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A B S T R A C T

Many real-life applications consider nominal categorical predictor variables that have a hierarchical structure,
e.g. economic activity data in Official Statistics. In this paper, we focus on linear regression models built in the
presence of this type of nominal categorical predictor variables, and study the consolidation of their categories
to have a better tradeoff between interpretability and fit of the model to the data. We propose the so-called
Tree based Linear Regression (TLR) model that optimizes both the accuracy of the reduced linear regression
model and its complexity, measured as a cost function of the level of granularity of the representation of
the hierarchical categorical variables. We show that finding non-dominated outcomes for this problem boils
down to solving Mixed Integer Convex Quadratic Problems with Linear Constraints, and small to medium size
instances can be tackled using off-the-shelf solvers. We illustrate our approach in two real-world datasets, as
well as a synthetic one, where our methodology finds a much less complex model with a very mild worsening
of the accuracy.
1. Introduction

Categorical variables are increasingly present in a number of real-
world applications. For example, in the healthcare field, data may
contain high-cardinality categorical variables describing diagnoses and
prescriptions (Jensen, Jensen, & Brunak, 2012). They may also ap-
pear in social and economic studies (Johannemann, Hadad, Athey,
& Wager, 2020; Pauger & Wagner, 2019) or in Natural Language
Processing (Mikolov, Chen, Corrado, & Dean, 2013), to name a few.
Interpreting and visualizing information extracted from complex data
is at the core of Data Science (Bertsimas, O’Hair, Relyea, & Silberholz,
2016; Carrizosa, Guerrero, & Romero Morales, 2018; Fang, Liu Sheng, &
Goes, 2013; Kleinberg, Lakkaraju, Leskovec, Ludwig, & Mullainathan,
2017; Martens, Baesens, Gestel, & Vanthienen, 2007; Ustun & Rudin,
2016), and this is also the case for categorical variables where the
information may be disaggregated across many categories. Mathemati-
cal Optimization is an important tool to build, in an efficient manner,
data analysis models that can achieve a high accuracy (Bottou, Curtis,
& Nocedal, 2018; Carrizosa & Romero Morales, 2013; Fountoulakis
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& Gondzio, 2016; Fu, Golden, Lele, Raghavan, & Wasil, 2003; Good-
fellow, Bengio, & Courville, 2016), while being able to incorporate
desirable properties, such as being parsimonious (Benítez-Peña, Blan-
quero, Carrizosa, & Ramírez-Cobo, 2019; Bertsimas & King, 2016;
Bertsimas, Pauphilet, & Parys, 2020; Bertsimas & Van Parys, 2020;
Blanquero, Carrizosa, Jiménez-Cordero, & Martín-Barragán, 2019; Car-
rizosa, Guerrero, & Romero Morales, 2020; Lin, Zhong, Hu, Rudin, &
Seltzer, 2020), or tackling multiple objectives, such as the bias–variance
tradeoff (Hastie, Tibshirani, & Friedman, 2009).

In the linear regression setting, to enhance the interpretability of
the model and reduce the risk of overfitting in the presence of high-
cardinality categorical variables, some works have fused categories,
i.e., they are forced to share the same estimated coefficient, see Car-
rizosa, Galvis Restrepo, and Romero Morales (2021) and Stokell, Shah,
and Tibshirani (2021) and references therein. In this paper, we are
interested in the fusion of categories for a special case, those variables
that have a hierarchical structure in their categories.

This kind of variable appears in different fields of research, such
as nested spatial data in Spatial Statistics (Gotway & Young, 2002), as
vailable online 4 May 2022
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Fig. 1. Tree representation of the variable geography in the cancer-reg dataset.
Fig. 2. Pareto frontier for MSE versus the number of coefficients to be estimated in the reduced model for the hierarchical categorical variable geography in the cancer-reg
dataset.
for example the European Union with the NUTS classification (nomen-
clature of territorial units for statistics), where the small regions for
specific diagnoses are consolidated at basic regions for the application
of regional policies and these, in turn, are consolidated at major socio-
economic regions. They also appear in behavioural data in Retail
Business Analytics (Griva, Bardaki, Pramatari, & Papakiriakopoulos,
2018), since each retailer chain maintains a product hierarchy, which
is necessary to conduct business processes such as store replenishment.
Economic activity data in Official Statistics (European Commission,
2008; Katz-Gerro & López Sintas, 2019) is another example of hier-
archical categorical variable, where the interdependency of activities
forms a hierarchy. Thus, in this paper, we study the mathematical opti-
mization problem that trades off, in linear regression models, accuracy
and model complexity, while exploiting the structure of the nominal
hierarchical categorical variables.

Let  ′ be the set of continuous and dummy predictor variables,
whereas  the set of hierarchical categorical predictor variables.
Throughout this paper, we will use the popular one-hot encoding
2

for categorical predictor variables. Then, consider the random vector
(𝐗′,𝐗, 𝑌 ), where 𝐗′ denotes the vector of the predictor variables in
 ′, 𝐗 denotes the vector of categorical predictor variables in  , and
𝑌 denotes the response variable. In the real-world dataset cancer-
reg (Rippner, 2017) used in the numerical section, with individuals
from the United States of America (U.S.), geography is a categorical
variable with a hierarchical structure. According to the U.S. Department
of Commerce Economics and Statistics Administration and the U.S. Census
Bureau, geography can be coded using the states (51 in total), which is
the highest level of granularity for which information is available in the
dataset. This means that 51 coefficients need to be estimated for this
variable, where individuals in the same state share the same coefficient
in the linear regression model. The variable geography can alternatively
be coded using the subregions, such as East-South Central, Middle
Atlantic and New England, where each state belongs to exactly one of
the 9 subregions. Consolidating individuals at the subregions, sharing
the same coefficient, yields a lower level of granularity for geography,
where, instead of 51, only 9 coefficients need to be estimated and
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Fig. 3. Less granular representations for the geography variable in the cancer-reg dataset.
interpreted. The individuals can be further consolidated into 4 regions,
namely West, South, Mid-West and North-East, where only 4 coefficients
would be associated to geography in the reduced linear regression
model. Using these regions, one has the least granular representation
of geography. This paper is devoted to trading off accuracy of the
linear regression model and its complexity, measured as a cost function
of the level of granularity used to represent each of the hierarchical
categorical variables.
3

The categories of hierarchical categorical variable 𝑗 ∈  can be
arranged as a directed tree 𝑗 , i.e., a directed graph with a root node,
𝑟(𝑗 ), and a unique path from each node to 𝑟(𝑗 ). In addition, let
(𝑗 ) denote the set of nodes in the tree and (𝑗 ) ⊂ (𝑗 ) the set
of leaf nodes. See Fig. 1 for the tree associated with the categories
of geography, where the leaf nodes correspond to the states, going
upstream we find the subregions and then the regions, which, in turn,
are directly connected with the root node. Let (𝐱′𝑖 , 𝐱𝑖, 𝑦𝑖) be the vector
associated with individual 𝑖, with 𝐱′ = (𝑥′ ) and 𝐱 = (𝑥 ), where 𝑥 is
𝑖 𝑖𝑗′ 𝑖 𝑖𝑗𝑣 𝑖𝑗𝑣
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Table 1
Notations.
Data and parameters

𝑛 The sample size
 ′ The set of continuous and dummy predictor variables
 The set of hierarchical categorical predictor variables
𝑗 Directed tree related to the hierarchical categorical predictor variable 𝑗 ∈ 
𝑟(𝑗 ) The root of the directed tree 𝑗
(𝑗 ) The set of nodes in the tree 𝑗 , which represents the categories of the hierarchical

categorical predictor variable 𝑗

(𝑗 ) The set of leaf nodes in the tree 𝑗 , (𝑗 ) ⊂ (𝑗 )

𝑗𝑙 The set of categories associated with the unique path in 𝑗 from its root node 𝑟(𝑗 )
to the leaf node 𝑙 ∈ (𝑗 )

𝑐𝑗𝑣 The cost associated to node 𝑣 ∈ (𝑗 )
𝑥′𝑖𝑗′ The value of predictor variable 𝑗′ ∈  ′ for individual 𝑖
𝑥𝑖𝑗𝑣 It takes value 1 if individual 𝑖 belongs to category 𝑣 ∈ (𝑗 ) of variable 𝑗 ∈  ; 0 otherwise
𝑦𝑖 Response variable for individual 𝑖
(𝐱′𝑖 , 𝐱𝑖 , 𝑦𝑖) Vector associated with individual 𝑖, where 𝐱′𝑖 = (𝑥′𝑖𝑗′ ) and 𝐱𝑖 = (𝑥𝑖𝑗𝑣)
𝑐 Threshold on the complexity of the model

Decision variables

𝛽′0 ∈ R The independent term in the model
𝛽′𝑗′ ∈ R The coefficient of variable 𝑗′ ∈  ′

𝛽𝑗𝑣 ∈ R The coefficient of category 𝑣 ∈ (𝑗 ), 𝑗 ∈ 
𝑗 Subtree of 𝑗 , with the same root: 𝑟(𝑗 ) = 𝑟(𝑗 )

𝑧𝑗𝑣 ∈ {0, 1} It takes value 1 if node associated with category 𝑣 of the hierarchical categorical variable 𝑗
is selected as a leaf node of 𝑗 ; 0 otherwise

𝐳 = (𝑧𝑗𝑣) The vector of the binary decision variables
Fig. 4. Tree associated with the variable CRIM in the housing dataset after being
discretized.

equal to 1 if individual 𝑖 belongs to category 𝑣 ∈ (𝑗 ) of variable 𝑗 ∈  .
If we were to use the most granular representation of the hierarchical
categorical variables, we would need to use the categories associated
with the leaf nodes 𝑙 ∈ (𝑗 ), i.e.,

�̂�𝑖 = 𝛽′0 +
∑

𝑗′∈ ′
𝛽′𝑗′𝑥

′
𝑖𝑗′ +

∑

𝑗∈

∑

𝑙∈(𝑗 )
𝛽𝑗𝑙𝑥𝑖𝑗𝑙 , (1)

where 𝛽′0 is the independent term, 𝛽′𝑗′ is the coefficient of variable
𝑗′ ∈  ′, whereas 𝛽𝑗𝑙 is the coefficient of category 𝑙 ∈ (𝑗 ) of
hierarchical categorical variable 𝑗 ∈  . In the ordinary least squares
(OLS) paradigm, the coefficients are obtained by minimizing the mean
squared error (MSE). The corresponding OLS model reads as follows

MSE∗((𝑗 )𝑗∈ ) = min
𝛽′0 ,(𝛽

′
𝑗′
)𝑗′∈ ′ ,(𝛽𝑗𝑙 )𝑙∈(𝑗 ),𝑗∈

1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝛽′0 −

∑

𝑗′∈ ′
𝛽′𝑗′𝑥

′
𝑖𝑗′

−
∑

𝑗∈

∑

𝑙∈(𝑗 )
𝛽𝑗𝑙𝑥𝑖𝑗𝑙)

2
,

(2)

where 𝑛 is the sample size. In the cancer-reg dataset, with the most
granular representation of geography, we have an in-sample MSE of
0.4065. It should be highlighted that this MSE is obtained without ex-
ploiting the hierarchical structure of geography. The question arises as to
4

whether that level of granularity is necessary, or whether we can merge
categories at the bottom of the tree into a broader category upstream
in the tree. With this, we can eliminate the state information for all the
individuals of same subregion, respectively from the same region, and
report the subregion, respectively the region. We have done this for
the states in the subregions Middle Atlantic and New England, yielding
the subtree in Fig. 3(a) of the tree in Fig. 1. All individuals in the
descendants leaf nodes of Middle Atlantic are consolidated in its parent
node Middle Atlantic and, therefore, they share the same coefficient in
the linear regression model, and the same for New England node. With
this representation, the in-sample MSE increases from 0.4065 to 0.408.
This mild worsening in accuracy corresponds to an improvement in the
complexity of the linear regression model, with a reduction from 51 to
44 in the number of coefficients to be estimated and interpreted for the
geography variable.

Reducing the granularity of the representation of hierarchical cat-
egorical variables has several advantages. First, and as illustrated
above, it is a step towards enhancing the interpretability of the lin-
ear regression model, where fewer coefficients need to be estimated
and interpreted (Carrizosa et al., 2021; Carrizosa, Nogales-Gómez,
& Romero Morales, 2017). Second, if the samples of individuals as-
sociated with categories are homogeneous enough, a very granular
representation would yield an overparameterized model. Instead, we
could merge these categories into a broader one upstream the tree,
thus having more observations to estimate fewer coefficients. The ho-
mogeneity together with the increase in sample size ensure lower errors
in the estimation of the coefficients of the broader categories (LeBlanc
& Tibshirani, 1998). Third, and again if the samples of individuals
associated with categories are homogeneous enough, a very granular
representation will yield higher data gathering costs (Carrizosa, Martín-
Barragán, & Romero Morales, 2008; Turney, 1995), if, for instance,
the surveying costs are asymmetric. Indeed, we would need to ensure
a large enough sample for each category in the representation, even
though the cost of surveying may be high for some of these categories.
By merging homogeneous categories into a broader one upstream
the tree, we can sample from a larger subpopulation lowering these
data gathering costs. Fourth, our methodology can identify where 𝑗 is
an irrelevant predictor (Bertsimas et al., 2020; Blanquero, Carrizosa,
Molero-Río, & Romero Morales, 2020; Carrizosa, Olivares-Nadal and
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Fig. 5. Pareto frontier for MSE versus the number of coefficients to be estimated in the reduced model for the hierarchical categorical variables in the housing dataset.
Ramírez-Cobo, 2016) by consolidating individuals at the root node
𝑟(𝑗 ). Finally, the consolidation of information is important when
having data privacy considerations, Li and Sarkar (2009) and Lu, Zhu,
Liu, Liu, and Shao (2014), since it is well-known that more detailed
information is linked to confidentiality concerns (Baena, Castro, &
Frangioni, 2020).

The remainder of this paper is structured as follows. In Section 2,
we introduce the Tree based Linear Regression (TLR) model, a con-
strained problem, in which we minimize the accuracy of the reduced
linear regression model, measured by its MSE, subject to a complexity
constraint, where a threshold is imposed on the cost of granularity of
the representation of the nominal hierarchical categorical variables.
This problem is then formulated as a Mixed Integer Convex Quadratic
Problem with Linear Constraints. Section 3 illustrates our approach in
two real-world datasets as well as in a synthetic one, where the entire
set of non-dominated outcomes to the problem is obtained solving
the constrained problem for the different values of the threshold. To
end, some conclusions and lines for future research are provided in
Section 4.

2. The tree based linear regression model

In this section, we first model the two objectives under consid-
eration when building the reduced linear regression model. We then
provide a Mixed Integer Convex Quadratic formulation with Linear
Constraints for the constrained problem, hereafter the so-called Tree
based Linear Regression (TLR) model. We end the section with a
discussion on the values of the threshold parameter to find all possible
non-dominated outcomes to our problem. Before that, we introduce
below some notation, see Table 1 for a summary of it.

Consolidating the information of hierarchical categorical variables
is equivalent to finding, for each 𝑗 ∈  , a subtree 𝑗 of 𝑗 , with the
same root as 𝑗 , 𝑟(𝑗 ) = 𝑟(𝑗 ). The accuracy of the reduced linear
regression model, with individuals consolidated at the leaf nodes (𝑗 ),
will be measured by its MSE, while its complexity will be measured
by

C((𝑗 )𝑗∈ ) =
∑ ∑

𝑐𝑗𝑙 , (3)
5

𝑗∈ 𝑙∈(𝑗 )
where 𝑐𝑗𝑣 ≥ 0 represents the cost associated to node 𝑣 ∈ (𝑗 ).
With this, our problem reads as follows:

min
(𝑗 )𝑗∈

(MSE∗((𝑗 )𝑗∈ ),C((𝑗 )𝑗∈ )), (4)

where MSE∗((𝑗 )𝑗∈ ) is defined as in (2) with (𝑗 ) replacing (𝑗 ).
Note that Problem (4) performs akin to the pruning of a regression
tree (Sherali, Hobeika, & Jeenanunta, 2009; Su, Wang, & Fan, 2004).
In our case, we have one tree per hierarchical categorical predictor in
the dataset, and the pruning of all these trees needs to be performed
simultaneously to properly trade off the accuracy and the complexity
of the reduced linear regression model.

Non-dominated outcomes to Problem (4) are obtained by solving
the Tree based Linear Regression (TLR) model:

min
(𝑗 )𝑗∈

MSE∗((𝑗 )𝑗∈ )

s.t. C((𝑗 )𝑗∈ ) ≤ 𝑐,
(TLR)

where 𝑐 is a threshold on the complexity of the model.
To formulate Problem (TLR) as a Mixed Integer Convex Quadratic

Problem with Linear Constraints, we note that finding a subtree 𝑗 of
𝑗 , with 𝑟(𝑗 ) = 𝑟(𝑗 ), is equivalent to finding its leaf nodes. Therefore,
we introduce binary decision variables 𝐳 = (𝑧𝑗𝑣), such that 𝑧𝑗𝑣 = 1 if the
node associated with category 𝑣 of the hierarchical categorical variable
𝑗 is selected as leaf node of 𝑗 , and 𝑧𝑗𝑣 = 0 otherwise. If node 𝑣 is
selected, all individuals in its descendant leaf nodes are consolidated at
𝑣, and these individuals will share the same coefficient in the reduced
linear regression model.

We need additional constraints to ensure that 𝐳 is well defined. For
this, we make use of the structural properties of the unique path 𝑗𝑙 in
𝑗 from its root to leaf node 𝑙 ∈ (𝑗 ), 𝑗 ∈  . It is easy to see that 𝐳 is
well defined if and only if there exists exactly one 𝑣 such 𝑧𝑗𝑣 = 1 for
each path 𝑗𝑙. With this, ∑𝑣∈(𝑗 ) 𝑧𝑗𝑣𝑥𝑖𝑗𝑣 represents the observed value
for hierarchical predictor variable 𝑗 in individual 𝑖, ∑𝑣∈(𝑗 ) 𝑧𝑗𝑣𝑥𝑖𝑗𝑣𝛽𝑗𝑣
is the contribution of 𝑗 towards the predicted response for individual 𝑖,
and ∑

𝑐 𝑧 is the contribution of 𝑗 towards the cost in (3).
𝑣∈(𝑗 ) 𝑗𝑣 𝑗𝑣
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Fig. 6. Less granular representations for the first six hierarchical categorical variables in the housing dataset for the solution in Fig. 5 with MSE∗((∗
𝑗 )𝑗∈ ) = 23.371 and 𝑐 = 32.

Note that this is the solution that achieves the minimum AIC.
Therefore, Problem (TLR) can be formulated as follows:

min
𝐳,𝛽′0 ,(𝛽

′
𝑗′
)𝑗′∈ ′ ,(𝛽𝑗𝑣)𝑣∈(𝑗 ),𝑗∈

1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝛽′0 −

∑

𝑗′∈ ′
𝑥′𝑖𝑗′𝛽

′
𝑗′

−
∑

𝑗∈

∑

𝑣∈(𝑗 )
𝑧𝑗𝑣𝑥𝑖𝑗𝑣𝛽𝑗𝑣)

2 (5)

s.t.
∑

𝑣∈𝑗𝑙

𝑧𝑗𝑣 = 1, 𝑙 ∈ (𝑗 ), 𝑗 ∈  , (6)

∑

𝑗∈

∑

𝑣∈(𝑗 )
𝑐𝑗𝑣𝑧𝑗𝑣 ≤ 𝑐, (7)

𝑧𝑗𝑣 ∈ {0, 1}, ∀𝑣 ∈ (𝑗 ), 𝑗 ∈  , (8)

𝛽′0, 𝛽
′
𝑗′ , 𝛽𝑗𝑣 ∈ R, ∀𝑗′ ∈  ′, ∀𝑣 ∈ (𝑗 ),

𝑗 ∈  . (9)

The objective function (5) is the MSE of linear models. The linear
constraints (6) model that only one node is selected per path, becoming
thus a leaf node of the subtree sought. Constraint (7) imposes the
threshold 𝑐 on the complexity of the reduced linear regression model.
6

Constraints (8) and (9) impose the range of the decision variables.
Since the objective function (5) has semi-continuous variables,
𝑧𝑗𝑣𝛽𝑗𝑣, a smooth formulation can be obtained using big 𝑀 constraints:

min
𝐳,𝛽′0 ,(𝛽

′
𝑗′
)𝑗′∈ ′ ,(𝛽𝑗𝑣)𝑣∈(𝑗 ),𝑗∈

1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝛽′0 −

∑

𝑗′∈ ′
𝑥′𝑖𝑗′𝛽

′
𝑗′

−
∑

𝑗∈

∑

𝑣∈(𝑗 )
𝑥𝑖𝑗𝑣𝛽𝑗𝑣)

2

s.t. (6)–(8),
− 𝑀𝑧𝑗𝑣 ≤ 𝛽𝑗𝑣 ≤ 𝑀𝑧𝑗𝑣, ∀𝑣 ∈ (𝑗 ),

𝑗 ∈  ,

𝛽′0, 𝛽
′
𝑗′ , 𝛽𝑗𝑣 ∈ R, ∀𝑗′ ∈  ′, ∀𝑣 ∈ (𝑗 ),

𝑗 ∈  .

(10)

This is the formulation that will be used in the numerical section.
Note that we can sharpen the value of 𝑀 by imposing an upper bound
on the coefficients of the categories of hierarchical variables. This can
be seen as a regularization, thus preventing overfitting and allowing for
sparser models (Carrizosa, Nogales-Gómez and Romero Morales, 2016).
Other types of regularization can be easily incorporated into our model,
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Fig. 7. Less granular representations for the last six hierarchical categorical variables in the housing dataset for the solution in Fig. 5 with MSE∗((∗
𝑗 )𝑗∈ ) = 23.371 and 𝑐 = 32.

Note that this is the solution that achieves the minimum AIC.
such as those in Simon, Friedman, Hastie, and Tibshirani (2011) and
Yuan and Lin (2006).

We now discuss the choice of values for threshold 𝑐. It is easy to
show that if 𝑐𝑗𝑣 are integer numbers, it is enough to consider integer
values for 𝑐 too. Moreover, it is easy to define lower (𝑐min ∶= | |)
and upper (𝑐max ∶= C((𝑗 )𝑗∈ )) bounds on 𝑐. By varying the threshold
value 𝑐 among this finite set of values, we obtain the entire set of
non-dominated outcomes to Problem (4).

Non-dominated outcomes to Problem (4) can also be obtained by
solving the alternative constrained problem:

min
(𝑗 )𝑗∈

C((𝑗 )𝑗∈ )

s.t. MSE∗((𝑗 )𝑗∈ ) ≤ 𝑓,
(11)

where 𝑓 is the threshold value on the MSE of the reduced linear
regression model. The advantage of constraining MSE∗((𝑗 )𝑗∈ ) is to
have full control on the accuracy of the model and to allow the user
to define meaningful values of 𝑓 , Blanquero, Carrizosa, Ramírez-Cobo,
and Sillero-Denamiel (2021). Therefore, this option is recommended
when the constrained problem is solved only for a few values of 𝑓 .
7

A lower bound on 𝑓 is

𝑓min ∶= MSE∗((𝑗 )𝑗∈ ), (12)

which is the MSE that we achieve for the highest level of granularity
on all the hierarchical categorical variables. An upper bound on 𝑓 is
found by removing all the variables 𝑗 ∈  . This corresponds to

𝑓max ∶= min
𝛽′0 ,(𝛽

′
𝑗′
)𝑗′∈ ′

1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝛽′0 −

∑

𝑗′∈ ′
𝛽′𝑗′𝑥

′
𝑖𝑗′ )

2, (13)

where we consider the subtree with only the root node, i.e., 𝑗 = {𝑟(𝑗 )}
∀𝑗 ∈  . In this case, by varying the threshold value 𝑓 in a grid
of [𝑓min, 𝑓max], we obtain a collection of non-dominated outcomes to
Problem (4).

3. Numerical experiments

In this section, we illustrate our approach using two real-world
datasets and a synthetic one. Our aim is to depict the tradeoff between
the accuracy of the reduced model and its complexity, measured by the
number of coefficients to be estimated for the hierarchical categorical
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Table 2
Coefficients associated with four different representations for geography variable in the cancer-reg dataset.

Tree Fig. 1 Optimal tree Fig. 3(a) Optimal tree Fig. 3(b) Optimal tree Fig. 3(c)

U.S.

West

Pacific

WA 0.058 0.065 0.086

0.109
AK 0.720 0.716 0.651
CA −0.149 −0.138 −0.114
HI −0.978 −0.992 −0.990
OR −0.015 −0.010 0.002

Mountain

ID −0.302 −0.313

−0.199 −0.161

WY 0.143 0.143
NV 0.481 0.499
UT −0.459 −0.466
CO −0.300 −0.303
AZ −0.473 −0.459
NM −0.273 −0.263
MT −0.131 −0.144

South

West-South
Central

OK 0.692 0.683 0.705

0.567AR 0.686 0.678 0.722
TX 0.416 0.408 0.432
LA 0.355 0.345 0.378

East-South
Central

TN 0.529 0.525

0.575 0.631MS 0.545 0.539
AL 0.330 0.330
KY 0.681 0.683

South Atlantic

NC 0.099 0.098

0.306 0.368

DE 0.043 0.056
FL 0.284 0.282
GA 0.129 0.121
MD 0.325 0.337
SC 0.373 0.369
WV 0.364 0.359
DC 0.350 0.393
VA 0.535 0.538

Mid-West

West-North
Central

KS 0.638 0.659 0.538 0.580
MN 0.302 0.327 0.201 0.230
MO 0.581 0.575 0.574 0.611
NE 0.069 0.073 0.069 0.100
ND 0.123 0.132 0.097 0.103
SD 0.019 0.019 0.016 0.014
IA −0.077 −0.072 −0.088 −0.057

East-North
Central

IL 0.201 0.211

0.291 0.336
IN 0.527 0.526
MI 0.239 0.243
WI 0.145 0.148
OH 0.386 0.389

North-East

Middle
Atlantic

PA −0.099
−0.102

−0.076 −0.025

NJ 0.074
NY −0.183

New England

ME 0.327

0.121

VT 0.241
MA −0.053
RI 0.102
CT −0.311
NH 0.183
t
d
s
m
g
t

F
c
c
t
n
c
m
t
t

variables, which corresponds to 𝑐𝑗𝑣 = 1 in (3). To solve Problem
(10) for all possible values of 𝑐 ∈ {𝑐min,… , 𝑐max}, we use the solver

urobi (Gurobi Optimization, 2018) for mixed-integer quadratically-
onstrained problems. In particular, the Gurobi R interface is used in
his work to obtain all numerical results, where 𝑀 is set to 1000.
he experiments have been run on Intel(R) Core(TM) i7-7500U CPU
t 2.70 GHz 2.90 GHz with 8.0 GB of RAM.

.1. Cancer trials dataset: a real-world dataset

Consider again the real-world dataset cancer-reg introduced in
ection 1. This dataset aims to look for relationships between the
ocioeconomic status in U.S. and the mean per capita cancer mor-
ality (response variable). It has a sample of size 𝑛 = 3047 with 32
redictor variables: one hierarchical predictor variable (| | = 1) and
1 non-hierarchical predictor variables (| ′

| = 31), where continuous
8

redictors have been standardized and, as commented in Section 1, v
he one-hot encoding has been used for the categorical variable. This
atabase was collected from the American Community Survey (cen-
us.gov), clinicaltrials.gov and cancer.gov sources. As
entioned in Section 1, the only hierarchical categorical variable is

eography, see Fig. 1, and contains information on the state linked to
he individuals.

We solve Problem (10) for the 51 values of 𝑐 in the set {1,… , 51}.
ig. 2 reports the Pareto frontier for the MSE and the number of
oefficients to be estimated in the reduced model for the hierarchical
ategorical variable. In particular, the point with maximum MSE (in
he bottom right corner) is the case when the variable geography is
ot considered by the model, that is, when the individuals have been
onsolidated at the root node and then 𝐶(∗

1 ) = 1. The point with
inimum MSE (in the top left corner) shows the result when the

ree structure of the hierarchical categorical variables is ignored and
hus the one-hot encoding of the most granular representation of the

ariable is considered. As can be observed from the top left corner of
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Table 3
The predictor and the response variables in the housing dataset.

Variable Name Description Type Discretized

Predictor

CRIM Crime rate by town Continuous Yes
ZN Proportion of residential land zoned for lots greater than 25.000 square feet Continuous Yes
INDUS Proportion of nonretail business acres per town Continuous Yes
NOX Nitrogen oxide concentrations Continuous Yes
RM Average number of rooms Continuous Yes
AGE Proportion of owner units built prior to 1940 Continuous Yes
DIS Weighted distances to five employment centres Continuous Yes
RAD Index of accessibility to radial highways Continuous Yes
TAX Full value property tax rate ($/$10.000) Continuous Yes
PTRATIO Pupil–teacher ratio by town school district Continuous Yes
B Black proportion of population Continuous Yes
LSTAT Proportion of population that is lower status Continuous Yes
CHAS 1 if tract bounds river; 0 otherwise Binary No

Response MEDV Median value of owner-occupied homes (in $1000’s) Continuous No
Fig. 2, a mild worsening of the MSE implies an improvement in the
fusion of categories for geography. For example, Fig. 3(a) is related to
the point that returns an increase in the MSE of 0.34% and a decrease
of 15.91% in the number of coefficients to be estimated, with respect to
the results under not exploiting the tree structure. This behaviour is also
observed in Fig. 5 for the housing dataset. Clearly, our methodology
can find a much less complex model with a very mild worsening of
the accuracy, but it is ultimately the decision of the user as to which
reduced model to choose.

Fig. 3 plots the selected subtree ∗
1 associated with geography for

three of the solutions in Fig. 2. In particular, Fig. 3(a) is the represen-
tation associated with the model that achieves the minimum Akaike
information criterion (AIC) metric (Akaike, 1998), whereas Fig. 3(c) the
one with the minimum Bayesian information criterion (BIC) (Schwarz,
1978), which are two measures for model selection that compute
the tradeoff between the in-sample fit and the number of parameters
involved.

Table 2 presents the coefficients of geography for four of the solu-
tions in Fig. 2, namely the most complex model when all the leaf nodes
in Fig. 1 are considered, as well as the three reduced models with less
granular representation of geography in Fig. 3. We can see that when
categories are merged into one upstream the tree, the single coefficient
that needs to be estimated for that broader category is within the range
of the coefficients obtained with the most granular representation.

3.2. Boston housing dataset

The well-known housing dataset (Harrison & Rubinfeld, 1978)
contains information concerning the price of the houses in the area of
Boston, which was collected from the U.S. Census Service. See Table 3
for a description of its predictor variables, as well as the response. It
has a sample of size 𝑛 = 506 with 13 predictor variables: 12 contin-
uous, which have been discretized yielding 12 hierarchical predictor
variables (| | = 12), and 1 binary one (| ′

| = 1). Fig. 4 illustrates
the discretization of CRIM, the first continuous variable. Similar ones
have been implemented for the other 11 continuous variables. First,
we split the observations of CRIM into two groups: those whose values
are below (node 𝑀1,1) and above (node 𝑀1,2) the median. Second,
the quartiles are used to subdivide 𝑀1,1 (nodes 𝑄1,1 and 𝑄1,2) and
𝑀1,2 (nodes 𝑄1,3 and 𝑄1,4) into two nodes. This way we examine the
thresholds of the continuous predictor variables required to predict the
response variable.

When solving Problem (10) for the 37 values of 𝑐 in the set
{12,… , 48}, we obtain the Pareto frontier in Fig. 5. The MSE of the
model with the highest granularity for all hierarchical variables is
23.064. When we start reducing the granularity the MSE remains
approximately the same. Actually, when 𝑐 is reduced from 48 to 30, the
9

Fig. 8. Trees associated with the two hierarchical categorical variables in the synthetic
dataset together with 𝛽S𝑗𝑙 , 𝑙 ∈ (𝑗 ).

accuracy is barely damaged but the complexity of the linear regression
model is dramatically improved.

Figs. 6–7 show the subtrees ∗
𝑗 for all 𝑗 ∈  for the solution in

Fig. 5 that achieves the minimum AIC. In this solution, we can observe
how variables INDUS, AGE and RAD are eliminated from the linear
regression model, as their root node is the only one selected with a
coefficient equal to zero. By contrast, we require the highest level of
granularity for PTRATIO, B and LSTAT. For DIS, the linear regression
model only needs to know whether the predictor variable is below the
median. For the remaining predictor variables, leaf as well as non-leaf
nodes are selected.

3.3. The synthetic data

In this section we illustrate our approach on synthetic data. The data
generating model is

𝑦𝑖 =
∑ ∑

𝛽S𝑗𝑙𝑥𝑖𝑗𝑙 + 𝛽′1𝑥
′
𝑖1 + 𝜀𝑖, 𝑖 = 1,… , 𝑛, (14)
𝑗∈ 𝑙∈(𝑗 )
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Fig. 9. Pruned tree and less granular representation of the two hierarchical categorical variables in Fig. 8 from the synthetic dataset.
where | | = 2 and | ′
| = 1. The values of the coefficients of the

hierarchical categorical variables 𝛽S𝑗𝑙, 𝑙 ∈ (𝑗 ), are given in Fig. 8,
whereas the coefficient 𝛽′1 associated with the only continuous variable
is equal to 1. Note that the first two leaf nodes of 1 have the same
coefficient, and the same holds for the other two leaf nodes. Therefore,
the tree can be pruned to avoid unnecessary splits, yielding the subtree
in Fig. 9. The same holds for 2. We construct the continuous variable
𝑋′

1 such that it depends on the first hierarchical categorical variable
(i.e., the variable in Fig. 9(a)). Indeed, 𝑥′𝑖1 ∼ 𝑁(0, 1) and 𝑥′𝑖1 ∼ 𝑁(2, 1),
respectively for each leaf node of the pruned tree. Finally, the error is
taken 𝜀𝑖 ∼ 𝑁(0, 𝜎2) for different values of 𝜎2 given below. We have 𝑛 =
3000 individuals, evenly distributed across the different combinations
of categories 𝑙1 ∈ (1) and 𝑙2 ∈ (2). The purpose of this section is
twofold. First, we illustrate how our approach is able to recover the
pruned tree underlying our synthetic data. Second, we carry out an
out-of-sample study.

Let us consider 𝜎2 = 0.04 and solve Problem (10) for the 10
values of 𝑐 in the set {2,… , 11}. Fig. 10(a) shows the Pareto frontier
for the number of coefficients to be estimated in the reduced model
versus the MSE. For small values of MSE, the chosen nodes are the
8 green leaf nodes in Fig. 9, which implies that our methodology is
able to successfully detect the pruned tree underlying each hierarchical
categorical variable in our data. Similar conclusions can be drawn when
𝜎2 = 0.16 (Fig. 10(b)) and 𝜎2 = 0.36 (Fig. 10(c)).

To end the numerical section, we provide an estimation for the
MSE and the complexity of the reduced model using a 10-fold cross
validation approach, showing that our procedure works properly with
the available (in-sample) individuals, but also for future (out-of-sample)
individuals. For each fold, the in-sample set is used to solve Problem
10
(10) and get ∗
𝑗 , 𝑗 ∈  . Once the subtrees are found, and thus the

reduced linear regression model, we calculate its in-sample and out-of-
sample MSE, which are plotted in Fig. 11(a)–(c) for the different values
of 𝜎2. As can be observed, the in-sample MSE values (solid lines) are
only slightly smaller than the out-of-sample values (dashed lines). Then,
in view of results, we can conclude that our methodology generalizes
well.

4. Conclusions and extensions

In this paper we have developed a novel methodology, within linear
regression, to fuse categories of hierarchical categorical variables while
respecting their tree structure. Through the TLR, a Mixed Integer Con-
vex Quadratic Problem with Linear Constraints, we study the tradeoff
between accuracy and model complexity. Our methodology has been
tested on both real-world and synthetic datasets. The numerical section
shows that much less granular representations for the hierarchical
categorical variables can be found at the expense of slightly damaging
the accuracy.

A number of extensions to this work are worth investigating. Firstly,
when the number of categories is large, instead of solving Problem
(10) considering all the categories at once, a sequential pruning can
be used instead. The main idea is to consider subtrees in 𝑗 and try to
compress their categories solving Problem (10) sequentially. Another
option to deal with large number of categories is to cluster them based
on a dissimilarity, see Carrizosa et al. (2017) and Cerda, Varoquaux,
and Kégl (2018) and references therein. Secondly, instead of use the
objective function of the OLS method, it may be of interest to change it
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Fig. 10. Pareto frontier for MSE versus the number of coefficients to be estimated in the reduced model for the synthetic dataset for different 𝜎2 values.
by that of the, e.g., elastic net, for the sake of dealing with strongly
correlated predictors. Or even by that of the Lasso and its variants,
to also get sparser solutions. In the same vein, our proposal can be
run as a first step where the tree structure is exploited for hierarchical
categorical variables, and then a Feature Selection procedure such as
that introduced in Wang, Jiang, Huang, and Zhang (2013) could be
performed for obtaining sparser solutions in terms of non-hierarchical
categorical variables. Thirdly, this paper is based on the MSE as perfor-
mance measure, but other strategies, such as those for robust estimation
(see Jiang, Wang, Fu, & Wang, 2019; Wang et al., 2013), could be
implemented. Finally, our methodology can be extended to general-
ized linear models (Tibshirani, 1996), where, instead of predicting
the response variable as in (1), a non-linear relationship between the
response variable and the predictors is through a linkage function.
However, the last two extensions make the optimization problem highly
nonlinear and its resolution is very challenging and outside the scope
of this paper.
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Fig. 11. Average MSE (10-fold CV) versus the imposed threshold 𝑐 when 𝜎2 changes.
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