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a b s t r a c t

A dilute gas of hard disks confined between two straight parallel lines is considered.
The distance between the two boundaries is between one and two particle diameters,
so that the system is quasi-one-dimensional. A Boltzmann-like kinetic equation, that
takes into account the limitation in the possible scattering angles, is derived. It is shown
that the equation verifies an H-theorem implying a monotonic approach to equilibrium.
The implications of this result are discussed, and the equilibrium properties are derived.
Closed equations describing how the kinetic energy is transferred between the degrees
of freedom parallel and perpendicular to the boundaries are derived for states that are
homogeneous along the direction of the boundaries. The theoretical predictions agree
with results obtained by means of Molecular Dynamics simulations.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In recent years, the study of transport phenomena in gases or liquids confined in spaces whose characteristic length
s comparable to the molecular size, has attracted a lot of attention. This has been prompted and stimulated by the
elevant new technological applications of nanofluidics [1,2]. The experimental advances ask for a better understanding,
t a conceptual level, of the effects that strong confinement has on the non-equilibrium behavior of fluids. Because under
hese conditions the particles do not explore a bulk-like environment, and because of the asymmetry generated by the
onfining boundaries, strongly confined systems exhibit inhomogeneity and anisotropy, that have both a great impact on
heir macroscopic properties.

Most of the studies carried out up to now on transport in confined fluids consider, more or less explicitly, that
ydrodynamics holds in all the directions, i.e. it is supposed that the length characterizing the confinement is larger
hat the characteristic hydrodynamic length. Then, for instance, to study diffusion in a fluid that is confined between two
arallel plates, the starting point is the three-dimensional diffusion equation, with the appropriate boundary conditions
onfining the system [3–6]. In more general transport problems, some ad hoc extrapolation of the Navier–Stokes equations
o confining geometries are employed. In these works, the theoretical problem is how to project the three-dimensional
ynamics on a one-dimensional or two-dimensional space, depending on the specific geometry of the system at hand.
evertheless, when dealing with strongly confined fluids, it is not clear that hydrodynamics hold in the direction
erpendicular to the confining walls.
Kinetic theory and non-equilibrium statistical mechanics provide the appropriate context to investigate which is the

ight macroscopic description of transport under strong confinement, providing also the expressions for the needed
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ransport coefficient. Notice that, in principle, not only the values of the transport coefficient can be different from the bulk
ase, but also the structure of the transport equations itself can differ. A first issue to formulate a kinetic theory of strongly
onfined systems is to propose a well-founded kinetic equation for them. Up to now, to the best of our knowledge, most
f the efforts in this direction have consisted in formulating model kinetic equations to investigated specific observed
ffects, mainly in the context of granular fluids [7–10].
In the present paper, a kinetic equation to study non-equilibrium processes in a confined quasi-one-dimensional dilute

ystem of hard disks is formulated, and some of its fundamental properties are investigated. More specifically, the system
s confined by two hard walls separated a distance between one and two particle diameters. The kinetic equation is derived
y adapting the arguments leading to the Boltzmann equation for bulk systems [11,12] and, in particular, making use of the
olecular chaos approximation. The main difference implied by the confinement is a restriction on the possible values of

he scattering angle between colliding particles. This is the mathematical manifestation of the inhomogeneity introduced
y the confinement. Of course, a first test to be passed by the kinetic equation is that it must reproduce the results obtained
y means of the well established theory of inhomogeneous fluids under thermodynamic equilibrium conditions [13–
5]. This includes not only the equilibrium density profile, but also the static pressure parameters associated to the
erpendicular and parallel directions to the confining walls.
In the case of a strictly one-dimensional system of elastic hard rods, it is evident that the system does not approach

Maxwellian velocity distribution, given that particles just interchange their velocities in a collision. As a consequence,
here is no H-theorem for such systems, contrary to what happens with a bulk system of hard disks (or spheres) [11,12].
relevant question is, therefore, whether a Liapunov function and an associated H-theorem does exist for a quasi-one-
imensional system of hard disks, as the one described above and considered in this paper. If this is the case, does the
-function reduces to the equilibrium entropy, aside from proportionality and additive trivial constants?
In the next Section, the kinetic equation describing the dynamics of a dilute quasi-one-dimensional gas of hard

isks is formulated. The arguments leading to the equation are essentially the same as those employed for a quasi-
wo-dimensional gas of hard spheres in Ref. [16]. Also, the boundary conditions to be employed when solving the
quation are formulated. In Section 3, an H-theorem implying the approach to equilibrium from any initial condition is
roven. The Liapunov H-function contains, in addition to the usual Boltzmann expression, a contribution associated with
he confinement, which is a functional of the (non-equilibrium) density field. By means of the H-theorem, the unique
tationary distribution is determined. As expected, it is a Gaussian in the velocity space with a non-uniform density field.
he latter is given as the solution of an integro-differential equation, whose exact solution seems hard to find in an
nalytical form. An expression valid in the limit of a very narrow channel (its width slightly larger that the diameter of
he particles) is derived.

From the quantity H , an expression for the entropy of the system is proposed in Section 4. When particularized for
he equilibrium situation, the result agrees, in the appropriate limit, with the entropy computed by means of equilibrium
tatistical mechanics methods [14,15]. Next, two pressure parameters, associated with the separation of the confined
alls and with their length, respectively, are defined in terms of the entropy. The expression obtained for the former is
onsistent with the wall theorem for systems of hard spheres or disks [17–19].
As a simple application of the kinetic equation, in Section 5, closed evolution equations for the two temperature

arameters associated to the motion parallel and perpendicular to the confining walls, respectively, are derived, for the
imple case of homogeneous systems along the direction of the walls. The results are compared with Molecular Dynamics
MD) simulation data, and a good agreement is obtained. Finally Section 6 contains a summary of the conclusions and
ome final comments and perspectives.

. The kinetic equation

A quasi-one-dimensional system of N hard disks of mass m and diameter σ is considered. The particles are confined by
wo large, formally infinite, parallel straight hard walls separated a distance h, σ < h < 2σ . The number of particles per
nit of area is assumed to be very low, so that the Stosszahlansatz or molecular chaos hypothesis [11,12], assuming that
here are no velocity correlations between particles before collisions, can be used. Moreover, it is also assumed that the
ne-particle distribution function of the gas of disks, f (r, v, t) can be taken as constant over displacements of the order of

the diameter of the disks along the direction parallel to the hard walls. Trivially, the same property cannot be assumed in
the direction perpendicular to the walls, since the confinement breaks the isotropy of the dynamics and imposes relevant
variations over distances smaller than the diameter of the particles when going from one hard wall to the other one. It
follows that the relevant parameter defining the low density limit is the number of particles per unit of length along the
direction parallel to the walls. A sketch of the system and the coordinates used to describe a collision is provided in Fig. 1.
In mathematical language, the assumption mentioned above reads

f (x + ∆x, z, v, t) ≈ f (x, z, v, t), (1)

for |∆x| = O(σ ). Then, following the usual arguments leading to the Boltzmann–Enskog equation, and reproduced in
detail for a quasi-two-dimensional gas in [16], it is obtained(

∂
+ v ·

∂
)
f (r, v, t) = J [r, v|f ] , (2)
∂t ∂r
2
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Fig. 1. Collision between two hard disks in a quasi-one-dimensional confined system. The X and Z axis are taken as parallel and perpendicular to
the confining plates, respectively. It is seen that the collision vector is univocally determined by the value of the polar angle θ .

ith the collision term given by

J [r, v|f ] = σ

∫
dv1

∫
Ωσ (z)

d̂σ |g · σ̂| [Θ(g · σ̂)bσ − Θ(−g · σ̂)] f (x, z + σz, v1, t)f (r, v, t). (3)

Here, σ̂ is the unit vector along the line joining the centers of the two particles at contact from particle 1, σz = σ σ̂z ,
g ≡ v1 − v, r ≡ {x, z}, Θ is the Heaviside step function, and bσ is an operator changing all the velocities v and v1 to its
right into the post-collisional values given by

v′
≡ bσv = v + (g · σ̂) σ̂, (4)

v′

1 ≡ bσv1 = v1 − (g · σ̂) σ̂. (5)

The angular integration over d̂σ is restricted to the domain Ωσ(z) that is compatible with the confinement imposed by
the parallel walls. In Fig. 1 it is seen that the domain of integration depends on the coordinate z of the target particle.
Moreover, it is

σ̂ ≡ {cos θ, sin θ} (6)

and d̂σ = dθ , where θ is the polar angle indicated in the figure. For fixed z, the coordinates z1 and θ are related by

sin θ1 =
z1 − z

σ
, cos θ1 = +

√
1 −

(
z1 − z

σ

)2

for −
π

2
< θ1 <

π

2
, (7)

sin θ2 =
z1 − z

σ
, cos θ2 = −

√
1 −

(
z1 − z

σ

)2

for
π

2
< θ2 <

3π
2

. (8)

It is convenient to decompose the collision term J [r, v|f ] given in Eq. (3) into two parts corresponding each of them to
one of the two intervals of values of θ identified above. Then, it is possible to make a change of variables from θ to z1 in
each of the two contributions, with the result

J[r, v|f ] =

∫
dv1

∫ h−σ/2

σ/2
dz1 (cos θ1)−1 (

1 + Pσ1,σ2

)
|g · σ̂1|

[
Θ(g · σ̂1)bσ1 − Θ(−g · σ̂1)

]
× f (x, z1, v1, t)f (r, v, t), (9)

where Pσ1,σ2 is an operator permuting all the vectors σ̂1 (corresponding to an angle θ1 as defined in Eq. (7)) and σ̂2
(corresponding to an angle θ2 as defined in Eq. (8)) to its right. The latter are defined by Eq. (6) using the expressions
given in Eqs. (7) and (8), respectively.

The kinetic equation formulated in Eqs. (2) and (9) must be solved with the appropriate boundary conditions,
namely [16],

Θ(vz)f (r, v, t)δ
(
z −

σ

2

)
= Θ(vz)f (r, v∗, t)δ

(
z −

σ

2

)
, (10)

Θ(−vz)f (r, v, t)δ
(
z − h +

σ

2

)
= Θ(−vz)f (r, v∗, t)δ

(
z − h +

σ

2

)
, (11)

eing

v∗
= v − 2vẑez, (12)

here ê is the unit vector along the positive direction of the Z axis.
z

3
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A useful property of the collision term (9) is that for any arbitrary function of the velocity ξ (v) it is∫
dv ξ (v)J[r, v|f ] =

∫
dv

∫
dv1

∫ h−σ/2

σ/2
dz1 (cos θ1)

−1 (
1 + Pσ1,σ2

) [
ξ (bσ1v) − ξ (v)

]
× |g · σ̂1|Θ (−g · σ̂1) f (x, z1, v1, t)f (r, v, t). (13)

As a consequence, for a function of the position and the velocity, ξ (r, v), one has∫
dr

∫
dv ξ (r, v)J[r, v|f ] =

1
2

∫
dx

∫
dv

∫
dv1

∫ h−σ/2

σ/2
dz

∫ h−σ/2

σ/2
dz1 (cos θ1)

−1 (
1 + Pσ1,σ2

)
×

[
ξ (r, bσ1v) + ξ (x, z1, bσ1v1) − ξ (r, v) − ξ (x, z1, v1)

]
× |g · σ̂1|Θ (−g · σ̂1) f (x, z1, v1, t)f (r, v, t). (14)

The above equality follows form Eq. (13) by integrating the latter over the position r , interchanging the variables z, v and
z1, v1, adding the result to the original one and dividing by two.

In terms of the one-particle distribution function, the macroscopic fields of number density of particles, n(r, t), velocity
flow, u(r, t), and temperature, T (r, t), are defined in the usual way,

n(r, t) ≡

∫
dv f (r, v, t), (15)

n(r, t)u(r, t) ≡

∫
dv vf (r, v, t), (16)

n(r, t)kBT (r, t) ≡

∫
dv

1
2
m [v − u(r, t)]2 f (r, v, t). (17)

In the last expression, kB is the Boltzmann constant. Trivially, the above definitions do not presuppose the existence of a
two-dimensional hydrodynamic description. Integration of the kinetic equation (2) over the velocity and use of Eq. (14)
gives the continuity equation

∂n(r, t)
∂t

= −
∂

∂r
· [n(r, t)u(r, t)] , (18)

hich is just the balance equation for the number of particles.

. The H-theorem and the equilibrium distribution function

Let us define a global property of the system H(t) by [20]

H(t) ≡ Hk(t) + Hc(t), (19)

here the ‘‘kinetic part’’ Hk(t) is given by

Hk(t) ≡

∫
dr

∫
dv f (r, v, t) [ln f (r, v, t) − 1] , (20)

hile the ‘‘configurational’’ component is

Hc(t) ≡

∫
dr

∫
dr1 n(r, t)n(r1, t)Θ (σ − |r1 − r|) . (21)

The term Hk(t) is the same as considered by Boltzmann in his celebrated H-theorem [11,12]. The configurational
art is due to the confinement of the fluid between the two parallel plates. Its form is consistent with considering a
ocal equilibrium approximation for the N particle distribution function [19,21,22], and also with the expression for the
quilibrium entropy of a system of hard disks in the second virial coefficient approximation [18,23]. Our aim is to study
he time evolution of H(t) in the confined system. Consider first the time derivative of the kinetic part,

∂Hk(t)
∂t

=

∫
dr

∫
dv ln f (r, v, t)

∂ f (r, v, t)
∂t

. (22)

he term coming from the free flow contribution in the kinetic equation has the form

−

∫
dr

∫
dv [ln f (r, v, t)] v ·

∂ f
∂r

= −

∫
dr

∫
dv

∂

∂r
· [v (f ln f − f )]

= −

∫
dv

∫
dS · v (f ln f − f ) = 0, (23)
S

4
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here the Gauss theorem has been used and the property that the flux of any property through the boundaries S vanishes
as been employed. Then, Eq. (22) reduces to

∂Hk(t)
∂t

=

∫
dr

∫
dv ln f (r, v, t) J[r, v|f ]. (24)

y means of the general property (14), one gets

∂Hk(t)
∂t

=
1
2

∫
dx

∫
dv

∫
dv1

∫ h−σ/2

σ/2
dz

∫ h−σ/2

σ/2
dz1 (cos θ1)

−1 (
1 + Pσ1,σ2

)
× ln

f (r, bσ1v, t)f (x, z1, bσ1v1, t)
f (r, v, t)f (x, z1, v1, t)

|g · σ̂1|Θ (−g · σ̂1) f (x, z1, v1, t)f (r, v, t). (25)

Next, the inequality x(ln y − ln x) ≤ y − x, valid for x, y > 0 is employed. The equality sign only holds for x = y. It is
obtained

∂Hk(t)
∂t

≤
1
2

∫
dx

∫
dv

∫
dv1

∫ h−σ/2

σ/2
dz

∫ h−σ/2

σ/2
dz1 (cos θ1)

−1 (
1 + Pσ1,σ2

)
×

[
f (r, bσ1v, t)f (x, z1, bσ1v1, t) − f (r, v, t)f (x, z1, v1, t)

]
|g · σ̂1|Θ (−g · σ̂1)

= 2
∫

dx
∫ h−σ/2

σ/2
dz

∫ h−σ/2

σ/2
dz1 (tan θ1)n(r, t)n(x, z1, t)uz(x, z1, t). (26)

In the last transformation we have made the change bσ1v, bσ1v1 → v, v1, to realize that the four terms on the right hand
side are the same. Afterwards, the definition of the macroscopic velocity field, Eq. (16) has been used.

To study the time evolution of the configurational component of H defined in Eq. (21), the coordinates ζ ≡ |r − r1|
and z1 will be employed for r1. Then, it is found

Hc(t) =

∫
dx

∫ h−σ/2

σ/2
dz

∫ h−σ/2

σ/2
dz1

∫
∞

|z−z1|

dζ (cosϕ)−1 n(r, t)n(x, z1, t)Θ(σ − ζ ), (27)

where

cosϕ ≡ +

√
1 −

(
z1 − z

ζ

)2

. (28)

arrying out the integration over ζ yields

Hc(t) =

∫
dx

∫ h−σ/2

σ/2
dz

∫ h−σ/2

σ/2
dz1 n(r, t)n(x, z1, t)

√
σ 2 − (z − z1)2, (29)

nd, from here,

∂Hc(t)
∂t

=

∫
dx

∫ h−σ/2

σ/2
dz

∫ h−σ/2

σ/2
dz1

[
∂n(r, t)

∂t
n(x, z1, t) + n(r, t)

∂n(x, z1, t)
∂t

]
×

√
σ 2 − (z − z1)2. (30)

ext, the continuity equation (18) is used to rewrite the above equation as

∂Hc(t)
∂t

=

∫
dx

∫ h−σ/2

σ/2
dz

∫ h−σ/2

σ/2
dz1 n(r, t)n(x, z1, t)uz(r, t)

∂

∂z

√
σ 2 − (z − z1)2. (31)

o derive this expression, an integration by parts has been performed. Moreover, the assumed condition formulated by
q. (1) has been employed. More precisely, it has been used for ∆x =

√
σ 2 − (z − z1)2 ≤ σ . It is just a matter of simple

ransformations to convert Eq. (31) into

∂Hc(t)
∂t

= −2
∫

dx
∫ h−σ/2

σ/2
dz

∫ h−σ/2

σ/2
dz1 (tan θ1)n(r, t)n(x, z1, t)uz(x, z1, t). (32)

Use of Eqs. (19), (26), and (32) yields

∂H(t)
∂t

=
∂Hk(t)

∂t
+

∂H (c)(t)
∂t

≤ 0. (33)

he equality sign only applies if (see below Eq. (25))

f (r, bσiv, t)f (x, z1, bσiv1, t) = f (r, v, t)f (x, z1, v1, t), (34)

or both i = 1 and i = 2, and all the allowed values of x, v, v , z, and z .
1 1

5
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At this point, it is interesting to consider what happens in the limit of a true one-dimensional system, i.e., when h → σ .
hen, for initial conditions in which all the particles are inside the system, the distribution function at later times has the
orm

f (r, v, t) = δ

(
z −

σ

2

)
δ(vz )̃f (x, vx, t), (35)

and, in all collisions, the angle θ given in Eqs. (7) and (8) is either θ1 = 0 or θ2 = π , implying that σ̂x = 1 or
x = −1, respectively. Then, the well known result that in elastic one-dimensional collisions, particles just interchange
heir velocities is recovered. As a consequence, Eq. (34) is just a trivial identity, implying no condition on the form of the
ne-particle distribution function, and H(t) = H(0) for any initial condition. Notice that the collision term also identically
anishes in this limit and the time evolution of the one-particle distribution function is fully determined by the free flow
art of the kinetic equation.
Outside the above limiting case, following quite standard reasonings it is easily shown that the only physically relevant

tationary solution of the kinetic equation is [16,24]

fst (r, v) = n(z)ϕMB(v), (36)

here ϕMB(v) is the two-dimensional Maxwell–Boltzmann velocity distribution,

ϕMB(v) =
m

2πkBT
exp

[
−

mv2

2kBT

]
. (37)

he density profile along the z direction n(z) is identified by substituting Eq. (36) into the kinetic equation (2) and requiring
tationarity. In this way, it is obtained that the density field must verify

∂ ln n(z)
∂z

= −2
∫ h−σ/2

σ/2
dz1 tan θ1n(z1) . (38)

ere θ1 is the angle defined in Eq. (7), i.e.,

tan θ1 ≡
z1 − z√

σ 2 − (z1 − z)2
, (39)

lthough the integration over z of both sides of Eq. (38), implying the presence of an arbitrary constant to be determined
by normalization, is trivial, the resulting integral equation does not seen easy to solve analytically. A useful approximation
can be found by considering the limit [25],

ϵ ≡
h − σ

σ
≪ 1. (40)

n this limit, for all the allowed values of z and z1 inside the system, it is |z − z1|/σ ≪ 1, and in the lowest order,
tan θ ≈ (z1 − z)/σ . Then, Eq. (38) simplifies to

∂ ln n(z)
∂z

=
2
σ

∫ h−σ/2

σ/2
dz1(z − z1)n(z1) . (41)

Introduce the variables

η ≡ z −
h
2

, η1 ≡ z1 −
h
2

. (42)

hen, by symmetry it must be n(η) = n(−η) and the integral in Eq. (41) can be easily performed to get
∂ ln n(η)

∂η
=

2n0(h − σ )
σ

η, (43)

here n0 is the average number of particles per unit of area. The solution of this equation is

n(z) =
n0(h − σ )

b
exp

[
a
(
z −

h
2

)2
]

. (44)

ere,

a ≡ n0

(
h
σ

− 1
)

, (45)

b ≡

√
π

a
erfi

[√
a (h − σ)

2

]
, (46)

nd the imaginary error function, erfi(x), is defined as

erfi(x) ≡
1

√

∫ x

dx′ex
′2

. (47)

π −x

6
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Fig. 2. Density profile along the direction perpendicular to the parallel confining lines in a quasi-one-dimensional system of hard disks at equilibrium.
The symbols are MD simulation results and the line is the theoretical prediction given by Eq. (44). The dimensionless plotted density is defined by
n2 ≡ n(z)σ L and the dimensionless coordinate is z ≡ (2z − σ )/2σ . The values of the parameters of the system are given in the main text.

The transversal density profile given by Eq. (44) has the same qualitative form as the one reported in Refs. [16,20] for the
case of a quasi-two-dimensional gas of hard spheres confined between two parallel plates. Nevertheless, while the latter
is an exact consequence of the kinetic equation, and valid for any separation of the plates between σ and 2σ , the profile
44) has been obtained here in the limit h → σ+.

To test the accuracy of the expression for the transversal density profile given in Eq. (44), the latter was compared
ith numerical results obtained by means of MD simulations. Fig. 2 shows the shape of the density profile along the
direction for a system of N = 500 hard disks confined between two straight lines separated a distance h = 1.5σ .
he average number density is n0 = 0.06σ−2. Although the confinement of the system is not too extreme, there is a
atisfactory agreement between the theoretical prediction (line) and the simulation results (symbols). The simulation
ata have been averaged over time, once the system is in the stationary state, and also over five independent trajectories.

. The entropy and the pressure parameters

The results reported in the previous section suggest defining an entropy S for the system we are considering by

S(t) ≡ −kB
[
H(t) + N ln c20

]
, (48)

ith H(t) given by Eq. (19) and c0 being an indeterminate constant with dimensions of action divided by mass, introduced
o render dimensionless the argument of the logarithm. For an isolated system, the H-theorem implies that

dS(t)
dt

≥ 0, (49)

eaching the maximum value, Sst , at the equilibrium stationary state. Using the decomposition in Eq. (19), it is

Sst = Skst + Scst , (50)

here

Skst ≡ −kB

∫
dr

∫
dvfst (r, v)

{
ln

[
fst (r, v)c20

]
− 1

}
, (51)

nd

Scst ≡ −kB

∫
dx

∫ h−σ/2

σ/2
dz

∫ h−σ/2

σ/2
dz1 n(z)n(z1)

√
σ 2 − (z − z1)2. (52)

ere, Eq. (29) has been employed. The exact evaluation of these expressions in an analytical form would require to know
he exact density profile n(z). Instead, the limit ϵ ≡ (h − σ )/σ ≪ 1 will be considered again. In this limit, Eq. (52) is
pproximated by

Scst = −kBσ L
∫ h/2−σ/2

−h/2+σ/2
dη

∫ h/2−σ/2

−h/2+σ/2
dη1 n(η)n(η1)

[
1 −

(η − η1)2

2σ 2

]
. (53)

he variables η and η1 have been defined in Eqs. (42). Using the expression of the transversal density field given in Eq.
44) it is straightforward to obtain

Sc = −Nk σn (h − σ ). (54)
st B 0

7
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pon deriving this equation, it has been used that

δ ≡
√
a
h − σ

2
=

1
2
n1/2
0 σ

(
h
σ

− 1
)3/2

≪ 1, (55)

s a consequence of the strong confinement approximation, Eq. (40), and the low density limit, n0σ
2

≪ 1. Then, it is

kBL
2σ

∫ h/2−σ/2

−h/2+σ/2
dη

∫ h/2−σ/2

−h/2+σ/2
dη1 n(η)n(η1)(η − η1)2 = O(δ2), (56)

nd it can be neglected. In the same approximation, the kinetic part of the equilibrium entropy is found to be

Skst = −NkB

[
ln

n0(h − σ )
b

− ln T + ln
mc20
2πkB

− 2
]

. (57)

he quantity b appearing in the last expression is given by Eq. (46). The equilibrium entropy can also be decomposed, in
more transparent form, into an ideal part, S idst , and an excess part, Sexst ,

Sst = S idst + Sexst , (58)

S idst = −NkB

[
ln n0 − ln T + ln

mc20
2πkB

− 2
]

, (59)

Sexst = −NkB

(
ln

h − σ

b
+

σN
L

)
. (60)

rom the Helmholtz free energy F ≡ E − TS, where E is the internal energy, two different pressure parameters of the
ystem are defined [14,15,20]. They are referred to as the lateral pressure,

plat ≡ −h−1
(

∂F
∂L

)
h,N,T

=
T
h

(
∂S
∂L

)
h,N,T

, (61)

nd a transversal pressure,

ptrans ≡ −L−1
(

∂F
∂h

)
L,N,T

=
T
L

(
∂S
∂h

)
L,N,T

. (62)

he second equalities in the above two equations follow because the internal energy per particle of a system of hard disks
nly depends on the temperature. Using the expressions of the entropy given in Eqs. (58)–(60), it is found

plat =
NkBT
h

[
3
2L

+
Nσ

L2
−

h − σ

2N
n(h − σ/2)

]
, (63)

ptrans = n(h − σ/2)kBT . (64)

he last result, relating the transversal pressure to the density of the fluid at the walls by means of the ideal gas equation
f state, is nothing else but the wall theorem for the pressure tensor [17] applied to the present system. Actually, it
as been proven recently that the theorem applies not only in equilibrium situations, but also holds in arbitrary non-
quilibrium states [19]. Moreover, a similar wall theorem exists for the heat flux. On the other hand, the expression for
he lateral pressure only reduces to the ideal gas equation of state in the bulk limit N → ∞, L → ∞, h → ∞, and
→ n0 = N/Lh = constant .

. Relaxation to equilibrium of a system with anisotropy in velocity space

As an application of the kinetic equation studied in the previous sections, the relaxation towards equilibrium of
system with an anisotropic initial velocity distribution will be investigated in this Section. For simplicity, states
omogeneous along the x direction and with vanishing velocity flow will be considered. The evolution of the state of
he system will be characterized by two temperature parameters, T x and T z , defined as averages in the z direction of the
inetic energy associated with vx ans vy, respectively,

n0kBT x =
m

h − σ

∫ h−σ/2

σ/2
dz

∫
dv v2

x f (z, v, t), (65)

n0kBT z =
m

h − σ

∫ h−σ/2

σ/2
dz

∫
dv v2

z f (z, v, t). (66)

n average temperature, T , can be defined in terms of the two above temperature parameters as

T ≡
T x + T z

. (67)

2

8
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rom the kinetic equation (2), using the elastic boundary conditions (10) and (11), evolution equations for the temperature
arameters are found,

n0kB
∂T x

∂t
=

m
h − σ

∫ h−σ/2

σ/2
dz

∫
dvv2

x J[z, v|f ], (68)

n0kB
∂T z

∂t
=

m
h − σ

∫ h−σ/2

σ/2
dz

∫
dvv2

z J[z, v|f ]. (69)

By using the property given in Eq. (14), it is easily seen that

∂T
∂t

= 0, (70)

s required by kinetic energy conservation. A closed system of equations is obtained from Eqs. (68) and (69) if the one
article distribution function only depends on time through T x and T z . Here, a local-equilibrium-like approximation will
e employed, namely

f (z, v, t) ≈
n0

πωx(t)ωz(t)
exp

[
−

(
vx

ωx(t)

)2

−

(
vz

ωz(t)

)2
]

, (71)

here

ω2
x (t) ≡

2kBT x(t)
m

, (72)

ω2
z (t) ≡

2kBT z(t)
m

. (73)

otice that the approximation given by Eq. (71), in addition to a Gaussian distribution in velocity space, also assumes
omogeneity in the z direction. This is expected to be an accurate approximation at low densities, since in this case we
aw that the dependence of the density on z is very weak at equilibrium. Substitution of Eq. (71) into Eqs. (68) and (69),
nd use of Eq. (14), after some algebra yields to equations involving rather complicated integrations. Here results using
he symbolic computation program Matlab [26] will be reported. They correspond to an expansion in the parameter ϵ
efined in Eq. (40) up to the first nontrivial order, that is ϵ3,

dT z

ds
=

4ϵ3

3

[
T − T z(s)

]
, (74)

here the dimensionless time scale s defined by

s(t) ≡
nσ

√
2

√
π

∫ t

0
dt ωx(t), (75)

as been introduced. It is proportional to the average number of collisions per particle in the time interval between 0
nd t . The equation for T x(s) follows by using T x = 2T − T z , taking into account that T is constant. The general solution
f Eq. (74) is

T z(t) = T
[
1 − C exp

(
−

4ϵ3s
3

)]
, (76)

being some constant to be determined from the initial condition. Of course, because of the kinetic energy conservation,
t is

T x(t) = T
[
1 + C exp

(
−

4ϵ3s
3

)]
. (77)

t is seen that in the long time limit, it is T x = T z = T , in agreement with the H-theorem derived in Section 3. The
elaxation of the temperature parameter is exponential with a characteristic relaxation time τ that, in the dimensionless
ime scale s is given by

τ =
3

4ϵ3 . (78)

t follows that the relaxation is slower the narrower the system. This can be easily understood, since as the separation of
he two walls decreases, the collisions between particles become more frontal (the range of allowed values of the angle
in Fig. 1 becomes narrower around θ = 0 and θ = π ), and the energy change in collisions also gets smaller, leading to
less efficient mechanism of approaching equilibrium.
To investigate the accuracy of the above theoretical predictions, Molecular Dynamics simulations have been performed.

he results to be reported in the following correspond to a system of 500 hard disks, and the number density is n =
0

9
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Fig. 3. Molecular Dynamics simulation results for the decay of the scaled averaged vertical temperature parameter, T̃z ≡ (T z − T )/T , where T is the
omogeneous temperature, that remains constant in time. Time is measured in the dimensionless units defined in Eq. (75). The separation of the
wo hard walls is h = 1.5σ , the initial temperature parameters are Tz (0) = 5Tx(0), and the number density N = 0.06σ−2 . An exponential behavior
n clearly identified in the logarithmic representation used in the inset.

Fig. 4. Inverse of the characteristic relaxation time, τ , of the temperature parameters in a confined quasi-one-dimensional systems of hard disks,
as a function of the dimensionless parameter ϵ, defined in Eq. (40), that is a measure of the width of the system. Al the other parameters have the
same values as in Fig. 3. Time is measured in units of s as defined in Eq. (75). The (red) symbols have been obtained by fitting the MD relaxation
curves to exponentials, as described in the main text. The solid (black) lines are the theoretical prediction derived here, Eq. (78). The system was
initially prepared with anisotropy in velocity space, as described in the main text.

0.06σ−2. Moreover, periodic boundary conditions have been employed in the x direction. The initial velocity distribution
was chosen homogeneous and Gaussian for both components, with initial temperature parameters Tz(0) = 5Tx(0). As
n example, in Fig. 3 the time evolution of the normalized vertical temperature parameter T̃z ≡ (T z − T )/T , is plotted
s a function of time, measured in the scale s defined in Eq. (75). In the inset, a logarithm plotted is shown, so that the
xponential shape of the decay be identified. Similar results were found when varying the value of ϵ ≡ (h−σ )/σ , keeping
he same the remaining parameters of the system and the initial conditions. In Fig. 4, the simulation results for the inverse
f the relaxation time τ−1 obtaining by fitting the decays to T̃z(s) = T̃z(0) exp(−s/τ ), are compared with the theoretical
rediction given in Eq. (78), i.e. τ−1

= 4ϵ3/3. The agreement is very good for small values of ϵ, but it clearly gets worse
s the distance between the two confining walls increases. This was to be expected, since the theoretical prediction has
eing derived in the limit ϵ ≪ 1.

. Conclusions and final comments

In this paper, a dilute system of hard disks strongly confined between two hard walls has been considered. A
oltzmann-like kinetic equation has been derived. The effect of the strong confinement is to impose a limitation on the
ossible collisional angles. It has been shown that the kinetic equation admits an entropy Lyapunov function describing a
onotonic approach to equilibrium. This result strongly suggests the existence of hydrodynamics for confining quasi-
ne-dimensional systems. This is a nontrivial expectation, since strictly one-dimensional systems do not admit an
ydrodynamic description, following that the one-dimensional system limit would be singular. Consistently, it has been
iscussed why the analysis leading to the equilibrium approach fails in the limiting case of a one-dimensional system.
The equilibrium distribution function is Gaussian in velocity space, and exhibits nonuniform density in the direction

erpendicular to the confining walls. An analytical expression has been obtained for this density profile in the limit of
ery strong confinement, i.e. when the separation between the walls in slightly larger than the diameter of the particles.
10
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he form of the equilibrium distribution is consistent with the result following from equilibrium statistical mechanics.
ext, the expression of the equilibrium entropy has been derived and, from it, the values of two pressure parameters
ssociated to the directions perpendicular and parallel to the confining walls, respectively. These two parameters differ,
s a consequence of the anisotropy induced by the confinement.
As a simple application of the kinetic equation, the time evolution of the temperature parameters associated to the

ertical and horizontal degrees of freedom have been investigated in a system that is homogeneous in the horizontal
irection. To get closed equations for the two parameters, it has been assumed that the velocity distribution function is
aussian at all times with no correlations, although with different second moments of the longitudinal and transversal
omponents. In the limit of very strong confinement mentioned above, the equations for the temperature parameters can
e solved analytically, and an exponential relaxation towards the (equal) equilibrium values is obtained, when a time
cale associated to the cumulative number of collisions per particle is employed. This allows the direct identification of
characteristic relaxation time. Molecular Dynamics simulations have been performed, and a good agreement with the

heoretical predictions has been found.
There are several future perspectives of the research initiated in this paper. The first and the most natural, seems to be

o derive macroscopic transport equation for the density, velocity field, and temperature, i.e., hydrodynamic equations. It
s not easy to guess a priori which is the effect of the confinement as compared with the case of bulk systems. Not only
he expression of the transport coefficients will be different, by sure, but it is possible that the structure of the equation
tself be modified, for instance with the presence of new terms.

Having in mind transport in nanofluids, it is clear that another interesting extension of the present analysis is to
onsider inelastic hard disks, as a simple model of granular gases. The kinetic Boltzmann equation considered here can
e easily adapted for inelastic collisions, similarly to what has been done some time ago for the ordinary, no confined,
oltzmann equation [27]. Notice that to maintain a granular gas in some macroscopic fluidized state, it is necessary to
ontinuously inject energy into the system, something that can be done, for instance, by vibrating one or the two walls
onfining the system. This breaks the isotropy in velocity space and renders relevant to distinguish between the two
emperature parameters [25], as carried out in the previous section. The next task will be to derive transport equations
hat take into account both, the effect of the strong confinement and the effect of the inelasticity in collisions. It is
lready known how to deal with the latter, either by using linear response theory [28,29] or a modified Chapman–Enskog
xpansion [30,31]. The knowledge about the consequences of the confinement is just the future perspective pointed out
n the previous paragraph.
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