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Optimizing the relaxation route with optimal control
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We look into the minimization of the connection time between nonequilibrium steady states. As a prototypical
example of an intrinsically nonequilibrium system, a driven granular gas is considered. For time-independent
driving, its natural time scale for relaxation is characterized from an empirical (the relaxation function) and a
theoretical (the recently derived classical speed limits) point of view. Using control theory, we find that bang-
bang protocols (comprising two steps, heating with the largest possible value of the driving and cooling with zero
driving) minimize the connecting time. The bang-bang time is shorter than both the empirical relaxation time and
the classical speed limit: in this sense, the natural time scale for relaxation is beaten. Information theory quantities
stemming from the Fisher information are also analyzed over these optimal protocols. The implementation of the
bang-bang processes in numerical simulations of the dynamics of the granular gas show an excellent agreement
with the theoretical predictions. Moreover, general implications of our results are discussed for a wide class of
driven nonequilibrium systems. Specifically, we show that analogous bang-bang protocols, with a number of
bangs equal to the number of relevant physical variables, give the minimum connecting time under quite general
conditions.
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I. INTRODUCTION

Very recent developments make it possible to define the
natural time scale for the dynamical evolution or, in other
words, a speed limit, in classical systems from a fundamen-
tal point of view [1–6]. In the quantum realm, speed limits
have been known for a long time: the so-called Mandelstam-
Tamm [7] and Margolus-Levitin [8] bounds. A recent review
on the matter is provided by Ref. [9]. Roughly speaking, the
quantum speed limit entails a tradeoff between operation time
and uncertainty in energy, i.e., the time-energy uncertainty
relation. This idea has been extended to classical systems with
Markovian dynamics: taking advantage of the similarities of
the mathematical structure of the respective Hilbert spaces,
the different versions of speed limits in Refs. [1–6] have been
derived.

Very recently, a speed limit that is the classical analog
of the Mandelstam-Tamm bound has been derived [6]. It
is valid for a completely general dynamics, not necessarily
Markovian, and includes, as a particular case, the one derived
in Ref. [5] starting from the Cramér-Rao inequality. These
speed limits in Refs. [5,6] can be understood as a tradeoff
between time and cost in the considered process. It must be
noted, however, that their being the most restrictive bounds
on operation time has not been yet proved. Currently, this is
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an open question for the classical speed limits, whereas for
their quantum counterparts it has been rigorously established
that the unification of the Mandelstam-Tamm and Margolus-
Levitin bounds is tight [10].

The possibility of accelerating the dynamical evolution
of a given physical system has been recently analyzed in
different contexts, both for classical [11–20] and quantum
systems [21–26] (for a recent review, see Ref. [27]). In the
classical case, the focus has been put on engineering the con-
nection between equilibrium states for Markovian systems,
the dynamics of which is described by a Fokker-Planck or a
master equation. This has especially been done in the simple
harmonic potential case [11–15,18–20], for which the fact
that the probability distribution remains Gaussian for all times
strongly simplifies the mathematical treatment.1

Here, not only do we show how to speed up the connec-
tion between nonequilibrium steady states (NESS) but also
how to optimize this connection. This is done in a system
that is a benchmark for out-of-equilibrium systems, a driven
granular gas. In the kinetic description, neither the dynam-
ics is Markovian (the Boltzmann-Fokker-Planck equation is
nonlinear) nor the velocity distribution function is Gaussian
[even in the long-time limit, when the granular gas reaches a
nonequilibrium steady state (NESS)].

It must be stressed that there is no “thermodynamic”
description for granular fluids. Extending thermodynamic
concepts to them is far from trivial: inelastic collisions break
time-reversal invariance and make the system intrinsically out

1Very recently, the connection between two nonequilibrium steady
states of a Brownian gyrator has been analyzed [20], but still the
probability distribution remains exactly Gaussian in that case.
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of equilibrium, which has many, some of them unexpected,
implications. For example, Shannon’s entropy no longer in-
creases monotonically in the nondriven, freely cooling, case
and there is no clear formulation of the second principle for
granular fluids [28–30].

Moreover, results derived under the assumption of Marko-
vian dynamics [1–4] are in principle not valid in the
framework of kinetic theory. Nevertheless, the very recent
results based on information geometry apply because the un-
derlying dynamics is very general [5,6]. Central to the latter
approach is the concept of Fisher information I (t ), which is
the curvature of the Kullback-Leibler divergence and is related
to entropy production for Markovian dynamics [3,5,31,32].

The concept of a thermodynamic length was first intro-
duced in the context of finite-time thermodynamics about 40
years ago [33–35], employing an approach similar to that
used for defining a statistical distance in Hilbert space for
quantum mechanical systems [36]. More recently, the relation
between the thermodynamic length and Fisher information
was unveiled [37]. Later works showed how to employ this
formalism to find optimal protocols, in the sense that the
relevant physical quantities attain a minimal value [38,39].
Over the last few years, further work has linked the Fisher in-
formation I (t ) with the so-called thermodynamic uncertainty
relations [31,32,40], also showing that I (t ) is related to the
entropic acceleration, i.e., to the second time derivative of
Shannon’s entropy [31].

The natural time scale for connecting two NESS corre-
sponding to different values of the driving can be charac-
terized both empirically and theoretically. Let us consider
relaxation at constant driving: at t = 0, the driving is instan-
taneously changed from its initial to its final value. From an
empirical standpoint, the relaxation time in such a process can
be measured by looking for the point over the relaxation curve
at which the granular temperature equals its steady value, up
to a certain small precision. From a theoretical standpoint, the
relaxation time is bounded from below by the classical speed
limit �t � L2/(2C) [5], where L and C are the integrals over
time of

√
I (t ) and I (t ), respectively.

One of the main objectives of this paper is to engineer a
protocol to minimize the connection time between the two
NESS. Note that the existence of nonholonomic constraints
impinges on the connecting time: it is not possible to have an
arbitrarily short connecting time since this leads, in general,
to the violation of the constraints.2 Therefore, a nonvanishing
minimum connection time emerges associated to a suitable
time-dependent χ (t ) protocol for the driving. To work out
the optimal connection, we leverage Pontryagin’s maximum
principle, a key result in control theory [42,43].

Our work shows the feasibility of beating the constant driv-
ing relaxation times, both the empirical one and the theoretical
speed limits, with optimal control. Specifically, the optimal
process comprises two time windows: one with the largest
possible value of the driving χ = χmax, and the other with no

2This is a practical shortcoming of the usual “shortcut to adia-
baticity” or “engineered swift relaxation” processes. The emergence
of negative values of the stiffness of the harmonic trap for too fast
protocols is a well-known issue of such transformations [18,41,44].

driving at all χ = 0. In the context of control theory, the kind
of processes in which the control function changes abruptly
between its limiting values are known as bang-bang. Here, we
have two bangs because the description of our system involves
two variables (see below). The order of the bangs depends on
the value of the target granular temperature Tf being larger or
smaller than the initial one.

In addition, we argue that similar bang-bang processes also
minimize the connecting time for a quite general class of
systems. Despite the nonlinear dependence on the relevant
physical variables of the evolution equations, the latter are
often linear in the “control function(s).” A few illustrative
examples are a colloidal particle trapped in a harmonic poten-
tial [controls: stiffness of the trap and (or) temperature of the
bath [11,44]], active lattice gases [diffusion coefficient [45],
noise strength and (or) density [46]], and a particle in an elec-
tric field (intensity of electric field [16]). Moreover, in most of
these situations the controls (stiffness, temperature, diffusion
coefficient, noise strength) are non-negative and a nonholo-
nomic constraint arises. Bang-bang protocols thus emerge
as the optimal ones because of the linearity of Pontryagin’s
Hamiltonian in the control function, with the number of bangs
depending on the number of independent variables.

This paper is organized as follows. In Sec. II, we intro-
duce our model system and write the evolution equations for
the granular temperature and the excess kurtosis. The char-
acteristic relaxation times for relaxation at constant driving
are analyzed in Sec. III, including the classical speed lim-
its. Section IV is devoted to the possibility of accelerating
the connection between two NESS corresponding to different
values of the driving. Therein, we put forward the control
problem for the minimization of the connection time and
show that the optimal processes are of bang-bang type. The
bang-bang processes are explicitly built in Sec. V, and the
associated physical properties over them (minimum connect-
ing time, length, and cost) are derived in Sec. VI. Numerical
simulations of the dynamics are presented and compared with
our analytical predictions in Sec. VII. The generality of the
bang-bang protocols is investigated in Sec. VIII. We illustrate
the general situation by briefly analyzing the optimal con-
nection for a colloidal particle trapped in a three-dimensional
harmonic well. Finally, Sec. IX discusses the main results of
our work, their implications for a wide class of driven systems,
and possible future developments. The Appendices deal with
some technicalities that complement the main text.

II. EVOLUTION EQUATIONS

We consider a uniformly heated granular gas of d-
dimensional hard spheres of mass m and diameter σ , with
number density n. In addition to inelastic collisions, with
restitution coefficient α, the gas particles are submitted to a
white-noise force of variance m2ξ 2, the so-called stochastic
thermostat. In the low-density limit, the dynamics of the sys-
tem is accurately described by the Boltzmann-Fokker-Planck
equation [47].

Our analysis is mainly done in the so-called first Sonine
approximation for the kinetic equation. This approach charac-
terizes the gas in terms of the granular temperature T and the
excess kurtosis a2. The latter incorporates non-Gaussianities
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in the velocity distribution function in the simplest possible
way; it is the first nontrivial cumulant. The Sonine approxi-
mation accurately describes the granular gas in many different
situations [47–52], and we employ it here to investigate the
classical speed limits. Nevertheless, at some points of the
paper we will make use of the harsher Gaussian approxima-
tion, which, as a rule of thumb, works when the property
being analyzed does not vanish. Non-Gaussianities, i.e., the
excess kurtosis in the Sonine approximation, only introduce
corrections to the predicted behavior in such a case.

We start by defining the granular temperature T and the
excess kurtosis a2:

T ≡ m〈v2〉
d

, a2 ≡ d

d + 2

〈v4〉
〈v2〉2 − 1. (1)

Higher-order cumulants are neglected, which makes it possi-
ble to get a closed set of equations for T and a2. In addition,
nonlinearities in a2 are dropped because the typical values of
the excess kurtosis are quite small.

In the long-time limit, the granular gas reaches a NESS.
Therein, energy loss from collisions is compensated, in aver-
age, by the energy input from the stochastic thermostat. The
stationary values of the temperature and the excess kurtosis
are given by [47,48]

T 3/2
s = mξ 2

ζ0
(
1 + 3

16 as
2

) ≡ χ, ζ0 = 2nσ d−1(1 − α2)π
d−1

2√
m d 	(d/2)

,

(2a)

as
2 = 16(1 − α)(1 − 2α2)

73 + 56d − 24dα − 105α + 30(1 − α)α2
. (2b)

The temperature and the excess kurtosis obey the evolution
equations

Ṫ = ζ0

[
χ

(
1 + 3

16
as

2

)
− T 3/2

(
1 + 3

16
a2

)]
, (3a)

ȧ2 = 2ζ0

T

[
(T 3/2 − χ )a2 + B T 3/2

(
as

2 − a2
)]

, (3b)

which are nonlinear in the temperature but linear in a2, as a
consequence of the Sonine approximation. The parameter B
is only a function of α and d , namely,

B = aHCS
2

aHCS
2 − as

2

, (4)

where

aHCS
2 = 16(1 − α)(1 − 2α2)

25 + 2α2(α − 1) + 24d + α(8d − 57)
, (5)

is the value of the excess kurtosis in the homogeneous cool-
ing state (HCS): the long-time time-dependent state that the
system tends to approach when it cools freely, i.e., with no
driving.

Before proceeding further, we introduce dimensionless
variables by taking adequate units for T , χ , and t :

T ∗ = T/Ti, χ∗ = χ/T 3/2
i , t∗ = ζ0T 1/2

i t, (6)

where Ti is the initial value of the temperature. Consis-
tently, velocities are made dimensionless with

√
Ti/m, v∗ =

√
m/Tiv. The excess kurtosis is already dimensionless, but for

our purposes it is convenient to define the scaled variable

A2 ≡ a2/as
2. (7)

We see in what follows that A2 is basically non-negative,
whereas a2 changes sign with the inelasticity (specifically,
as

2 = 0 for α = 1/
√

2).
In the remainder of the paper, we always work with di-

mensionless variables, therefore, we drop the asterisks not to
clutter our formulas. The corresponding evolution equations
can be written as

Ṫ = f1(T, A2; χ ), (8a)

f1(T, A2; χ ) ≡ χ

(
1 + 3

16
as

2

)
− T 3/2

(
1 + 3

16
as

2A2

)
, (8b)

Ȧ2 = f2(T, A2; χ ), (8c)

f2(T, A2; χ ) ≡ 2

T
[(T 3/2 − χ )A2 + B T 3/2(1 − A2)]. (8d)

Apart from a factor d , T is basically the (dimensionless)
energy per particle. Thus, the first term in f1, χ (1 + 3

16 as
2), is

the rate of energy input from the stochastic thermostat, while
the second term, −T 3/2(1 + 3

16 as
2A2), is the rate of energy

dissipation in collisions. Equations (8) must be supplemented
with suitable initial conditions. With our choice of units, the
initial temperature equals unity. Since we are interested in
processes that start from the NESS corresponding to the initial
temperature,

T (t = 0) = A2(t = 0) = 1. (9)

III. CHARACTERISTIC RELAXATION TIME

Initially, our granular fluid is in the NESS corresponding
to χi = 1. A typical relaxation process is constructed by sud-
denly changing the noise intensity from χi = 1 to a different
value χf at t = 0. Then, the system relaxes to a new NESS
with granular temperature Tf corresponding to the noise inten-
sity χf ≡ T 3/2

f . Note that the stationary value of the excess
kurtosis as

2 is independent of the noise intensity and so is
As

2, namely, As
2 = 1. Relaxation in this process has a certain

characteristic time tR, at which the temperature has almost
completely reached (complete relaxation only happens for
infinite time) its steady-state value.

To characterize the relaxation time from an empirical point
of view, we define the relaxation function of the tempera-
ture as φ(t ) = [T (t ) − Tf]/(1 − Tf ), such that φ(t = 0) = 1
and φ(t → ∞) = 0. The granular temperature has almost
relaxed to Tf when φ(tR) = ε 	 1, i.e., for a temperature
TR(Tf, ε) = Tf + ε(1 − Tf ). We consider ε = 10−4 for the sake
of concreteness. This relaxation time tR can be estimated by
numerically solving the system of equations (8).

Figure 1 shows tR as a function of the final temperature
Tf for a couple of values of (α, d ), namely, (0.3,2) (circles)
and (0.8,3) (open triangles). Other (α, d ) pairs are not shown
because all the curves would be basically superimposed.
Therefore, the “natural” time scale for the relaxation of the
granular temperature to its final value Tf is basically indepen-
dent of α and d in our dimensionless time scale defined in
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FIG. 1. Characteristic relaxation time as a function of the target
temperature. The numerical value of tR (symbols) is obtained by in-
tegrating the system of equations (8) numerically for the considered
pair of parameters (α, d ). Note that tR depends very weakly on (α, d )
and is very well predicted by the Gaussian approximation tG

R (black
solid line), as given by Eq. (10). Also plotted are the speed limits t (1)

R

(blue broken) and t (2)
R (red solid) for the relaxation process, as given

by Eq. (21), for d = 2.

Eq. (6).3 It is also observed that tR is a decreasing function of
the final temperature and vanishes in the limit as Tf → ∞.

The weak dependence of tR on (α, d ) suggests that it can be
quite accurately predicted by the Gaussian approximation, in
which the excess kurtosis is set to zero in Eq. (8). This yields

tG
R (Tf, ε) =

∫ TR

1

dT

T
3
2

f − T
3
2

=
�

(√ TR
Tf

) − �
(√

1
Tf

)
3
√

Tf
, (10)

where � is given by [53]

�(x) = ln
1 + x + x2

|1 − x|2 − 2
√

3 arctan

(
1 + 2x√

3

)
. (11)

Figure 1 also shows tG
R as a function of the final temperature Tf

(solid line). The agreement with the numerical estimates for tR
is excellent over the whole range of temperatures considered,
which covers four orders of magnitude, 0.01 � Tf � 100.
Equation (10) entails that tG

R vanishes algebraically in the
high-temperature limit Tf 
 1, specifically

tG
R ∼ 2| ln ε|

3
T −1/2

f , Tf 
 1. (12)

So far, we have characterized the relaxation time from an
empirical standpoint. Henceforth, we consider the classical
speed limits that have been recently proposed in the litera-
ture [1–6]. Specifically, we analyze those in Ref. [5] within
the framework of information geometry, which are valid for a
general dynamics, not necessarily Markovian.

We denote the one-particle PDF for the velocity by P(v, t ).
The Fisher information is defined as

I (t ) ≡
∫

dv
(∂t P(v, t ))2

P(v, t )
= 〈(∂t ln P(v, t ))2〉 � 0 (13)

3We have made time dimensionless with ζ0, which depends on d
and is proportional to (1 − α2).

and plays a central role in information geometry [54]. There-
fore, the statistical length is introduced as [36,37]

L =
∫ tf

0
dt

√
I (t ), (14)

which represents the distance swept by the probability dis-
tribution in the time interval (0, tf ). Since the probability
distribution is normalized for all times, P(v, t ) moves on the
unit sphere. As a result, the statistical length L is bounded
from below by the arc length between Pi(v) ≡ P(v, 0) and
Pf(v) ≡ P(v, tf ), i.e., the so-called Bhattacharyya angle [5,36]

� = 2 arccos

(∫
dv

√
Pi(v)Pf(v)

)
, L � �. (15)

The equality L = � is attained only over the geodesic in
probability space, along which the Fisher information I (t )
remains constant, e.g., see Appendix E of Ref. [5] for details.

It has recently been proved that the Cauchy-Schwartz in-
equality leads to the classical speed limits

tf � L2

2C � �2

2C , (16)

where tf and

C ≡ 1

2

∫ tf

0
dt I (t ) (17)

are the operation time and the cost of the process, respec-
tively [5]. Equation (16) expresses a tradeoff between time
and cost operation, 2tf C � L2 � �2. The bound provided by
L is tighter but, in general, depends on the whole dynamical
evolution, whereas � only depends on the initial and final
distributions.

For our system, the speed limits above can be exactly cal-
culated within the Gaussian approximation. Therein, I (t ) =
IG(t ) = d/2(Ṫ /T )2, T is a monotonic function of time, and
both bounds are completely determined by Tf, as detailed in
Appendix A. With the definitions

γ (T ) ≡
(

2
√

T

1 + T

)d/2

, ϕ(T ) ≡ T 3/2 − 3T 1/2 + 2,

(18)
we have that4

�G = 2 arccos γ (Tf ), Lrel
G =

√
d

2
|ln Tf|, Crel

G = d

4
ϕ(Tf ).

(19)

Making use of these expressions, the connecting time t rel
f in a

relaxation process verifies the inequality

t rel
f � t (1)

R � t (2)
R , (20)

where

t (1)
R = | ln Tf|2

ϕ(Tf )
, t (2)

R = 8[arccos γ (Tf )]2

d ϕ(Tf )
. (21)

4Not only does L but also C depend on the specific protocol fol-
lowed to connect the initial and final states. This is explicitly taken
into account in our notation by writing Lrel and Crel for the relaxation
process.
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It is the geodesic in probability space that the smallest bound
t (2)
R corresponds to. A relevant question is thus the attainability

of the geodesic for the granular fluid: we discuss this issue in
Appendix A.

Both t (1)
R and t (2)

R are shown in Fig. 1 for the two-
dimensional case. Consistently, we have that the Gaussian
estimate tG

R for the relaxation time lies above both of them,
specifically tG

R /t (1)
R changes from, approximately, 4 to 30

across the range 0.01 � Tf � 100.5 Non-Gaussianities in the
velocity distribution function will affect the speed limits t (1)

R

and t (2)
R . However, we expect the smallness of a2 to introduce

only slight changes to the results above, as was the case of the
empirical relaxation time.

IV. ENGINEERED SWIFT RELAXATION

Our idea is engineering a protocol, by controlling the noise
intensity χ (t ), that connects the initial and final NESS, the
ones corresponding to χi = 1 and χf = T 3/2

f , in a given time tf,
as short as possible. A relevant question thus arises: whether
or not it is possible to beat the characteristic relaxation time
of the system, not only tG

R but also the classical speed limits
t (1)
R and t (2)

R for the relaxation process. Note that the latter is
possible only for time-dependent driving.

In order to connect the two NESS, the solution to Eq. (8)
must verify the initial conditions (9) and also

T (t = tf ) = Tf, A2(t = tf ) = 1. (22)

Therefore, Eqs. (9) and (22) constitute the boundary condi-
tions for our engineered swift relaxation (ESR) protocol. If a
solution to Eq. (8) satisfies these boundary conditions and the
control function χ (t ) is such that χ (t = 0) = 1, χ (t = tf ) =
T 3/2

f , the system is really stationary at both the initial and final
time, i.e., Ṫ (t = 0) = Ṫ (t = tf ) = 0 and Ȧ2(t = 0) = Ȧ2(t =
tf ) = 0.

First, we show that it is indeed possible to connect the two
NESS in a finite time, by a reverse-engineering procedure.6

We start from a certain function (protocol) Tp(t ) that connects
the initial and final values of the temperature and, in addition,
is stationary at both t = 0 and tf, i.e.,

Tp(0) = 1, Tp(tf ) = Tf, Ṫp(t = 0) = Ṫp(t = tf ) = 0.

(23)

We aim at finding a driving χp(t ) and a time evolution for
the scaled kurtosis A2p(t ), such that (i) (Tp(t ), A2p(t )) is a
solution to Eq. (8) for the driving χp(t ), (ii) the boundary
conditions for A2(t ) are verified, A2p(0) = A2p(tf ) = 1, and
(iii) the driving verifies the boundary conditions χ (0) = 1,
χ (tf ) = T 3/2

f , which ensure stationarity at both t = 0 and tf.

5It should be remarked that the value of the empirical relaxation
time depends on the specific value chosen for ε. For instance, tak-
ing ε = 10−2 instead of 10−4 makes the empirical relaxation time
roughly one-half of the one plotted in Fig. 1.

6The idea is similar to that employed in Refs. [11,19] for connect-
ing two equilibrium states.

Now, we employ Eqs. (8a) and (8b) to write the driving in
terms of (Tp(t ), A2p(t )),

χp(t ) = Ṫp(t ) + [Tp(t )]3/2
[
1 + 3

16 as
2A2p(t )

]
1 + 3

16 as
2

. (24)

Since we do not know A2p(t ) yet, χp(t ) is not completely de-
termined at this point. However, insertion of Eq. (24) into (8c)
and (8b) gives us a closed equation for A2p(t ), which we
can solve with the initial condition A2p(0) = 1. Therefore,
we need one free parameter, to be included in our choice for
Tp(t ), to “tune” A2p(t ) to verify A2p(tf ) = 1. Equations (23)
and (24) ensure that χp(0) = 1, χp(tf ) = T 3/2

f in such a case:
the solution found in this way is indeed stationary at the initial
and final times and an ESR protocol has been successfully
constructed. We show how to build a simple polynomial con-
nection in Appendix B.

A. Control problem

Let us consider the ESR connection problem from the fol-
lowing point of view. For a given (in general, time-dependent)
choice of the driving intensity χ (t ), the system of ordinary
differential equations (ODEs) (8) predicts the corresponding
time evolutions for the granular temperature T and the ex-
cess kurtosis A2. Therefore, χ (t ) plays the role of a control
function.

We restrict ourselves to a certain set of admissible control
functions, specifically those that make it possible to connect
the two NESS in a certain time tf,

T (0) = 1, T (tf ) = Tf, A2(0) = A2(tf ) = 1, (25)

and ensure stationarity at the initial and final times, i.e.,

χ (0) = 1, χ (tf ) = T 3/2
f . (26)

The control function χ (t ) is assumed to be piecewise continu-
ous in the time interval [0, tf]. The presence of finite jumps in
χ (t ) is not problematic from a physical point of view: already
in the “basic” relaxation process χ jumps from 1 to χf = T 3/2

f
at t = 0, and T and A2 are always continuous functions of
time.

Above, we have shown that there exist control functions
χ (t ) that do the job, at least for not too short connecting
times (see also Appendices A 2 and B). Here, we would
like to consider the problem in the light of optimal control
theory: our control verifies the inequality χ (t ) � 0 and thus
the possible optimization problems, such as minimizing the
connection time, have a nonholonomic constraint. Therefore,
we leverage Pontryagin’s maximum principle [42,43] to solve
the optimisation problem and find the optimal control χ (t ) for
the corresponding physical situation. For the sake of math-
ematical rigor, we also consider that the noise intensity is
bounded from above, χ (t ) � χmax; afterwards, we will take
the limit χmax → ∞.

B. Optimizing the connection

Let us consider the following optimization problem: we
want to obtain the minimum time for making the connection
between the two NESS, i.e., we want to minimize tf = ∫ tf

0 dt .
In order to apply Pontryagin’s procedure, we define a variable
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y0(t ) such that the optimization problem is equivalent to the
minimization of y0(tf ), i.e.,

ẏ0 = f0(T, A2, χ ), f0(T, A2, χ ) ≡ 1, y0(tf ) = tf. (27)

To proceed, we introduce Pontryagin’s Hamiltonian

�(y,ψ, χ ) ≡ ψ0 f0(y, χ ) + ψ1 f1(y, χ ) + ψ2 f2(y, χ ). (28)

In this context, we employ the notation y1 ≡ T , y2 ≡ A2,
y ≡ (y0, y1, y2), ψ ≡ (ψ0, ψ1, ψ2) to simplify some formulas.
The variables yi and their conjugate momenta ψi, i = 0, 1, 2,
evolve following the Hamiltonian system

ẏi = ∂�

∂ψi
, ψ̇i = −∂�

∂yi
= −

2∑
j=0

ψ j
∂ f j

∂yi
. (29)

From the construction above, the functions f j do not depend
on y0 and thus ψ̇0 = 0, ψ0 = const.

Pontryagin’s maximum principle states necessary
conditions for optimal connection: in order that
(χ∗(t ), T ∗(t ), A∗

2(t )) be optimal, it is necessary that there
exists a nonzero continuous vector function ψ∗(t ) =
(ψ∗

0 (t ), ψ∗
1 (t ), ψ∗

2 (t )) corresponding to (χ∗(t ), T ∗(t ), A∗
2(t ))

such that for all t , 0 � t � tf, (i) the canonical system (29)
holds, (ii) if we define the supremum of � as function of the
control, H (y,ψ) = supχ �(y,ψ, χ ), we have that

H (y∗(t ),ψ∗(t )) = �(y∗(t ),ψ∗(t ), χ∗(t )), (30)

and (iii) the two constants of motion ψ∗
0 and H∗ ≡

H (y∗(t ),ψ∗(t )) satisfy ψ∗
0 � 0 and H∗ = 0.

To find the supremum of � with respect to χ , we calculate
∂�/∂χ : either χ∗ follows from the condition ∂�/∂χ |χ∗ = 0
or lies at the boundaries of the interval [0, χmax]. Making use
of Eqs. (8b), (8d), (27), and (28), we obtain

∂�

∂χ
= ψ1

(
1 + 3

16
as

2

)
− 2ψ2

A2

T
, (31)

which does not depend on χ and thus does not allow for
finding χ∗. This is a consequence of � being a linear function
of χ and therefore either χ∗ = 0 or χmax, depending on the
sign of ∂�/∂χ . The optimal control jumps from χ∗ = 0 to
χmax at those times for which ∂�/∂χ changes from negative
to positive, and vice versa. This kind of discontinuous optimal
controls are commonly known as bang-bang [16,21,26,43].

The simplest situation is thus a two-step bang-bang pro-
cess, with two possibilities: (i) high driving window χ∗(t ) =
χmax, 0 < t � tJ , followed by free cooling χ∗(t ) = 0, tJ <

t < tf, and (ii) first free cooling χ∗(t ) = 0, 0 < t � tJ , fol-
lowed by high driving χ∗(t ) = χmax, tJ < t < tf. From our
study of the polynomial connection, we may guess that (i)
is the optimal protocol for Tf > 1, but this ansatz has to be
checked.

V. BANG-BANG OPTIMAL CONTROLS

In this section we carry out an in-depth study of the bang-
bang controls we have just described above. For the sake

of simplicity, we explicitly build such protocols for the case
χmax 
 1.7

In general, we focus on the motion of point describing
the state of the system in the phase-space plane (A2, T ):
Eq. (8) is a system of first-order ODEs and trajectories in the
phase-space plane cannot intersect. Making use of them, we
arrive at

2

T

dT

dA2
= χ

(
1 + 3

16 as
2

) − T 3/2
(
1 + 3

16 as
2A2

)
(T 3/2 − χ )A2 + B T 3/2(1 − A2)

(32)

A. Heating-cooling bang-bang

Here, we analyze the bang-bang process in which the gran-
ular fluid is first heated, χ (t ) = χmax 
 1, 0 < t � tJ , and
afterwards freely cools, χ (t ) = 0, tJ < t < tf. Taking the limit
χmax 
 1 in Eq. (32) and solving the resulting separable ODE
with initial condition (A2i, Ti ) = (1, 1) in the (A2, T ) plane,
we get

T 2A
1+ 3

16 as
2

2 = T 2
i A

1+ 3
16 as

2

2,i = 1, 0 � t � tJ . (33)

Now we investigate the behavior of the system in the second
time window tJ � t � tf. Setting χ = 0 in Eq. (32) and taking
into account Eq. (4), we arrive again at a separable first-order
ODE, the solution of which is given by

2 ln
(T

Tf

)
= 3

16
as

2

(
AHCS

2 − 1
)
(A2 − 1) +

(
1 + 3

16
as

2AHCS
2

)

× (
AHCS

2 − 1
)

ln

(
AHCS

2 − A2

AHCS
2 − 1

)
,

tJ � t � tf. (34)

For the final time, t = tf, we have that T = Tf and A2 = A2f =
1. We obtain a relation between TJ and Tf by particularizing
Eq. (34) for the joining time t = tJ , specifically

2 ln
( Tf

TJ

)
= 3

16
as

2

(
AHCS

2 − 1
)
(1 − A2J )

+
(

1 + 3

16
as

2AHCS
2

)(
AHCS

2 − 1
)

× ln

(
AHCS

2 − 1

AHCS
2 − A2J

)
. (35)

In turn, TJ and A2J are related by

T 2
J A

1+ 3
16 as

2
2J = 1, (36)

as implied by Eq. (33). As a consequence, Eq. (35) gives a
one-to-one relation between Tf and TJ or Tf and A2J .8

7The existence of the restriction χ � χmax is of practical nature,
we assume that the intensity of the heat bath cannot be arbitrarily
large, whereas the constraint χ � 0 is of fundamental nature: in
average, the stochastic forcing always increases the kinetic energy
of the particles.

8In the first part of the bang-bang process, the system heats with
χmax and thus Ṫ � 0 and TJ � 1, which entails that A2J � 1. In the
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FIG. 2. Bang-bang protocol for Tf > 1. A representative example
of the motion of the granular gas in the (A2, T ) plane is shown:
specifically, we have considered α = 0.8 and d = 2. Other values of
(α, d ) lead to a completely analogous picture. The bang-bang process
connects the initial NESS with (A2i = 1, Ti = 1) with the final state
(A2f = 1, Tf > 1) and comprises two parts: first heating (red dashed
line) followed by cooling (solid blue lines). Different target points
(A2f = 1, Tf > 1) over the vertical line A2 = 1 (dotted) are reached
by starting the cooling part from different points (A2J , TJ ) over the
heating curve.

A qualitative plot of the motion of the system in the (A2, T )
plane is shown in Fig. 2. In the first part of the protocol,
0 < t � tJ , the system is heated with χ (t ) = χmax and fol-
lows Eq. (33). The second part of the bang-bang process
starts at a given point (A2J , TJ ) over this line. Therefore, for
tJ < t < tf, the system freely cools with χ (t ) = 0 and thus
follows Eq. (34). This part of the bang-bang finishes when the
system hits the vertical line A2 = 1 at the corresponding target
point (A2f = 1, Tf ). In order to keep the system stationary for
t � 0 and t � tf, the control function has sudden jumps at
these points: χ (t � 0) = 1, χ (t ) = χmax 
 1 for 0 < t � tJ ,
χ (t ) = 0 for tJ < t < tf, χ (t � tf ) = T 3/2

f .
Note that with this order of the bangs, the bang-bang proto-

col always leads the system to a final NESS with Tf > 1. The
impossibility of reaching Tf < 1 can be physically understood
in the following way: in the first part of the bang-bang process,
the system always heats, TJ > 1, and the corresponding excess
kurtosis decreases in absolute value: the velocity distribution
function becomes closer to a Gaussian, A2J < 1. Therefore,
the initial slope, i.e., at the point (A2J , TJ ), of the curve for the
second part of the bang-bang process (blue solid in Fig. 2) is
always larger than the slope of the curve for the first part (red
dashed) at the same point. This can be shown by inspecting
the corresponding expressions for dT/dA2 and taking into
account that A2J < 1. Since evolution curves corresponding
to different initial points cannot intersect in the (A2, T ) plane,
it must be concluded that Tf > 1.

To reach NESS with Tf < 1, one intuitively thinks that
inverting the bangs, i.e., first cooling and afterwards heating
should be necessary. We prove this is indeed the case in the
next section.

limit as TJ → ∞, the velocity distribution becomes Gaussian at the
joining time, A2J → 0.

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 3. Bang-bang protocol for Tf < 1. As a representative ex-
ample we show the case (α = 0.3, d = 2), the qualitative picture of
the motion of the possible in the (A2, T ) plane is the same for other
values of (α, d ). The bang-bang process connects the initial NESS
(A2i = 1, Ti = 1) with the target NESS (A2f = 1, Tf < 1). Again,
it comprises two parts, but the order of the bangs is reversed, as
compared with Fig. 2: first the system is cooled (blue solid line) and
afterwards is heated (red dashed lines). Different target NESS over
the vertical line A2 = 1 (dotted) are reached by starting the heating
part from different points (A2J , TJ ) over the cooling curve.

B. Cooling-heating bang-bang

Next, we look into the bang-bang protocol in which the
granular fluid freely cools first, χ (t ) = 0, 0 < t � tJ , and
afterwards is strongly heated, χ (t ) = χmax, tJ < t < tf. The
same separable first-order ODEs in the (A2, T ) plane have to
be solved, but with different initial conditions. In the cooling
stage, the resulting evolution is

2 ln T = 3

16
as

2

(
AHCS

2 − 1
)
(A2 − 1)

+
(

1 + 3

16
as

2AHCS
2

)(
AHCS

2 − 1
)

ln

(
AHCS

2 − A2

AHCS
2 − 1

)
,

0 � t � tJ . (37)

For tJ < t < tf, the system evolves with χ (t ) = χmax 
 1,
and we have that

T 2A
1+ 3

16 as
2

2 = T 2
f , tJ � t � tf. (38)

This equation is similar to (33), but here the second part of the
protocol ends at the point (A2f = 1, Tf ). Since it starts from at
t = tJ from the point (A2J , TJ ), we get the relation

T 2
f = T 2

J A
1+ 3

16 as
2

2J . (39)

In turn, TJ and A2J are related by the particularization of
Eq. (37) for t = tJ :

2 ln TJ = 3

16
as

2

(
AHCS

2 − 1
)
(A2J − 1)

+
(

1 + 3

16
as

2AHCS
2

)(
AHCS

2 − 1
)

ln

(
AHCS

2 − A2J

AHCS
2 − 1

)
.

(40)

Figure 3 shows the motion of the system in the (A2, T )
plane for this bang-bang process. Therefore, it is analogous to
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Fig. 2, but with the order of the bangs reversed. In the first
part of the bang-bang process, the system follows the curve
given by Eq. (37). In its second part, starting from a given
point (A2J , TJ ) over this line, the system evolves according to
Eq. (38). This bang-bang process connects the initial NESS
(A2i = 1, Ti = 1) with the final NESS (A2f = 1, Tf ), but now
we have that Tf � 1. In order to keep the system stationary for
t = 0 and tf, the control function has again sudden jumps at
the initial and final times: at t = 0+, it changes from 1 to 0; at
t = t−

f , it changes from χmax to χf = T 3/2
f .

VI. PHYSICAL PROPERTIES FOR THE BANG-BANG
OPTIMAL CONTROLS

Let us analyze in more detail the just described bang-
bang protocols, which drive the system from the initial NESS
(A2i = 1, Ti = 1) to the final NESS (A2f = 1, Tf �= 1). The
two-step bang-bang processes provide us with the minimum
connecting time, and we obtain it as a function of Tf both for
Tf > 1 and for Tf < 1.9 In addition, we calculate the statistical
length and the cost for them.

In the following, we investigate the cases Tf > 1 and Tf < 1
separately.

A. Heating-cooling bang-bang: Tf > 1

We start by analyzing the heating-cooling bang-bang pro-
cess described in Sec. V A, which makes it possible to reach
temperatures that are larger than the initial one Tf > 1. It
comprises two steps: (i) χ = χmax for 0 < t � tJ , and (ii)
χ (t ) = 0 for tJ < t < tf.

1. Minimum connecting time

Along the first part of the heating-cooling bang-bang, i.e.,
in the time window 0 < t � tJ , we have Ṫ ∼ χmax(1 + 3

16 as
2).

Therefore, we get

tJ = TJ − 1

χmax
(
1 + 3

16 as
2

) → 0, χmax → ∞. (41)

Note that tJ → 0, but χmaxtJ remains finite.
In the second part of the process tJ < t < tf, the system

freely cools with χ = 0. Therefore, making use of Eq. (8) and
taking into account that tJ → 0,

tf =
∫ TJ

Tf

dT

T 3/2
[
1 + 3

16 as
2A2(T )

] , (42)

in which A2(T ) is implicitly given by Eq. (34): it is thus
impossible to carry out this integral analytically, at least in
an exact manner.

9In linear response, when |Tf − 1| 	 1, the suboptimality of bang-
bang protocols with more than two steps is a consequence of a
theorem in the number of switchings (see for instance Theorem 10
in Sec. III.17 of Pontryagin’s book [42]). The formal proof for this
specific nonlinear case is quite lengthy and will be published else-
where. A physical argument for the number of steps of the optimal
bang-bang for a general nonlinear case with n variables is provided
in Sec. VIII.
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FIG. 4. Minimum connection time as a function of the target
temperature, for Tf > 1. All lines correspond to d = 2, and differ-
ent values of the restitution coefficient are considered. From top to
bottom, α = 0.3 (black dashed), α = 0.8 (magenta dotted), α = 0.9
(green dotted-dashed), α = 0.98 (orange dashed), and α = 0.998
(brown dotted). Note that t (0)

f vanish in the limit as Tf → 1 in all
cases, whereas its high-temperature behavior depends on the inelas-
ticity. For reference, the speed limits for relaxation t (1)

R and t (2)
R are

plotted in the inset, which lie well above t (0)
f .

We can obtain an approximate analytical expression for the
connecting time if we bring to bear that 3as

2/16 is quite small
over the whole range of restitution coefficient 0 � α � 1, and
A2 is expected to be of the order of unity. Accordingly, denot-
ing by t (0)

f the connecting time obtained by putting as
2 = 0 in

Eq. (42),10 we get

t (0)
f =

∫ T (0)
J

Tf

dT

T 3/2
= 2

[
T −1/2

f − (
T (0)

J

)−1/2]
. (43)

Above, T (0)
J means that TJ must be consistently put in terms of

Tf by considering Eqs. (35) and (36) for as
2 = 0 but A2 = O(1),

which yields

Tf = T (0)
J

(
AHCS

2 − 1

AHCS
2 − A(0)

2J

) AHCS
2 −1

2

, T (0)
J = (

A(0)
2J

)−1/2
. (44)

Equations (43) and (44) provide us with the connecting time
t (0)
f as a function of the final temperature Tf, both of them are

given in terms of A(0)
2J , 0 < A(0)

2J < 1.
Figure 4 shows t (0)

f , as given by Eqs. (43) and (44), as a
function of the target temperature Tf. Over the scale of the
figure, t (0)

f is indistinguishable from the numerical integration
of Eq. (42). Specifically, we have plotted the curves for the
two-dimensional case and several values of the inelasticity.
The minimum connection time given by control theory clearly
beats the speed limits for relaxation t (1,2)

R , given by Eq. (21),
which are shown in the inset. It is observed that t (0)

f decreases

10Note that we are keeping A2 and thus this is not equivalent to the
Gaussian approximation, in which a2 is completely disregarded from
the very beginning. Therein, the optimal connecting time vanishes
because only one bang with χmax suffices to reach the final tempera-
ture and tG

f = (Tf − 1)/χmax → 0.
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FIG. 5. Acceleration factor as a function of the final temperature,
for Tf > 1. Different lines correspond to different values of the resti-
tution coefficient α, for d = 2, with the same code as in Fig. 4. Note
the logarithmic scale in the vertical axis.

as the restitution coefficient α increases, vanishing in the
elastic limit as α → 1. Physically, this can be understood as
follows: the system does not cool in the second part of the
process for α → 1. Thus, T (0)

J → Tf and t (0)
f → 0. Mathe-

matically, AHCS
2 → 1 in the elastic limit, which ensures that

T (0)
J → Tf.

Asymptotic expressions for t (0)
f can be derived in some

limits. First, in the high-temperature limit, T (0)
J becomes large

and A(0)
2J small; therefore, we have that

t (0)
f ∼ 2T −1/2

f

⎡
⎣1 −

(
AHCS

2 − 1

AHCS
2

) AHCS
2 −1

4

⎤
⎦, Tf 
 1. (45)

Note that the right-hand side vanishes in the elastic limit, in
which AHCS

2 → 1. Second, we consider the linear response
limit Tf − 1 	 1. Therein, Eq. (44) implies that T (0)

J − 1 ∼
(Tf − 1)1/2 and then t (0)

f vanishes as

t (0)
f ∼

(
AHCS

2 − 1

AHCS
2

)1/2

(Tf − 1)1/2, Tf − 1 	 1. (46)

Again, the factor AHCS
2 − 1 makes the right-hand side vanish

in the elastic limit.
As already commented above, the minimum value of the

connecting time t (0)
f beats the speed limits in Eq. (21). There-

fore, it entails a really large acceleration of the relaxation,
as compared with the characteristic relaxation time tG

R given
by Eq. (10). We can measure the acceleration factor in the
bang-bang process by the ratio tG

R /t (0)
f . In Fig. 5, we plot this

ratio as a function of the target temperature for d = 2 and the
same values of the restitution coefficient as in Fig. 4. Specif-
ically, relaxation is speeded up by more than one of order of
magnitude for high temperatures and by a diverging amount
as the final temperature approaches unity, i.e., in the linear
response limit. For high target temperatures, tG

R /t (0)
f goes to

a constant value that depends on the inelasticity: both times
vanish as T −1/2

f [see Eqs. (12) and (45)].

2. Associated length and cost

It is worth investigating the length L traversed by the
system in probability space and the cost C of the bang-bang
process. There is a tradeoff between operation and cost, as
expressed by the “thermodynamic uncertainty relation” (16).
As a result, it is expected that minimizing the operation time,
as we have done, should entail a neat separation from the
geodesic in probability space, for which L = �, and an in-
crease in the cost C.

In Appendix C, we show that the Fisher information is
given by

I (t ) = I (0)(t )
[
1 + O

(
as

2

)]
, I (0)(t ) = d

2

(
Ṫ (t )

T (t )

)2

. (47)

In the following, we calculate the lowest-order contribution to
the length and cost, i.e.,

L(0) =
∫ tf

0
dt

√
I (0)(t ) =

√
d

2

∫ tf

0
dt

∣∣∣∣ Ṫ (t )

T (t )

∣∣∣∣ (48)

and

C (0) = 1

2

∫ tf

0
dt I (0)(t ) = d

4

∫ tf

0
dt

(
Ṫ (t )

T (t )

)2

. (49)

First, we look into the length swept by the probability
distribution. Taking into account that TJ > Tf > 1, we have
to split the integral in Eq. (48) into two summands: the first
one for the time interval [0, tJ ], in which the temperature
monotonically increases from Ti = 1 to TJ , and the second one
for [tJ , tf], in which the temperature monotonically decreases
from TJ to Tf. Therefore, we have that

L(0) =
√

d

2

[∫ tJ

0
dt

Ṫ

T
−

∫ tf

tJ

dt
Ṫ

T

]

=
√

d

2

[∫ TJ

1

dT

T
+

∫ TJ

Tf

dT

T

]
=

√
d

2
ln

(
T 2

J

Tf

)
. (50)

We plot our estimate L(0) for the length over the optimal
bang-bang connection as a function of the target temperature
in Fig. 6. Also plotted are the length for the relaxation process
Lrel

G (blue broken) and the length over the geodesic �G (solid
red), given in Eq. (19). Despite the heating-cooling bang-bang
minimizes the connection time, which is much shorter than the
relaxation time tG

R , the corresponding length is always larger
than Lrel

G since

L(0) − Lrel
G =

√
2d ln

(
TJ

Tf

)
� 0, (51)

with the equality holding when TJ = Tf. It is inelasticity that
makes TJ different from Tf and thus increases the length
swept by the system in probability space. Only in the elastic
limit α → 1 we have that L(0) → Lrel

G , as neatly observed in
the plot.

Second, we consider the cost of this heating-cooling bang-
bang process. Since the bang-bang process minimizes the
connection time, a large value of the cost associated with the
speed limit is expected. Similarly to what we have just done
for the length, the smallness of non-Gaussianities allows us
to estimate the cost with C (0). Again, by splitting the time
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FIG. 6. Length in probability space as a function of the final
temperature, for Tf > 1. The two lowest lines correspond to the
length over the geodesic �G (red solid) and that for the relaxation
process Lrel

G (blue broken), both defined in Eq. (19). The remainder
above are those corresponding to the optimal heating-cooling bang-
bang connections for different values of the restitution coefficient α

(d = 2), with the same code as in Fig. 4.

integral into the subintervals [0, tJ ] and [tJ , tf] and integrating
over temperature in each subinterval, one gets

C (0) = d

4

∫ tf

0
dt

Ṫ 2

T 2
= d

4

(∫ TJ

1
dT

Ṫ

T 2
+

∫ Tf

TJ

dT
Ṫ

T 2

)

= d

4

[∫ TJ

1
dT

χmax − T 3/2

T 2
−

∫ Tf

TJ

dT T −1/2

]

= d

4

[
χmax

TJ − 1

TJ
− 2

(
T 1/2

f − 1
)]

. (52)

We have taken into account that χ (t ) = χmax [χ (t ) = 0] in the
time interval [0, tJ ] ([tJ , tf]). Also, and consistently, we have
set as

2 = 0 in the evolution equation for the temperature of
Eq. (8) since we are evaluating C (0) to the lowest order.

Our main conclusion is thus that C (0) diverges for the opti-
mal bang-bang connection

C (0) ∼ d

4
χmax

TJ − 1

TJ
→ ∞, χmax → ∞. (53)

If χmax 
 1 but not infinite, the above equation gives the lead-
ing behavior of the cost. In that case, tJ = O(χ−1

max) is small
and the cooling part still rules the operation time t (0)

f − tJ 

tJ , whereas the heating pulse still prevails for the cost.

Despite the divergence of C (0), the energy input from the
stochastic thermostat remains finite. Since the energy of the
granular fluid is proportional to the temperature, we identify
energy with temperature in the following discussion. The
stochastic forcing is switched off in the cooling step of the
bang-bang process, so the energy input comes from the heat-
ing step and equals∫ tJ

0
dt χmax

(
1 + 3

16
as

2

)
= χmaxtJ

(
1 + 3

16
as

2

)
→ TJ − 1.

(54)
In fact, for a fixed connection time tf, the bang-bang process
minimizes the energy input by the stochastic thermostat, and
thus also the energy dissipated in collisions, since the total
energy increment is given by Tf − 1 for the initial and final

NESS. The reason is simple: the only change in Pontryagin’s
scheme is that of the function f0, in which f0 = 1 for time
minimization [see (27)] is substituted with f0 = χ (1 + 3

16 as
2)

for energy input minimization. Still, Pontryagin’s Hamilto-
nian � is linear in the control χ and therefore the bang-bang
protocol also emerges as the optimal solution in this case.

B. Cooling-heating bang-bang: Tf < 1

Now we turn our attention to the case in which the target
temperature is smaller than the initial one Tf < 1. Similarly to
what we have done in the previous section, we consider the
two-step bang-bang process but with the order of the bangs
reversed: χ = 0 for 0 < t � tJ and χ (t ) = χmax for tJ < t <

tf, as described in Sec. V B.

1. Minimum connecting time

In the second part of the process, a line of reasoning similar
to the one leading to Eq. (41) gives us that

tf − tJ = Tf − TJ

χmax
(
1 + 3

16 as
2

) → 0, χmax → ∞. (55)

This means that tf → tJ , the second part of the process is
instantaneous in the limit as χmax → ∞. On the other hand,
the system freely cools in the first part of the process, and
then

tf =
∫ 1

TJ

dT

T 3/2
[
1 + 3

16 as
2A2(T )

] , (56)

where A2(T ) in now given by Eq. (37).
Again, the integral cannot be carried out analytically but

it is possible to derive an approximate expression for tf by
recalling that as

2 is small and A2 = O(1). In this way, we
obtain

t (0)
f =

∫ 1

T (0)
J

dT

T 3/2
= 2

[(
T (0)

J

)−1/2 − 1
]
, (57)

where

Tf = T (0)
J

(
A(0)

2J

)1/2
, T (0)

J =
(

AHCS
2 − A(0)

2J

AHCS
2 − 1

) AHCS
2 −1

2

. (58)

Once more, the last two equations give the connecting time
t (0)
f as a function of the final temperature Tf since both of them

are given in terms of A(0)
2J ; here, 1 < A(0)

2J < AHCS
2 .

We show the behavior of t (0)
f as a function of the target tem-

perature in Fig. 7, for Tf < 1. All curves correspond to d = 2
but different values of the restitution coefficient α. In this case,
t (0)
f beats the speed limit t (1)

R for relaxation for high enough
Tf (in the limit as Tf → 1−, we have that t (0)

f → 0 while t (1)
R

remains finite) but lies above it for Tf � 0.15, approximately.
This contrasts with the situation for Tf > 1, shown in Fig. 4.
Physically, this asymmetry between the cases Tf > 1 and Tf <

1 can be understood as stemming from the nonholonomic
constraint χ � 0, which limits the rate at which the system
can be cooled down, whereas no such limit exists for Tf > 1
because we have considered that χmax → ∞.
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FIG. 7. Minimum connection time t (0)
f as a function of the target

temperature, for Tf < 1. We consider the two-dimensional case and
different values of the restitution coefficient: from top to bottom,
α = 0.3 (black dashed line), α = 0.8 (magenta dotted), and α = 0.95
(green dotted-dashed). Note that t (0)

f depends very weakly on the
inelasticity, thus it is quite close to the Gaussian estimate for the
connecting time tG

f (black solid). Also plotted is the speed limit
for the relaxation process t (1)

R (blue broken), defined in Eq. (21). In
the inset, the acceleration factor tG

R /t (0)
f is shown for α = 0.3, other

values of α are basically superimposed. Similarly to the case Tf > 1,
the acceleration factor diverges in the limit as Tf → 1, for which the
bang-bang connecting time t (0)

f vanishes.

At variance with the case Tf > 1, t (0)
f depends very weakly

on α.11 Since the excess kurtosis is small, we can obtain a
rough estimate of the behavior of the system by completely
neglecting it, the so-called Gaussian approximation, which we
have already employed in Sec. IV. Therein, it is clear that only
one bang with χ = 0 suffices: the fastest way of reaching a
temperature Tf below the initial one is to turn off the stochastic
thermostat. Setting χ and as

2 to zero in Eq. (8), we obtain the
Gaussian estimate for the connecting time tG

f = 2(T −1/2
f − 1),

which is also plotted in Fig. 7.
We can obtain asymptotic expressions for t (0)

f in two rele-
vant limits. In the low target temperature limit, Tf 	 1, T (0)

J is
also small and A(0)

2J → AHCS
2 , which leads to

t (0)
f ∼ 2

(
AHCS

2

)1/4
T −1/2

f , Tf 	 1. (59)

In the elastic limit, AHCS
2 → 1+, and thus t (0)

f ∼ tG
f , Tf 	 1,

α → 1−. For larger inelasticity t (0)
f lies above tG

f but it is of the
same order of magnitude, for example, t (0)

f /tG
f ∼ (AHCS

2 )1/4 for
Tf 	 1. This is in accordance with the behavior observed in
Fig. 7. In the linear response limit 1 − Tf 	 1, the behavior
is completely similar to that of Tf > 1: Eq. (46) still holds
replacing Tf − 1 with its absolute value.

2. Associated length and cost

Let us evaluate the length and cost of the cooling-heating
bang-bang protocol. We start by calculating the length L(0):
here, TJ < Tf < 1 and once more the integral (48) has to be

11However, see footnote 3.
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FIG. 8. Length in probability space for as a function of the final
temperature, for Tf < 1. From top to bottom, the following lines are
shown. The first three ones correspond to the optimal cooling-heating
bang-bang protocols for different values of the restitution coefficient
in the two-dimensional case: α = 0.3, 0.8, and 0.95; the two lowest
ones are the lengths for the relaxation process Lrel

G (blue broken) and
the geodesic length �G (red solid).

split into the two time subintervals inside which the tempera-
ture is monotonic, which yields

L(0) =
√

d

2

[
−

∫ tJ

0
dt

Ṫ

T
+

∫ tf

tJ

dt
Ṫ

T

]

=
√

d

2

[∫ 1

TJ

dT

T
+

∫ Tf

TJ

dT

T

]
=

√
d

2
ln

(
Tf

T 2
J

)
. (60)

Figure 8 is devoted to the comparison of the length L(0)

over the optimal bang-bang connection with the lengths for
the relaxation process Lrel

G and over the geodesic �G, which
are given by Eq. (19). Similarly to the case Tf > 1, L(0) is
always larger than its value for relaxation Lrel

G :

L(0) − Lrel
G =

√
2d ln

(
Tf

TJ

)
� 0. (61)

Again, the equality only holds when TJ = Tf, which corre-
sponds to the elastic limit.

Now we move on to the cost of the cooling-heating bang-
bang. One more time, we split the time integral and change
to integrate over temperature in each part of the bang-bang
process. For the case Tf < 1 we are analyzing, the order of the
bangs is reversed: χ (t ) = 0 [χ (t ) = χmax] in the time interval
[0, tJ ] ([tJ , tf]). Then, we obtain that

C (0) = d

4

∫ tf

0
dt

Ṫ 2

T 2
= d

4

(∫ TJ

1
dT

Ṫ

T 2
+

∫ Tf

TJ

dT
Ṫ

T 2

)

= d

4

[
−

∫ TJ

1
dT T −1/2 +

∫ Tf

TJ

dT
χmax − T 3/2

T 2

]

= d

4

[
χmax

Tf − TJ

TJTf
− 2

(
T 1/2

f − 1
)]

. (62)

Taking into account that χmax 
 1, the second term on the
right-hand side is negligible against the first one and thus

C (0) ∼ d

4
χmax

Tf − TJ

TJTf
→ ∞, χmax → ∞. (63)
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In complete analogy to the Tf > 1 case, Eq. (63) continues
to give the leading behavior of the cost when χmax 
 1 but
not infinite, and the connection time and cost are still domi-
nated by the cooling and heating bangs, respectively. Since the
stochastic thermostat only heats the system in the time interval
[tJ , tf], the energy input is now given by∫ tf

tJ

dt χmax

(
1 + 3

16
as

2

)

= χmax(tf − tJ )

(
1 + 3

16
as

2

)
→ Tf − TJ , (64)

which is also finite. For the same reasons as in the case Tf > 1,
here the bang-bang protocol also minimizes the energy input
from the stochastic thermostat for a fixed connecting time tf.

VII. NUMERICAL SIMULATIONS

In order to check our theoretical predictions, we have car-
ried out numerical simulations of the dynamics of the granular
gas. Specifically, we have carried out direct simulation Monte
Carlo (DSMC) for the two-dimensional case and two different
values of the restitution coefficient α = 0.3, for which as

2 is
positive, and α = 0.8, for which as

2 is negative. In all cases, we
start from a high-temperature state with a Maxwellian velocity
distribution function and switch on the stochastic thermostat
with a certain intensity ξi: the granular gas relaxes towards
the corresponding NESS, in which the temperature Ti and
the noise intensity are related by Eq. (2a). Recall that we
have employed Ti to nondimensionalize the temperature, so
in our units Ti = 1. From this initial NESS, we implement the
bang-bang protocols developed in the previous sections.

In the case Tf > 1, we proceed as follows in each trajectory
of the simulation. First, the system is instantaneously heated
from Ti = 1 to TJ : we make the velocities of all particles
change as vi → vi + ηi, where ηi are independent Gaussian
distributed random variables of a certain variance: the larger
the variance, the larger the temperature increment TJ − 1 and
the smaller the excess kurtosis a2J . Second, starting from the
previously generated configuration, we let the system freely
cool (ξ = 0) until a2 in the trajectory equals the steady value
as

2. This determines the connecting time tf, at which the tem-
perature in the trajectory equals Tf. At this time, we switch on
the stochastic thermostat again but with an intensity ξf such
that the system remains stationary for t > tf: taking advantage
of the theoretical prediction ξ ∝ T 3/4

s , as given by Eq. (2a),
we set ξf = ξiT

3/4
f .

The quantities TJ , a2J , tf, Tf, and ξf fluctuate from one
realization to another. A typical trajectory of the case Tf > 1
is depicted in Fig. 9. Specifically, the realization shown cor-
responds to d = 2 and α = 0.8 in a system with N = 106

particles. It is neatly observed how the system remains sta-
tionary after the stochastic forcing is switched on at tf. Note
that fluctuations in the excess kurtosis are much larger than
those of the temperature, which are basically not seen in the
scale of the figure.

Figure 10 shows the connecting time tf as a function of
the target temperature Tf. Once more, we consider the two-
dimensional case and two different values of the restitution
coefficient, α = 0.3 and 0.8. The simulation results are aver-

FIG. 9. Typical simulation trajectory for the case Tf > 1. The
upper curve corresponds to the temperature (left vertical axis) and
the lower curve to the excess kurtosis (right vertical axis). Negative
times correspond to the initial NESS, with Ti = 1. At t = 0, the
system is instantaneously heated, the temperature increases, whereas
the absolute value of the excess kurtosis decreases. Afterwards, the
temperature decreases and the absolute value of the excess kurtosis
increases in the cooling stage. The thermostat is switched on with
intensity ξf when a2 touches its steady value as

2 (dashed line): this
determines the connection time tf. The noise intensity ξf corresponds
to χf = T 3/2

f [see Eq. (2a)], where Tf is the value of the temperature
at tf.

aged over 100 trajectories and compared with the theoretical
prediction (43), showing a very good agreement. The simula-
tion curve is smoother for α = 0.3 than for α = 0.8 because
|as

2| is larger for the former.
In the case Tf < 1, the cooling-heating bang-bang trajec-

tory is generated in the following way. First, the system freely
cools from the initial configuration, with Ti = 1, until reaches
a certain configuration with TJ < 1 and a larger, in absolute
value, excess kurtosis a2J . Therefore, we instantaneously heat
the system by changing the velocities as vi → vi + ∑M

j=1 ηi j ,
where ηi j are independent Gaussian distributed random vari-
ables of a certain, small, variance. Note that, in contrast to the
heating-cooling case described before, this is not done in one
step but several. This recurrent procedure stops when the ex-
cess kurtosis, the absolute value of which is decreasing, equals

1 2 3 4
0.00

0.05

0.10

0.15

0.20

0.25

FIG. 10. Connection time as a function of the target temperature.
Simulation results (symbols) are compared with Eq. (43) (lines) for
d = 2 and two values of α: α = 0.3 (open triangles, solid line) and
α = 0.8 (open circles, dashed line).
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FIG. 11. Typical simulation trajectory for the case Tf < 1. This
plot is similar to that in Fig. 9, but the order of the bangs is reversed:
first, the granular gas freely cools (ξ = 0) in the time interval (0, tf )
and second, at t = tf, the system is instantaneously heated. Again,
the thermostat is switched on with intensity χf = T 3/2

f at t = tf and
thus the system remains stationary for t > tf.

its steady value as
2: this fixes the number of steps M over the

considered trajectory. At this point, the temperature of the sys-
tem is Tf and, again, the stochastic forcing is switched on with
intensity ξf = ξiT

3/4
f ; this makes the system stationary for

longer times. A typical trajectory of the case Tf < 1 is depicted
in Fig. 11. Specifically, the realization shown corresponds to
d = 2 and α = 0.3 in a system with N = 106 particles.

We compare the numerical results for the connecting time
with the theoretical prediction, as given by Eq. (43), in Fig. 12.
Again, simulations correspond to d = 2 and α = (0.3, 0.8).
The agreement between theory and simulations is excellent.
Relative fluctuations seem to be smaller than in Fig. 10, but it
has to be taken into account that the connection times here are
longer.

VIII. PREVALENCE OF OPTIMAL
BANG-BANG PROTOCOLS

In this section, we discuss the emergence of similar bang-
bang protocols as the optimal ones, in the sense of minimizing

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

FIG. 12. Connecting time as a function of the target temperature.
Simulation results (symbols) are compared with Eq. (57) (lines) for
d = 2 and two values of α: α = 0.3 (open triangles, solid line) and
α = 0.8 (open circles, dashed line).

the connection time, in a wide class of physical systems, not
only for the specific case of granular fluids. The evolution
equations of the relevant physical quantities are often lin-
ear in the “control functions” [11,16,44–46]. In addition, the
controls (stiffness, temperature, diffusion coefficient, noise
strength) are non-negative in most of these situations, which
gives rise to nonholonomic constraints.

Nonholonomic restrictions make it necessary to resort to
Pontryagin’s maximum principle to solve the problem of min-
imizing the connection time. When the evolution equations
involve the controls λ linearly, Pontryagin’s Hamiltonian � is
also linear in them. Therefore, the maximum of � is reached
at the limit values of the control λmin and λmax: the bang-bang
protocols arise in this way. Once the bang-bang protocols are
established as the optimal ones, a relevant question is the num-
ber of “bangs” that are needed for the connection. The answer
to this question in each specific physical system depends on
the number n of variables that characterize its state. If the
evolution equations are also linear in these physical variables,
either exactly or as a consequence of linearizing them around
a steady state, a rigorous mathematical theorem ensures that
the optimal bang-bang control has at most n − 1 switchings.12

If the evolution equations are nonlinear in the physical
quantities, as is the case of granular fluids, the following
argument supports the arising of a completely similar picture.
A simple bang, with two possibilities λ(t ) = λmin or λ(t ) =
λmax, suffices for n = 1. Its duration tf makes it possible to
adjust the final value of the only one variable. Two bangs, with
two possibilities λmax − λmin or λmin − λmax, suffice for n = 2,
with only one switching at an intermediate time tJ . The joining
time tJ together with the connecting time tf, or the duration
of the bangs t1 = tJ and t2 = tf − tJ , make it possible to tune
the final value of the two variables. This is the case we have
found here when studying the granular fluid in the Sonine
approximation. In general, n bangs (with two possibilities,
starting with either λmax or λmin) suffice for a generic value
of n, with n − 1 switchings at intermediate times tJ1 , tJ2 , ...,
tJn−1 . These n − 1 joining times together with the connecting
time tf, or the duration of the n bangs t1 = tJ1 , t2 = tJ2 − tJ1 , ...,
tn = tf − tJn−1 , make it possible to tune the final value of the n
variables.

Brownian particle moving in a d-dimensional
harmonic potential

As a proof of concept, let us consider a Brownian particle
trapped in a d-dimensional harmonic potential. Our analysis
will be carried out in the overdamped limit, in which the
probability distribution P(x, t ) of the particle’s position obeys
the Fokker-Planck equation

γ ∂t P(x, t ) = ∇ · [∇Uh(x) P(x, t )] + kBT (t ) ∇2P(x, t ),

(65)

where γ is the friction coefficient and Uh(x) =
1
2

∑d
j,k=1 λ jkx jxk . We want to connect two equilibrium

12See Theorem 10 in Sec. III.17 of Pontryagin’s book [42], the main
hypothesis of which is the eigenvalues of the evolution equations
being real.
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states in the minimum possible time, by controlling the
temperature T (t ) of the bath inside which the colloidal
particle is immersed.

It is fitting to describe the particle position in terms of the
three normal coordinates ξi, such that the harmonic potential
is diagonal in them. Therefore, we write Uh(x) = Uh(ξ) =
1
2

∑d
β=1 κβ ξ 2

β , where κβ > 0 are the eigenvalues of the matrix
of elements λ jk . The time evolution of the particle is uniquely
characterized by the value of the variances of the normal
modes σ 2

β ≡ 〈ξ 2
β 〉. In dimensionless variables, they evolve ac-

cording to

d

dt
σ 2

β = −2κβσ 2
β + 2T (t ), 1 � β � d. (66)

Similarly to what we did in the analysis of the granular
fluid, the units that nondimensionalize variables are chosen
to simplify our formulas: here, Ti = 1 and κ1 = 1. Without
loss of generality, we choose to label the modes such that
κ1 = 1 � · · · � κd . See Appendix D for details.

In the initial and final equilibrium states, with respective
initial temperatures Ti = 1 and Tf, we have

σ 2
β,i ≡ σ 2

β (t = 0) = 1

κβ

, σ 2
β,f ≡ σ 2

β (t = tf ) = Tf

κβ

. (67)

The connection between the initial and final states is done
by controlling the temperature of the bath T (t ), which obeys
the nonholonomic constraint T � 0. Since the evolution equa-
tions (66) are linear in the control T (t ), the optimal connection
is of bang-bang type: it comprises several time windows with
either T (t ) = Tmax or T (t ) = Tmin = 0.

An exhaustive analysis of the optimal connection for this
system, investigating in detail the behavior of the connection
time throughout the whole space of parameters (κ, Tmax, Tf ),
where κ = (κ1, . . . , κd ), is outside the scope of this paper.
Here, we focus on the general trends of the optimal connecting
time as a function of the final temperature Tf for some specific
choices of κ, in order to show the generality of the arguments
we have put forward above. For the sake of simplicity, we
consider the limiting case Tmax → ∞, in analogy with our
study of the granular fluid, in which the maximum noise
strength χmax → ∞.

One-dimensional case. The simplest situation is that of the
one-dimensional case, where we have only one equation to
control. Thus, one bang suffices of duration t (I)

f . It is interest-
ing to remark that the same situation appears in d = 2 or 3
for the isotropic or central symmetry situation, in which all
the κβ are identical: both (66) and (67) do not depend on the
mode and all σβ (t ) are also identical. From an effective point
of view, we have n = 1 and the control problem is equivalent
to that of the one-dimensional case.

On the one hand, in the “heating” bang, T (t ) = Tmax,
σ 2

1 (t ) = Tmax − (Tmax − 1)e−2t and the connection time is de-

termined by σ 2
1,f = Tmax − (Tmax − 1)e−2t

(I)
f = Tf. In the limit

as Tmax → ∞, this expression simplifies to

σ 2
1,f = 1 + α = Tf, α = 2Tmaxt (I)

f finite. (68)

Therefore, we have that

t (I)
f ∼ 1

2

Tf − 1

Tmax
→ 0+, Tf > 1. (69)

Thus, any Tf > 1 can be reached by an instantaneous, in-
finitely strong, jump to Tmax → ∞ that is stopped as soon as
σ 2

1 attains its final value. On the other hand, in the “cooling”
bang, T (t ) = 0, σ 2

1 = e−2t and the connection time is deter-
mined by

σ 2
1,f = e−2t (I)

f = Tf ⇒ t (I)
f = − 1

2 ln Tf, Tf < 1. (70)

As a consequence of the nonholonomic constraint T (t ) � 0,
we have that the optimal time is finite for Tf < 1.

Two-dimensional case. Next, we look into the two-
dimensional case, with κ2 �= κ1. We have two equations to
control and thus n = 2. It is clear that only one bang is not
enough: in a “cooling” bang of duration t (I)

f we would have

σ 2
2,f = e−2κ2t (I)

f /κ2 �= Tf/κ2. Therefore, we need two bangs: ei-
ther “heating-cooling” or “cooling-heating,” consistently with
our general discussion for n = 2. Note that for d = 3 but with
axial symmetry, for example σ2(t ) = σ3(t ), the control prob-
lem is equivalent to the two-dimensional situation considered
here.

First, we analyze the “heating-cooling” bang-bang. In the
first step, we have an instantaneous heating with T (t ) =
Tmax → ∞ that leads to

σ 2
β,J = 1

κβ

+ α, α = 2TmaxtJ , β = 1, 2. (71)

The duration t1 = tJ of the heating bang vanishes in the limit
as Tmax → ∞. In the second step, we set T (t ) = 0 and thus
σ 2

β (t ) = σ 2
β,Je−2κβ (t−tJ ). Bringing to bear (71), we have for the

final time t = t (II)
f :

σ 2
β,f =

(
1

κβ

+ α

)
e−2κβ t (II)

f = Tf

κβ

, β = 1, 2. (72)

This equation provides us with both α and t (II)
f as functions of

Tf. Specifically, we can eliminate α to get

Tf = κ2 − 1

κ2 e2t (II)
f − e2κ2t (II)

f

, Tf > 1, (73)

which gives the optimal connection time t (II)
f as an implicit

function of Tf, but only for Tf > 1 as marked. For Tf <

1, it does not have positive solutions for the connection
time. Again, in analogy with the granular case, the “heating-
cooling” bang-bang allows us to connect states in which the
final temperature is larger than the initial one.

Second, we study the “cooling-heating” bang-bang. In this
case, the first step has a duration t1 = tJ whereas the second
one is instantaneous, t2 → 0. Therefore, t (II)

f = tJ and we can
directly write

σ 2
β,J = 1

κβ

e−2κβ t (II)
f , σ 2

β,f = σ 2
β,J + α, β = 1, 2 (74)

with α = 2Tmaxt2. Again, eliminating α we obtain

Tf = κ2 e−2t (II)
f − e−2κ2t (II)

f

κ2 − 1
, Tf < 1. (75)

Now, the above equation does not have physical solutions
(positive connection time) for Tf > 1. The “cooling-heating”
bang-bang connects equilibrium states with smaller final tem-
perature.
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Three-dimensional case. Finally, we investigate the case in
which d = 3 and all the κβ are different. Then, we have three
equations to control and n = 3.13 None of the previous one-
bang or two-bang protocols can accommodate the final value
of the three variances σ 2

β : we need two intermediate jumps
at times tJ1 and tJ2 . Then, a three-bang protocol of duration
t (III)
f emerges with two possibilities: “heating-cooling-heating”

(HCH) or “cooling-heating-cooling” (CHC). From our previ-
ous discussions of the cases n = 1 and 2, physical intuition
tells us that HCH corresponds to Tf > 1 and CHC to Tf < 1
for n = 3. In the following, we rigorously show that this is
indeed the case.

We start by analyzing the HCH bang-bang. In the limit as
Tmax → ∞, we know that the first and third heating steps are
instantaneous: their durations are t1 = tJ1 → 0, t3 = t (III)

f −

tJ2 → 0. Therefore, the second cooling step has a duration
t2 = tJ2 − tJ1

→ t (III)
f . In addition, we introduce the notation

α1 = 2TmaxtJ1 and α2 = 2Tmax(t (III)
f − tJ2 ). We obtain

σ 2
β,J1

= 1

κβ

+ α1, σ 2
β,J2

= σ 2
β,J1

e−2κβ t (III)
f ,

σ 2
β,f = σ 2

β,J2
+ α2, (76)

which entails

Tf

κβ

=
(

1

κβ

+ α1

)
e−2κβ t (III)

f + α2, β = 1, 2, 3. (77)

Equation (77) gives us (α1, α2, t (III)
f ) as a function of Tf. Elim-

inating α1 and α2, we get

Tf = e2t (III)
f (κ3 − κ2) − e2κ2t (III)

f κ2(κ3 − 1) + e2κ3t (III)
f κ3(κ2 − 1)

e2(1+κ3 )t (III)
f κ2(κ3 − 1) − e2(1+κ2 )t (III)

f κ3(κ2 − 1) − e2(κ2+κ3 )t (III)
f (κ3 − κ2)

. (78)

Plotting the right-hand side as a function of t (III)
f shows that in

fact Tf > 1, in agreement with our physical intuition.
The analysis of the CHC bang-bang follows the same lines

as above. The first cooling step has duration t1 = tJ1 , the
second heating step is instantaneous t2 = tJ2 − tJ1 → 0, and
the third cooling step lasts for t3 = t (III)

f − tJ2 → t (III)
f − t1. The

composition of the three bangs gives at the final time

Tf

κβ

=
(

1

κβ

e−2κβ t1 + α

)
e−2κβ (t (III)

f −t1 ), β = 1, 2, 3, (79)

where α = 2Tmaxt2 is the strength of the heating bang. Solving
for t (III)

f and Tf, we get(
Tf − e−2t (III)

f
)κ3−κ2

(
Tf − e−2κ2t (III)

f
)1−κ3

(
Tf − e−2κ3t (III)

f
)κ2−1

= κ
κ2−1
3 κ

1−κ3
2 . (80)

The condition α � 0 entails that all the terms inside the
parentheses must be non-negative. Since κ3 > κ2 > 1, this
means that Tf > e−2t (III)

f or t (III)
f > − ln Tf/2 = t (I)

f . In fact, we
would have t (III)

f > t (II)
f > t (I)

f if, from going from I to III, one
incorporates a new value of κ while keeping the previous ones,
i.e., if κ1 and κ2 in III are the same as in II. This is logical; the
incorporation of additional variables reduces the size of the
set of “admissible” controls, i.e., those connecting the initial
and final states, and thus increases the minimum connection
time.

Figure 13 shows the connection time as a function of the
final temperature for three sets of the model parameters κ =
(κ1 = 1, κ2, κ3). In accordance with the physical picture of
the previous paragraph, it is neatly observed that t (III)

f > t (II)
f >

t (I)
f . In case I, the minimum connecting time behaves similarly

to the Gaussian approximation of the granular system, t (I)
f = 0

13This corresponds to an anisotropic potential; recall that the axial
symmetry and spherical symmetry situations correspond to n = 2
and 1, respectively.

for Tf > 1, whereas it increases as the final temperature de-
creases for Tf < 1, diverging in the limit as Tf → 0. In case
II, the observed behavior is also qualitatively similar with
that of the Sonine description of the granular system: t (II)

f
is no longer zero for Tf > 1. The existence of two variables
makes it impossible to connect the two states instantaneously
because the cooling part also involves a finite time due to
the nonholonomic constraint T � 0, analogous to χ � 0 in
the granular case. The main difference is the finite value of
t (II)
f for the two-dimensional oscillator (or a three-dimensional

oscillator with axial symmetry) in the limit as Tf → ∞, in

III
II

I

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

FIG. 13. Connecting time as a function of the target temperature
for the d-dimensional oscillator. Specifically, we have plotted three
cases: (a) t (I)

f given by (69) and (70) for the one-dimensional os-
cillator, κ1 = 1 (or d-dimensional one with central symmetry, κβ =
1 ∀ β); (b) t (II)

f given by (73) and (75) for the two-dimensional os-
cillator (or three-dimensional with axial symmetry), with κ = (1, 2);
and (c) t (III)

f given by (78) and (80) for the three-dimensional case,
with κ = (1, 2, 3).
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contrast with the vanishing of the connecting time for the
granular case. The latter behavior stems from the collision
rate being proportional to

√
T , which also accelerates the

cooling step of the bang-bang in the granular case, whereas
the relaxation rates of the harmonic modes κβ are independent
of the temperature. In case III, the incorporation of the third
mode increases the connection time, t (III)

f > t (II)
f , but keeps the

qualitative picture unchanged.

IX. DISCUSSION

In this work, we have applied information geometry and
control theory ideas to a system described at the kinetic
level. The resulting framework is physically appealing. On
the one hand, information geometry put lower bounds on the
operating time: the classical speed limits in Refs. [5,6] apply
although the dynamics is not Markovian. On the other hand,
control theory makes it possible to build protocols that entail
large accelerations of the system dynamics, by minimizing the
connection time.

It is known that reverse engineering techniques, such as
engineered swift equilibration [11–14,20], can connect states
in times that are shorter than the empirical relaxation time.
Here, we show that optimal control protocols not only are
able to beat the empirical relaxation time for relaxation (by
more than an order of magnitude) but also the recently derived
classical speed limits, which are considerably shorter than
the empirical time. The latter play in classical systems a role
similar to that of the quantum speed limits, associated with the
time-energy uncertainty relation, in quantum systems. This
beating of the classical speed limit for relaxation does not
represent a contradiction since the optimal control protocols
involve a time-dependent driving.

There appears a clear asymmetry between the cases Tf > 1
and Tf < 1: recall that in our dimensionless units the initial
temperature equals unity. For the case Tf > 1, the optimal con-
necting times are rather small, vanishing in the limits Tf → 1
and Tf → ∞. The smallness of the minimum connecting times
can be understood in a physical way: in the Gaussian approx-
imation, the minimum connecting time vanishes because the
optimal protocol is clearly a pulse of very high noise intensity
such that the granular temperature instantaneously changes
from 1 to Tf. Therefore, it is non-Gaussianities, specifically,
the excess kurtosis a2 that is small, that make impossible to
instantaneously connect the two NESS for Tf > 1. The excess
kurtosis decreases and therefore the state after the instanta-
neous heating pulse is not stationary.

For the case Tf < 1, the minimum connecting times are
longer than those for heating. Again, this can be understood
from the Gaussian approximation: therein, the optimal proto-
col is letting the system freely cool, i.e., with driving intensity
χ = 0. At difference with the case Tf > 1, the minimum
connection time for Tf < 1 does not vanish because free cool-
ing involves a finite time. Interestingly, both for Tf > 1 and
Tf < 1 non-Gaussianities make the connecting times longer:
this is physically understood by taking into account that non-
Gaussianities stem from the inelasticity of collisions.

One of the main results of our paper is the emergence of
optimal bang-bang protocols for minimizing the connecting
time. In our case, the bang-bang processes comprise two steps

(i.e., one switching): (i) instantaneous heating with a very
high driving intensity χmax → ∞ and (ii) free cooling, i.e., no
driving, χ = 0. The order of the bangs is different for Tf > 1
and Tf < 1: heating-cooling for Tf > 1, but cooling-heating
for Tf < 1. Qualitatively, this can be understood as follows: in
both cases, the first step corresponds to what would be done
in the Gaussian approximation. However, the existence of
non-Gaussianities entail that the excess kurtosis does not have
the stationary value at the end of the first step. This imbalance
is somehow mended by the second step of the bang-bang.

Indeed, bang-bang processes are expected to emerge as the
optimal protocols, in the sense of minimizing the connection
time, in a wide variety of physical situations, not only for
the specific case of granular fluids. The evolution equations
of the relevant physical properties typically include “control
functions”: other quantities, the time dependence of which
can be externally controlled. Often, the control function λ

(stiffness of a harmonic trap, temperature of the bath, diffu-
sion coefficient, noise strength, density, etc., depending on
the physical context) verify that (i) the evolution equations
of the physical properties are linear in them, and (ii) a non-
holonomic constraint limits their physically acceptable values,
λmin � λ � λmax. Examples abound, from the trapped Brow-
nian particle [11,44] or active systems [45,46] to a particle
moving in an electric field [16]. Therein, the mathematical
structure of Pontryagin’s principle ensures that the optimal
controls minimizing the connecting time are of bang-bang
type.

Let us consider thus a physical system such that, at
the macroscopic (or hydrodynamic, or thermodynamic, ...)
level of description is described by n physical quantities.14

The number n is thus small, in the examples above n =
1 [11,16,44] or n = 2 [45,46], as is the case of the granular
fluid in the Sonine approximation. A relevant question is as
follows: How many bangs, i.e., how many time windows in-
side which either λ(t ) = λmin or λ(t ) = λmax, are necessary to
make the optimal connection? For n = 1, a simple bang, either
λ(t ) = λmin or λ(t ) = λmax, of duration tf makes it possible to
adjust the final value of the single variable. For n = 2, there
will be a mismatch between the target value of the second
variable and the one obtained with a simple bang that tunes
the final value of the first variable. This makes it necessary
to introduce a second step with the control being switched
to the opposite limit: two bangs, either λ(t ) = λmax followed
by λ(t ) = λmin or vice versa, of durations t1 and t2, with tf =
t1 + t2, allow for matching the final values of two variables,
and thus suffices for n = 2. In general, we have to introduce
n − 1 jumps at intermediate times to allow for matching all n
variables: the number of bangs equals the number of variables.

Specifically, we have shown that the above picture is
indeed the correct one by solving a simple but relevant
physical situation: the compression and decompression of
a Brownian particle trapped in a d-dimensional harmonic

14Also at the mesoscopic level of description (fluctuating hy-
drodynamics, stochastic thermodynamics, ...), which incorporates
fluctuations of these quantities to the picture.
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potential, by controlling the temperature of the bath.15 For
n = 2 (axial symmetry for d = 3 or 2), a two-step bang-bang
process, qualitatively similar to that found in the granular
fluid, carries out the optimal connection: heating-cooling or
cooling-heating, depending on the final value of the tempera-
ture being larger or smaller than the initial one. For d = 3, an
optimal three-step bang-bang process arises: heating-cooling-
heating or cooling-heating-cooling, again depending on the
final value of the temperature.

Our work has been focused on the minimization of the con-
necting time tf between two NESS of the granular fluid. Not
only is the optimization of the connection time between two
given states a relevant problem from a fundamental point of
view, but also has potential applications in different contexts.
For example, minimizing the connection time in the adiabatic,
in the sense of zero heat, branches is essential for building a
finite-time version of Carnot’s heat engine that maximizes the
delivered power [56]. Also, the optimization of the relaxation
route to equilibrium or to a NESS is of interest in connection
with behaviors such as the Mpemba effect, which is currently
a very active field of research [52,57–61].

In addition, we have considered the associated statistical
length L and cost C over the optimal processes in the granular
fluid. The length of the optimal bang-bang protocols is always
longer that that of the relaxation process, which contributes
to increase the bound for the connecting time; recall that tf �
L2/(2C). However, this is compensated by the cost, which is
dominated by a term proportional to the maximum value of the
noise intensity χmax → ∞, i.e., the cost diverges. Therefore,
the bound goes to zero and the connecting time may (and we
have shown that this is indeed the case here) beat the speed
limit for relaxation.

Had we minimized the cost, we would have obtained an
infinite operation time. Therein, the system would be for all
times in the NESS corresponding to the instantaneous value
of the noise intensity and thus the cost would vanish. The
divergence of the operation time, when minimizing the cost, is
the counterpart of the divergence of the cost, when minimizing
the connection time. But the analogy ends there. We have
shown in the granular gas that the minimum connecting time
does not vanish despite the diverging cost: the cooling part of
the bang-bang protocol involves a finite time. Our general ar-
guments above, and the specific example of the d-dimensional
oscillator, show that this will be also the case in many physical
situations where a nonholonomic constraint is present, e.g.,
when controls are non-negative.

Our approach opens interesting perspectives for further
research. In the context of granular systems, it is far from
trivial to rigorously prove the global stability of the long-time
NESS. Indeed, there are strong signs, but not a formal proof,
that it is the relative Kullback-Leibler divergence with respect
to the stationary distribution, and not Shannon’s entropy, that
acts as a Lyapunov functional [29,30,62,63]. In this sense, the

15Optical confinement makes it possible to control the time depen-
dence of the effective temperature seen by the Brownian particle by
randomly shaking the confining trap or by using Brownian particles
with an inherent charge submitted to a random electric field [55].

role of the Fisher information for rigorously establishing the
H theorem for granular gases is worth investigating.

For Markovian dynamics, the cost C has been related in
general to entropy production [3,5,31,32]. In the realm of
kinetic theory and, more specifically, for the granular case, the
situation is far more complicated. Even admitting Shannon’s
as the good definition of entropy for the granular case, there
is not a clear-cut way of splitting entropy production into “ir-
reversible” and “flux” contributions, as discussed in Ref. [28].
Therefore, elucidating the physical meaning of information
geometry’s cost (beyond stating that it is the physical quantity
appearing in the thermodynamic uncertainty relation for the
connecting time) in granular fluids is a relevant problem that
remains to be solved.

Kinetic theory tools are not restricted to low density
(or moderate density if using Enskog’s equation instead of
Boltzmann’s) gases, either molecular or granular. They have
also been successfully applied to other intrinsically nonequi-
librium systems such as active matter [64–69]. Also, the
classical kinetic approach holds for dilute ultracold gases:
despite the very low temperatures, they are still far from
the threshold at which quantum effects cease to be negligi-
ble [70–72]. Therefore, it is worth looking into the application
of information-geometry concepts and, in general, the exten-
sion of our results to these physical contexts.
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APPENDIX A: CLASSICAL SPEED LIMITS
AND GEODESIC PROPERTIES IN THE

GAUSSIAN APPROXIMATION

In this Appendix, we derive explicit expressions for the
speed limits for the relaxation process and analyze some prop-
erties of the geodesic in probability space. The analysis is
carried out in the Gaussian approximation, where the gran-
ular gas is completely described by the granular temperature
T (t ). The velocity distribution function is assumed to be the
d-dimensional Maxwellian

PG(v; T (t )) = (2πT )−d/2 exp

(
− v2

2T

)
. (A1)

The temperature obeys the evolution equation

Ṫ = χ − T 3/2, (A2)

which stems from Eqs. (8a) and (8b) with as
2 = 0. Throughout,

we employ the subindex G to denote those quantities calcu-
lated within the Gaussian approximation.

1. Classical speed limits for the relaxation process

First, we calculate the Fisher information. Its defini-
tion (13) entails that IG(t ) = 〈[∂t ln PG(v, T (t ))]2〉G, where
〈. . . 〉G means average with the Gaussian distribution in
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Eq. (A1). Making use of

∂t ln PG(v; T (t )) = Ṫ (t )

2T (t )

(
−d + v2

T

)
, (A3)

and the fact that 〈v4〉 = (d + 2)〈v2〉2/d = d (d + 2)T 2 for a
Gaussian distribution, it is readily shown that

IG(t ) = d

2

(
Ṫ (t )

T (t )

)2

G

. (A4)

The subindex G on the right-hand side means that we have to
consistently evaluate T (t ) within the Gaussian approximation,
i.e., over the solution of Eq. (A2).

Second, the Bhattacharyya angle is also obtained from
its definition, Eq. (15). Specifically, we calculate the angle
between the Gaussian distributions corresponding to the initial
temperature (recall that Ti = 1 with our choice of units) and
the final one Tf. Taking into account that (i) the integrand is
Gaussian and (ii) the d-dimensional integral factorizes into
the product of d identical integrals, we have that

∫
dv

√
PG(v, Ti = 1)PG(v, Tf ) =

(
2
√

Tf

1 + Tf

)d/2

(A5)

and

�G = 2 arccos

[(
2
√

Tf

1 + Tf

)d/2
]
. (A6)

We can also derive analytical expressions for the statisti-
cal length and the cost in the Gaussian case. In particular,
we are interested here in the relaxation process between the
initial and final NESS, with time-independent driving χ =
χf = T 3/2

f . In the Gaussian approximation, the evolution of
the temperature is monotonic and therefore we can integrate
over the temperature instead of over time. For the statistical
length, we get

Lrel
G =

√
d

2

∫ tf

0
dt

∣∣∣∣ Ṫ (t )

T (t )

∣∣∣∣ =
√

d

2

∣∣∣∣
∫ tf

0
dt

Ṫ (t )

T (t )

∣∣∣∣
=

√
d

2

∣∣∣∣
∫ Tf

1

dT

T

∣∣∣∣ =
√

d

2
| ln Tf|, (A7)

whereas for the cost we have that

Crel
G = d

4

∫ tf

0
dt

(
Ṫ (t )

T (t )

)2

= d

4

∫ Tf

1
dT

Ṫ

T 2

= d

4

∫ Tf

1
dT

T 3/2
f − T 3/2

T 2
= d

4

(
T 3/2

f − 3T 1/2
f + 2

)
.

(A8)

Let t rel
f be the time for connecting the initial and final NESS

in the relaxation process. The classical speed limits derived in
Ref. [5] ensure that, within the Gaussian approximation we
are employing,

t rel
f � L2

G

2CG
� �2

G

2CG
, (A9)

i.e.,

tf � |ln Tf|2
2T 3/2

f − 3T 1/2
f + 2

�
8 arccos2

[( 2
√

Tf

1+Tf

)d/2]
d

(
T 3/2

f − 3T 1/2
f + 2

) . (A10)

The above inequalities are equivalent to those in Eqs. (18)–
(21) of the main text.

2. Geodesic in the Gaussian approximation

The geodesic in probability space can be further charac-
terized. To do so, it is useful to introduce a rescaled time
τ = t/tf for a process of duration tf, with 0 � τ � 1. The
probability distribution over the geodesic P∗(v, τ ) is obtained
by minimizing the statistical length L with the constraint∫

dv P(v, τ ) = 1, ∀ τ . A straightforward but rather lengthy
calculation leads to the result [5]

√
P∗(v, τ ) =

√
Pi(v) sin

[
�
2 (1 − τ )

] + √
Pf(v) sin

(
�
2 τ

)
sin

(
�
2

) .

(A11)
Over the geodesic, the cost is also minimized but it depends
on the connecting time tf, i.e., on the parametrization of the
geodesic [37]. Specifically, it is obtained that C∗ = �2/(2tf ).
It is worth stressing that Eq. (A11) is exact and general, valid
for any dynamics, as shown in Ref. [5].

Let us analyze the geodesic in more detail, for the specific
case of the granular fluid. The granular temperature over the
geodesic is directly obtained by taking the second moment of
the probability distribution in Eq. (A11):

T ∗(τ ) = 1

sin2
(

�G
2

){
sin2

[
�G

2
(1 − τ )

]
+ Tf sin2

(
�G

2
τ

)

+ 4Tf

1 + Tf
cos

(
�G

2

)
sin

(
�G

2
τ

)

× sin

[
�G

2
(1 − τ )

]}
. (A12)

The first and second terms on the right-hand side come from
Pi(v) and Pf(v), respectively, and are exact. The third term
stems from the product

√
Pi(v)Pf(v) and has been written

in the Gaussian approximation. Consistently, we have sub-
stituted � with �G, which is given as a function of Tf by
Eq. (A6), in the three terms. Of course, T ∗(τ ) > 0 because all
terms on the right-hand side of Eq. (A12) are non-negative.

A relevant issue is whether it is possible for the granular
gas to move over the geodesic or not. We can answer this
question in the Gaussian approximation we are employing.
The temperature program over the geodesic follows from the
time-dependent protocol for the driving

χ∗
G(t ) = Ṫ ∗(t ) + [T ∗(t )]3/2

, (A13)

making use of Eq. (A2). In the scaled time τ , the driving is
thus

χ∗
G(τ ) = 1

tf

dT ∗(τ )

dτ
+ [T ∗(τ )]3/2

. (A14)

The second term corresponds to the “quasistatic” driving: in
the NESS, χ = T 3/2. The first term is the finite-time contribu-
tion, which vanishes in the limit as tf → ∞.
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Taking the derivative of Eq. (A12), after a little bit of
algebra one gets

dT ∗

dτ
= �G

2 sin2
(

�G
2

) Tf − 1

Tf + 1
{Tf sin(�Gτ ) + sin[�G(1 − τ )]}.

(A15)
The temperature evolution is monotonic over the geodesic: the
sign of the derivative is completely encoded in Tf − 1 because
all the other terms are strictly positive. This introduces an
asymmetry between the cases Tf > 1 and Tf < 1. For Tf > 1,
the finite-time contribution t−1

f dT ∗(τ )/dτ is always positive
and there is a well-defined driving that makes the temperature
sweep the geodesic curve, even in the limit tf → 0+. For
Tf < 1, the finite-time contribution t−1

f dT ∗(τ )/dτ is negative:
for short enough connecting time tf, it will become larger (in
absolute value) than the quasistatic driving and make χG < 0.

The above discussion implies that the geodesic cannot be
swept for too short connecting times for Tf < 1. It is illustra-
tive to consider the particularization of Eq. (A15) for τ = 1

2 to
give an estimate for the connecting time such that χG becomes
negative:

dT ∗

dτ

∣∣∣∣
τ=1/2

= �G

2 sin
(

�G
2

) (Tf − 1). (A16)

The condition for having χG(τ = 1/2) < 0 is

tf <
�G

2 sin
(

�G
2

) 1 − Tf

[T ∗(τ = 1/2)]3/2
, (A17)

which can be ensured if

tf <
�G

2 sin
(

�G
2

) (1 − Tf ). (A18)

Note the time for which χG first becomes negative is longer
than the right-hand side of Eq. (A18).

APPENDIX B: SIMPLE ESR POLYNOMIAL CONNECTION

Here we discuss how the ESR protocol is built from a
simple polynomial. We need at least a fourth-order poly-
nomial with five coefficients: four to adjust the boundary
conditions (23) for the temperature, and one extra parameter
to impose that A2p(tf ) = 1.

To start with, it is adequate to employ the scaled time τ =
t/tf introduced in Appendix A 2 and to work with the thermal
velocity vth ≡ √

T . Consistently, vth,p(τ ) = √
Tp (τ ), and we

rewrite Eq. (24) as

χp(τ ) = v2
th,p(τ )

[
2
tf

dvth,p(τ )
dτ

+ vth,p(τ )
(
1 + 3

16 as
2A2p(τ )

)]
1 + 3

16 as
2

.

(B1)
Insertion of this expression for the noise intensity into the
evolution equation of the excess kurtosis gives, after some
algebra,

dA2p(τ )

dτ
= − 4

1 + 3
16 as

2

d ln vth,p(τ )

dτ
A2p(τ )

− 2tf

(
B + 3as

2A2p(τ )

16 + 3as
2

)
vth,p(τ )(A2p(τ ) − 1).

(B2)
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FIG. 14. Thermal velocity vth,p and noise intensity χp for the
fourth-order polynomial connection, as a function of the normalized
time τ = t/tf. All panels are for the two-dimensional case: (a) and
(b) correspond to α = 0.8 and (c) and (d) correspond to α = 0.3. In
each panel, three curves are plotted for different connection times:
from bottom to top, tf = 1 (solid black), tf = 0.5 (dashed purple),
and tf=0.25 (dotted green). For the shortest connection time, χp(t )
becomes negative inside a certain time window.

We solve this equation, with the initial condition A2p(0) = 1,
with the following fourth-order polynomial for the thermal
velocity,

vth,p(τ ) = 1 + cτ 2 + (4�vth − 2c)τ 3 + (c − 3�vth )τ 4,

(B3)
where �vth ≡ �

√
T = √

Tf − 1. The parameter c is tuned to
meet the boundary condition A2p(tf ) = 1: there is only one
fourth-order polynomial making the connection.

We have carried out the above procedure by numerically
solving Eq. (B2) for the two-dimensional case, i.e., hard
disks. We show the numerical results for Tf > 1 in Fig. 14,
specifically for Tf = 4 (�vth = 1). The following qualitative
behavior is observed: as the connecting time tf in decreased,
the driving χp(t ) goes to very high values before decreasing
to lower, even negative, values. Evidently, the noise intensity
χp(t ) cannot become negative, so this means that the ESR
connection cannot be done with a fourth-order polynomial for
too short times.16

The observed behavior hints at the emergence of a mini-
mum, nonvanishing, value of the connecting time for the ESR
protocol, both for Tf > 1 and Tf < 1. This feeling is reinforced
by employing higher-order polynomials. For example, in the
fifth-order case, there is a monoparametric family of poly-
nomials connecting the initial and final NESS. Nevertheless,
χp(t ) becomes negative for tf below a certain value, over the
whole family of polynomials making the connection.

16A similar behavior is found for Tf < 1, but the driving first
decreases, taking also negative values for short enough tf, and af-
terwards increases to overshoot its final value.
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APPENDIX C: FISHER INFORMATION
IN THE SONINE APPROXIMATION

Here, we look into the Fisher information I (t ) within the
Sonine approximation we have considered throughout. The
velocity distribution function is expanded as

P(v, t ) = PG(v, T (t ))

[
1 +

∞∑
k=2

ak (t )Sk

(
v2

2T

)]
, (C1)

where PG(v, T (t )) is the Maxwellian distribution of Eq. (A1),
ak (t ) are the coefficients of the expansion, which are related to

the cumulants, and finally Sk (x) ≡ L
( d−2

2 )
k (x) are the associated

Laguerre (or Sonine) polynomials [73]. The explicit expres-
sion for the first Sonine polynomials are [47]

S0(x) = 1, S1(x) = −x + d

2
, (C2a)

S2(x) = 1

2
x2 − d + 2

2
x + d (d + 2)

8
. (C2b)

The first Sonine approximation consists in keeping only
the first term in the expansion, with coefficient a2 that equals
the excess kurtosis, and neglecting nonlinear contributions in
a2 in all the expressions derived from Eq. (C1).17 For our
purposes, it is convenient to rewrite Eq. (C1) as follows: we
introduce a dimensionless velocity

c(v, T (t )) = v/
√

2T (t ), (C3)

and the order of unity quantity A2(t ) defined in Eq. (7), so that

P(v, t ) = e−c2

[2πT (t )]d/2

[
1 + as

2A2(t )S2(c2)
]
. (C4)

Now we proceed to calculate the Fisher information. For
that, we take into account

∂t f (c2) = df (c2)

d (c2)
∂t c

2 = − Ṫ (t )

T (t )
c2 df (c2)

d (c2)
(C5)

to write

∂t ln P(v, t ) = − Ṫ

T
S1(c2) + as

2

[
Ȧ2S2(c2) − A2

Ṫ

T
c2 dS2(c2)

d (c2)

]
.

(C6)

In order to obtain I (t ), Eq. (C6) is squared and averaged with
the probability distribution (C4), neglecting nonlinear terms
in as

2. After a little algebra, one gets

I (t ) = IG(t ) + as
2A2

(
Ṫ

T

)2

×
[

S2
1 (c2)S2(c2) + 2 c2S1(c2)

dS2(c2)

d (c2)

]
, (C7)

17The first polynomial S1 does not appear in the expansion because
the Gaussian distribution gives the correct value for the temperature
T (t ), i.e., the corresponding coefficient a1(t ) vanishes identically.

where we have omitted the time dependence of T (t ) and A2(t )
to simplify the notation, and defined

f (c) ≡
∫

dc f (c) φ(c), φ(c) = π−d/2e−c2
(C8)

as the average of f (c) with the dimensionless Gaussian
distribution φ(c). The averages in Eq. (C7) are thus d-
dimensionless integrals of polynomials with the Gaussian
distribution, which result in

I (t ) = I (0)(t )

[
1 − d + 2

2
as

2A2(t )

]
, I (0)(t ) = d

2

(
Ṫ (t )

T (t )

)2

.

(C9)

There is no contribution coming from the term proportional to
Ȧ2 in Eq. (C6) because of the orthogonality of Sonine poly-
nomials S j (c2)Sk (c2) = 0 for j �= k. Also, note that I (0)(t ) �=
IG(t ) because we no longer set the excess kurtosis to zero in
the first Sonine approximation. Notwithstanding, the small-
ness of as

2 implies that the main contribution to the Fisher
information comes from I (0)(t ).

APPENDIX D: NORMAL MODES FOR THE
d-DIMENSIONAL HARMONIC POTENTIAL

Our starting point is the Fokker-Planck equation (65), for
the harmonic potential case. The transformation to normal
modes is orthogonal, i.e., there exists an orthogonal matrix
of elements Cjk such that

x j =
d∑

β=1

Cjβξβ,

d∑
β=1

CjβCkβ = δ jk, (D1)

which diagonalizes the symmetric matrix, with elements λ jk ,
of the harmonic well Uh(x),

d∑
β=1

d∑
β ′=1

Cjβλ jkCkβ ′ = κβδβ,β ′ , (D2)

Uh(ξ) = 1

2

d∑
β=1

κβξ 2
β . (D3)

Therefore, the Fokker-Planck equation can be rewritten in
terms of the probability P(ξ, t ) = P(x, t ) as

γ ∂t P(ξ, t ) = ∇ξ · [∇ξUh(ξ) P(ξ, t )] + kBT (t ) ∇2
ξP(ξ, t ).

(D4)

At equilibrium, the initial distribution P(ξ, t = 0) factor-
izes into the product of d Gaussian distributions with zero
mean and variances Ti/κβ , one for each normal mode. Since
∂ξβ

Uh(ξ) = κβξβ , the joint distribution P(ξ, t ) still factorizes
into d Gaussian distributions with zero mean for all times.
Therefore, it is completely characterized by the variances of
the modes 〈ξ 2

β 〉, which obey the uncoupled equations

γ
d

dt

〈
ξ 2
β

〉 = −2κβ

〈
ξ 2
β

〉 + 2kBT (t ). (D5)

It is convenient to go to dimensionless variables, by intro-
ducing suitable units for time, length, and temperature. We
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label the modes in such a way that κ1 � · · · � κd . We define

t∗ = κ1

γ
t, ξ ∗

β = ξβ√
kBTi/κ1

, T ∗(t ) = T (t )

Ti
. (D6)

With our choice of units, 〈(ξ ∗
1 )2〉i = 1 and T ∗

i = 1. We can
rewrite (D5) as

d

dt∗ 〈(ξ ∗
β )2〉 = −2κ∗

β〈(ξ ∗
β )2〉 + 2T ∗(t ), (D7)

where κ∗
β = κβ/κ1, i.e.,

κ∗
1 = 1 � · · · � κ∗

d . (D8)

Equation (D7) is equivalent to (66) of the main text. Therein,
we have dropped the asterisks in order not to clutter our
formulas.
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