

1. L ∪ {a1, . . . an} �p Y .
2. L |� {a1, . . . an} → Y
3. K |� {a1, . . . an} → Y .

The construction of our model for formalizing explaining
is based on a series of assumptions that will be introduced
when needed or when they can be described. The first one is
the following:

Assumption 1 The use of a system of rules (technically,
they are definite Horn clauses) enables the construction of
explanatory systems.

Note that it is not claimed that every event can be explained,
only that we will consider for our model explanations based
on information represented by such kind of formulas. Of
course, it can be extended.

Semantics for propositional formulas and
association rules

Recall that it has already been mentioned that one might
consider {g}′ (being g ∈ G) as an interpretation of proposi-
tional logic on language formed by the attributes of M (being
{g}′ the true attributes of such interpretation). Therefore, the
validity of any propositional formula can be considered.

Implication basis are sound KBs to be used within a rule-
based system in order to reason and also learn. For example,
theory and tools from Inductive Logic Programming (ILP)
[43] can be applied (as in fact will be done in “Inductive
logic programming versus explaining in the model” bellow).
Please note, however, that implication basis are designed
for entailing only true implications, without any exceptions
within the object set nor implications with a low number of
counterexamples in the context. Consequently Theorem 1
applies only to valid implications. They should, therefore,
also be considered rules with confidence. That is, implica-
tions that, while not necessarily logically true, are validated
by a significant set of objects. For this purpose, the initial
production system must be revised in order to work with
confidence [44] as any rule-based system [45], following a

relaxed version of Pollock’s notion of statistical syllogism
[46] (see also [47]). Due to paper length issues, association
rules in FCA will not be discussed here.

A toolbox for specifying explanations in
complex systems

After introducing the basic elements thatwill be used in FCA,
we return to the reasoning process represented in Fig. 1. It is
started with a formal context which contains all the infor-
mation about the system to study, which comes from all
the perceptions/observations that will be objects of a formal
context (please note that this would be the closest possi-
ble approximation to the event, this digital shadow is the
most faithful to the perceptive capacity of the system). The
(Boolean) attributes represent everything perceived. Each
attribute represents any available data, for example, the ith
bit of the temperature representation, the color of the object
is red? or the ith bit of the time representation, that is from
bit to bit information to indexes that the agent elaborates
from information provided by the sensors. Thus a very large
set of attributes is available (which could be assumed to
be numerable, although if we talk about representing real
information that the system receives it is not, it actually is
finite). From this set, the values of more descriptive vari-
ables (i.e. more complex attributes) can be obtained through
computable functions from the available ones. The formal
context built from these data will be called Monster Context,
and will be denoted by M.3

Once M is considered, the observer (who probably will
be the explainer agent) has to select a set of attributes and
observations that she/he has considered relevant to study the
event (surely, the product of a selection phase following some
BR strategy of those described in previous sections). The
reasoning is focused then on the formal context induced by
that selection (contextual selection) using original attributes,
or with new computed attributes (in the latter case the context
will be called formal perspective). It is expected reasoning
with the induced formal context (represented in Fig. 1 by the
box at the bottom right) to explain the event. As discussed,
the ideas of the process come from authors’ former works on
similar strategies [14,49].

The synthesis of simpler formal contexts but with more
elaborated (computable) attributes allows the observer to
work with aggregated data but of a reasonable size. From
the new context (which we will call formal perspective), the
observer can focus the study on specific aspects such as the
past evolution of that system and/or create hypotheses about

3 Please note that M is not an universal context in the sense of [48].
Although it can be considered an immersion within this, M does not
share its fundamental properties.
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its future evolution as well as to explain a specific percep-
tion with more elaborated concepts and attributes. In [44,49]
some technical aspects were detailed. It will be briefly sum-
marized here so that the rest of the article is self-contained
and respects a common notation.

Likewise, although the model will be presented using
Implication Logic for the formalization of explaining, asso-
ciation rules or more sophisticated probability tools (such as
[50–52]) can be used. As stated by Gigerenzer and Goldstein
in [53], Probabilistic Mental Models assumes that inferences
about unknown states of the world are based on probability
cues (see also [54]). It can be said that association rules’ con-
fidence extracted from the subcontexts can serve to establish
probability cues.

Themonster context

Since M covers all perceivable attributes from events, used
or not by the engineer [55], this can be considered as
a universal memory from which any other contexts are
extracted (corresponding to partial observations, perspec-
tives, or approximations due to perception or information
limitations).

Assumption 2 The Monster Context contains all the infor-
mation on CS available from the observations/perceptions.

Once a specific smaller context is computed from M, it
is possible to work with the elements extracted from that,
namely concept lattices, implicationbasis or association rules
[55]. Subcontexts of M can be selected according to BR
techniques (the selection of the elements that make up that
sub-context and which is in fact a limitation of the solutions
search space, see “Some notes on bounded rationality and
explaining”) to obtain a reasoning system in which it is fea-
sible to predict, analyze or explain events [49,55] (with the
obvious limitations from BR). That is to say, concepts of a
qualitative nature are drawn from partial data that consider
only partial characteristics of the CS, i.e. a partial under-
standing.

The basic subcontext is one for which it is not necessary
to compute new attributes, that is, those of the form

K = (G,M, IK) where G ⊆ O,M ⊆ A and IK = I ∩ (G × M).

GivenKi = (Gi ,Mi , Ii ), i = 1, 2 two subcontexts ofM,
the intersection of K1 and K2 is the context

K1 ∩ K2 := (G1 ∩ G2,M1 ∪ M2, I1 ∩ ((G1 ∩ G2)

×M1) ∪ I2 ∩ ((G1 ∩ G2) × M2)).

Note that this context takes advantage of the values of the
attributes of both contexts on the common objects.

In general terms, a way to select a sub-context ofMwhen
we want to study a particular event o ∈ O is through what
we call contextual selection, formally defined as follows.

Definition 3 LetM = (O,A, I) be the monster context, and
let O ⊆ O.

1. A contextual selection on O ⊆ O and M is a map

s : O → P(O1) × P(M)

s(o) = (s1(o), s2(o))

such that o ∈ s1(o)
2. A contextual KB for an object o w.r.t. a selection s is an

implication basis of Ms(o) := (s1(o), s2(o), I ∩ (s1(o) ×
s2(o)))

That is, s maps to each o object a sub-context containing
o. This way the reasoning will be focused on a subcontext
using a selection function on objects and attributes around
the event o.

Formal perspectives are contexts built with more elabo-
rated attributes.Wewill now assume that it has a computabil-
ity model that outlines the class of computable functions.
More precisely, what interests us is the representation of the
functions computed by programs as functions on objects (on
their attribute values) belonging to sub-contexts. We will not
detail this issue (which does not affect the development of
the AI part of the model construction).

Definition 4 A computable attribute b on O is an attribute
defined by means of a computable function f : Bn → B and
{a1, . . . an} ⊆ A as

b(o) = f (a1(o), . . . , an(o)).

A formal perspective is a context built from M that uses
attributes computed from M:

Definition 5 LetM = (O,A, I) amonster context. A formal
perspective is a formal context P = (G,M, I ) built from the
monster context with a set M of computable attributes.

According to the definition, subcontexts are formal perspec-
tives.

KBs extracted from contextual selections or formal per-
spectives would be our theoretical model of KL-based
surrogate model. Despite its simple data structure, formal
contexts are useful structures for Knowledge extraction and
reasoning (cf. [19,33,34]).

By considering the interpretation made of the explanation
from the monster context as an ILP process (to be consid-
ered in “Inductive logic programming versus explaining in
themodel”), the approach is aligned with the idea of address-
ing the explaining of (not necessarily emerging) events and
concepts from raw data for reasoning in CS.
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Argument-based reasoning as a BR-based activity

To make the model explanation more general, available
background knowledge B shall be deemed (e.g. in form of
propositional logic formulas). This background knowledge
would help obtaining or supporting the explanation offered.
For example, it can be used to refine the selection of events to
those who satisfy B. Also, one could consider B as knowl-
edge shared by both explainer and explainee; information
(about the events of the subcontext) known to the explainer
or known by explainee (for example, in medical diagnosis
[56]). Background knowledge B would be combined with
the knowledge extracted from the formal context (implica-
tion basis or association rules).

Note that background knowledge B may not be true inM
(for example, due to erroneous or deficient data from sen-
sors, or because M contains events that are not relevant to
the particular problem being studied and therefore do not
necessarily have to satisfy B). Also, bear in mind that by
its phenomenological nature, this situation is plausible (one
does not work with the System but with its digital percep-
tion). There exist two options for solving the inconsistency
problem. The one chosen here is similar in nature to what
would be called existential argumentation (inspired here by
Hunter’s paper [57]) but by considering sub-contexts rather
than subsets of formulas in a knowledge base. In our case
that explanation is supported by a contextual selection that
models both B and the explanation obtained. Such formal
context, the contextual selection/perspective, is what really
supports the explanation and thus inconsistency of the impli-
cation basis with B is avoided. Therefore, data and sample
used for explanation comes from M (thus answering one of
the questions from Paragraph 45). Other option which will
not be considered herewould be using conservative retraction
by means of variable forgetting [58–60].

The idea is that the arguments that will explain the prop-
erties of an event will consist of a set of implications plus a
subset of the available perceptions, being the set of impli-
cations valid in the contextual selection where we work.
Therefore, it is interesting to know how the contexts that
allow us to extract an explanation behave. The explanation
process consists in finding an explanation that implies the
attributes of the event under existential argumentation, �B∃
which involves three steps [49]:

1. A question on why an event has a property (attribute a)
is raised. On the event (object) some known properties
that comes fromperceptions o evidences (attribute values)
P = {a1, . . . an}.

2. A contextual selection outputs a sub-context of M

satisfying—if exists—the available background knowl-
edge B. A contextual KB, L (in the case of working with
association rules, a Luxenburger basis for for some con-

fidence threshold) is computed for the subcontext. Here
BR techniques can be very helpful.

3. Learning tools are applied (for example ILP techniques).
4. The result, the explanation, will be the format H =

〈Y ,L0〉 where Y ⊆ P , L |� L0 and

L0 �p Y → {a0}.

When the process is successful, it will be denoted by

M �B∃ H → {a0}.

Theprocedure canbe extended to explain other types of infor-
mation, for example implications (actually {a} is in FCA the
implication ∅ → {a}). Taking into account the completeness
properties of the bases for its associated context, it will be
denoted as follows:

Definition 6 Let L be an implication and B background
knowledge.

1. It is said that L is a possible consequence of M under
the background knowledge B, denoted by M |�B∃ L , if
there exists K, a nonempty subcontext of M such that
K |� B ∪ {L} (so called supporting context).

2. It is said that L is a possible consequence of M under
the background knowledge B for an event o ∈ O if the
supporting context is induced by a contextual selection
for the event o.

Note that, byTheorem1,when the background knowledge
B is a implication set, |�B∃ would be equivalent to �B∃ , which
is defined by:M �∃ L if there exists S |� B, a subcontext of
M such that LS �p L .

Implication logics do not suffer inconsistency issues.
However, the monster context could have incompatible
attributes, for example, a paira1, a2 of incompatible attributes
verifies that¬(a1∧a2) is true in the environment.When such
a formula is included in the background knowledge B it is
possible to deal with incompatibility issues, because�p is an
argumentative entailment which works on subcontexts (see
classic �∃ in [57]).

To study �∃ under background knowledge, it may be nec-
essary to study the relationship among arguments based on
distinct contexts, checking the compatibility of the knowl-
edge implicit in them. A caveat is that compatibility is not
assured under background knowledge in any case. For exam-
ple, let us look at the two compatibility notions associated
with the pull back and the push out ones:

Definition 7 LetMi = (Oi , Ai , Ii ), i = 1, 2 be two subcon-
texts ofM, and let B be background propositional knowledge
on the language of A1 ∩ A2.
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– It is said that M1 and M2 are upward compatible w.r.t B
if there exists a supercontext M of M1 and M2 such that
M |� B.

– It is said that M1 and M2 are downward compatible w.r.t
B if M1 ∩ M2 |� B.

If two contexts are upward compatible, then they are
downward compatible (therefore, event information can be
combined through different contextual selections without
compromising consistency with background knowledge) but
unfortunately, the reciprocal is not true [49] (thus the union
of the information of both contextual selections can lead
to inconsistencies). It will be seen below how knowledge
behaves under continuous extensions of contextual selection.

Inductive logic programming versus explaining in
themodel

The consideration of explanations as local in nature are a
common practice in AI systems, especially those based on
deduction. For example, rule-based systems allow, by fol-
lowing the execution trace, extracting an explanation that
has two differentiated parts: the rules triggered in the deduc-
tion of the particular attribute associated with the event, and
the facts of the initial KB that triggered the rules. Therefore,
different explanations can be obtained from different exe-
cutions for the same result. Something similar occurs with
recommendation systems, a special case in which the base of
facts is the history of previous customers’ choices, product
valuations, etc. and the rules are those extracted in the data
mining process [4].

In the case of FCA, given some observations about a set of
attributes, other values can be inferred by executing the pro-
duction system—implicational closure—associated with an
implication basis the format of an explanation for an attribute
m will be a pair H = 〈Y ,L0〉 where Y is a set of attributes
(that will be observed or assumed by both explainer and
explainee, possibly perceptions shared by both) and L0 is
a set of valid implications verifying that L0 ∪ Y |� m (that
is, L0 �p Y → m). To simplify notation, this fact will be
rewritten by H |� m. The search for the explanation will be
limited to the formal perspective chosen (recall that contex-
tual selections are also formal perspectives). It is, therefore,
a sound way to address the complexity of the explanation
offered (introduced in Paragraph 5), and would help isolat-
ing the beliefs in the hypotheses that conflict with the beliefs
of the involved agents. In this way it has also been decided to
simplify the notion of explanation so that it is easier to avoid
Heuristic Fallacy ¿HACE FALTA? (Paragraph reffallacy) .

A plausible objection to this type of explanation is that
even a local explanationmaybe too complex to be understood
without some sort of approximation [4] (in the case of FCA,
the complexity of L0 itself). In this case, the key challenge

is to decide what details to leave out in order to create an
explanation based on a simple, explanatory model.

Our model shares many characteristics with the version
of classic ILP [43] for Propositional Logics. Therefore, core
algorithms from ILP can be applied; the general setting for
ILP is used here [43,61]. In ILP one starts with some exam-
ples (a set of evidences, E), the background theory B, and
the hypothesis H . The problem of inductive inference con-
sists, in our case, in ensuring that H behaves as a sufficient
knowledge in order to justify the evidence and observing the
validity of B.

A set of implications can be rewritten as a logic program,
and therefore, Herbrand interpretations can be considered.
With that in mind, {o}′ can be such interpretation for the
implication basis. In the case of explaining, it starts with E
a subset of the potential explanandum set E , containing all
the attributes ofM for which explanations may be requested,
plus a set P of attributes that we consider the perceptions
from which the explanation process starts, and which are
given to the agents (that is, basic perceptions that will not
require explanation and thus outside from E). In this case,
E+ ⊆ E and E− ⊆ E\E+, where E+, E− are, respectively,
the attributes the event has and does not have.

Notions are described and compared with ILP in Table 2.
The aim is to find a hypothesis H such that the follow-
ing conditions, shown in the second column, hold (normal
semantics), in the case of ILP, while for the candidate expla-
nation these are shown in the third column. Let us make this
idea a little more concrete

Given H = 〈Y ,L0〉, the set Y + L0 can be considered
as a set of defined clauses, there exist an unique minimal
Herbrand model M(H) of Y + L0. In our case, knowing
that every set {o}′ of the contextual selection actually is
a Herbrand model, a classic result of Logic Programming
guarantees that there is a unique minimal Herbrand model
contained in all, namely the intersection of these. However,
in our case, only those induced by objects from the contex-
tual selection K (each object being one such interpretation)
would be used at the intersection. That is, it is the small-
est model relativized to K. This model will be denoted by
MK(H + B). In Table 3, ILP under definite semantics and
the corresponding FCA-based explaining are compared.

Some aspects of the ILP approach

Please note that the in the description of the general definition
framework, any restriction of minimalism or other restric-
tions on the explanation H = 〈Y ,L0〉 have been excluded
in the above definitions. However, this might be desirable in
order to produce simpler explanations and, therefore, objec-
tive of further extensions. The algorithmic part is not tackled
either. However it is interesting to mention that, in our case,
variants of classic backward reasoning algorithms for clausal
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KB can be applied to an implication basis of K (based on
the evidence we wish to explain) to extract explanations.
For example, by modifying diagnostic or other techniques
to detect anomalies (cf. [62] Chap. 5 for a general overview)
to get the explanation in the required format. Of course, also
with ILP techniques

Nevertheless, there exist other approaches to achieve the
best explanations, as [63], where authors employ a logical
calculus and starting from conditions of a similar nature to
those of ILP. Earlier work on this subject was [64], where
Josephson and Josephson propose a way of inferring the best
explanation as a kind of argument scheme

Simplifying explanations by means of formal perspectives

It should be noted at this point that to simplify the pre-
sentation, no formal perspectives have been considered in
comparisonwith ILP.However, the choice of formal perspec-
tives plays a very important role in the intelligibility of the
explanation—which is provided by the contextual selection.
The reason is that an explanation based on attributes coming
from perceptions can be large or cumbersome. Perspectives
allow aggregating information in form of attributes under-
standable by the explainee that can significantly simplify the
explanation offered. Let us see an illustrative example, taken
from [65], which shows the importance, of the formal per-
spective selection, in obtaining explanations acceptable to
the explainee.

The example is based on the well-known Conway’s game
of life (GoL). Suppose that in the attribute set M we have
the attributes that we will call geometric, that is, those that
represent whether each cell in Moore’s neighborhood of a
given one is alive or dead, {Top − Le f t − Alive, Top −
Le f t − Dead, . . . , Bottom − Right − Alive, Bottom −
Right − Dead} (a total of 18 attributes), plus the attribute
that represents whether the cell is alive (I s − Alive) or not,
Will − Be− Alive (see two examples in Fig. 5). The world
from we consider the contextual selection is the monster
model corresponding to a grid of 10,000 cells (so 10,000
objects in the associated formal context), which is taken as
contextual selection [65]. Using the previous method, it is
possible to obtain an explanation of the Conway’s game by
means of those attributes. This can be done simply by extract-
ing a base of implications and selecting those having in the
head of the implication, the attribute relative to the state
of the cell studied, which in this case contains more than
700 implications and that are all necessary since they repre-
sent essentially different combinations of the environment.
Although the shot of rules will always be one of them, if we
want to use it to predict the live/dead state in the transition
of a cell-object, which is not a readable explanation.

The formal perspective on the same set of objects is
now considered, but using the computable attributes from

the previous ones, which determine the number of live
adjacent cells describing the neighborhood: {0 − Live −
Neighbors, . . . , 8 − Live − Neighbors} (note that they
are representable by, for example, DNF formulas using the
geometric attributes). These are essentially what Conway
would use in the original definition, 9 Attributes that are
understandable by the explainee, both their definition and
the method of their calculation, (see two examples of rep-
resentation in Fig. 5). The size of the implication base is
considerably smaller for the computable attributes (its size is
6). As the attributes are intelligible and the implication set is
small, such a base would be considered an acceptable expla-
nation, as opposed to the one built with the raw data from
the monster model. In conclusion, note that in that accept-
ability two issues play a key role: that the formal perspective
significantly reduces the number of implications and, most
importantly, the attributes used in the perspective are easily
computable and intelligible, possessing a simple definition
accepted by the explainee (see Fig. 6, where the last impli-
cation of the figure is depicted in the concept lattice).

Approximating themonster context and its
information

A question to be solved is whether the model allows us to
evaluate (theoretically) the security of the explanation, or
to study the convergence to a common explanation if we
add experience (we extend the contextual selection). Another
question is whether there exists any equivalence between
contextual selections with full counterfactual information,
in the sense that if there is a counterexample for some impli-
cation or explanation, the contextual selection contains one.
Having the difficulties of compatibility of different contex-
tual selections (Paragraph 74), the study will focus on the
continuous extension of a given context. It is being assumed
that one works with approximations to knowledge on the CS
that could be extracted from M (either from sub-contexts
or perspectives). Therefore, it is necessary to study what
happens when more (empirical) pieces of evidence are avail-
able, that is to say, when the induced context is increased.
The problem will be restricted to the case of subcontexts,
and to the following question: If the explanation depends on
the contextual selection and this is extended by the expe-
rience (i.e. collection of information of events), to what
extent we can approach one stable explanation? That is, one
would work with formal contexts that are related by the order
K1 ⊆ K2 on subcontexts of M, that has to be understood as
that GK1 ⊆ GK2 and IK1 ⊆ IK2 holds.

The formal scenario will consist of a sequence (Fig. 8) of
sub-contexts (contextual selections) {Ki }{i∈I } where 〈I ,<〉
is a (partial) order and all formal contexts satisfy B,Ki |� B.
The knowledge depends on the one hand, on the implication
basis of each Ki , LKi . On the other hand, it also depends
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Fig. 6 Concept lattice from
Conway’s Game of Life for the
new perspective. The concept
the cell will survive is
highlighted and a depiction of
the rule 3

Fig. 7 Context extending that of Fig. 4

on the behavior of the sequence towards the limit (thinking
that this should be a sound approach to the knowledge on
the system to study). As mentioned, one is interested in the
specific case of incremental observations (each observation
adds new items to the subcontext and I the natural numbers),
that is, Ki ⊆ Ki+1. The challenge would be to characterize
the knowledge from the formal context

⋃
i Ki , in the expec-

tation of obtaining richer information on the system under
observation. If the information on the limit context is not
useful, a reconsideration of features will be necessary [15].

There exists a logical characterization ofL⋃
Ki that allows

focusing the study in desirable features for
⋃

i Ki . By taking
into account that the attribute set can be increased, it is pos-
sible to define the limit of bases {LKi }i by means the set of
implications defined by

L ∈ limLKi ⇐⇒ ∃i0∀k ≥ i0 LKk |� L.

The idea is that the value i0 is related to the point in which
there is available information about all attributes from impli-
cation L .

Theorem 2 L⋃
Ki ≡ limLKi .

Proof Let att(.) be the set of attributes that occur in an impli-
cation or set of implications, and Ki = (Gi ,Mi , Ii ).
limLi |� L⋃

Ki :

Let L ∈ L⋃
Ki . Then

⋃
Ki |� L . Consider i0 such that

att(L) ⊆ Mi . Since Ki0 ⊆ ⋃
Ki , it has Ki0 |� L and the

same applies to any K j with j ≥ i0.
L⋃

Ki |� limLi :

Let L ∈ limLi . Let i0 be such that for any j ≥ i0 K j |� L
(thus L j |� L).

Let i1 ≥ i0 such that att(L) ⊆ G j . For being a growing
succession, for everything j ≥ i1 is also true the condition.
Using the characterization of Theorem 1, for everything j ≥
i1 it has K j |� L . Since all o ∈ ⋃

i Ki belongs to some K j

with j ≥ i1, then {o}′ |� L . That is,
⋃

Ki |� L , and by the
Theorem 1 again L⋃

Ki |� L . ��
The question now is whether the limit reaches full coun-

terfactual information, in the following sense. It aims that,
for any important event ofM, that invalidates the conjectured
explanation, there is an event in that context with the same
properties (concerning the attributes). Therefore, the ideal
case of an (incremental) sequence of observation sets should
occur when themodelK = ⋃

Ki satisfies that every relevant
type of observation on the system would be represented by
an exemplary object. Working with background knowledge
and contextual selections has the risk of considering sub-
contexts that do not necessarily have maximum information.
For example, this could happen when the selection chosen to
construct the explanation does not contain relevant events to
extract explanations consistent with reality.

In our model, we can formalize the idea of formal con-
text with complete relevant information. Theoretically, it is
desirable to work with saturated sub-contexts defined as fol-
lows. In the next definition, the following notation will be
used. Given a set of attributes Y , the propositional formula
formed by the conjunction (resp. disjunction) of attributes
from Y , will be denoted by

∧
Y (resp.

∨
Y ). The notion of

B-saturation aims to capture the idea that the sub-context
contains at least an exemplary event for each possible event
that is consistentwith B and it is also possible inM. Although
the notion would be circumscribed to the language used for
explanations, no such restriction will be imposed here in
order to avoid complicating the formalization. In addition, it
also should be restricted to the events that are of interest for
the explanation, and therefore, relative to the sub-language
that serves to represent the event. In order to keep the for-
malization simple, it is supposed to be the whole language,
although in each specific problem a much smaller language
would be used.
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Definition 8 Let M = (O,A, I) be the monster context, B
background (propositional) knowledge and K = (G,M, I )
a subcontext. It is said thatK is B- saturated inM if for every
Y ⊆ M , if there exists o ∈ O such that

{o}′ |� B ∪
∧

Y ∪ ¬
∨

(M \ Y )

then there exists o1 ∈ G such that {o1}′ also models it.

Please note that it will be assumed, for simplicity, that the
attribute language (the context attributes K) will be A.

Proposition 1 Saturated model exists (although it could be
empty)

Proof Let us consider

A = {Y ⊆ A : exists o ∈ O s.t . {o}′ |� B ∪ Y ∪ ¬
∨

(M \ Y )}.

Then the context (
⋃{Y ′ : Y ∈ A},A, I ), where I is the

corresponding restriction of I, is B-saturated ��
Obtaining a saturated model could be difficult or impossi-

ble (in fact, if we consider BR techniques it is almost certain
that such a formal context will not be chosen, because of
their limitations). Thus a richer contextual selection will be
an approximation to the saturated one. It is assumed that, by
expanding the selection (e.g. with more events), the context
will be closer to the saturated one. The relation between sat-
urated models and approximations to the CS knowledge is
studied by means of the so-called B-approximations, to be
defined as follows.Another interesting question iswhat could
be done if the K selected (e.g. using a BR technique) does
not satisfy background knowledge. If this were the case, one
would be forced to restrict it to a sub-context of K that vali-
dates it. The criterion (BR-based as required) for discarding
events to satisfy B should not eliminate those that do. In fact,
it is interesting for such sub-context to be maximal with this
property. Another question is whether the contextual selec-
tion will condition the outcome (explanation). That is to say,
it should also be analyzed whether two different conceptual
selections can have a common sub-context (or two equivalent
sub-contexts) that models B. Let us formalize those notions.

Definition 9 Let M = (O,A, I) be the monster context, B
background knowledge and K,K1,K2 subcontexts of M.

1. A B-approximation of K is a maximal context of the set

{S ⊆ K : S |� B}.

2. K1 ∼B K2 if both subcontexts share the same B-
approximation.

3. K1 ≡B K2 (are B equivalent) if there exists Si be a B-
approximation ofKi (i = 1, 2) such that their implication
bases are equivalent, LS1 ≡ LS2 .

For example, the context from Fig. 7 is a B approximation
of that of Fig. 3 for B = {(Plant ∨ Animal) ∧ ¬(Plant ∧
Animal))}

Both B-saturated and B-approximation contexts represent
sound approximations to M that would be obtained through
accumulation of events (results of experiments). It is assumed
that if relevant experiences are continuously added, the grow-
ing sequence of contexts will tend to B-saturation. Likewise,
the evolution of the explanation will, therefore, depend on
how the contextual selection is extended, that is, on the asso-
ciated sequence of contexts. It remains to be seenwhich is the
relationship between the different sequences of observations.
It is expected that, when the limits are B-saturated, both lim-
its share the same conceptual knowledge about the CS. To
see this, we introduce the notion of isomorphism between
formal contexts.

Definition 10 Given two subcontexts Ki = (Gi ,Mi , Ii )
(1 ≤ 1 ≤ 2), it is said that K1 and K2 are isomorphic,
K1 ∼= K2, if there exists F : G1 → G2 bijective such
{F(o)}′ = {o}′ for any o ∈ G1.

That is, for every exemplary event present in one of the con-
texts there is an event in the other with the same properties
(therefore, they share exemplary events).

The following theorem summarizes the above claims.
First, the existence of B-approximation is stated. Second,
that the approximation of a context determines the informa-
tion that can be extracted from the context. The third property
states that a B-approximation of a saturated context is also
B-saturated (that is, it contains at least one event for each
event that is compatible with B and possible according toK)
and finally the fourth property shows that equivalence can be
replaced by isomorphism, under certain basic assumptions
and without losing information. The isomorphism relation-
ship between contexts is defined in themathematical standard
way.

Theorem 3 Assuming M is countable (or finite) and K is a
subcontext, the following results holds:

1. There exists a B-approximation (which can be the empty
context) of K

2. If K1 ∼B K2 then K1 ≡B K2

3. IfK is B-saturated and S is a B-approximation ofK, then
S is also B-saturated.

4. Suppose thatK1 andK2 are B-saturated withK1 ≡B K2,
and Si is B-approximation of Ki (i = 1, 2). There exist
K

s
i ⊆ Si such that

K
s
1

∼= K
s
2 and LSi ≡ LKi (i = 1, 2).
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Fig. 8 FCA-based representation of AI-based system evolution

Proof (see Appendix). ��
The above result shows how a saturated model approxi-

mation (with respect to B) provides relevant and consistent
information about the CS since any pair of such models
contains a pair of isomorphic contexts with complete infor-
mation. Thus if one of them contains an exemplary object
for a counterexample, the other contains another one that
has the same attributes as the first one (i.e., isomorphic). A
sequence of observations induces an increasing succession of
contexts that accumulate these events and that would approx-
imate a saturatedmodel. In fact, this is desirable as it provides
complete information at the limit. The fourth property of the
previous theorem would involve that it does not matter what
sequence of observations is used if its limit is B-saturated so
that the explanation in the format we have proposed would
not be essentially different in terms of its logical properties.
It is relatively simple to relativize the previous results to a
contextual selection or formal perspective, as well as to a
restricted language, specialized in the event to explain (Fig.
8).

Representational issues of the approach

The thesis that claims that the overall representation of
the perceived information of a complex AI-based system
is present in M, could be considered phenomenological in
nature. It is not perspectivist but does serve as a basis for
the construction of perspectives instead (in fact it should
be called micro-perspectives since it comes from micro-
phenomenological reconstructions, something like the one
used in [66]). The monster context gathers all the informa-

tion that sensors collect from the environment. It is in this
context where BR techniques can be used to select subcon-
texts to work with, in particular for obtaining explanations.
This idea is not new; it shares many similarities with the
mechanical-statistical perspective.

The veracity (in the sense of Paragraph 30) is ensured by
the universal nature of the Monster Context, and as much as
possible from the point of view of the agent who enjoys such
perceptions, although it is plainly constrained to the way we
understand the mode of perception. If a phenomenological
model based on an ongoing process of anticipation and ful-
fillment was needed (such as that described in [67] for visual
perception), certain aspects would need to be reformulated,
because only implications are were used.

A different issue occurs when a contextual selection (or a
formal perspective) is made. In that case, its intrinsic veracity
in the epistemological sense (work is being done with valid
implications in the selection but not necessarily in the mon-
ster model or a larger selection) is missing. That is to say,
it comes from the perspectivist nature of obtaining explana-
tions from sub-contexts. There is also a loss of veracity due
to the phenomenological nature of the model. As discussed
in Paragraph 69, our model may suffer from inconsistency
concerning some background knowledge. Actually, it is one
reason why both, B-approximation and B-saturation notions
have been studied in “Approximating the monster context
and its information”. In this way, we have addressed some of
the ideas of Paragraph 13.However, this issue should be stud-
ied in more detail, especially, its relationship to the so-called
Commonsense realism [68].

The mere fact of considering the veracity of the infor-
mation extracted from the formal perspective could lead the
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reader to think that a purely contextualist model is being pre-
sented, but this is not the case. Excepting the incompatibility
issues addressed in Paragraph 73 (understood as knowledge
that is not true but that, due to the use of implications, is not
detected, and that was addressed in Paragraph 73), the model
intends to be invariant; since the aim is to keep the standards
for knowledge invariantwith the context, as described in [69].
More specifically, nonskeptical invariantist (the standards for
knowledge are relatively low).

Conclusions

The feasibility as well as the formal conditions under
which KRR-based systems for explaining observed events/
phenomena, produced byComplex (AI-based) Systems, have
been investigated. It has been treated in a generalway, empha-
sizing its philosophical, computational, and particularly AI
dimensions in the field of Data Science and CS.

The notion of KL-based surrogate model is introduced as
a purely theoretical framework. In the case of the FCA-based
model presented, explanations are characterized by exploit-
ing standard notions from ILP. In the style of the innermodels
used in Set Theory orMonsterModel inModel Theory, a first
formulation of an universal model is proposed to clarify sev-
eral notions discussed in the first part of the paper.

The theoretical model seeks the generalization of the
automated modeling of CS, although it is supposed to be
unattainable. The philosophy of our proposal goes towards
the presentation of the elements involved in the modelling to
represent an idea of explanation and associated notions. In
principle, it does not attempt to be a robust basis for auto-
mated modelling based on measurements of the observed
system variables (as in other fields, as for example [70]).

The reader may recognize in parts of the paper ideas that
come from explainability in Expert Systems. These similar-
ities are not surprising since the KBs extracted from formal
contexts can be considered as a sort of primitive expert sys-
tems. The variable character of the KB built, according to
the selected contextual selection or formal perspective where
to work, differentiates our model from a classic one. For
instance, when choosing a perspective, the explainer could
only state that believe the explanation, even if it is true.

The idea of building the structure of concepts and bases
of implications from the contextual selection (selection of
a point of view in the form of context), lines up somehow
with Clancey’s hypothesis stated in [71] (p. 109). Clancey
conjectured in that paper that human does not retrieve con-
ceptual structures from memory and interpret them; rather,
each time we remember, we are constructing a conceptual
structure, focusing this way on the impact of situatedness.
Also, the overall process of our phenomenological model is

according to the task structure for interpretation task sug-
gested by Steels in the same book, [71] (p. 21).

Above theoretical issues contrast with some successful
approaches based on the idea. For instance, there are someAI
techniques based on BR which allow to overcome obstacles
related to the huge size of concept lattices and implica-
tion bases associated with complex systems, as these are
often backed by big-sized datasets. BR-based methods allow
reducing the number of features to be taken into account for
achieving specific tasks (e.g. fast and frugalmethods [72,73])
Authors have applied this approach in AI tasks, say the eval-
uation of the available information quality [15], forecasting
[14], and reasoning with collective intelligence [74].

An evident limitation of our model, when dealing with
the problem of the complete formalization of a complex
AI-based system, comes from the tension between what
D. Ihde called microperception [75], whose emphasis is on
the sensory dimensions—which would correspond to our
model—and macroperception, which emphasizes the cul-
tural/hermeneutic dimensions. This latter is closer to the
tradition where some systems were defined (which includes
concepts already accepted by the community, particular
interpretations of some of these, and the adaptation to the
knowledge structures that the explainee manages).

There exist approaches sharing aims with our model in
the sense of choosing rules for explaining, although their
goals are not of foundational nature. For example, Lakkaraju
et al. [76] propose an approximation algorithm to generate
global explanations in the form of small compact rule sets,
each of which captures a certain behavior of the black box
model under certain conditions. Another related work is that
of Ribeiro et al. [77] where the authors describe an optimiza-
tion algorithm that balances accuracy and coverage in the
search for rules. In the recent work [78] the authors apply
thresholds to obtain logical descriptions—in the form of
Boolean functions or probabilistic rules from trained neural
networks—using two different methods, which add to other
approaches already known (see the introduction of the men-
tioned paper for references to previous approaches). Their
proposal is endogenous in nature; it considers the internal
objects (neurons) of the system. If onewanted to interpret this
approach in our proposal, the appropriate attributes to inter-
pret it as a formal perspective need to be designed, although
the problem selecting a sound threshold would be persistent.
In FCA, the use of thresholds to disaggregate non-Boolean
attributes (e.g., with scales ormultivalued) is a common prac-
tice. However, the adequate choice of them depends on the
problem (see e.g. [14]).

The epistemological variety of explanations is a psycho-
logical factor (and prospective object of study in BR) that can
strengthen explainee’s confidence in the explained hypothe-
sis [79]. In our model, it is assumed that the explainer might
obtain several explanations, which may or may not be essen-
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tially different. The variety of explanations can be considered
in ourmodel at two levels, namely as a variety of explanations
in a contextual selection given and as a variety of contexts
that validate an explanation (even a combination of both). It
would also be affected by the BR-based selection techniques.
We have not discussed this topic here. According to Landes
[79] that intuitive idea is not sound in general, it must be
handled with care.

Future work

The choice of implication logic as a foundational support
for explanations benefits both from FCA’s results as well as
from the approximate nature of Horn’s clauses in the face of
counterfactual issues asked by explainee [80], which we will
consider in a future work. However, our proposal is only a
first proof of concept towards a formalization of the notions
involved in AI-assisted explaining of events (or justification
of decisions) of CS (always keeping in mind that a number
of sophisticated AI-based systems are actually CS).

Roughly speaking, FCA has been applied to two differ-
ent levels for reasoning on CS. In the micro-dimension, the
specification is intuitive, and it does not need to reduce the
information size. In the macro dimension, when consider-
ing the overall knowledge, perspectivist methods (contextual
selections, formal perspectives, approximations to saturated
models, etc.) should play an important role. For building
explanations, the paper is focused on implication basis, how-
ever several results can be extended or adapted to association
rules. They will have the natural particularities and this will
be aim of future work. Likewise, further research will focus
on the way of estimating of approximations fitness.

Selecting and reasoning with contextual selection may be
analyzed as an argument-based approximation but for rea-
soning on the system (under certain semantic constraints to
be studied). Something like the conflict-free arguments [57]
would provide useful insights about how humans reason and
actwithinCS.This topicwill be the subject of future research.

It is important to recall thatwe donot deal specificallywith
causality here. We have tried to discuss the strengths of KRR
for enhancing XAI in Data Science, without going into the
nature of the explanation that would be offered. However, it
would not be difficult to adapt Halpern’s (and Pearl) frame-
work for causality [81], to decide whether the explanation
offered in our model is in accordance with that definition.
This question will be addressed in future work, individually
or together with the nature of the explanation, according to
Lewis et al. [22] classification (see Paragraph 21).

Finally, although the paper concerns on foundational
issues and not on pragmatics, works referenced in Para-
graph 106 show that approaches similar to that of the paper,
can provide practical solutions in XAI. The practical benefits

of the proposed framework in real life scenarios (in the line
of the cited [14]) will be further explored.
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Appendix

Proof of Theorem 3

Proof items (1) and (2) are trivial.
The proof of (3) is based on the fact that if o ∈ OK and
{o}′ |� B, then the context induced by adding o to the context
S would also be a model of B. Since S is maximal, then
o ∈ OS

(4) (sketch): By (3),K1 andK2 are both B-saturated contexts.
K

s
1 and K

s
2 are built as follows: suppose OSi = {oin}n .

A morphism is defined as F = ⋃
Fk , where Fk =

{(ci , di ) : i ≤ k} is an increasing sequence, defined by
recursion as follows:

– i = 0 : Let c0 = o0. Since o0 |� {o0}′ + B + ¬∨{A :
A /∈ {o}′} andK2 is B saturated, there exists b ∈ K2 such
that

{b}′ |� {o0}′ + B + ¬
∨

{A : A /∈ {o0}′}

Since S2 is a B-approximation of K2, and (OS2 ∪
{b}, AS2) induces a subcontext of K1 model of B, then
by the maximality of S2 there exists k in S2 such that
{o2k}′ = {b}′ = {o10}′. Then let d0 := o2k .

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Complex & Intelligent Systems (2022) 8:1579–1601 1599

– Suppose defined Fk and define (ck+1, dk+1). Let

m = min{n : on /∈ {c0, . . . , ck} and {on}′ 
= {c j }′
for any j ≤ k}.

If there is not such m, the procedure stops and F = Fk .
Otherwise the procedure to select ck+1 = o1m and the
selection procedure of dk+1 is applied from ck+1 as in
the previous item.

Once the procedure is finished, the contexts are defined
from the domain and the image of F ;

K
s
1 := (dom(F),A, I ∩ (dom(F) × A))

K
s
2 := (rang(F),A, I ∩ (rang(F) × A)).

Thus, it is clear thatKs
1

∼= K
s
2. As it is verified that LS1 ≡

LS2 , it would be enough to prove that LS1 ≡ LK
s
1
.

Of course LK
s
1

|� LS1 , because K
s
1 ⊆ S1 and, therefore,

all implication L of LS1 is valid in the context Ks
1. Then for

completeness of the base, it is true that LK
s
1

|� L .
To demonstrate the symmetrical relationship,LS1 |� LK

s
1
,

let us suppose by reductio ad absurdum that LS1 
|� L for
some L ∈ LK

s
1
. Then there exists o1k an object in S1 such

that {o1k}′ 
|� L . This object cannot belong to Ks
1 since it is a

valid implication in this one. However, the set {o1k}must have
been considered in the construction of F . So there exists o1j
such that {o1j }′ = {o1k}′ which belongs to the F domain, and
therefore belongs to Ks

1, so then K
s
1 
|� L , a contradiction. ��
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