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A B S T R A C T   

Prostate cancer (PCa) is one of the most commonly diagnosed cancer and one of the leading causes of death 
among men, with almost 1.41 million new cases and around 375,000 deaths in 2020. Artificial Intelligence 
algorithms have had a huge impact on medical image analysis, including digital histopathology, where Con
volutional Neural Networks (CNNs) are used to provide a fast and accurate diagnosis, supporting experts in this 
task. To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution 
whole-slide images. Due to the size of these images, neural networks cannot use them as input and, therefore, 
small subimages called patches are extracted and predicted, obtaining a patch-level classification. In this work, a 
novel patch aggregation method based on a custom Wide & Deep neural network model is presented, which 
performs a slide-level classification using the patch-level classes obtained from a CNN. The malignant tissue 
ratio, a 10-bin malignant probability histogram, the least squares regression line of the histogram, and the 
number of malignant connected components are used by the proposed model to perform the classification. An 
accuracy of 94.24% and a sensitivity of 98.87% were achieved, proving that the proposed system could aid 
pathologists by speeding up the screening process and, thus, contribute to the fight against PCa.   

1. Introduction 

According to GLOBOCAN, prostate cancer (PCa) is the second most 
frequently diagnosed cancer and the fifth leading cause of cancer death 
in men, with more than 1.41 million cases in 2020 and around 375,000 
deaths worldwide [1]. It is estimated that PCa cases will increase with 
around 1,000,000 new cases in 2040, according to the World Health 
Organization (WHO) [2]. 

Generally, the first step to diagnose PCa consists in a Digital Rectal 
Exam (DRE), which is the primary test for the initial clinical assessment 
of the prostate. If an abnormal result for DRE is found, a Prostate- 
Specific Antigen (PSA) analysis is performed as a screening method for 
the investigation of a tumor. Then, in case of a positive PSA, a trans- 
rectal ultrasound-guided biopsy is considered, which is the most certain 
test to confirm or exclude the presence of cancer [3]. With this 

technique, prostate samples are obtained, which are processed in a 
laboratory and scanned, producing gigapixel-resolution images called 
Whole-Slide Images (WSIs). These images are analyzed by pathologists 
to provide a final diagnosis with the corresponding cancer treatment. 

The use of Artificial Intelligence (AI) in image analysis has had a 
huge impact in recent years [4,5], mainly due to the computational 
advances and the accessibility of its algorithms for researchers. Its 
application in the biomedical field has expanded considerably, partic
ularly the use of Deep Learning (DL), which has become one of the most 
popular AI techniques for image recognition in the last years [6]. These 
algorithms could play an important role as screening methods to report a 
second opinion and assist doctors in specific image analysis tasks [7,8]. 
Particularly, this approach has recently been widely used in digital 
histopathology, where Convolutional Neural Networks (CNNs) and 
other different DL mechanisms are trained to analyze and detect 
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malignant tissue in WSIs. Since CNNs cannot use an entire WSI as input 
due to their high resolution, which would require a huge memory and 
processing capacity, a common approach to this problem is to extract 
smaller subimages from them, called patches. Therefore, the CNN is able 
to analyze the WSIs at patch level and then report the classification re
sults obtained. 

Previous works, such as [9–13], have followed this patch-level 
classification strategy in order to develop DL-based Computer-Aided 
Diagnosis (CAD) systems for PCa detection in digitized histopathological 
images, reporting accurate results with different metrics and datasets. 
Among them, to the best of the authors’ knowledge, PROMETEO [14] 
achieved the fastest and least complex model [15] while also obtaining 
state-of-the-art results, leading to the most-plausible edge-computing 
solution for PCa detection. This was achieved by means of a 9-layer 
custom CNN trained and validated with a set of patches after applying 
different processing steps, including patch filtering, stain normalization 
and data augmentation. This allowed achieving 99.98% accuracy, 
99.98% F1 score and 0.999 Area Under Curve (AUC) on a separate test 
set. 

Since the results obtained when using CNNs are reported at patch 
level, different techniques have been proposed in the literature in order 
to combine them and generate a slide-level classification result, which 
could be of great importance for developing a fast PCa screening system. 
This technique is known as patch aggregation. Among the different 
studies that can be found in the literature, some performed different 
patch aggregation techniques based on Recurrent Neural Networks 
(RNNs) [10], Random Forests (RFs) [10] and other Machine Learning 
(ML) or statistical alternatives [9,13], achieving accurate solutions and 
leading to precise screening methods that could help pathologists in 
their task. 

This work presents a custom novel Wide & Deep (W&D) model for 
aggregating the patch-level classification results obtained from the 
PROMETEO CAD system into a global slide-level class. This approach 
allows providing a fast screening method for PCa detection at WSI level, 
while also benefiting from the spatial resolution obtained at patch level. 
The promising results obtained, which have also been compared to other 
state-of-the-art ML-based approaches, show that the proposed solution 
could aid pathologists when analyzing histopathological images, 
discriminating between positive and negative PCa samples while 
speeding up the whole process. 

The main contributions of this work include the following:  

● A set of algorithms to automatically extract relevant features from 
the output of a patch-level DL-based PCa detection system.  

● A 5-layer custom W&D model, trained and validated from scratch, 
which extracts independent features from the inputs and combines 
them to achieve a slide-level PCa screening method with high 
sensitivity.  

● A comparative study between different widely-known ML algorithms 
for the patch-aggregation task on the same dataset, which shows that 
the proposed method achieves the highest sensitivity. 

The rest of the paper is structured as follows: section 2 presents state- 
of-the-art works that are related to the goal of this paper. In section 3, 
the materials and methods are presented, focusing on the dataset that 
was used for this work (3.1), along with the neural network model (3.2), 
the details on the training and validation steps of the model with the 
aforementioned dataset (3.3), and the test methods (3.4) and statistical 
anaylisis (3.5). Then, section 4 presents the results obtained with the 
proposed model using different evaluation metrics. A comparison with 
other state-of-the-art ML techniques is also performed in the same sec
tion. In section 5, the results are discussed and some future works are 
presented. Finally, the conclusions of this work are presented in section 
6. 

2. Related work 

Previous studies have also focused on cancer detection in histo
pathological images using different techniques to aid and support pa
thologists in their decision and also to serve as automatic screening 
alternatives, giving experts the possibility to prioritize higher cancer risk 
cases. Among them [12], presented a Region-based CNN model that was 
trained to classify patches extracted from WSIs as either stroma, benign, 
low Gleason Grading System (GGS) grade or high GGS grade. The au
thors achieved 88.78% standard mean accuracy. In Ref. [14], the au
thors designed, trained and evaluated a custom shallow CNN model for 
detecting between normal and malignant patches extracted from WSIs 
with the lowest possible latency. With this method, the authors achieved 
99.98% accuracy and 0.999 AUC in the external test set. 

The aforementioned studies report patch-wise metrics and results, 
with which useful information could be provided, such as the location 
and size of the malignant areas within the tissue. In these works, the 
authors combine the results obtained at patch-level in order to represent 
the output of the system, which is a heatmap highlighting the cancerous 
regions detected. However, for building an intelligent system for PCa 
screening purposes, a slide-wise result could summarize whether the 
sample is malignant or normal using a single label and, therefore, pro
vide a faster and more convenient solution for this task. 

In this regard, other authors have proposed different strategies for 
patch-aggregating features obtained from the classification into a single 
slide-wise label. Ström et al. [9] used boosted trees, which were trained 
to report the ISUP score and the cancer length from aggregated features 
obtained from the patch-wise probabilities predicted by 2 ensembles of 
30 InceptionV3. The authors achieved 0.62 mean pairwise kappa and 
0.986 AUC on the validation set when classifying between malignant 
and benign samples. Bulten et al. [13] proposed the use of a UNet ar
chitecture to perform the patch-level classification in histopathological 
images. In this case, the authors considered a simpler solution for the 
patch-aggregation task, which consisted of classifying a sample as ma
lignant if at least 10% of the tissue was predicted as cancer by the sys
tem. This allowed achieving 0.990 AUC when classifying between 
malignant and benign biopsies. Litjens et al. [11] presented a custom 
CNN for patch-wise cancer detection in WSIs. Whole-slide likelihood 
images, which take between 5 and 10 min to generate, are obtained as 
output, and features extracted from them are calculated to report a 
slide-level label. A percentile analysis is used to determine if the cor
responding WSI is malignant or not, achieving 0.99 AUC. The authors in 
Ref. [10] proposed different patch aggregation techniques, including 
max pooling, RF and RNNs. With max pooling, the slide is considered 
positive if a patch is predicted as positive, which resulted on a 
non-robust solution, since a single spurious missclasification can change 
the slide prediction. The RF alternative achieved 0.98 AUC, although 
low sensitivity was obtained. A more complex alternative using Multiple 
Instance Learning and RNNs was proposed, obtaining 0.991 AUC. 

3. Materials and methods 

3.1. Dataset 

A set of Hematoxylin and Eosin (H&E)-stained slides were used (158 
normal WSIs and 174 malignant WSIs), provided by the Pathological 
Anatomy Unit of Virgen de Valme Hospital (Seville, Spain). These im
ages were preprocessed using different steps. First, small subimages, 
called patches (100 × 100 pixels at 10× magnification), were extracted 
from them. Next, background patches and patches corresponding to 
unwanted areas were discarded with a filter that discriminates them 
based on the amount of tissue that they contain, the percentage of pixels 
that are within H&E’s hue range, and the dispersion of the saturation 
and brightness channels. Then, a color normalization process called 
Reinhard stain-normalization [16,17] was applied to patches in order to 
reduce stain variability between samples. Finally, color-normalized 
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patches were used as input to a CNN, called PROMETEO, which clas
sifies them as either malignant or normal tissue with a certain proba
bility. A deeper insight on these steps is given in Ref. [14] and can be 
seen in Fig. 1. 

Different features were obtained from PROMETEO’s output in order 
to create the dataset. The first feature considered to discriminate be
tween malignant or normal WSI was the percentage of malignant tissue 
area, also called malignant tissue ratio (MTR), expressed between 0 and 
1. This was calculated by dividing the number of patches classified as 
malignant by the total amount of tissue patches extracted from the WSI. 
This is the most representative data to perform a slide-level classifica
tion, since the more malignant patches the network detects on the WSI, 
the greater its likelihood being malignant. However, based on the error 
of the CNN when performing the patch classification, the percentage of 
malignant tissue of the WSI should not be the only input to be considered 
for the patch aggregation task, since there are some exceptions that do 
not meet the aforementioned rule (e.g., a malignant WSI with a small 
tumor in a specific region or a normal WSI with a relatively high per
centage of incorrectly-classified malignant tissue area). 

Therefore, another feature taken into account to distinguish between 
malignant and normal WSIs was the distribution of the prediction 
probability for malignant patches. When the CNN predicts a patch, it 
reports the probability of the patch for being either malignant or normal. 
If we only focus on the malignant probability, the network should have a 
higher confidence for patches corresponding to malignant tissue than for 
those corresponding to normal tissue that have been incorrectly pre
dicted as malignant. Thus, a 10-bin histogram with the prediction 

probabilities of the patches classified as malignant for each WSI was 
calculated. These probabilities were distributed from 50% to 100%, with 
5% range for each bin. The histogram was normalized with respect to the 
total number of tissue patches. Along with the malignant probability 
histogram (MPH), the least squares regression line (LSRL) of the histo
gram, defined as y = mx + b, was also calculated, where m and b, which 
refer to the slope and the Y-intercept, are described in equations (1) and 
(2), respectively. This line represents the best approximation of the set of 
probabilities for all malignant patches of the corresponding WSI. The 
mean histogram for both malignant and normal WSIs are shown in Fig. 2 
together with their corresponding LSRLs, which are highlighted in red. 
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Where x and y represent the coordinates of the different values of the 

histogram. 
As was previously mentioned, the error of the ML algorithm (a CNN 

in this case) leads to errors in the classification, which in a WSI is pre
sented as sparse normal tissue patches being classified as malignant. 
Therefore, in a WSI diagnosed as normal, patches classified as malignant 
by the CNN are sparsely distributed through the tissue. On the other 
hand, in a cancerous WSI, malignant-classified patches tend to be 
focused around the tumor areas. Due to this reason, the dispersion factor 
of malignant-classified patches was also considered as another relevant 
input for the slide-level classification between normal and malignant 
WSIs. This factor was obtained by calculating the number of malignant 
connected components (MCC), which counts the isolated components 
(sets of malignant patches) in the classification result according to a 
specific distance D. Algorithm 1 details the method used to calculate the 
number of connected components based on the center coordinates of 
malignant patches and D. In this work, five different values were 
considered for D (142, 283, 425, 566 and 708 pixels), which correspond 
to the Euclidean distances (i.e., radii) from a patch to a range of 1 up to 5 
patches-distance, taking into account that the distance between two 
patches is 100 pixels (patches are 100 × 100 pixels size). The number of 
connected components was normalized with respect to the total number 
of malignant patches for each WSI. In this way, normal samples with a 
low quantity of sparse misclassifications are penalized when compared 
to malignant samples with sparse tumoral tissue regions. 

Algorithm 1. Connected components algorithm   

3.2. Wide & Deep network model 

The dataset described in section 3.1 was used as input to a Neural 
Network (NN) model called W&D [18] to provide a slide-level classifi
cation between normal and malignant WSIs. The W&D model combines 
both wide and deep components. The wide component memorizes 
sparse interactions between features effectively, which can be defined as 
learning how the output responds to combinations of sparse input 
values. On the other hand, the deep component corresponds to the 
feed-forward neural network which represents the generalization, that 
is, the ability to handle unseen data. Therefore, the benefits from both 
memorization (wide) and generalization (deep) are combined and ach
ieved in a single model [18]. 

In this work, the malignant tissue ratio was used as the wide element 
while the malignant probability histogram, the slope and Y-intercept of 
the LSRL and the number of malignant connected components were used 
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as the deep elements. Each of the deep data were separately connected to 
two hidden layers of 300 neurons. Then, these layers were concatenated 
together with the wide element to a hidden block of two hidden layers 
with 300 neurons each. The concatenation layer1 takes a list of tensors as 
input and returns a single tensor, which is the result of combining all the 

inputs together. Finally, this hidden block was connected to the output 
layer, a SoftMax function which performs the classification of the WSI as 
either malignant or normal. In this way, complex features are extracted 
from combinations of sparse inputs and then concatenated together in 
order to perform the final decision. Each of the hidden layers in this 
model also contained a Rectified Linear Unit (ReLU) [19] activation 
layer at the output. The number of hidden layers and the number of 
neurons per layer were selected by means of Scikit-Learn’s Grid Search 
algorithm (GridSearchCV) [20], where the configuration that achieved 

Fig. 1. Block diagram detailing each of the steps considered for processing a whole-slide image (WSI) in PROMETEO. First, in the step called Read, patches 
are extracted from the input WSI, and those corresponding to background are discarded (those identified as D). Then, in the next step, a score is given to each patch in 
order to discard patches corresponding to unwanted areas, such as pen marks and external agents. This score discriminates considering three factors: the amount of 
tissue that the patch contains, the percentage of pixels that are within H&E’s hue range, and the dispersion of the saturation and brightness channels. Discarded 
patches in this step are shown in red, while those that pass the scoring filter are highlighted in green. The third step, called Stain normalization, applies a color 
normalization to the patches based on Reinhard’s stain-normalization method in order to reduce color variability between samples. Finally, in the Prediction step, 
each of the patches are used as input to the CNN, which classifies them as either malignant or normal tissue. A deeper insight on these steps is given in Ref. [14]. 

Fig. 2. Mean probability histogram of the 
normalized patch frequency across all the WSIs, 
distinguishing between malignant (left) and 
normal (right) samples. The least squares regression 
line is shown with a red dashed line. As can be seen, 
for malignant WSIs, the system tends to classify 
patches as malignant with a higher confidence. This 
produces a least squares regression line with a steeper 
slope. On the other hand, for the normal WSIs, the 
classification for malignant patches is not that accu
rate, which leads to a less steep regression line.   

Fig. 3. Diagram of the W&D network model proposed in this work. Each hidden layer consists of 300 neurons. The input features, which are detailed in section 
3.1, are: the malignant tissue ratio (MTR) of the WSI, the slope and Y-intercept of the least squares regression line (LSRL) of the histogram, the number of malignant 
connected components (MCC) with 5 different radii (from 1 to 5 malignant patch distance), and the 10-bin malignant probability histogram (MPH) between 50% and 
100% with 5% ticks. These input features are used to classify the WSI as either malignant (M) or normal (N). 

1 https://keras.io/api/layers/merging/_layers/concatenate (accessed 17th 
August 2021). 
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the best result was selected. The number of hidden layers explored 
ranged from 1 to 5, and the number of neurons per layer were explored 
from 100 to 1000, in steps of 100 neurons. 

Fig. 3 depicts the custom W&D model used in this work, where the 
different inputs and layers can be seen. Fig. 4 represents the whole 
processing step for the prostate screening task, highlighting both the 
patch-level and the slide-level components. 

3.3. Training and validation 

K-fold stratified cross-validation was performed to measure the 
generalization ability of the model. This technique consisted in dividing 
the dataset in 5 sets (K = 5). For each fold, the network was trained using 
four of the five sets (80% of the dataset) for 10,000 epochs and validated 
using the remaining one (20% of the dataset). Thus, for each experi
ment, the network was trained and validated a total of five times with 
different data. The EarlyStopping algorithm was used, which stopped 
the training step when the validation loss stopped improving after the 
last 10 epochs, which prevents the model from overfitting. The final 
results are presented as the mean accuracy calculated over the five cross- 
validation folds. 

To validate the network, different evaluation metrics were used. 
These were the accuracy (eq. (3)), sensitivity (eq. (4)), precision (eq. 
(5)), F1 score (eq. (6)) and AUC of the Receiver Operating Characteristic 
(ROC) curve. 

Accuracy = 100 ×
TP + TN

TP + TN + FP + FN
(3)  

Sensitivity = 100 ×
TP

TP + FN
(4)  

Precision = 100 ×
TP

TP + FP
(5)  

F1score = 2 ×
Precision × Sensitivity
Precision + Sensitivity

(6) 

Where TP and FP denote true positive cases (when the model di
agnoses a malignant WSI correctly) and false positive cases (the network 
diagnoses a normal WSI as malignant), respectively. TN and FN denote 
true negative cases (the system classifies a normal WSI as normal) and 

false negative cases (the network classifies a malignant WSI as normal), 
respectively. 

For designing, training and validating the model, both TensorFlow2 

and Keras3 were used. 

3.4. Test methods 

Pixel-wise annotations indicating the locations of cancerous tissue 
inside the WSIs provided by the expert pathologist panel were extracted. 
From malignant WSI, multiple overlapping patches were obtained from 
the tissue area contained within the extracted annotations. A patch 
dimension of 100 × 100 pixels at 10× magnification was used. From 
WSIs diagnosed as normal, similar patches were extracted from the 
tissue. Combining these normal and malignant patches and applying 
data augmentation, a total of 57 million patches were obtained. These 
were used to train a custom CNN called PROMETEO. 

We used this trained model to detect cancer presence in 332 new 
WSIs at patch level. Patches were extracted from each of these images, 
discarding those corresponding to background based on a color filter. A 
patch scoring filter was also applied to remove unwanted areas, such as 
pen marks and other artifacts. All the patches from a WSI that passed 
these filters were stain-normalized to remove color variations caused by 
the H&E stain process and predicted by the trained CNN. 

All the patches classified as malignant from a single WSI were 
collected, and different features (MTR, LSRL, MCC and MPH) were 
automatically extracted from them using Python based on the quantity 
of malignant patches and their position within the WSI. These features, 
together with the ground-truth label from the pathology report, were 
used to train and evaluate a custom W&D model. 

After both the CNN and the W&D were trained, the process for 
evaluating and testing a new WSI consists of the following steps: first, 
patches are extracted, filtered and stain-normalized; then, these are used 
as input for the CNN; aggregated features obtained from malignant 
patches are then used as input for the W&D, which reports the final 
output of the system. The output is a single label for each WSI, which 
aggregates the patch-level labels obtained by the CNN. The system also 
reports the heatmap of the input image in case it is classified as 
malignant. 

Fig. 4. Diagram of the whole processing step for the PCa screening task. First, the WSI is processed at patch level, following the same procedure presented in 
Fig. 1. Then, the output classification for each of the filtered patches from the original WSI is used to perform a slide-level prediction using the W&D model presented 
in Fig. 3, where the extracted features are used to classify the WSI as either malignant or normal. 

2 https://www.tensorflow.org (accessed 17th August 2021).  
3 https://keras.io (accessed 17th August 2021). 
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3.5. Statistical analysis 

After being advised by the group of expert pathologists that super
vised this work, they considered the number of cases and patients used 
as good for representing case diversity. Each of these cases was analyzed 
and labeled by a pathologist from the expert panel. In order to provide 
robust results, multiple evaluations were performed, following the 5- 
fold cross-validation presented in section 3.3, in which, samples from 
the same patient were not considered for both training and testing the 
model at the same time. In these experiments, we compared the cancer 
presence in each WSI with the report from pathologists following their 
supervision to evaluate how well the system agreed with them. Different 
widely-used metrics for the evaluation of DL-based systems were used 
and calculated to provide a complete analysis of the results and the 
performance of the proposed CAD model. 

Statistical analysis was performed using Python 3.8 with the NumPy 
(1.19.5), scikit-learn (0.24.2), scipy (1.6.3) and TensorFlow (2.5.0) 
packages. 

4. Results 

4.1. Evaluation of the proposed system 

After training the custom W&D model (section 3.2) with the dataset 
presented in section 3.1, all the different metrics described in section 3.3 
were calculated and obtained in order to evaluate the proposed system. 
Table 1 summarizes the results for each cross-validation fold together 
with the average for all the evaluation metrics. With these, the average 
results were calculated, achieving an accuracy of 94.24%, a sensitivity of 
98.87%, a precision of 90.23%, a F1 score of 94.33% and an AUC of 
0.94. 

As can be seen, the results obtained across the different folds are 
consistent and the proposed model achieves very high scores in all the 
different metrics studied for this classification task, particularly in terms 
of sensitivity. The sensitivity, which in this field is defined as the ability 
of the system to identify PCa, is of utmost importance for reporting and 
assessing the performance of the screening test [21]. The proposed 
system is able to achieve an average sensitivity of around 99%, where 
three of the folds achieved perfect sensitivity (100%). This means that 
our custom model makes almost no mistakes when predicting a malig
nant sample as such, making it a reliable patch aggregation method, 
together with PROMETEO, for PCa detection in WSIs. Fig. 5 shows some 
examples of correctly classified WSIs. 

In order to evaluate the effect of the different inputs considered for 
the proposed W&D model on the results, a new experiment was carried 
out. This experiment consisted in removing each of the inputs and per
forming the same 5-fold cross-validation, obtaining the average of the 
metrics. These results can be seen in Table 2, where each row represents 
the average of the metrics obtained for a 5-fold cross-validation test 
where a specific input is not used. As can be seen, the sensitivity is 
considerably reduced when the MCC is not used, although none of the 
experiments achieved values as high as those obtained when all the 

proposed inputs are considered. Since the F1 score and the AUC depend 
on the sensitivity, these results are also lower in the same aforemen
tioned cases. On the other hand, the precision does not vary that much 
between the different experiments, and a clear effect of removing an 
input can only be seen when the MPH is not used. 

4.2. Comparison with other widely-used machine learning models 

The results obtained in this study were compared with different ML- 
based methods and classifiers using the same dataset. The following 
well-known machine learning algorithms were used to classify the WSIs: 
an Artificial Neural Network (ANN) [22], a Support Vector Machine 
(SVM) [23], a RF [24] and a k-Nearest Neighbors (KNN) [25]. In order to 
perform a fair comparison, a similar Grid Search algorithm was used. For 
the RF and the KNN, the number of trees/neighbors explored were 5, 10, 
20, 50, 100, 200 and 300. The ones that achieved the best results were 
100 trees in the case of the RF, and 20 neighbors in the case of the KNN. 
For the ANN, the exact same search that was used for the W&D was 
considered, ending up with 3 hidden layers and 200 neurons per layer as 
the best model. For the SVM, the default value of the C parameter (1.0) 
was used. 

Table 3 summarizes the results obtained for each method, which are 
represented as the average of the evaluation metrics (see section 3.3) 
obtained for each cross-validation fold. 

As can be seen, the best results for accuracy, sensitivity, F1 score and 
AUC are obtained with the proposed W&D model, with the exception of 
precision, for which SVM achieves the highest value. As was previously 
mentioned, sensitivity is the most relevant metric for measuring the 
performance of a classifier when performing a screening test. In this 
case, the proposed architecture is the one achieving the highest sensi
tivity score among the different algorithms evaluated, with a difference 
of more than 6% with the second highest, i.e., the ANN. On the other 
hand, SVM achieves around 99% precision, which could be very relevant 
for other binary or multi-class classification tasks, but not as much as the 
sensitivity when developing a ML-based PCa screening method that 
could help experts to speed up the whole process. 

Since the SVM reported the highest precision result, a more detailed 
evaluation of this architecture was performed by changing the value of 
the C hyperparameter. The selected values for this experiment ranged 
from 2− 6 to 26, with step size of power of 2. For each of these values, the 
SVM was trained and evaluated using the aforementioned 5-fold cross- 
validation scheme, and the average of the results were computed. 
These results can be seen in Table 4, where the average accuracy, 
sensitivity, precision, F1 score and AUC are shown for each C. As can be 
seen, changing the C hyperparameter allows achieving 100% precision 
in some cases and around 84% sensitivity in others, but they do not 
differ that much compared to the results obtained with the default C 
value (1.0). 

5. Discussion 

The results presented in this work, which have been supervised and 
validated by a panel of expert pathologists, are promising, and we hope 
to incorporate these techniques in hospitals in the near future to support 
experts in real case scenarios. Section 2 presented related studies, which 
aimed to address the same problem in different ways [9–13]. Some of 
them have achieved very good results when aggregating the information 
from patch-wise predictions into a single slide-wise label, and have 
proposed interesting solutions to this problem, but none of them have 
considered the use of the W&D model, which was originally conceived 
for recommender systems. This model allows aggregating different in
dependent features, benefitting from its wide component, as well as 
processing and extracting relevant information from them indepen
dently, thanks to its deep nature, which perfectly fits this task and could 
lead to a very robust system. Other simpler alternatives for patch ag
gregation like the one presented in Ref. [13], which classifies a WSI as 

Table 1 
Validation results obtained with the proposed W&D model. The accuracy, 
sensitivity, precision, F1 score and AUC are shown for each of the different cross- 
validation folds. The average of the obtained metrics across the five folds is also 
presented.  

Fold Accuracy 
(%) 

Sensitivity 
(%) 

Precision 
(%) 

F1 score 
(%) 

AUC 

1 93.93 100 89.74 94.59 0.93 
2 93.93 97.29 92.30 94.73 0.93 
3 95.45 100 90.32 94.91 0.96 
4 93.93 100 87.09 93.10 0.94 
5 93.93 97.05 91.66 94.28 0.93 
Average 94.24 98.87 90.23 94.33 0.94  
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malignant if at least 10% of the tissue is predicted as malignant, could 
result in a high number of false negatives depending on the patient and 
sample. Smaller percentages of malignant tissue could also represent 
malignant cases, which is the reason why threshold-based alternatives 
may not be the best option, as seen in the max pooling solution presented 
in Ref. [10]. 

Furthermore, since each of the works mentioned in section 2 use a 
different dataset, results should not be directly compared neither be
tween them nor with the ones obtained in our work if the aim is to 
conduct a strict and fair comparison. Therefore, our system was 
compared with different well-known machine learning alternatives that 
were used by the authors in the related work, such as ANNs, SVMs, RFs 
and KNNs, which were trained and tested on the same dataset that we 

used. The proposed W&D-based system achieved the highest sensitivity 
among the different machine learning alternatives evaluated. As was 
previously mentioned, the sensitivity is the most relevant metric to take 
into consideration in a screening test, since higher sensitivity means that 
there are fewer false negatives. An intelligent system with very high 
sensitivity could be implemented as a prescreening triage tool and help 
pathologists by prioritizing the most severe cases. 

A malignant/normal slide-level label could also be used for the next 
steps in the analysis process. In this way, in case a WSI is predicted as 
malignant, the patches obtained from it could be passed to the next 
system, dedicated to assigning a GGS score. Therefore, WSIs predicted as 
normal would not need further processing, avoiding unnecessary oper
ations and reducing the response time of the CAD system. 

Fig. 5. Eight different WSI samples extracted from the dataset presented in section 3.1. A heatmap of the malignant patches predicted by PROMETEO is drawn 
on top of the WSI, and zoomed regions are presented for better visualization. Red regions represent higher concentrations of malignant patches, while blue represent 
the opposite. The examples presented were correctly classified by the proposed W&D model. 
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As a future work, our main goal is to develop and include a low- 
latency GGS recognition system and, as was previously mentioned, 
include it in the modular CAD system presented in this work. Thus, the 
whole system would be able to report whether a WSI is either normal or 
malignant, and, in the latter case, report both a global GGS score and a 
heatmap with the malignant areas highlighted. All of this will be 
designed with the focus on achieving very high sensitivity and very low 
computation time, being able to provide a fast response to an input 
image. 

The proposed patch-aggregation technique based on the use of W&D 
models could be extrapolated to other tissue types within histopathol
ogy, allowing other new independent input features to be added to the 
model in a simple way with their corresponding specific hidden layers to 
extract relevant information from them. 

6. Conclusions 

In this work, the authors present a novel ML-based method to classify 
WSIs of prostate tissue as normal or malignant at global slide level based 
on a previous patch-level classification. This classification is based on a 
novel NN model called W&D, which combines both linear model com
ponents (wide) and neural network components (deep) in order to 
achieve both memorization and generalization in a single model. The 
custom W&D proposed model classifies each WSI as normal or malig
nant considering different processed inputs. This information was ob
tained using PROMETEO, a CAD system that extracts small patches from 
WSIs, which are first pre-processed and then classified, reporting a 
heatmap that shows where malignant areas are located inside the cor
responding WSI. From the information obtained from malignant 
patches, different processed features are calculated, which are then used 
as input to the proposed W&D model. These are the malignant tissue 
ratio, the 10-bin malignant probability histogram between 50% and 
100% with 5% ticks, the slope and Y-intercept of the least squares 
regression line of the histogram and the number of malignant connected 
components with 5 different radii. The network was trained and vali
dated using 5-fold cross-validation. The average results obtained for the 
cross-validation sets with the W&D model achieved an accuracy of 
94.24%, a sensitivity of 98.87%, a precision of 90.23%, a F1 score of 
94.33% and an AUC of 0.94. The proposed model was compared with 
other state-of-the-art methods (ANN, SVM, RF and KNN) using the same 
dataset. The results show that the W&D model performs better in terms 
of accuracy, sensitivity, F1 score and AUC. The promising results ob
tained with this novel model show that the proposed system could aid 
pathologists when analyzing histopathological images as a screening 
method, discriminating between normal and malignant PCa slides. 
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Table 2 
Validation results obtained with the proposed W&D model when different 
inputs are used. The average accuracy, sensitivity, precision, F1 score and AUC 
calculated over the 5 different cross-validation folds are shown. Different inputs 
were used in order to evaluate their effect in the output metrics. The first column 
indicates which input was removed. The last row of the table corresponds to the 
results obtained using all the inputs considered in this work (also shown in 
Table 1).  

Inputs 
removed 

Accuracy 
(%) 

Sensitivity 
(%) 

Precision 
(%) 

F1 score 
(%) 

AUC 

MTR 92.42 91.86 91.68 91.53 0.92 
LSRL 90.91 93.06 88.63 90.64 0.91 
MCC 90.91 92.10 89.06 90.29 0.90 
MPH 89.69 93.55 86.42 89.48 0.89 
None 94.24 98.87 90.23 94.33 0.94  

Table 3 
Validation results calculated from the average of the evaluation metrics 
(accuracy, sensitivity, precision, F1 score and AUC) for the 5 different 
cross-validation sets. The results obtained with the proposed W&D model are 
compared to other state-of-the-art ML-based algorithms, namely, ANN, SVM, RF 
and KNN. The best result for each specific evaluation metric is highlighted in 
bold.  

Model Accuracy 
(%) 

Sensitivity 
(%) 

Precision 
(%) 

F1 score 
(%) 

AUC 

W&D (proposed) 94.24 98.87 90.23 94.33 0.94 
ANN 89.69 92.47 87.29 89.54 0.89 
SVM 88.18 80.78 98.76 88.79 0.89 
RF 88.84 84.89 92.23 88.22 0.88 
KNN 88.48 83.29 94.31 88.31 0.88  

Table 4 
Validation results calculated from the average of the evaluation metrics 
(accuracy, sensitivity, precision, F1 score and AUC) for the 5 different 
cross-validation sets obtained with an SVM. Different values were used for 
the C parameter of the SVM, ranging from 2− 6 to 26. For each value of C, the 5- 
fold cross-validation was performed, and the average of the metrics are reported.  

C Accuracy 
(%) 

Sensitivity 
(%) 

Precision 
(%) 

F1 score 
(%) 

AUC 

2–6 80.91 71.47 100.0 83.25 0.86 
2–5 79.70 70.24 100.0 82.4 0.85 
2–4 81.52 72.03 100.0 83.68 0.86 
2–3 83.94 74.73 100.0 85.49 0.87 
2–2 86.06 77.35 100.0 87.19 0.89 
2–1 87.58 79.91 98.69 88.30 0.89 
1.0 88.18 80.78 98.76 88.79 0.89 
21 89.39 82.42 98.69 89.82 0.91 
22 89.39 82.54 98.69 89.87 0.91 
23 89.70 82.92 98.69 90.11 0.91 
24 90.30 83.86 98.69 90.64 0.91 
25 89.39 82.84 98.11 89.82 0.90 
26 88.48 81.97 96.84 88.63 0.89  
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