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Abstract
The Naïve Bayes is a tractable and efficient approach for statistical classification. In
general classification problems, the consequences of misclassifications may be rather
different in different classes, making it crucial to control misclassification rates in the
most critical and, in many realworld problems, minority cases, possibly at the expense
of higher misclassification rates in less problematic classes. One traditional approach
to address this problem consists of assigning misclassification costs to the different
classes and applying the Bayes rule, by optimizing a loss function. However, fixing
precise values for such misclassification costs may be problematic in realworld appli-
cations. In this paper we address the issue of misclassification for the Naïve Bayes
classifier. Instead of requesting precise values of misclassification costs, threshold val-
ues are used for different performance measures. This is done by adding constraints to
the optimization problem underlying the estimation process. Our findings show that,
under a reasonable computational cost, indeed, the performance measures under con-
sideration achieve the desired levels yielding a user-friendly constrained classification
procedure.
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1 Introduction

Naïve Bayes (NB) is a classification technique that has played a prominent role in
the literature. Hand and Yu (2001), Hastie et al. (2001) and Mehra and Gupta (2013)
highlight its tractability, simplicity and efficiency. The implicit hypothesis of indepen-
dent attributes conditioned to the class eases its implementation significantly because
it allows to express the sample likelihood to be maximized as the product of univari-
ate marginals. Moreover, this classifier is less prone to overfitting since it estimates
fewer parameters than other current classification techniques (Domingos and Pazzani
1997; Hand and Yu 2001). As a consequence, NB has been applied in a number of
real contexts, for example, genetics (Chandra and Gupta 2011; Minnier et al. 2015),
medicine [see Wei et al. 2011; Rosen et al. 2010; Parthiban et al. 2011; Wolfson et al.
2015], risk (Minnier et al. 2015), reliability (Turhan and Bener 2009; Menzies et al.
2007), document analysis (Bermejo et al. 2011; Guan et al. 2014) and a number of
variants have been proposed in the literature [see Jiang et al. 2016; Boullé 2007; Wu
et al. 2015; Yager 2006].

Although classifiers are built so that an overall performance measure is optimized,
misclassification rates for different classes may be different, and they may not be
in accordance with misclassification costs, since the classes of least interest may be
much better classified than the critical ones. This is of particular concern in some real
contexts, such as early detection of diseases (since fewer observations of diseased
population are often available), risk management and credit card fraud detection, see
Carrizosa et al. (2008), He and Yunqian (2013), Prati et al. (2015), Sun et al. (2009)
for more details and applications. Consider, as an example, the well-referenced Breast
Cancer Wisconsin (Diagnostic) data set from the UCI repository (Lichman 2013).
It is a slightly unbalanced dataset composed by 30 continuous variables and two
classes: Benign (63% of the total samples) and Malignant (37%). It is relevant to
remark that, for this dataset, it is more important to classify correctly the Malignant
class (the critical one) than the Benign class. If the classic NB is performed, setting
equal both misclassification costs, then the estimated performance rate for the control
group is about 0.96, higher than the rate for the sick group (0.89). One can easily
modify the misclassification costs structure, but this way only an indirect control on
misclassification rates is obtained.

In this paper we propose a novel way of controlling misclassification rates, that
do not call for using misclassification costs which may be hard to choose and are not
usually given (Sun et al. 2007, 2009). In particular, a new version of the NB is obtained
by modeling performance contraints where the Recall (proportion of instances of a
given class correctly classified) for the classes of interest is forced to be lower-bounded
by certain thresholds. In this way, the user is allowed to assign different importance
to the different classes according to her preferences. For example, in the previously
considered Breast Cancer dataset, it may be desiderable to increase the Recall for the
Malignant class, which was equal to 0.89. As it will be shown in Sect. 3, for this case
such rate can be increased up to 0.91. Other example where performance constraints
are useful is when fair classification is a requirement as a social criterion, and then the
sensitive groups should be protected to avoid the discrimination against race, or other
sensitive data (Romei and Ruggieri 2014). Acceptable values for the Recall of groups
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at risk could be fixed via the proposed method in this work. A direct application of
our proposal is to handle highly unbalanced datasets, with two or more classes, where
the inclusion of performance constrains allows us to improve the results associated
with the most damaged classes while controlling the Recall related to the rest of the
classes.

The problem of cost imbalance has been addressed in the literature from two differ-
ent perspectives: Data-Level techniques and Algorithm-Level approches, see Leevy
et al. (2018). Whereas the former include data sampling methods and feature selec-
tion, the latter encompass cost-sensitive and hybrid/ensemble methods which adapt
the base classifier to overcome the imbalance. Particularly, our approach can be seen
as a cost-sensitive method. Cost-sensitive approaches have been already considered in
the literature for well-known classifiers. For example, Datta and Das (2015), Carrizosa
et al. (2008) and Lee et al. (2017) focus on the support vector machine (SVM) clas-
sifier. In Datta and Das (2015) the decision boundary shift is combined with unequal
misclassification penalties. On the other hand, in Carrizosa et al. (2008) a biobjective
problem, which simultaneous minimizes the misclassification rates, is performed. In
Lee et al. (2017), the authors propose a newweight adjustment factor that is applied to a
weighted SVM. In the context of decision trees, Freitas et al. (2007), Ling et al. (2004)
introduce tree-building strategies which choose the splitting criterion by minimizing
the misclassification costs, whereas Bradford et al. (1998) performs the pruning of
a subtree following the cost information. Cost-sensitive versions of neural networks
for unbalanced data classification have also been studied in the literature (Cao et al.
2013; Zhou and Liu 2006). Other approaches can be found, for example in Peng et al.
(2014), where a new version of the so-called data gravitation-based classification
model is proposed.

However, there is a lack of methodologies allowing the user to control the different
performance measures of interest at the same time. The application of mathemati-
cal optimization tools, the approach that we undertake in this paper, seems to be a
promising (Carrizosa and Romero Morales 2013) and not fully explored option: one
overall criterion is to be optimized, while constraints are introduced in the model to
demand admissible values for the efficiency measures under consideration. Recently,
this approach has been considered either in classification (Benítez-Peña et al. 2019;
Blanquero et al. 2021) or in regression (Blanquero et al. 2021). In this paper, this tech-
nique is explored for improving the NB performance in the classes of most interest to
the user. It will be seen that unlike the traditional NB, which is a two-step classifier
(estimation first and classification next), the novel approach integrates both stages. In
particular, maximum likelihood estimation is formulated as an optimization problem
in which thresholds on classification rates are imposed. In other words, maximum
likelihood estimates are replaced here by constrained maximum likelihood estimates,
where the constraints control the Recall values of the classes of interest.

This paper is organized as follows. In Sect. 2 the NB is briefly reviewed and the
proposed version of constrained NB (CNB from now on) is described. Section 3
illustrates the usefulness of our novel approach. Eight real databases with different
sampling properties are thoroughly analyzed, and a detailed discussion concerning the
Recall values of the proposed approach compared with the classic NB is given. Some
conclusions and further related research are considered in Sect. 4.
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2 The constrained Naïve Bayes

In our approach, the estimation is performed by solving a constrained maximum like-
lihood estimation problem, constraints being related with thresholds on the Recall
values for different classes. The aim of this section is to describe the associated opti-
mization problem. As a result, a computationally tractable classifier that allows the
user to control its performance is obtained.

2.1 Preliminaries on NB classification

Consider a random vector (X,Y ), where X = (
X1, . . . , X p

)
contains p features

and Y identifies the class label. Assume that we have a single-label (one class label
per observation) classification problem with K classes. Then, for each class k ∈
{1, . . . , K }, let πk denote the prior probability of the class, πk = P(Y = k), and
assume that X j |(Y = k) has a probability density function fθ jk (x), where θ jk ∈ � jk .
For k = 1, . . . , K , define θk = (θ1k, . . . , θpk).

Letx = (x1, . . . , xp)be a newobservation. Then the aim is to label it on one of the K
classes. Then, under the 0–1 loss function, Bayesian Decision Theory establishes that
x is classified in the most probable class according to the conditional distribution. The
estimation of the associated parameters may be cumbersome if the number of features
p is large. However, the use of the Bayes theorem, in addition to the assumption of
independence (conditioned to the class) ease the previous estimation process. As it
is well known, the latter assumption implies that the joint density function can be
expressed as

f (x1, . . . , xp, k) = P(Y = k) f (x1, . . . , xp | k)
= πk fθk (x)

= πk

p∏

j=1

fθ jk (x j ),

and thus the estimation process is reduced to estimate the parameters of each marginal
distribution. Then, the NB classifier performs by assigning x to class k satisfying

πk

p∏

j=1

fθ jk (x j ) ≥ πi

p∏

j=1

fθ j i (x j ) ∀i = 1, . . . , K . (1)

Given a training sample of size N1, (x1, k1), . . . , (xN1 , kN1), then θ = (θ1, . . . , θK )

is estimated inNBviamaximum likelihood (Hogg et al. 2005), and therefore computed
as the solution of the optimization problem:

max
θ

N1∑

n=1

log fθkn (xn) (2)
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Therefore, the classic NB can be seen as a two-step classifier, where the model
parameter is first estimated as θ̂ from a training sample, and then (1) is applied under
θ = θ̂ .

2.2 A novel formulation with performance constraints

In order to calibrate the performance of a classifier, many measures have been defined
in the literature, see Sokolova and Lapalme (2009). In particular, the so-calledRecallk ,
for k = 1, . . . , K , is defined as the sample fraction of individuals in class k which are
correctly classified.

Given a validation sample of size N2, where N2 = ∑
k N2,k and N2,k is the size of

class k in such a validation sample, (x(k)
1 , k), . . . , (x(k)

N2,k
, k), then the Recall for class

k can be expressed as functions of θ̂ ,

Recallk(θ̂) = 1

N2,k

N2,k∑

n=1

Ck(θ̂, x(k)
n ), k = 1, . . . , K , (3)

where

Ck(θ̂ , x(k)
n ) =

⎧
⎨

⎩

1 if the individualx(k)
n is classified in class k,

0 otherwise.
(4)

Unlike the classic NB, based on a two-step approach, the CNB proposed in this
paper integrates the performance of the classifier [according to expression (3)] within
the estimation step. In particular, the pursued aim is to estimate θ as the solution of
an optimization problem where the objective function is given using a training sample
of size N1 as in (2) and, to prevent overfitting, constraints on (3) are imposed on an
independent sample (validation set) of size N2 = ∑K

k=1 N2,k ,

max
θ

N1∑

n=1

log fθkn (xn)

s.t.
1

N2,k

N2,k∑

n=1

Ck(θ, x(k)
n ) ≥ αk, k = 1, . . . , K .

(CNB)

In the previous CNB optimization problem, αk ∈ (0, 1) is a threshold, a lower-bound
value close to 1, for k = 1, . . . , K , which is fixed by the user according to her
requirements about the classification in the different classes. From the point of view of
optimization, we assume that the function fθkn is smooth with respect to the parameter
θkn . Regarding the constraints, they are not smooth and therefore, gradient methods
cannot be applied in order to solve Problem (CNB). This fact makes the resolution of
(CNB) to be slow, especially for large datasets. However, a proxy version of (CNB)
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can be written in a more tractable way if the constraints are reformulated in terms of
smooth functions as

C̃k(θ , x(k); λ) =
K∏

i=1,i �=k

F(yki (θ , x(k)); λ), (5)

where F(y; λ) = 1
1+e−λy is the sigmoid function and

yki (θ , x) = πk

p∏

j=1

fθ jk (x j ) − πi

p∏

j=1

fθ j i (x j ). (6)

On the one hand, from the definition of the sigmoid function, it can be seen that
limλ→∞ C̃k(θ , x(k); λ) = Ck(θ , x(k)), since for large values of λ, F(yki (θ, x(k)); λ)

will only take the values 0 or 1 depending on the sign of yki (θ, x(k)). Then, λ is a
hyperparameter big enough so that C and C̃ are as close as possible. On the other
hand, the reason why we use the product function to define C̃ is explained below. Note
that if any class i has associated a density much greater than class k, then yki will
take a large negative value which makes F(yki (θ , x(k)); λ) close to 0 and therefore
C̃k(θ , x(k); λ) will also be close to 0. From the previous discussion, a differentiable
version of the CNB problem is obtained as

max
θ

N1∑

n=1

log fθkn (xn)

s.t.
1

N2,k

N2,k∑

n=1

C̃k(θ, x(k)
n ) ≥ αk, k = 1, . . . , K .

(SCNB)

The smooth formulation (SCNB) can be solved using efficient solvers for nonlinear
constrained programming [see, e.g. Birgin and Martínez (2008)]. From now on, we
refer to (SCNB) as our optimization problem.

Some important remarks need to be made at this point. The first one regards the
feasibility of the (SCNB). In a real application, threshold values α1, . . . , αK have to be
fixed. As a first option, they could be fixed by the user according to her demand, but it
might be the case that (SCNB) is unfeasible. For that reason, we propose a procedure
for determining the thresholds in such a way that (SCNB) is always feasible. If we
consider a dataset with K different classes, let θ∗ be the model parameter associated
with (2) and k0 be the critical class or the class where the method performs the worst.
Suppose that the aim is to improve the Recall for such class k0, say

αk0 = 1

N2,k0

N2,k0∑

n=1

C̃k0(θ
∗, x(k0)

n ) + �,
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with � > 0. Then, in order to know the maximum threshold τ for the other classes
k �= k0, k ∈ {1, . . . , K }, the next optimization problem can be solved:

max
θ ,τ

τ

s.t.
1

N2,k0

N2,k0∑

n=1

C̃k0(θ , x(k0)
n ) ≥ 1

N2,k0

N2,k0∑

n=1

C̃k0(θ
∗, x(k0)

n ) + �

1

N2,k

N2,k∑

n=1

C̃k(θ , x(k)
n ) ≥ τ, ∀k �= k0.

This way we search the estimates θ such that in the relevant class k0 the Recall is
improved in at least � with respect to the Recall in the traditional Bayes estimate and
maximize the minimum Recall in the remaining classes.

Secondly, it should be highlighted that the parameters α1, . . . , αK involved in the
model have a clear interpretation (the desired Recall for each of the classes), while
allowing us to have full control over all of them. The third comment is related to the
size of the considered dataset in terms of the number of predictor variables. Problem
(SCNB) can be addressedwhen the number of features p is large. However, to alleviate
the computational cost and thus to improve the running times, we propose to perform a
pre-processing to select relevant predictors for large datasets as a part of the procedure.
This step will be explained in more detail in Sect. 3.2. Finally, the fourth remark
concerns the solutions of (SCNB), which are not maximum likelihood estimates any
more, but maximum constrained likelihood estimates instead. On the contrary, the
problem yields a solution with the highest sample likelihood fulfilling the constraints
on performance on the independent sample. Up to our knowledge, this is a breaking
approach that has never been considered in NB models.

3 Numerical results

In this section, eight datasets from the UCI Machine Learning Repository and KEEL
open source (Alcalá-Fdez et al. 2011, 2009) diverse, in both in the number of classes,
sizes and imbalance ratio shall be analyzed.Thedescription of the datasets canbe found
in Sect. 3.1 and the numerical experiments and obtained results will be considered in
Sects. 3.2 and 3.3, respectively.

3.1 Datasets

The datasets breast cancer, SPECTF, page-blocks, abalone, yeast,
Satimage, RCV1 and letterwill be considered. From all the available versions of
the datasets, we have chosen those described in Table 1. The colums report the dataset
name, the number of instances and features and finally, the class split of the eight con-
sidered datasets (page-blocks, abalone, yeast, Satimage and RCV1 can be
considered unbalanced datasets).
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3.2 Design of experiments

Probability distributions setting and resolution of the optimization problem

As comented in Sect. 2.1, a probability model needs to be selected for the features
conditioned to the class. If the feature is continuous, in this paper we will assume
the normal distribution. For discrete features, we consider the categorical distribution,
and the Poisson distribution for non-negative integers. From the point of view of
the optimization, (SCNB) will be solved using solvers for smooth optimization. In
particular, auglag and mma functions from R package nloptr will be used in this
work to obtain all numerical results.

Estimation of the performance rates

The performance of the proposed classifier will be estimated using a stratified 25
Monte-Carlo cross-validation (Xu and Liang 2001). The dataset will be split into
three sets, the so-called training, validation and testing sets. One-third of the dataset
is used as testing set, and the remaining two-thirds for training set and validation set.
Specifically, the training set is formed by two-thirds of those two-thirds of the dataset,
whereas the remaining one-third is used for the validation set. As explained in Sect. 2,
the objective function will be optimized on the training set while the constraints will
be evaluated on the validation set. Once the SCNB problem is solved, Recall values
are estimated on the testing set. It must be highlighted that at each run, the training
sample is built in a stratified way so that the proportion of samples per class is similar
to the proportions depicted by Table 1. Finally, regarding the hyperparameter λ, after
an extensive simulation study considering a wide grid of values, the choice λ = 23 is
set in the experiments since it provides a good match between C and C̃ as in (4) and
(5).

Pre-processing for large datasets

As commented at the end of Sect. 2.2, Problem (SCNB) turns out computationally
costly for large datasets as the considered RCV1 dataset. As it is common in the lit-
erature [see Leevy et al. (2018) and references therein], we suggest to pre-processing
such datasets in a way that irrelevant variables are removed in a first step previous
to the resolution of (SCNB). That is, at each fold of the stratified 25 Monte-Carlo
cross-validation previously commented, the importance of the predictor variables are
measured using the training set so that the predictor variables with low importance are
not considered when solving Problem (SCNB). Specifically, in this work the impor-
tance of the predictor variables composing RCV1were measured using the R function
information.gain from FSelector. In this case, most of the variables have
an associated importance close to 0 and, then, only 392 of the total are going to be
kept when solving (SCNB) for the RCV1 dataset.
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The choice of thresholds

In order to select the threshold values αk in Problem (SCNB), the classic NB classifier
(2) was first run. Table 2 shows the Recall estimates for each class. For letter
dataset, the average Recall values of classic NB are in the first row of Table 4.

Throughout this work we consider the classes where the classic NB performs the
worst as the classes of interest or at risk and thus the aim is to improve the rates for
such classes. From results in Table 2 and the first row in Table 4, the set of thresholds
to be tested in the numerical experiments shall be given by Table 3 and the second
row in Table 4. Specifically, the better rates for the classes with the worst associated
Recall are selected by increasing in steps of two points those results obtained by the
classic classifier, whereas admissible values for the rest of classes are also fixed.

Additionally, to highlight the versatility of our proposal, for three of the datasets
(page- blocks, yeast and letter) we aim to improve the Recall of more than
one class at the same time. Thus, for instance, for yeast dataset, we will improve
the Recall of classes CYT and NUC, which are the two classes in the dataset with the
lowest Recall values. Then, we first run Problem (SCNB) with thresholds 0.060 for
CYT and 0.340 for NUC and, then, we run it again by imposing 0.080 for CYT and
0.360 for NUC.

3.3 Results

The estimated rates are reported in Tables 5, 6, 7, 8, 9, 10, 11, and 12. The first row
shows the results for the classic NB, when no thresholds are imposed. The first column
shows the imposed thresholds for the Recall of each class, whereas the column and
thresholds in bold correspond to the classes at risk (where the classic NB presents
the poorest performance). For example, in Table 6, it is required that the Recall of
Normal class is at least 0.900, while over the Abnormal class the threshold varies
from 0.660 to 0.700. The remaining columns, except for the last one, provide the
average Recall values measured on the test set. Finally, the last column contains
the value of the micro-averaged F1 (Yang and Liu 1999), an aggregate performance
measure of the classifier. From the F1 values, the sign-test was used to test if both
approaches are statistically significantly different. In particular, the significance codes
follow the following nomenclature: ‘**’ , ‘*’ and ‘.’ mean respectively that the p-value
is smaller than 0.01, 0.05 and 0.1.

As expected, the results under the constrained NB version differ from the results
provided by the classic NB. For example, for the page-blocks dataset, the Recall
values under the classic NB are 0.915, 0.673, 0.644, 0.942 and 0.400, for the
text, horiz. line, graphic, vert. line and picture classes, respec-
tively (Table 7). As commented before, we are interested in increasing the Recall of
the classes worst classified. According to Table 7, if the minima 0.710, 0.680, 0.440
are imposed for the horiz. line, graphic and picture classes, the final rates
change from 0.673 to 0.697, from 0.644 to 0.694 and from 0.400 to 0.457, respec-
tively. It is important to highlight two different facts concerning the previous results.
First, note that better rates for the horiz. line, graphic and picture classes
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Table 4 Average Recall of classic NB (25Monte-Carlo cross-validation) and tested thresholds for letter
dataset

A B C D E F G H

Average Recall classic NB 0.882 0.662 0.777 0.648 0.364 0.695 0.484 0.318

Tested thresholds 0.880 0.660 0.770 0.640 0.380 0.690 0.480 0.330

I J K L M N O P

Average Recall classic NB 0.785 0.659 0.437 0.741 0.847 0.703 0.721 0.739

Tested thresholds 0.780 0.650 0.430 0.740 0.840 0.700 0.720 0.730

Q R S T U V W X

Average Recall classic NB 0.510 0.606 0.231 0.731 0.726 0.746 0.788 0.437

Tested thresholds 0.510 0.600 0.250 0.730 0.720 0.740 0.780 0.430

Y Z

Average Recall classic NB 0.325 0.585

Tested thresholds 0.340 0.580

Table 5 Average Recall values of SCNB (25 Monte-Carlo cross-validation) for breast cancer

Thresholds (Benign/Malignant) Recall Benign Recall Malignant micro F1

Classic NB 0.957 0.891 0.933

0.950/0.910 0.951 0.898 0.932

0.950/0.930 0.947 0.903 0.931

0.950/0.950 0.939 0.906 0.926

Sign test. Signif. codes: ‘**’, ‘*’ and ‘.’ mean that a p-value smaller than 0.01, 0.05 and 0.1 is obtained

Table 6 Average Recall values of SCNB (25 Monte-Carlo cross-validation) for SPECTF

Thresholds (Abnormal/Normal) Recall Abnormal Recall Normal micro F1

Classic NB 0.638 0.900 0.690

0.660/0.900 0.660 0.854 0.698.

0.680/0.900 0.669 0.858 0.707∗
0.700/0.900 0.671 0.850 0.706∗∗

Sign test. Signif. codes: ‘**’, ‘*’ and ‘.’ mean that a p-value smaller than 0.01, 0.05 and 0.1 is obtained

have been obtained, but at the expense of slightly decreasing the rates of the rest
of the classes. Second, note that even though a rate equal to 0.710 was imposed for
the horiz. line class, such value was not finally obtained, but a slightly smaller
one (0.697) instead. This is not surprising, since the constraints are imposed for one
sample, and tested on an independent set.

From the results shown in Tables 5, 6, 7, 8, 9, 10, 11, and 12, it can be concluded that
the proposed approach allows the user to control the Recall values in such a way that
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Fig. 1 Scalability: X-axis
represents the number of
instances (with range from 500
to 20,000) whereas each line the
number of features (with range
from 10 to 1000)

the classes of interest, where the classic method performs the worst in this case, can
be improved. Additionally, our approach reaches comparable or even better overall
results than the classic NB [see micro F1 scores throughout Tables 5, 6, 7, 8, 9, 10,
11, and 12]. Note that among the possible non-dominated solutions shown for each
dataset, the user could choose according to her interest and to what she is willing to
lose in the less critical classes.
Finally, to illustrate the computational cost of the optimization algorithm depend-
ing on the number of instances and features, we simulated data following (Witten
et al. 2014) with {500, 1000, 3000, 5000, 10,000, 15,000, 20,000} instances and
p ∈ {10, 50, 100, 300, 500, 700, 900, 1000}. Figures 1 and 2 report the logarithm of
the user times (in seconds) when the SCNB is run on an Intel(R) Core(TM) i7-7500U
CPU at 2.70 GHz 2.90 GHz with 8.0 GB of RAM, and the number of evaluations for
the algorithm auglag is 100. The X-axis of Fig. 1 shows the number of instances
whereas each line represents the number of variables of the dataset (p). Figure 2 is
the opposite. Overall, running time grows linearly respect to the number of instances,
but not so smooth when p increases.

4 Conclusions and extensions

In this paper a new version of the NB classifier is proposed with the aim of controlling
misclassification rates in the different classes, avoiding the use of precise values of
misclassification costs, which may be hard to choose. In order to achieve this goal,
performance constraints are included into the optimization problem which estimates
the involved parameters. The approach results in a novel method (SCNB) not reported
in the literature previously, up to our knowledge. Unlike the classic NB, which is
based on a two-step approach, the (SCNB) integrates the performance rates in the
parameters’ estimation step. In fact, this novel approach allows the user to impose
thresholds to assure the achievement in the measures of efficiency (in this case, the
Recall values). The proposed methodology has been tested on eight real datasets with
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Fig. 2 Scalability: X-axis
represents the number of
features (with range from 10 to
1000) whereas each line the
number of instances (with range
from 500 to 20,000)

different sampling properties. The numerical results show that not only the classifica-
tion rates of interest can be controlled and improved, but also similar or even better
overall results, comparing with those of the classic NB, are obtained. The former is of
great interest in some medical, credit scoring or social contexts where some classes
are more critical than others.

A possible extension to this work is to consider non parametric estimation for the
density function for continuous attributes via kernel density estimation. Also, one
anonymous referee suggested to measure the efficiency of the approach via statistical
tests in the same spirit as in Demšar (2006). Work of these issues is underway.
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