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1. Introduction

In 1950 A.I. Malcev proved that a solvable Lie algebra is uniquely determined by its 
nilradical [19]. A decade later Mubarakzjanov proposed the method of description of 
solvable Lie algebra in terms of nilradical and its nil-independent derivations [20]. He 
noted that the codimension of nilradical does not exceed the number of nil-independent 
derivations and the number of generators of the nilradical. Since then the classification of 
solvable Lie algebras with the Abelian, Heisenberg, filiform, quasi-filiform nilradicals is 
obtained, see for instance [5,6,21,25,26,24]. Recently, the topic of research has drawn a lot 
of attention and in particular in [11] the authors extended Mubarakzjanov’s method to 
Leibniz algebras. Therefore, along the last few years have been obtained classifications 
with different types of Leibniz nilradicals [10–12,18]. Among all the solvable Lie and 
Leibniz algebras special mention deserves the maximal (in dimensional sense) solvable 
Lie and Leibniz algebras with given nilradical, due to its properties, they are in some 
cases cohomologically rigid [4].

The main goal of this paper is the study of maximal solvable Lie and Leibniz su-
peralgebras with a given nilradical. It should be noted that the structures of solvable 
Lie and Leibniz superalgebras are more complex than structures of solvable Lie and 
Leibniz algebras [23]. In particular, Lie’s theorem is not true (neither in its general or 
its reduced forms) for a solvable Leibniz (respectively, Lie) superalgebras L. Moreover, 
the square of a solvable superalgebra is not necessary to be nilpotent [22]. Nevertheless, 
throughout this paper we show that under certain conditions Mubarakzjanov’s method 
of description of maximal solvable Lie and Leibniz algebras with given nilradical is also 
applicable for Lie and Leibniz superalgebras, respectively. In particular, we determine 
the maximal dimensional solvable Lie and Leibniz superalgebras with model filiform 
and model nilpotent nilradicals. Additionally, we compute the space of superderivations 
on the maximal-dimensional solvable Lie and Leibniz superalgebras with filiform and 
model nilpotent nilradical and show that all of these superderivations are inner. These 
results constitute an extension of the results obtained for similar Lie and Leibniz alge-
bras. Finally, let us note that all Lie and Leibniz superalgebras obtained in this paper 
are excellent candidates to cohomologycally rigid superalgebras, we leave this study for 
a further work though.

2. Preliminary results

A vector space V is said to be Z2-graded if it admits a decomposition in direct sum, 
V = V0̄⊕V1̄, where ̄0, ̄1 ∈ Z2. An element x ∈ V is called homogeneous of degree ī if it is an 
element of Vī, ̄i ∈ Z2. In particular, the elements of V0̄ (resp. V1̄) are also called even (resp. 
odd). For a homogeneous element x ∈ V we denote |x| the degree of x (either 0̄ or 1̄).

A Lie superalgebra (see [15]) is a Z2-graded vector space g = g0̄ ⊕ g1̄ together with 
an even bilinear mapping [·, ·] : g × g −→ g ([g0̄, g0̄] ⊂ g0̄, [g0̄, g1̄] ⊂ g1̄ and [g1̄, g1̄] ⊂ g0̄), 
which for any arbitrary homogeneous elements x, y, z satisfies the conditions:
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1. [x, y] = −(−1)|x||y|[y, x],
2. (−1)|z||x|[x, [y, z]] +(−1)|x||y|[y, [z, x]] +(−1)|y||z|[z, [x, y]] = 0 (super Jacobi identity).

Thus, g0̄ is an ordinary Lie algebra, and g1̄ is a module over g0̄; the Lie superalgebra 
structure also contains the symmetric pairing S2g1̄ −→ g0̄.

In general, the descending central sequence of a Lie superalgebra g = g0̄ ⊕ g1̄ is 
defined in the same way as for Lie algebras: C0(g) := g, Ck+1(g) := [Ck(g), g] for all 
k ≥ 0. Consequently, if Ck(g) = {0} for some k, then the Lie superalgebra is called 
nilpotent. Then, the smallest integer k such that Ck(g) = {0} is called the nilindex of 
the Lie superalgebra g. Likewise, the derived sequence of g is defined by D0(g) := g, 
Dk+1(g) := [Dk(g), Dk(g)] for all k ≥ 0. If this sequence is stabilized in zero, then 
the Lie superalgebra is said to be solvable. All nilpotent Lie superalgebras are solvable 
ones. Engel’s theorem and its direct consequences remain valid for Lie superalgebras. In 
particular, a Lie superalgebra L is nilpotent if and only if adLx is nilpotent for every 
homogeneous element x of L. Moreover, for solvable Lie superalgebras we have that a 
Lie superalgebra L is solvable if and only if its Lie algebra L0 is solvable. Nevertheless, 
we do not have the analog of Lie’s Theorem and neither its corollaries for solvable Lie 
superalgebras.

At the same time, there are also defined two other crucial sequences denoted by Ck(g0̄)
and Ck(g1̄) which will play an important role in our study. They are defined as follows:

C0(gī) := gī, Ck+1(gī) := [g0̄, Ck(gī)], k ≥ 0, ī ∈ Z2.

This last sequences allow us to introduce filiform Lie superalgebras. Thus, a Lie su-
peralgebra g = g0̄ ⊕ g1̄ is said to be filiform if g0̄ is a filiform Lie algebra (those algebras 
with nilindex dim(g0̄) − 1) and the action of g0̄ over g1̄ has the structure of filiform 
g0̄-module, i.e. dim

(
Ci−1(g1̄)/Ci(g1̄)

)
= 1 for 1 ≤ i ≤ dim(g1̄).

In the study nilpotent Lie algebras we have the invariant called characteristic sequence 
that can be naturally extended for Lie superalgebras.

Definition 2.1. For an arbitrary element x ∈ g0̄, the adjoint operator adx is a nilpotent 
endomorphism of the space gi, where i ∈ {0̄, ̄1}. We denote by gzi(x) the descending 
sequence of dimensions of Jordan blocks of adx. Then, we define the invariant of a Lie 
superalgebra g as follows:

gz(g) =
(

max
x∈g0̄\[g0̄,g0̄]

gz0̄(x)
∣∣∣∣ max
x̃∈g0̄\[g0̄,g0̄]

gz1̄(x̃)
)
,

where gzi is in lexicographic order.
The couple gz(g) is called characteristic sequence of the Lie superalgebra g.
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Let us recall the definition of superderivations for Lie superalgebras [15]. A su-
perderivation of degree s of a Lie superalgebra L, s ∈ Z2, is an endomorphism D ∈ EndsL

with the property

D(ab) = D(a)b + (−1)s·degaaD(b).

If we denote DersL ⊂ EndsL the space of all superderivations of degree s, then 
DerL = Der0L ⊕Der1L is the Lie superalgebra of superderivations of L, with Der0L

composed by even superderivations and Der1L by odd ones.

2.1. Preliminaries for Leibniz superalgebras

Remark that many results and definitions of the above section can be extended for 
Leibniz superalgebras.

Definition 2.2. [2]. A Z2-graded vector space L = L0̄⊕L1̄ is called a Leibniz superalgebra
if it is equipped with a product [·, ·] which for an arbitrary element x and homogeneous 
elements y, z satisfies the condition

[x, [y, z]] = [[x, y], z] − (−1)|y||z|[[x, z], y] (super Leibniz identity).

Note that if a Leibniz superalgebra L satisfies the identity [x, y] = −(−1)|x||y|[y, x]
for any homogeneous elements x, y ∈ L, then the super Leibniz identity becomes the 
super Jacobi identity. Consequently, Leibniz superalgebras are a generalization of Lie 
superalgebras. Also and in the same way as for Lie superalgebras, isomorphisms are 
assumed to be consistent with the Z2-graduation.

Let us now denote by Rx the right multiplication operator, i.e., Rx : L → L given as 
Rx(y) := [y, x] for y ∈ L, then the super Leibniz identity can be expressed as R[x,y] =
RyRx − (−1)|x||y|RxRy.

If we denote by R(L) the set of all right multiplication operators, then R(L) with 
respect to the following multiplication

< Ra, Rb >:= RaRb − (−1)īj̄RbRa (2.1)

for Ra ∈ R(L)ī, Rb ∈ R(L)j̄ , forms a Lie superalgebra. Note that Ra is a derivation. In 
fact, the condition for being a derivation of a Leibniz superalgebra (for more details see 
[17]) is d([x, y]) = (−1)|d||y|[d(x), y] + [x, d(y)]. Since the degree of Rz as homomorphism 
between Z2-graded vector spaces is the same as the degree of the homogeneous element 
z, that is |Rz| = |z|, then the condition for Rz to be a derivation is exactly Rz([x, y]) =
(−1)|z||y|[Rz(x), y] + [x, Rz(y)]. This last condition can be rewritten [[x, y], z] =
(−1)|z||y|[[x, z], y] + [x, [y, z]] which is nothing but the super (graded) Leibniz identity.

Let us note that the concepts of descending central sequence, nilindex, the variety of 
Leibniz superalgebras and Engel’s theorem are natural extensions from Lie theory.
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Let V = V0̄ ⊕ V1̄ be the underlying vector space of L, L = L0̄ ⊕ L1̄ ∈ Leibn,m, being 
Leibn,m the variety of Leibniz superalgebras, and let G(V ) be the group of the invertible 
linear mappings of the form f = f0̄ + f1̄, such that f0̄ ∈ GL(n, C) and f1̄ ∈ GL(m, C)
(then G(V ) = GL(n, C) ⊕GL(m, C)). The action of G(V ) on Leibn,m induces an action 
on the Leibniz superalgebras variety: two laws λ1, λ2 are isomorphic if there exists a 
linear mapping f = f0̄ + f1̄ ∈ G(V ), such that

λ2(x, y) = f−1
ī+j̄

(λ1(fī(x), fj̄(y))), for any x ∈ Vī, y ∈ Vj̄ .

Furthermore, the description of the variety of any class of algebras or superalgebras 
is a difficult problem. Different papers (for example, [3,8,13,14]) are regarding the ap-
plications of algebraic groups theory to the description of the variety of Lie and Leibniz 
algebras.

Definition 2.3. For a Leibniz superalgebra L = L0̄ ⊕ L1̄ we define the right annihilator 
of L as the set Ann(L) := {x ∈ L : [L, x] = 0}.

It is easy to see that Ann(L) is a two-sided ideal of L and [x, x] ∈ Ann(L) for any 
x ∈ L0̄. This notion is compatible with the right annihilator in Leibniz algebras. If we 
consider the ideal I := ideal < [x, y] + (−1)|x||y|[y, x] >, then I ⊂ Ann(L).

Let L = L0̄⊕L1̄ be a nilpotent Leibniz superalgebra with dimL0̄ = n and dimL1̄ = m. 
From Equation (2.1) we have that R(L) is a Lie superalgebra, and in particular R(L0̄)
is a Lie algebra. As L1̄ has L0̄-module structure we can consider R(L0̄) as a subset of 
GL(V1̄), where V1̄ is the underlying vector space of L1̄. So, we have a Lie algebra formed 
by nilpotent endomorphisms of V1̄. Applying the Engel’s theorem we have the existence 
of a sequence of subspaces of V1̄, V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vm = V1̄, with R(L0̄)(Vi+1) ⊂ Vī. 
Then, it can be defined the descending sequences Ck(L0̄) and Ck(L1̄) and the super-
nilindex in the same way as for Lie superalgebras. That is, C0(Lī) := Lī, Ck+1(Lī) :=
[Ck(Lī), L0̄], k ≥ 0, ī ∈ Z2. If L = L0̄ ⊕ L1̄ is a nilpotent Leibniz superalgebra, then L
has super-nilindex or s-nilindex (p, q) if satisfies

Cp−1(L0̄) �= 0, Cq−1(L1̄) �= 0, Cp(L0̄) = Cq(L1̄) = 0.

We have for Lie superalgebras the invariant called characteristic sequences that can be 
naturally extended for Leibniz superalgebras. Thus, we have the following definition.

Definition 2.4. For an arbitrary element x ∈ L0̄, the operator Rx is a nilpotent endomor-
phism of the space Li, where i ∈ {0̄, ̄1}. We denote by gzi(z) the descending sequences 
of dimensions of Jordan blocks of Rx. Then, we define the invariant of a Leibniz super-
algebra L as follows:

gz(L) =
(

max gz0̄(x)
∣∣∣∣ max gz1̄(x̃)

)
,

x∈L0̄\[L0̄,L0̄] x̃∈L0̄\[L0̄,L0̄]
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where gzi is in lexicographic order.
The couple gz(L) is called characteristic sequences of a Leibniz superalgebra L.

3. Maximal-dimensional solvable Lie superalgebras with filiform nilradical

Throughout this section we study solvable Lie superalgebras with maximal dimension 
of the complementary space to nilradical, being the nilradical the model filiform Lie 
superalgebra Ln,m. Let us recall that in [9] the authors proved that under the condition 
of being L2 nilpotent, any solvable Lie superalgebra over the real or complex numbers 
field can be obtained by means of outer non-nilpotent superderivations of the nilradical. 
Therefore, for any solvable Lie superalgebra r with r2 nilpotent, we have a decomposition 
into semidirect sum:

r = t
−→⊕n,

[t, n] ⊂ n, [n, n] ⊂ n, [t, t] ⊂ n.

Along the present section we consider as nilradical the model filiform Lie superalgebra 
Ln,m, that is, the simplest filiform Lie superalgebra which is defined by the only non-zero 
products

Ln,m :
{

[x1, xi] = −[xi, x1] = xi+1, 2 ≤ i ≤ n− 1
[x1, yj ] = −[yj , x1] = yj+1, 1 ≤ j ≤ m− 1

where {x1, . . . , xn} be a basis of (Ln,m)0̄ and {y1, . . . , ym} be a basis of (Ln,m)1̄. Note that 
Ln,m is the most important filiform Lie superalgebra, in complete analogy to Lie algebras, 
since all the other filiform Lie superalgebras can be obtained from it by deformations 
[7]. These infinitesimal deformations are given by the even 2-cocycles Z2

0̄ (Ln,m, Ln,m).
On the other hand, t = span{t1, t2, t3} corresponds with the maximal torus of deriva-

tions of Ln,m, which is composed, in particular, by even superderivations. Then t is 
Abelian ([t, t] = 0) and the operators adti (ti ∈ t) are diagonal. A straightforward com-
putation leads to the following action of t over Ln,m:

[t1, xi] = ixi, 1 ≤ i ≤ n;
[t1, yj ] = jyj , 1 ≤ j ≤ m;
[t2, xi] = xi, 2 ≤ i ≤ n;
[t3, yj ] = yj , 1 ≤ j ≤ m.

Thus, the solvable Lie superalgebra that we are going to consider, and henceforth 
named SLn,m, is defined in a basis {x1, . . . , xn, t1, t2, t3, y1, . . . , ym} by the only non-
zero bracket products
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SLn,m :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[x1, xi] = −[xi, x1] = xi+1, 2 ≤ i ≤ n− 1;
[x1, yj ] = −[yj , x1] = yj+1, 1 ≤ j ≤ m− 1;
[t1, xi] = −[xi, t1] = ixi, 1 ≤ i ≤ n;
[t1, yj ] = −[yj , t1] = jyj , 1 ≤ j ≤ m;
[t2, xi] = −[xi, t2] = xi, 2 ≤ i ≤ n;
[t3, yj ] = −[yj , t3] = yj , 1 ≤ j ≤ m;

with {x1, . . . , xn, t1, t2, t3} a basis of (SLn,m)0̄ and {y1, . . . , ym} a basis of (SLn,m)1̄. The 
purpose now is to find out whether SLn,m is the unique solvable Lie superalgebra with 
maximal codimension of nilradical Ln,m.

Theorem 3.1. An arbitrary complex maximal-dimensional solvable Lie superalgebra L
with L2 nilpotent and nilradical Ln,m is isomorphic to SLn,m.

Proof. It is easy to see that superalgebra Ln,m can be considered as nilpotent Lie algebra 
(a Z2-graded Lie algebra), because of the fact that there is no symmetric bracket prod-
ucts in the law of Ln,m. Note also, that under the condition of being L2 nilpotent the 
techniques used in Lie superalgebras are rather similar to the ones used in Lie algebras, 
i.e. solvable extension by means of (super)derivations of nilradical, for more details it can 
be consulted [9]. Considering now Ln,m as a Lie algebra, the results of [16] allow us to 
assert that there is a unique solvable Lie algebra with maximal codimension of nilradical, 
i.e. maximal dimension of the complementary space to nilradical. Moreover this maximal 
codimension is equal to the number of generators of the nilradical, 3 in our case. It can 
be easily seen that this unique solvable Lie algebra described in [16] is isomorphic to 
SLn,m, considered the latter as a Lie algebra. Indeed, following to Theorem 3.2 [16] we 
have a solvable Lie algebra

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[x1, xi] = −[xi, x1] = xi+1, 2 ≤ i ≤ n− 1;
[x1, yj ] = −[yj , x1] = yj+1, 1 ≤ j ≤ m− 1;
[z1, x1] = −[x1, z1] = x1,

[z1, xi] = −[xi, z] = (i− 2)xi, 3 ≤ i ≤ n;
[z1, yj ] = −[yj , z1] = (j − 1)yj , 2 ≤ j ≤ m;
[z2, xi] = −[xi, z2] = xi, 2 ≤ i ≤ n;
[z3, yj ] = −[yj , z3] = yj , 1 ≤ j ≤ m;

and the isomorphism defined by {t1 = z1 + 2z2 + z3, t2 = z2, t3 = z3} shows that this 
Lie algebra is isomorphic to SLn,m.

Now, we consider Ln,m as a Lie superalgebra.
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The even superderivations D of Ln,m are in particular derivations of the Z2-graded Lie 
algebra Ln,m verifying D(Ln,m

0 ) ⊂ Ln,m

0 and D(Ln,m

1 ) ⊂ Ln,m

1 . The odd superderivations 
D of Ln,m, on the other hand, verify the following three conditions:

D([xi, xj ]) = [D(xi), xj ] + [xi, D(xj)], if xi, xj ∈ Ln,m

0 (3.1)

D([xi, yj ]) = [D(xi), yj ] + [xi, D(yj)], if xi ∈ Ln,m

0 , yj ∈ Ln,m

1 (3.2)

D([yi, yj ]) = [D(yi), yj ] − [yi, D(yj)], if yi, yj ∈ Ln,m

1 (3.3)

The equations (3.1) and (3.2) correspond with the Lie derivation condition. Thus, it 
remains to study the equation (3.3). Taking into account now the law of Ln,m it can be 
easily seen that the only possibility for having at least one non-null term in the equation 
(3.3) corresponds with the existence of yi such that x1 ∈ D(yi). Next, we explore such 
possibilities. For i ≥ 2, we get

D(yi) = D([x1, yi−1]) = [D(x1), yi] + [x1, D(yi−1)] = [x1, D(yi−1)]

Since [x1, D(yi−1)] ∈ span{x3, . . . , xn} we can exclude i for i ≥ 2. Suppose i = 1, and 
then

D(y1) = α1x1 +
n∑

k=2

αkxk, with α1 �= 0.

From equation (3.3) we get in particular

D([y1, y1]) = 0 = [D(y1), y1] − [y1, D(y1)] = 2α1y2

and then α1 = 0. Therefore the equation (3.3) vanishes over Ln,m and consequently 
all the odd superderivations of Ln,m are in particular derivations of the Z2-graded Lie 
algebra Ln,m verifying D(Ln,m

0 ) ⊂ Ln,m

1 and D(Ln,m

1 ) ⊂ Ln,m

0 .
Thus, all the superderivations of the Lie superalgebra Ln,m are particular cases of 

derivations of the Z2-graded Lie algebra Ln,m. Therefore, we can assert that SLn,m is 
not only the unique maximal-dimensional solvable Lie algebra with nilradical the Lie 
algebra Ln,m, but also is the unique maximal-dimensional solvable Lie superalgebra L
with L2 nilpotent and nilradical the model filiform Lie superalgebra Ln,m. �
4. Maximal-dimensional solvable Lie superalgebras with model nilpotent nilradical

Throughout this section firstly we extend the definition of model nilpotent to Lie 
superalgebras and after that we obtain the description of maximal-dimensional solvable 
Lie superalgebra with model nilpotent nilradical.

Next we recall the definition of model nilpotent Lie algebra, for more details it can 
be consulted for instance [4]. Thus, the model nilpotent Lie algebra with arbitrary char-
acteristic sequence (n1, n2, · · · , nk, 1) is composed by the Lie algebras admitting a basis 
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{x1, · · · , xn1+1, · · · , xn1+n2+1, · · · , xn1+···nk+1} such that the only non-null brackets (ex-
panded by skew-symmetry) are exactly the following

[x1, xj ] = xj+1, 2 ≤ j ≤ n1,

[x1, xn1+j ] = xn1+1+j , 2 ≤ j ≤ n2,

...
[x1, xn1+···+nk−2+j ] = xn1+···+nk−2+1+j , 2 ≤ j ≤ nk−1,

[x1, xn1+···+nk−1+j ] = xn1+···+nk−1+1+j , 2 ≤ j ≤ nk.

Therefore, we present the next definition in a natural way.

Definition 4.1. The model nilpotent Lie superalgebra with arbitrary characteristic se-
quences (n1, · · · , nk, 1|m1, · · · , mp) is nothing but the Lie superalgebra admitting a basis 
{x1, · · · , xn1+···nk+1, y1, · · · , ym1+···+mp

} with xi even basis vectors and yj odd basis 
vectors, such that the only non-null brackets are exactly the following

N(n1, · · · , nk, 1|m1, · · · , mp):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[x1, xj ] = −[xj , x1] = xj+1, 2 ≤ j ≤ n1,

[x1, xn1+···+nj+i]
= −[xn1+···+nj+i, x1] = xn1+···+nj+i+1, 1 ≤ j ≤ k − 1, 2 ≤ i ≤ nj+1,

[x1, yj ] = −[yj , x1] = yj+1, 1 ≤ j ≤ m1 − 1,
[x1, ym1+···+mj+i] = −[ym1+···+mj+i, x1]

= ym1+···+mj+i+1, 1 ≤ j ≤ p− 1, 1 ≤ i ≤ mj+1 − 1.

Remark 4.1. Note that the model filiform Lie superalgebra Ln,m is exactly N(n −1, 1|m).

Let us consider now t = span{t1, . . . , tk+1, t′1, . . . , t
′
p} the maximal torus of derivations 

of N(n1,··· ,nk,1|m1,··· ,mp), which is composed in particular by even superderivations. A 
straightforward computation leads to the following action of t over N(n1, · · · , nk, 1|m1,

· · · , mp):

[t1, xi] = ixi, 1 ≤ i ≤ n1 + · · · + nk + 1;
[t1, yj ] = jyj , 1 ≤ j ≤ m1 + · · · + mp;
[t2, xi] = xi, 2 ≤ i ≤ n1 + 1;
[tj+2, xn1+···+nj+i] = xn1+···+nj+i, 1 ≤ j ≤ k − 1, 2 ≤ i ≤ nj+1 + 1;
[t′1, yi] = yi, 1 ≤ i ≤ m1;
[t′j+1, ym1+···+mj+i] = ym1+···+mj+i, 1 ≤ j ≤ p− 1, 1 ≤ i ≤ mj+1.

Thus, the solvable Lie superalgebra that we are going to consider and denoted by 
SN(n1, · · · , nk, 1| m1, · · · , mp) is defined in a basis {x1, . . . , xn1+···nk+1, t1, . . . , tk+1, 
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t′1, . . . , t
′
p, y1, . . . , ym1+···+mp

} by the only non-zero bracket products: SN(n1, · · · , nk,

1|m1, · · · , mp):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[x1, xj ] = −[xj , x1] = xj+1, 2 ≤ j ≤ n1;
[x1, xn1+···+nj+i] = −[xn1+···+nj+i, x1]

= xn1+···+nj+i+1, 1 ≤ j ≤ k − 1, 2 ≤ i ≤ nj+1;
[x1, yj ] = −[yj , x1] = yj+1, 1 ≤ j ≤ m1 − 1;
[x1, ym1+···+mj+i]

= −[ym1+···+mj+i, x1] = ym1+···+mj+i+1, 1 ≤ j ≤ p− 1, 1 ≤ i ≤ mj+1 − 1;
[t1, xi] = −[xi, t1] = ixi, 1 ≤ i ≤ n1 + · · · + nk + 1;
[t1, yj ] = −[yj , t1] = jyj , 1 ≤ j ≤ m1 + · · · + mp;
[t2, xi] = −[xi, t2] = xi, 2 ≤ i ≤ n1 + 1;
[tj+2, xn1+···+nj+i]

= −[xn1+···+nj+i, tj+2] = xn1+···+nj+i, 1 ≤ j ≤ k − 1, 2 ≤ i ≤ nj+1 + 1;
[t′1, yi] = −[yi, t′1] = yi, 1 ≤ i ≤ m1;
[t′j+1, ym1+···+mj+i]

= −[ym1+···+mj+i, t
′
j+1] = ym1+···+mj+i, 1 ≤ j ≤ p− 1, 1 ≤ i ≤ mj+1;

with {x1, . . . , xn1+···nk+1, t1, . . . , tk+1, t′1, . . . , t
′
p} even basis vectors and {y1, . . . , 

ym1+···+mp
} odd basis vectors. Next, we show that this solvable Lie superalgebra is 

the unique with maximal codimension of nilradical N(n1, · · · , nk, 1|m1, · · · , mp).

Theorem 4.1. Let L be a complex maximal-dimensional solvable Lie superalgebra with 
L2 nilpotent and nilradical isomorphic to N(n1, · · · , nk, 1|m1, · · · , mp). Then there ex-
ists a basis, namely {x1, . . . , xn1+···nk+1, t1, . . . , tk+1, t′1, . . . , t′p, y1, . . . , ym1+···+mp

} with 
{x1, . . . , xn1+···nk+1, t1, . . . , tk+1, t′1, . . . , t′p} even basis vectors and {y1, . . . , ym1+···+mp

}
odd basis vectors, in which L is isomorphic to SN(n1, · · · , nk, 1|m1, · · · , mp).

Proof. On account of the lack of symmetric bracket products, N(n1, · · · , nk, 1|m1, · · · ,
mp) can be regarded as both a nilpotent Lie superalgebra and a nilpotent Z2-graded Lie 
algebra. Likewise, under the condition of being L2 nilpotent the techniques used in Lie 
superalgebras are similar to the ones used in Lie algebras, that is solvable extension by 
means of (super)derivations of nilradical.

Let us consider now N(n1, · · · , nk, 1|m1, · · · , mp) as a Lie algebra, the results of [16]
allow us to assert that there is only one solvable Lie algebra with maximal codimension 
of nilradical, which can be expressed in a suitable basis {x1, . . . , xn1+···nk+1, z1, . . . , zk+1, 
z′1, . . . , z

′
p, y1, . . . , ym1+···+mp

}, by the only non zero bracket products:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[x1, xj ] = −[xj , x1] = xj+1, 2 ≤ j ≤ n1;
[x1, xn1+···+nj+i]

= −[xn1+···+nj+i, x1] = xn1+···+nj+i+1, 1 ≤ j ≤ k − 1, 2 ≤ i ≤ nj+1;
[x1, yj ] = −[yj , x1] = yj+1, 1 ≤ j ≤ m1 − 1;
[x1, ym1+···+mj+i]

= −[ym1+···+mj+i, x1] = ym1+···+mj+i+1, 1 ≤ j ≤ p− 1, 1 ≤ i ≤ mj+1 − 1;
[z1, x1] = −[x1, z1] = x1;
[z1, xi] = −[xi, z1] = (i− 2)xi, 3 ≤ i ≤ n1 + 1;
[z1, xn1+···+nj+i]

= −[xn1+···+nj+i, z1] = (i− 2)xn1+···+nj+i, 1 ≤ j ≤ k − 1, 3 ≤ i ≤ nj+1 + 1;
[z1, yi] = −[yi, z1] = (i− 1)yi, 2 ≤ i ≤ m1;
[z1, ym1+···+mj+i]

= −[ym1+···+mj+i, z1] = (i− 1)ym1+···+mj+i, 1 ≤ j ≤ p− 1, 2 ≤ i ≤ mj+1;
[z2, xi] = −[xi, z2] = xi, 2 ≤ i ≤ n1 + 1;
[zj+2, xn1+···+nj+i]

= −[xn1+···+nj+i, zj+2] = xn1+···+nj+i, 1 ≤ j ≤ k − 1, 2 ≤ i ≤ nj+1 + 1;
[z′1, yi] = −[yi, z′1] = yi, 1 ≤ i ≤ m1;
[z′j+1, ym1+···+mj+i]

= −[ym1+···+mj+i, z
′
j+1] = ym1+···+mj+i, 1 ≤ j ≤ p− 1, 1 ≤ i ≤ mj+1;

and the isomorphism defined by

t1 = z1 +2z2 +

⎛⎝k−1∑
j=1

(n1 + · · · + nj + 2)zj+2

⎞⎠+ z′1 +

⎛⎝p−1∑
j=1

(m1 + · · · + mj + 1)z′j+1

⎞⎠,

ti = zi, 2 ≤ i ≤ k + 1 and t′i = z′i, 1 ≤ i ≤ p,
shows that this Lie algebra is isomorphic to the Z2-graded Lie algebra SN(n1, · · · , nk,

1|m1, · · · , mp).
Let us consider now N(n1, · · · , nk, 1|m1, · · · , mp) as a Lie superalgebra. Analogously 

as it was seen along the proof of Theorem 3.1, the even superderivations are in partic-
ular Lie derivations, and for odd superderivations the only condition different from Lie 
derivation condition is exactly equation (3.3):

D([yi, yj ]) = [D(yi), yj ] − [yi, D(yj)]

On account of the law of N(n1, · · · , nk, 1|m1, · · · , mp) it can be easily seen that the 
only possibility for having at least one non-null term in the equation (3.3) corresponds 
with the existence of yi such that x1 ∈ D(yi). Next, we explore such possibilities. For yi
different from the odd generator vectors, i.e. i /∈ {1, m1 + 1, m1 +m2 + 1, . . . , m1 + · · ·+
mp−1 + 1}, we get

D(yi) = D([x1, yi−1]) = [D(x1), yi] + [x1, D(yi−1)] = [x1, D(yi−1)]



L.M. Camacho et al. / Journal of Algebra 591 (2022) 500–522 511
As [x1, D(yi−1)] ∈ span{x3, . . . , xn} we can exclude i for i /∈ {1, m1 +1, . . . , m1 + · · ·+
mp−1 + 1}. Suppose now that there exists i, i ∈ {1, m1 + 1, . . . , m1 + · · · + mp−1 + 1}
such that

D(yi) = α1x1 +
n1+···+nk+1∑

k=2

αkxk, with α1 �= 0

From equation (3.3) we get in particular

D([yi, yi]) = 0 = [D(yi), yi] − [yi, D(yi)] = 2α1yi+1

and then α1 = 0. Therefore the equation (3.3) vanishes over N(n1, · · · , nk, 1|m1, · · · , mp)
and consequently all the odd superderivations of N(n1, · · · , nk, 1|m1, · · · , mp) are in 
particular Lie derivations of itself regarded as Z2-graded Lie algebra.

Thus, all the superderivations of the Lie superalgebra N(n1, · · · , nk, 1|m1, · · · , mp)
are particular cases of Lie derivations of itself regarded as Z2-graded Lie alge-
bra. Therefore, we can assert that SN(n1, · · · , nk, 1|m1, · · · , mp) is not only the 
unique maximal-dimensional solvable Lie algebra with nilradical the Lie algebra 
N(n1, · · · , nk, 1|m1, · · · , mp), but also is the unique maximal-dimensional solvable Lie 
superalgebra L with L2 nilpotent and nilradical the model nilpotent Lie superalge-
bra. �

5. Maximal-dimensional solvable Leibniz superalgebras with non-Lie filiform nilradical

In this section, we consider Leibniz superalgebra whose nilradical is isomorphic to the 
filiform (non-Lie) Leibniz superalgebra. This filiform Leibniz superalgebra (denoted by 
LPn,m) can be expressed by the only non-null bracket products that follow:

{
[xi, x1] = xi+1, 2 ≤ i ≤ n− 1
[yj , x1] = yj+1, 1 ≤ j ≤ m− 1

Theorem 5.1. Let L be a complex maximal-dimensional solvable Leibniz superalgebra 
with L2 nilpotent and with nilradical isomorphic to LPn,m. Then there exists a basis, 
namely {x1, . . . , xn, t1, t2, t3, y1, . . . , ym} with {x1, . . . , xn, t1, t2, t3} a basis of L0 and 
{y1, . . . , ym} a basis of L1, in which L is isomorphic to the following solvable Leibniz 
superalgebra:
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SLPn,m :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[xi, x1] = xi+1, 2 ≤ i ≤ n− 1;
[yj , x1] = yj+1, 1 ≤ j ≤ m− 1;
[t1, x1] = −x1,

[x1, t1] = x1,

[xi, t1] = (i− 2)xi, 3 ≤ i ≤ n;
[yj , t1] = (j − 1)yj , 2 ≤ j ≤ m;
[xi, t2] = xi, 2 ≤ i ≤ n;
[yj , t3] = yj , 1 ≤ j ≤ m;

where the omitted products are zero.

Proof. Note that LPn,m can be considered as Z2-graded nilpotent Leibniz algebra. Sim-
ilar to Lie case, we can use the result of paper [1], which give the description of solvable 
Leibniz algebras with maximal codimension of nilradical (maximal dimension of the com-
plementary space to nilradical). This maximal codimension is equal to the number of 
generators of the nilradical, 3 in our case. Then, using Theorem 4 of [1] we have the 
following products:

[xi, x1] = xi+1, 2 ≤ i ≤ n− 1,
[yj , x1] = yj+1, 1 ≤ j ≤ m− 1,
[t1, x1] = (b1 − 1)x1,

[t2, x2] = (b2 − 1)x2,

[t3, y1] = (b3 − 1)y1,

[x1, t1] = x1,

[xi, t1] = (i− 2)xi, 3 ≤ i ≤ n,

[yj , t1] = (j − 1)yj , 2 ≤ j ≤ m,

[xi, t2] = xi, 2 ≤ i ≤ n,

[yj , t3] = yj , 1 ≤ j ≤ m,

with bi ∈ {0, 1}, 1 ≤ i ≤ 3. Only rest to determine the following products [tk, xi], with 
3 ≤ i ≤ n, [tk, yj ], with 2 ≤ j ≤ m and 1 ≤ k ≤ 3. Using the Leibniz identity and the 
induction method we derive the remaining products of SLPn,m:

[t1, xi] = [t1, yj ] = 0, 2 ≤ i ≤ n, 1 ≤ j ≤ m,

[t2, xi] = (b2 − 1)xi, [t2, yj ] = 0, 3 ≤ i ≤ n, 2 ≤ j ≤ m,

[t3, xi] = 0, [t3, yj ] = (b3 − 1)yj , 3 ≤ i ≤ n, 2 ≤ j ≤ m.

Finally, from Leibniz identity for the triples {x2, t1, x1}, {t2, t1, x3} and {t3, x1, y1}
we obtain b1 = 0, b2 = 1 and b3 = 1, respectively.

Now we consider LPn,m as a Leibniz superalgebra. Recall that d is a Leibniz su-
perderivation on LPn,m if d verifies the condition:

d([x, y]) = (−1)|d||y|[d(x), y] + [x, d(y)]
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Analogously to Lie superalgebra, the even superderivations of LPn,m are in particular 
Leibniz derivations verifying that d(LPn,m

0 ) ⊂ LPn,m

0 and d(LPn,m

1 ) ⊂ LPn,m

1 . On the 
other hand, the odd superderivations d of LPn,m verify the following:

d([xi, xj ]) = [d(xi), xj ] + [xi, d(xj)], xi, xj ∈ LPn,m

0 ; (5.1)

d([xi, yj ]) = −[d(xi), yj ] + [xi, d(yj)], xi ∈ LPn,m

0 , yj ∈ LPn,m

1 ; (5.2)

d([yj , xi]) = [d(yj), xi] + [yj , d(xi)], xi ∈ LPn,m

0 , yj ∈ LPn,m

1 ; (5.3)

d([yi, yj ]) = −[d(yi), yj ] + [yi, d(yj)], yi, yj ∈ LPn,m

1 . (5.4)

Let d be an odd superderivation. Then, we have that

d(x1) =
m∑

k=1

akyk, d(x2) =
m∑

k=1

bkyk, d(y1) =
n∑

k=1

ckxk.

Using the equation (5.1) for the pair [x1, x1] we get ai = 0 with 1 ≤ i ≤ m − 1 and 
from (5.4) for the pair [y1, y1] we obtain c1 = 0. From the equations (5.1) and (5.3) we 
compute d(xi) with 3 ≤ i ≤ n and d(yj) for 2 ≤ j ≤ m. Thus, we have:

d(x1) = amym, d(xi) =
m∑

k=i−1

bk−i+2yk, 2 ≤ i ≤ n,

d(yj) =
n∑

k=j+1

ck−j+1xk, 1 ≤ j ≤ m.

Finally, from the equation (5.1) for the pair [xn, x1] we have that bk = 0 for 1 ≤ k ≤
m− n + 2 if m ≥ n − 1.

It is easy to prove that all odd derivations are Leibniz derivations because the equa-
tions (5.2) and (5.4) vanish.

The equations (5.1) and (5.3) correspond with Leibniz derivation condition. Then we 
can reason as in Theorem 3.1 and we get that all odd superderivations of LPn,m are 
in particular derivations of the Z2-graded Leibniz algebra LPn,m. Then we can assert 
that SLPn,m is the unique maximal-dimensional solvable Leibniz superalgebra L with 
L2 nilpotent and nilradical the Leibniz superalgebra LPn,m. �
6. Maximal-dimensional solvable Leibniz superalgebras with model nilpotent non-Lie 
nilradical

In this section, we consider as nilradical the equivalent of the model nilpotent Lie 
superalgebra into (non-Lie) Leibniz superalgebras. This Leibniz superalgebra denoted by 
NP (n1, · · · , nk, 1| m1, · · · , mp) can be expressed by the only non-null bracket products 
that follow:



514 L.M. Camacho et al. / Journal of Algebra 591 (2022) 500–522
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[xj , x1] = xj+1, 2 ≤ j ≤ n1,

[xn1+···+nj+i, x1] = xn1+···+nj+i+1, 1 ≤ j ≤ k − 1, 2 ≤ i ≤ nj+1,

[yj , x1] = yj+1, 1 ≤ j ≤ m1 − 1,
[ym1+···+mj+i, x1] = ym1+···+mj+i+1, 1 ≤ j ≤ p− 1, 1 ≤ i ≤ mj+1 − 1.

Theorem 6.1. Let L be a complex maximal-dimensional solvable Leibniz superalgebra with 
L2 nilpotent and nilradical isomorphic to NP (n1, · · · , nk, 1|m1, · · · , mp). Then there ex-
ists a basis, namely {x1, . . . , xn1+···nk+1, t1, . . . , tk+1, t′1, . . . , t′p, y1, . . . , ym1+···+mp

} with 
{x1, . . . , xn1+···nk+1, t1, . . . , tk+1, t′1, . . . , t′p} even basis vectors and {y1, . . . , ym1+···+mp

}
odd basis vectors, in which L is isomorphic to SNP (n1, · · · , nk, 1|m1, · · · , mp) given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[xj , x1] = xj+1, 2 ≤ j ≤ n1;
[xn1+···+nj+i, x1] = xn1+···+nj+i+1, 1 ≤ j ≤ k − 1, 2 ≤ i ≤ nj+1;
[yj , x1] = yj+1, 1 ≤ j ≤ m1 − 1;
[ym1+···+mj+i, x1] = ym1+···+mj+i+1, 1 ≤ j ≤ p− 1, 1 ≤ i ≤ mj+1 − 1;
[t1, x1] = −x1,

[x1, t1] = x1,

[xi, t1] = (i− 2)xi, 3 ≤ i ≤ n1 + 1;
[xn1+···+nj+i, t1] = (i− 2)xn1+···+nj+i, 1 ≤ j ≤ k − 1, 3 ≤ i ≤ nj+1 + 1;
[yj , t1] = (i− 1)yj , 2 ≤ j ≤ m1;
[ym1+···+mj+i, t1] = (i− 1)ym1+···+mj+i, 1 ≤ j ≤ p− 1, 2 ≤ i ≤ mj+1,

[xi, t2] = xi, 2 ≤ i ≤ n1 + 1;
[xn1+···+nj+i, tj+2] = xn1+···+nj+i, 1 ≤ j ≤ k − 1, 2 ≤ i ≤ nj+1 + 1;
[yj , t′1] = yj , 1 ≤ j ≤ m1;
[ym1+···+mj+i, t

′
j+1] = ym1+···+mj+i, 1 ≤ j ≤ p− 1, 1 ≤ i ≤ mj+1;

where the omitted products are zero.

Proof. Similar to Theorem 5.1, we consider the superalgebra NP (n1, · · · , nk, 1|m1, · · · ,
mp) as a nilpotent Leibniz algebra (a Z2-graded Leibniz algebra). Thus, we can use the 
results of the paper [1] and we obtain the following products:

[t1, x1] = (b1 − 1)x1,

[x1, t1] = x1,

[xi, t1] = (i− 2)xi, 3 ≤ i ≤ n1 + 1,
[xn1+···+nj+i, t1] = (i− 2)xn1+···+nj+i, 1 ≤ j ≤ k − 1, 3 ≤ i ≤ nj+1 + 1,
[yj , t1] = (i− 1)yj , 2 ≤ j ≤ m1,

[y , t ] = (i− 1)y , 1 ≤ j ≤ p− 1, 2 ≤ i ≤ m ,
m1+···+mj+i 1 m1+···+mj+i j+1
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[t2, x2] = (b2 − 1)x2,

[x2, t2] = x2,

[tj+2, xn1+···+nj+2] = (bj+2 − 1)xn1+···+nj+2,

[xn1+···+nj+2, tj+2] = xn1+···+nj+2,

[y1, t
′
1] = y1,

[t′1, y1] = (b′1 − 1)y1,

[t′j+1, ym1+···+mj+1] = (b′j+1 − 1)ym1+···+mj+1,

[ym1+···+mj+1, t
′
j+1] = ym1+···+mj+1

Similar to previous case and applying Leibniz identity we obtain the remaining prod-
ucts and b1 = 0, bi = 1 with 2 ≤ i ≤ k + 1 and b′j = 1 with 1 ≤ j ≤ p. Thus, we get 
SNP (n1, · · · , nk, 1|m1, · · · , mp).

Now, we consider NP (n1, · · · , nk, 1|m1, · · · , mp) as a superalgebra. The even su-
perderivations of this superalgebra are in particular Leibniz derivations. Then, we go 
to prove that the odd superderivations are also Leibniz derivations. For that purpose, it 
is sufficient to verify that the equations (5.2) and (5.4) vanish.

Let d be an odd superderivation. Then, we have

d(x1) =
m1+···+mp∑

k=1

akyk, d(x2) =
m1+···+mp∑

k=1

bkyk, d(xn1+···+nj+2)

=
m1+···+mp∑

k=1

αk jyk, 1 ≤ j ≤ k − 1,

d(y1) =
n1+···+nk+1∑

t=1
ctxt, d(ym1+···+mj+1) =

n1+···+nk+1∑
t=1

βt jxt, 1 ≤ j ≤ p.

From the equation (5.1) for the pair [x1, x1] we have that

d(x1) = am1ym1 + · · · + am1+···+mp
ym1+···+mp

and for the equation (5.4) for the pair [y1, y1] we get to c1 = 0. Analogously, if we 
consider the pairs [ym1+···+mj+1, ym1+···+mj+1] with 1 ≤ j ≤ p −1 we have that β1 j = 0. 
Thus, it proves that the equation (5.4) is always zero.

On the other hand, we put the equation (5.2). The products [xi, d(yj)] are always zero 
because of c1 = β1 j = 0 for 1 ≤ j ≤ p − 1 in d(yj). The other products are trivially zero.

Finally, we conclude that the odd superderivations are in particular Leibniz deriva-
tions. We can assert that SNP (n1, · · · , nk, 1|m1, · · · , mp) is the unique maximal-
dimensional solvable Leibniz superalgebra L with L2 nilpotent and nilradical the model 
nilpotent Leibniz superalgebra NP (n1, · · · , nk, 1|m1, · · · , mp). �
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7. Superderivations of the maximal-dimensional solvable Lie and Leibniz superalgebras

In this section we establish that the spaces of superderivations for the superalgebras 
obtained in previous sections (that is, SLn,m, SN(n1, · · · , nk, 1|m1, · · · , mp), SLPn,m,

SNP (n1, · · · , nk, 1|m1, · · · , mp) consist of inner superderivations. These results extend 
analogously results for similar Lie and Leibniz algebras.

Theorem 7.1. Any superderivation on the Lie superalgebra SLn,m is inner.

Proof. Our goal is to prove that the following inner superderivations {adx1, . . . , adxn, 
adt1, adt2, adt3, ady1, . . . , adym} form a basis of the space of superderivations
Der(SLn,m) = Der0(SLn,m) ⊕ Der1(SLn,m), with {adx1, . . . , adxn, adt1, adt2, adt3}
a basis of Der0(SLn,m) and {ady1, . . . , adym} a basis of Der1(SLn,m).

Let D be an even superderivation of SLn,m. Then taking into account the embeddings 
D(SLn,m

0 ) ⊂ SLn,m

0 and D(SLn,m

1 ) ⊂ SLn,m

1 we set

D(x1) =
3∑

s=1
αsts +

n∑
k=1

akxk, D(x2) =
3∑

s=1
βsts +

n∑
k=1

bkxk, D(y1) =
m∑
r=1

pryr,

D(t1) =
3∑

s=1
γsts +

n∑
k=1

ckxk, D(t2) =
3∑

s=1
δsts +

n∑
k=1

dkxk,

D(t3) =
3∑

s=1
νsts +

n∑
k=1

ekxk.

According to the even superderivation condition, we can summarize the computation 
in the following table:

Pairs Constraints
{x1, t1} αi = 0, 1 ≤ i ≤ 3, γ1 = 0, α2 = 0, ck = kak+1, 2 ≤ k ≤ n − 1
{x1, t2} δ1 = 0, dk = ak+1, 2 ≤ k ≤ n − 1
{x1, t3} ν1 = 0, ek = 0, 2 ≤ k ≤ n − 1

{x1, yj−1}
2 ≤ j ≤ m − 1 d(yj) = ((j − 1)a1 + p1)yj +

m∑
k=j+1

pk−j+1yk, 2 ≤ j ≤ m

{y1, x2} b1 = 0, β3 = −β1

{x1, x2} d(x3) = −β1x1 + (a1 + b2)x3 +
n∑

k=4

bk−1xk

{x3, y1} β1 = 0 ⇒ β3 = 0
{x1, xi−1}

4 ≤ j ≤ n − 1 d(xi) = ((i − 2)a1 + b2)xi +
n∑

k=i+1

bk−i+2xk, 3 ≤ i ≤ n

{t3, t1} e1 = en = 0
{t3, x2} ν2 = 0
{t1, x2} β2 = γ2 = 0, c1 = −b3, bk = 0, 4 ≤ k ≤ n
{x2, t2} δ2 = d1 = 0
{t1, t2} cn = ndn

{t1, y1} γ3 = 0, p2 = b3, pk = 0, 3 ≤ k ≤ m
{t2, y1} δ3 = 0
{t3, y1} ν3 = 0
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Therefore, we get

D(t1) = −b3x1 +
n−1∑
k=2

kak+1xk + ndnxn, D(t2) =
n−1∑
k=2

ak+1xk + dnxn, D(t3) = 0,

D(x1) = a1x1 +
n∑

k=3

akxk, D(x2) = b2x2 + b3x3,

D(xi) = ((i− 2)a1 + b2)xi + b3xi+1, 3 ≤ i ≤ n,

D(y1) = p1y1 + b3y2,

D(yj) = ((j − 1)a1 + p1)yj + b3yj+1, 2 ≤ j ≤ m.

Thus, we conclude dim(Der0(SLn,m)) = n +3. On the other hand, the (n +3) inner su-
perderivations {adx1, . . . , adxn, adt1, adt2, adt3} are in particular even superderivations. 
Hence, we obtain a basis of the space Der0(SLn,m) composed by inner even superderiva-
tions. Moreover, D can be expressed via inner as follows

D=b3(adx1)−
(

n−2∑
k=2

ak+1(adxk)
)
−dn(adxn)+a1(adt1−2adt2−adt3)+b2(adt2)+p1(adt3).

Analogously, we are going to compute the odd superderivations. Let D now be an odd 
superderivation. We put

D(x1) =
m∑

k=1

akyk, D(x2) =
m∑

k=1

bkyk, D(y1) =
3∑

s=1
psts +

n∑
r=1

cryr,

D(t1) =
m∑

k=1

dkyk, D(t2) =
m∑

k=1

gkyk, D(t3) =
m∑

k=1

hkxk.

According to the odd superderivation conditions we have the following computations:

Pairs Constraints

{x1, xi−1}
3 ≤ j ≤ n − 1 d(xi) =

m∑
k=i−1

bk−i+2yk, 3 ≤ i ≤ n

{x1, y1} d(y2) = −p1x1 +
n∑

k=3

ck−1xk

{x1, yj−1}
3 ≤ j ≤ m − 1 d(yj) =

n∑
k=j+1

ck−j+1xk, 2 ≤ j ≤ m

{x2, y2} p1 = 0
{x2, y1} p2 = c1 = 0
{t1, y1} p3 = 0, ck = 0, 2 ≤ k ≤ n
{x1, t1} dk = kak+1, 1 ≤ k ≤ m − 1
{x1, t2} gk = 0, 1 ≤ k ≤ m − 1
{x1, t3} hk = ak+1, 1 ≤ k ≤ m − 1
{x2, t1} b1 = bk = 0, 3 ≤ k ≤ m
{x2, t2} b2 = 0
{t1, t2} gm = 0
{t1, t3} dm = mhm
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Thus, we get

D(t1) =
m−1∑
k=1

kak+1yk + mhmym, D(t2) = 0, D(t3) =
m−1∑
k=1

ak+1yk + hmym,

D(x1) =
m∑

k=2

akyk, D(xi) = 0, 2 ≤ i ≤ n, D(yj) = 0, 1 ≤ j ≤ m.

This implies that dim(Der1(SLn,m)) = m. On the other hand, we have m odd inner 
superderivations (they are {ady1, . . . , adym}). Consequently, a basis of Der1(SLn,m)
form by inner odd superderivations. In particular, D can be expressed via inner su-
perderivations as follows:

D = −
(

m−1∑
k=1

ak+1(adyk)
)

− hm(adym). �
Note that all the computations have been duplicated by using the software Mathe-

matica.
Consider now the maximal-dimensional solvable Lie superalgebra with model nilpo-

tent nilradical SN(n1, · · · , nk, 1|m1, · · · , mp).

Theorem 7.2. Any superderivation of the Lie superalgebra SN(n1, · · · , nk, 1|m1, · · · , mp)
is inner.

Proof. We are going to prove that the following inner superderivations

{adx1, . . . , adxn1+···nk+1, adt1, . . . , adtk+1, adt
′
1, . . . , adt

′
p, ady1, . . . , adym1+···+mp

}

form a basis of the space Der(SN(n1, · · · , nk, 1|m1, · · · , mp)) with {adx1, . . . ,
adxn1+···nk+1, adt1, . . . , adtk+1, adt′1, . . . , adt′p} a basis for even superderivations, 
Der0(SN(n1, · · · , nk, 1|m1, · · · , mp)), and {ady1, . . . , adym1+···+mp

} a basis for the odd 
ones, Der1(SN(n1, · · · , nk, 1|m1, · · · , mp)).

Let D be an even superderivation of SN(n1, · · · , nk, 1|m1, · · · , mp). Then from su-
perderivation property we derive

D(x1) = α1x1 +
n1+1∑
s=3

αsxs +
k−1∑
j=1

⎛⎝ n1+···+nj+1∑
s=n1+···+nj+3

αsxs

⎞⎠ ,

D(xi) = ((i− 2)α2 + β)xi, 2 ≤ i ≤ n1 + 1,

D(xn1+···+nj+i) = ((i− 2)α1 + aj)xn1+···+nj+i, 1 ≤ j ≤ k − 1, 2 ≤ i ≤ nj+1 + 1,

D(t1) =
n1∑
s=2

sαs+1xs +
k−1∑
j=1

⎛⎝ n1+···+nj+1∑
s=n +···+n +2

sαs+1xs

⎞⎠+

1 j
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+
k∑

j=1
(n1 + · · · + nj + 1)bjxn1+···+nj+1,

D(t2) =
n1∑
s=2

αs+1xs + b1xn1+1,

D(tj+2) =
n1+···+nj+1∑

s=n1+···+nj+2
αs+1xs + bj+1xn1+···+nj+1+1, 1 ≤ j ≤ k − 1,

D(t′j) = 0, 1 ≤ j ≤ p,

D(yi) = ((i− 1)α1 + γ)yi, 1 ≤ i ≤ m1,

D(ym1+···+mj+i) = ((i− 1)α1 + qj)ym1+···+mj+i, 1 ≤ j ≤ p− 1, 1 ≤ i ≤ mj+1.

Let D be an odd superderivation of SN(n1, · · · , nk, 1|m1, · · · , mp). Then the su-
perderivation property implies

D(x1) =
m1∑
s=2

αsys +
p−1∑
j=1

⎛⎝ m1+···+mj+1∑
s=m1+···+mj+2

αsys

⎞⎠ ,

D(xi) = 0, 2 ≤ i ≤ n1 + · · · + nk + 1,

D(t1) =
m1−1∑
s=1

sαs+1ys +
p−1∑
j=1

⎛⎝m1+···+mj+1−1∑
s=m1+···+mj+1

sαs+1ys

⎞⎠
+

p∑
j=1

(m1 + · · · + mj)δjym1+···+mj
,

D(ti) = 0, 2 ≤ i ≤ k + 1,

D(t′1) =
m1−1∑
s=1

αs+1ys +
p∑

j=1
δjym1+···+mj

,

D(t′i) = 0, 2 ≤ i ≤ p,

D(yj) = 0, 1 ≤ j ≤ m1 + · · · + mp.

Therefore, we have

dim(Der0(SN(n1, · · · , nk, 1|m1, · · · ,mp)) = (n1 + · · ·nk + 1) + k + 1 + p,

dim(Der1(SN(n1, · · · , nk, 1|m1, · · · ,mp)) = m1 + · · · + mp.

Now, since both sets of inner superderivations of the statement of the Theorem, even 
and odd, are linearly independent we conclude that the set

{adx1, . . . , adxn1+···nk+1, adt1, . . . , adtk+1, adt
′
1, . . . , adt

′
p, ady1, . . . , adym1+···+mp

}
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constitutes a basis of the superalgebra of superderivations Der(SN(n1, · · · , nk, 1|m1, · · · ,
mp)). �

Since the proofs of the following results based on the application the same arguments 
and similar computations as in the proofs of Theorems 7.1 and 7.2 we present summaries 
of their proofs.

Theorem 7.3. Any superderivation of the Leibniz superalgebra SLPn,m is inner.

Proof. As a result of computing of the odd and even superderivations properties of the 
Leibniz superalgebra SLPn,m we obtain Der1̄(SLPn,m) = {0} and for an arbitrary 
d ∈ Der0̄(SLPn,m) we get

d(x1) = αx1, d(xi) = (β + (i− 2)α)xi − γxi+1, 2 ≤ i ≤ n,

d(t1) = γx1, d(t2) = d(t3) = 0,
d(y1) = δy1 − γy2, d(yj) = (δ + (j − 1)α)yj − γyj+1, 2 ≤ j ≤ m,

for some parameters α, β, γ, δ.
Consequently, dim(Der(SLPn,m)) = 4 and hence, we obtain Der(SLPn,m) =

span{Rx1 , Rt1 , Rt2 , Rt3}. In particular, d can be expressed via inner derivations as 
follows:

d = −γRx1 + αRt1 + βRt2 + δRt3 . �
Theorem 7.4. Any superderivation of the Leibniz superalgebra SNP (n1, · · · , nk, 1|m1,

· · · , mp) is inner.

Proof. Analogously to the previous superalgebra, we obtain that Der1̄(SLP (n1, · · · , nk,

1|m1, · · · , mp)) = {0} and for an arbitrary even superderivation d we derive the following:

d(x1) = αx1,

d(xi) = (β + (i− 2)α)xi − γxi+1, 3 ≤ i ≤ n1,

d(xn1+1) = (β + (n1 − 1)α)xn1+1,

d(xn1+···+nj+2) = μjxn1+···+nj+2 − γxn1+···+nj+3, 1 ≤ j ≤ k − 1,
d(xn1+···+nj+i)

= (μj + (i− 2)α)xn1+···+nj+i − γxn1+···+nj+i+1, 1 ≤ j ≤ k − 1, 3 ≤ j ≤ nj+1,

d(xn1+···+nj+1+1) = (μj + (nj+1 − 1)α)xn1+···+nj+1+1, 1 ≤ j ≤ k − 1,
d(t1) = γx1,

d(ti) = d(t′j) = 0, 2 ≤ i ≤ k + 1, 1 ≤ j ≤ p,

d(y1) = δy1 − γy2,

d(y ) = (δ + (j − 1)α)y − γy , 2 ≤ j ≤ m − 1,
j j j+1 1
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d(ym1) = (δ + (m1 − 1)α)ym1 ,

d(ym1+···+ms+1) = νsym1+···+ms+1 − γym1+···+ms+2, 1 ≤ s ≤ p− 1,
d(ym1+···+ms+i)

=(νs+(i− 1)α)ym1+···+ms+i−γym1+···+ms+i+1, 1≤s≤p−1, 2≤ i≤ms+1−1,
d(ym1+···+ms+1) = (νs + (ms+1 − 1)α)ym1+···+ms+1 , 1 ≤ s ≤ p− 1.

Then, dim(Der(SLP (n1, · · · , nk, 1|m1, · · · , mp))) = k + p + 2. On the other hand, 
we have k + p + 2 inner derivations, {Rx1 , Rt1 , Rt2 , Rt3 , . . . , Rtk+1 , Rt′1 , Rt′2 , . . . , Rt′p}. In 
particular, d can be expressed via inner derivations as follows:

d = −γRx1 + αRt1 + βRt2 +
k−1∑
j=1

μjRtj+2 + δRt′1 +
p−1∑
s=1

νsRt′s+1
. �
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