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The logistic network design is an abstract optimization problem that, under the assumption of
minimal cost, seeks the optimal configuration of the supply chain’s infrastructures and facilities
based on customer demand. Key economic decisions are taken about the location, number, and size
of manufacturing facilities and warehouses based on the optimal solution. Therefore, improvements
in the methods to address this question, which is known to be in the NP-hard complexity class,
would have relevant financial consequences. Here, we implement in the D-Wave quantum annealer
a hybrid classical-quantum annealing algorithm. The cost function with constraints is translated to
a spin Hamiltonian, whose ground state encodes the searched result. As a benchmark, we measure
the accuracy of results for a set of paradigmatic problems against the optimal published solutions
(the error is on average below 1%), and the performance is compared against the classical algorithm,
showing a remarkable reduction in the number of iterations. This work shows that state-of-the-art
quantum annealers may codify and solve relevant supply-chain problems even still far from useful
quantum supremacy.

I. INTRODUCTION

Calculating the global minimum (maximum) of a
multi-variable function is in general arduous, especially
when the number of variables and constraint conditions
grows and the objective function is highly non-linear.
The problem is in the NP-hard complexity class since
it is complicated even to verify whether a given solution
is the optimal one. As a branch of the optimization prob-
lem, the logistic network design problem (NDP) covers
a massive set of decision-making problems for manage-
ment issue [1], e.g., where to place facilities and how
to assign customers minimizing the total cost, or how
to redistribute driving paths of vehicles to reduce traffic
jams. There is an endless list of classical algorithms for
optimization problems, e.g., branch and bound, context
partition and dynamical programming, metaheuristic al-
gorithm based on a single solution such as hill-climbing,
simulated annealing [2], and tabu search [3, 4], or intelli-
gent optimization by genetic algorithms [5], ant colony
optimization [6, 7], and artificial neural networks [8].
This algorithm has been applied to study NDP and pro-
vided some preliminary results [9–12]. However, these al-
gorithms’ mathematical principles for finding global min-
ima are not systematically established and, in most cases,
it requires experience adjusting parameters. This raises
the demand for developing an interpretable algorithm for
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solving logistic NDPs efficiently.

Quantum annealing is an optimization technique es-
pecially suitable for satisfiability problems, which makes
use of quantum tunneling of potential barriers to enhance
the performance of the classical algorithm [13, 14]. The
ground state codifying the solution of the problem is at-
tained expectedly employing a shorter annealing time
than the classical algorithm and afterward decoded to
achieve the optimal solution with respect to the objec-
tive function [15]. Current D-Wave cloud quantum an-
nealer comprises 2048 qubits distributed in a hardware
architecture according to the Chimera graph. The con-
straints imposed by the architecture generally allow for
codifying only relatively small problems, which can be
enhanced when combined with classical algorithms. Ad-
ditionally, this quantum device is affected by thermal
fluctuations, decoherence, and I/O errors, which reduces
the signal-to-noise ratio and consequently prolongs the
computation time due to the extra sampling required for
canceling the noise (otherwise, the accuracy of the solu-
tion would be affected). Nonetheless, quantum annealers
have proven their capability to codify hard problems in
different fields, such as condensed matter physics [16–20],
engineering [21], cryptography [22, 23], biology [24] and
finance [25–27], among others. This shows that current
quantum annealing technology, although incoherent and
still far from reaching useful quantum advantage, is ready
to implement relevant small-scale optimization problems.

In this Article, we experimentally address a set of
paradigmatic logistic NDPs employing a hybrid classical-
quantum annealing algorithm, showing a remarkable ac-
curacy (less than 1% error) despite the device incoherence
and better performance in the number of iterations with
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respect to the classical one (about one-tenth, when clas-
sical annealing algorithm can reach global minimum with
adequate hyperparameters). Inspired in Ref. [30], we
propose an alternative approach, which we call combined
quantum annealing algorithm, that makes use of two lay-
ers with feedback-control interaction between them. The
approach is tested in 12 paradigmatic logistic NDPs em-
ploying both the simulator and the D-Wave cloud quan-
tum annealer, achieving the aforementioned remarkable
results when compared with the classical ones. This sup-
ports the extended idea that a hybrid quantum-classical
algorithm will allow us to enlarge the class of solvable
problems with quantum computers (quantum annealers),
accelerating the development of quantum information
processing tasks in quantum technologies.

This manuscript is organized as follows: in Sec. II,
we formulate the logistic NDP as a constrained 0 − 1
programming problem, which will afterwards allow us to
map it into D-Wave’s Chimera architecture. In Sec. III,
we introduce the fundamental elements of quantum an-
nealing and of the combined quantum annealing algo-
rithm. Afterwards, in Sec. IV, we experimentally tests
the optimization of logistic NDPs by comparing the re-
sults against the best known classical ones, as well as
those given by a classical algorithm for finding global
minimum. Finally, in Sec. V, the results are analyzed and
possible alternative software and hardware approaches
for further enhancement are discussed. The conclusions
are finally listed in Sec. VI.

II. LOGISTIC MODEL

Although a logistic NDP could be described in an ab-
stract framework, we choose the customer-facility pic-
ture because it is illustrative. Let us assume that there
are at most m sites for potential facilities and n cus-
tomers to be allocated. The indices J = {1, 2, · · · ,m}
and I = {1, 2, · · · , n} denote the set of potential location
sites and the set of customers, respectively. It costs fj to
build a facility with production capacity vj placed at site
j ∈ J . When a customer i ∈ I with product demand di is
served by facility j, the transportation process brings cij
to the cost. One has to find a way to allocate customers
with a minimum total cost that ensures all customers are
served, and none of the facilities is overflowed. To for-
mulate the model, one has to minimize the following cost
function

cost(xj , yij) =
∑
j

fjxj +
∑
i

∑
j

cijyij , (1)

where xj and yij are binary variables that represent the
allocation configuration. A facility is built at site j when
xj = 1, and obviously, customers can only be served from
sites with facilities. Accordingly, yij = 1 means customer
i is assigned to the facility in site j, and other facilities are
no longer available for this customer. These constraints

can be expressed as∑
j

yij = 1, ∀i ∈ I, (2)

∑
i

diyij < vj , ∀j ∈ J, (3)

yij ≤ xj , ∀i ∈ I, ∀j ∈ J. (4)

Minimizing the cost function under the constraints above
is proven to be an NP-hard problem, i.e., obtaining its
global minimum value is computationally challenging and
highly time-consuming. Additionally, it is also hard to
verify if a given network is the solution that minimizes
the cost function. These features lead to the demand for
specific algorithms that accelerate the searching process
and enhance the solution’s quality.

III. COMBINED QUANTUM ANNEALING
ALGORITHM

The solution of satisfiability problems can be codified
in the ground state of a problem spin Hamiltonian Hpro

[28]. Quantum annealing is a quantum algorithm based
on the adiabatic theorem [29], which ensures that if we
start in the ground state of a known Hamiltonian H0,
by slowly modifying a parameter t transforming H0 into
Hpro, the system remains in its ground state, providing
us with the solution for the satisfiability problem. For
example, in a spin-1/2 annealer, the total Hamiltonian is
split into a tunneling Hamiltonian and a problem Hamil-
tonian, which codifies the solution for the problem,

H =

(
1− t

tf

)∑
i

σ̂x
i +

t

tf

∑
i

hiσ̂
z
i +

∑
i>j

Jij σ̂
z
i σ̂

z
j

 .

The system is supposed to be in the ground state of
the problem Hamiltonian when t = tf . If we intro-
duce the qubit operator x̂ with eigenvalues 0 and 1, such
that x̂|0〉 = |0〉 and x̂|1〉|1〉, respectively, quadric uncon-
strained binary optimization (QUBO) problem can be
mapped to a spin-1/2 quantum annealing problem by
x̂ = (1 + σ̂z)/2.

Looking at the cost function given by Eq. (1), we un-
derstand that it cannot be directly optimized by quantum
annealing since there are constraints. The cost function
and all constraints are linear, so they are all relatively
easy to be converted to a QUBO formulation. For ex-
ample, Eq. (4) can be satisfied by introducing penalty
terms in the form α(xj − yij − zij)2, where zij are auxil-
iary binary variables. One can verify that the penalty is
unavoidable only when xj = 0 and yij = 1. With an effec-
tive QUBO formulation satisfying Eq. (2) and Eq. (3), we
propose a hybrid quantum-classical algorithm inspired in
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FIG. 1. A scheme of how binary variables and constraint
conditions are encoded by logical and ancilla qubits. Here,
we represent a simple NDP problem comprising 3 facilities
and 5 customers, as an illustrative example, while different
colors and thicknesses classify the couplers according to their
properties.

Ref. [30] for obtaining the global (or quasi-global) min-
imum. We apply a combined quantum annealing algo-
rithm comprising two layers, namely, the outer and the
inner layers. In the former, a simulated annealing algo-
rithm performs the optimization for facilities’ locations
while, in the latter, the quantum annealing process runs.

In the outer layer, a list with elements xj , sorted by
index j in ascending order, denotes the neighboring con-
figuration of facilities, while a neighboring function oper-
ates on the list to generate a new configuration in three
ways: (i) pick a xj with value 1, and set it to 0, which
means a facility is randomly closed; (ii) pick a xj with
value 0, and set it to 1, which means a facility is randomly
built on a site; (iii) swap the values of xj and xk, if their
values are different, which means a facility moves to an-
other site. Dice will be rolled to decide which operation is
carried out by the neighboring function on the list, while
all the operations should be allowed, e.g., when all facili-
ties are open, operation (ii) is no longer available. In the
inner layer, we perform quantum annealing to minimize∑

i

∑
j cijyij under constraint given by Eq. (2), Eq. (3),

and Eq. (4). As we mentioned before, the latest quan-
tum annealer is designed to solve QUBO problems, i.e.
to minimize the objective function obj(x) = xTQx, that
Q is the QUBO matrix and x is the binary vector. We
map binary variables yij to qubit q(i,j), and allowed j are

the sites on which facilities are built. In order to intro-
duce the constraint given by Eq. (2), we employ weighted
penalty functions, with a reasonable λi, yielding an ef-
fective unconstrained Hamiltonian for customer i, e.g.
λi(
∑

j q(i,j) − 1)2, which guarantees that customer i is

associated only to one facility. Accordingly, Eq. (3) may
also be written as µj(

∑
i diq(i,j) + 〈2,aj〉 − vj)

2 for fa-
cility j, with slack variables encoded by ancilla qubits.

Here, 〈2,aj〉 denotes the binary expansion
∑k

l=0 2la(l,j),
which implies that the number of ancilla qubits required
to introduce the constraint is kj = dlog2 vje. One can
verify that any violation of Eq. (2) and (3) introduce
extra squared cost, being scaled by λi and µi. For ex-
ample, if customer i is not assigned to any facility, i.e.,∑

j q(i,j) = 0, the violation of Eq. (2) punishes a cost of
λi, which should be larger than the profit from saving
the transportation cost cij . The problem Hamiltonian is
hence given by

HP =
∑
i

∑
j

cijq(i,j) +
∑
i

λi

(∑
j

q(i,j) − 1
)2

+
∑
j

µj

(∑
i

diq(i,j) + 〈2,aj〉 − vj
)2
, (5)

which could be mapped to a solvable spin-1/2 Hamil-
tonian for the annealer. The ground state of the prob-
lem Hamiltonian is supposed to be the configuration that
minimize the classical objective function with reasonable
penalty coupling strengths λi and µj .

This combined quantum annealing algorithm works
as follows: (i) Set the optimal cost to infinity and
generate an initial configuration as the optimal config-
uration of facilities. Schedule the annealing process,
i.e., the cooling rate, initial temperature, final temper-
ature, etc. (ii) Flip the values of variables xj in list
by neighboring function and obtain a new configura-
tion x̃j . (iii) Perform the quantum annealing process
according to the neighboring configuration, decode the
state of qubits to ỹij , and calculate value of the cost
function cost(x̃j , ỹij). (iv) Apply Metropolis algorithm
such that, if cost(xj , yij) > cost(x̃j , ỹij), we accept the
new configuration and value as the optimal ones and
go for next step. Otherwise, randomize ρ ∈ (0, 1), if
ρ < exp(−(cost(x̃j , ỹij) − cost(xj , yij))/T ), we also ac-
cept them and continue. We go for the next step without
operations if the new configuration and value are denied.
(v) Increase the iteration index by one and check if it
meets the upper limit. Once it is larger than the max-
imum iteration number, we adjust the annealing tem-
perature according to the schedule, reset the iteration
index, and go on for the next step. Otherwise, return to
step (ii). (vi) Output the optimal solution if the current
temperature is not higher than the target temperature.
Otherwise, return to step (ii).

Thus, if all parameters in the outer and inner layers
were correct and the quantum annealer was noiseless, the
places for building facilities, the allocation of customers,
and the optimized total cost would be obtained by this
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combined annealing algorithm. In any case, error correc-
tion can be applied to provide a quasi-optimal solution,
which is a relevant advantage since we are employing a
noisy and incoherent quantum annealer.

IV. EXPERIMENTS

We choose the same twelve problems tested by
Ref. [30], which are open-source NDP test problems from
OR-Library [31]. The optimal solution is given by the
author using Lindo software. We encoded m× n logical
qubits by q(i,j) and

∑
kj ancilla qubits by a(l,j) for NDP

problem with m potential sites for building facilities with
capacities vj and n customers to be served. The connec-
tivity of these qubits is high, with a number of couplers
approximately given by

(m− 1)mn

2
+

(n− 1)nm

2
+
∑
j

(kj − 1)kn

2
+
∑
j

nkjm,

(6)
where terms denote the numbers of couplers between log-
ical qubits given by Eq. (2), Eq. (3), couplers between
ancilla qubits and couplers that link an ancilla qubit to a
logical qubit (see Fig. 1), respectively. The minimal num-
ber of qubits for solving this problem is n×m+k×m, if
the structure of the quantum device is exactly the same as
we showed in Fig. 1. Notice that this number could sub-
stantially grow if qubits are connected differently from
the problem’s connectivity graph since additional ancil-
lary qubits are required to implement minor embedding.
The smallest problem for testing requires 1056 qubits
with 40320 couplers, which cannot be directly imple-
mented in the 2048-qubit D-Wave quantum annealer due
to its limited connectivity (6016 couplers). The open-
source software qbsolv developed by D-Wave [32] allows
for splitting a large QUBO problem into smaller embed-
dable sub-problems, which can subsequently be solved in
either a local simulator with tabu algorithm or the real
quantum annealer under authorized license. The QUBO
problem is submitted to a server for queueing, and the
result is retrieved after the annealing is performed. Al-
though the computing time in a real annealer is negligi-
ble, one trial of solving a large QUBO matrix could be
very time-consuming (about 15 minutes for a 900 × 900
QUBO matrix) due to the queuing time. We also empha-
size that xj vanishes since we employ a hybrid algorithm
instead of a standard approach. In the inner layer where
quantum annealing performs, we solve a subproblem as
follows: how customers should be assigned according to a
given facility configuration? Some variables yij are con-
stantly zero if there is no facility built at site xj . In
our practice, these variables are already removed in each
quantum annealing process, making embedding or solv-
ing by qbsolv easier and more efficient. Thus, in each
iteration that generates a new facility configuration, the
number of logical qubits required is m̃× n with a maxi-
mum of m× n, where m̃ denotes the number of facilities

Problem Size Lindo SA QA
cap71 16 × 50 932615.7500 1460909.750 933172.1000
cap72 16 × 50 977799.4000 1395389.538 977988.1000
cap73 16 × 50 1010641.450 1585875.550 1010641.450
cap74 16 × 50 1034976.975 1390963.787 1034976.975
cap101 25 × 50 796648.4400 1182235.563 797656.2875
cap102 25 × 50 854704.2000 1282306.175 854952.5125
cap103 25 × 50 893782.1125 1395701.200 894872.1125
cap104 25 × 50 928941.7500 1458550.450 928941.7500
cap131 50 × 50 793439.5620 1167543.950 796066.6500
cap132 50 × 50 851495.3250 1132436.300 852291.9375
cap133 50 × 50 893076.7120 1126423.238 893521.4125
cap134 50 × 50 928941.7500 1321380.713 928941.7500

TABLE I. The combined quantum annealing algorithm is
tested by 12 NDP problems from OR-Library while the results
are listed under QA. The optimal solutions are compared with
the global optimal solutions from Lindo given by the author
of Ref. [30] and classical simulated annealing algorithm with
the same annealing schedules and iteration numbers denoted
by SA. In our experiments, the combined quantum annealing
algorithm outperforms simulated annealing as a well-known
metaheuristic algorithm massively under the same iteration
numbers.

being built.

The initial temperature of simulated annealing is set
to be 10000, which is scaled to a reasonable value con-
sidering the deviation between the new and old value
of the cost function. For simplicity, we choose α = 0.5
as cooling rate and the schedule as scale cooling. The
maximum iteration number is m, and the target temper-
ature is 1. To obtain the optimal solution according to
a given configuration of facilities, the penalty strength
should be sufficiently strong, i.e., it should ensure that
the problem Hamiltonian’s ground state satisfies all con-
straint conditions. Hence, if the quantum annealer were
noiseless, the parameters would follow λj � µi � cij ,
which ensures that every customer is assigned to only one
facility, none of the facility is overflowed, and the configu-
ration corresponds to the minimum total cost. However,
in practice, the quantum device is affected by thermal
fluctuation, inaccuracy of magnetic field tunneling, and
energy excitation by nonadiabatic effects. Thus the re-
sult in general satisfies the constraints, but the solution
is not optimal. Consequently, the penalty strength is set
slightly larger than cij for the possibility of obtaining an
optimal solution. Although sometimes constraints are
also not fulfilled due to the noise, this could be corrected
by repeating the quantum annealing process until every
constraint is satisfied. After studying the dataset, the
penalty strength λi are set to be minj(cij), while µi are
almost negligible considering the demand and capacities.

The results are presented in Table. I, while the hyper-
parameters for simulated annealing algorithm are the
same as those in outer layer of our quantum-classical
hybrid algorithm. For a fair comparison, we take m it-
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erations in each cooling step (the simulated annealing
algorithm is discussed in Appendix. A). Consequently,
both simulated annealing and combined quantum an-
nealing algorithms take m × dlog0.5 1e − 4e = 14m runs
for Metropolis acceptance criterion. Results presented
here are not deliberately selected via several trials, which
means one can obtain different results fluctuating with a
small range. We also show how these two algorithms
work for different logistic NDPs by depicting the evolu-
tion of optimal costs by iteration steps in Fig. 2 (a-c).
We notice that results given by the classical algorithm
are still far from optimal with the same iterations. To
obtain a global minimum (or near), one should evalu-
ate about 10m new configurations in each cooling step
instead of m, with no guarantee of success because the
classical algorithm highly depends on others’ choice hy-
perparameters.

V. DISCUSSION

Let us analyze the experimental results for improving
our understanding of the protocol before any further dis-
cussion about how to enhance its performance. As we
mentioned above, solving a 900 × 900 QUBO matrix by
qbsolv takes about 15 minutes, summing up to approxi-
mately 56 hours for Problem cap71 (even more for larger
problems). This would be solved in case of having local
access to the quantum device and, of course, if the QPU
would have more qubits and better/customized connec-
tivity for directly running quantum annealing instead of
employing qbsolv. We highlight that, even though our
quantum device is noisy and incoherent, one can still
find a result with a remarkable deviation smaller than
0.5% when compared against the global optimal result
obtained from the exhaustive search. We run the quan-
tum annealing process with a large sampling number,
selecting the configuration with minimum energy among
all samples, even if this configuration might not appear
that frequently due to energy fluctuations during the
non-adiabatic process. Once the optimal configuration
for facilities is obtained, the optimal solution can be
checked/refined by repeatedly running the quantum an-
nealing process to check if a customer allocation with a
lower cost can be attained. The reason is that the search
space by exhaustive searching for a QUBO matrix en-
coded in n ×m logical qubits and k ×m ancilla qubits
is 2(n+k)m, but the search subspace is dramatically re-
duced once the quantum annealer excludes most of the
states with higher energy. In this way, the quantum an-
nealing algorithm works for searching a global minimum
even in noisy intermediate-scale quantum devices. The
price to pay is a more extensive sampling in the quantum
annealing process.

Now, we evaluate several improvements to make the
algorithm more efficient. From the perspective of al-
gorithm, the outer layer applies a classical simulated
annealing algorithm which theoretically obtains global

minimum with adequate annealing parameters. As we
mentioned before, the inappropriate annealing schedule
will stuck the algorithm to a local minimum and we
should find the initial temperature for simulated an-
nealing. The total number of iterations to guarantee a
global minimum is enormous which is proved by Ref. [33],
while the transition probability from state i to state j
is denoted by Pij = GijAij . The acceptance proba-
bility follows the Metropolis acceptance criterion that
Aij = exp(−(Ej − Ei)/T ) when Ej > Ei, otherwise
Aij = 1. We assume that the generation probability is
symmetric Gij = Gji and the Markov chain of a given
temperature is acyclic and irreducible, then the system
follows a Maxwell-Boltzmann distribution that

πi =
|N(i)| exp(−Ei/T )∑
j |N(j)| exp(−Ej/T )

, (7)

where N(i) and N(j) denote the sets of neighbours of
state i and j, respectively, and generation probability
Pij is distributed uniformly among neighbours of state i
(i.e., Gij = 1/|N(i)| if j ∈ N(i)). Accordingly, the ac-
ceptance probability χ(T ) and an iteration algorithm to
obtain the proper annealing schedule are provided and
proved in Ref. [34]. In this way, we could analyze the
dataset and find optimal parameters for the outer layer
algorithm before solving the NDP problem with com-
bined quantum annealing algorithm. In the inner layer,
quantum annealing for a large QUBO matrix cannot be
implemented directly which requires qbsolv for generat-
ing subproblems. However, the partition algorithm in the
main loop of qbsolv sometimes leads to local minimum
that requires better method for splitting the matrix. Al-
ternative algorithms could be introduced, e.g. embedding
larger subproblems which exploit the resources provided
by the quantum annealer [35] or emphasizing the impor-
tance of mitigating the embedding cost [36]. Meanwhile,
the quantum annealing algorithm in the inner layer is
affected by the penalty strength, while these parameters
are very tricky to be decided. One should scale them
according to the dataset and the noise of the hardware,
for obtaining an acceptable solution that satisfies all con-
straint conditions. We notice that the optimized penalty
strength for a QUBO problem could be given with the
combination of machine learning algorithm, e.g., gradient
descent as the most trivial idea, by quantum annealing
with variant parameter vectors λ and µ and stop at an
optimal solution.

As briefly analyzed in Sec. III, the minimization of
cost function (1) under constraint conditions (2), (3),
and (4) can be encoded in QUBO formulation. Specif-
ically, Eq. (4) can be implemented in a similar way as
penalty terms by using auxiliary qubits b(i,j), for ensuring
that customers are not assigned to sites without facility.
Thus, one can solve the NDP by standard approach, per-
forming quantum annealing of the problem Hamiltonian,
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(a) (b)

(c) (d)

(e)

FIG. 2. (a-c) Optimal costs versus iteration numbers, with different problem sizes. Different problems with the same size are
in the same color. The evolutions of the combined annealing algorithm and simulated annealing algorithm are plotted by lines
and dotted lines, with ground energies by dashed lines for comparison. (d,e) Facility configuration at each cooling step and the
allocation of customers of Problem cap71 shown in Table. I, with a minimum cost of 933172.1000. A block in warm/cold color
denotes xj , yij = 1 or 0.

which reads as

HP =
∑
j

fj q̃(j) +
∑
i

∑
j

cijq(i,j) +
∑
i

λi

(∑
j

q(i,j) − 1
)2

+
∑
j

µj

(∑
i

diq(i,j) + 〈2,aj〉 − vj
)2

+
∑
j

αj

(
q̃(j) −

∑
j

q(i,j) −
∑
j

b(i,j)

)2
. (8)

Here q̃(j) denote the configurations of facilities at site xj .

The penalty scaled by αj is only activated when q̃(j) = 0
and

∑
j q(i,j) ≥ 1, i.e., customers are assigned to sites

where no facility is built. The standard approach re-
quires additional auxiliary qubits of m×n and enormous
couplers for implementing the q̃(j)q(i,j), q̃(j)b(i,j), and
q(i,j)b(i,j) interaction, which is too complicated for minor
embedding, which aims at find an effective Hamiltonian
with the same low-energy subspace of Eq. (8). Mean-
while, diadiabatic effect can cause energy excitation dur-
ing the annealing process, resulting in failure of prepar-
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ing the ground state of the effective Hamiltonian. In this
way, one may obtain quasi-optimal solutions or even solu-
tions that violate the constraint conditions, if the energy
gaps between low-energy states are not sufficiently large.
This requires a systematic study of optimizing the quan-
tum annealing of the problem Hamiltonian (8) and its
effective Hamiltonian for minor embedding, e.g., the cus-
tomized annealing schedules and embedding algorithms,
which goes beyond the scope of this work. Although we
have compared the outcome of the hybrid algorithm with
the global optimal result, a comparison of the perfor-
mance between our hybrid classical-quantum algorithm
and the standard classical approach (8) would be relevant
for a future research. We will undoubtedly consider this
issue as a key milestone for a future followup project.

On the hardware side, the priority is to own a D-Wave
quantum annealer instead of using a cloud quantum an-
nealer, considering that the inner annealing time does not
contribute a lot to the whole computation time. An ad-
vance could be controlling the quantum annealing process
in the inner layer. Generally, the Hamiltonian of a quan-
tum annealer H = A(t)HT + B(t)HP is constrained by
boundary conditions that A(0) = 1, A(tf ) = 0, B(0) = 0
and B(tf ) = 1, to start with initial tunneling Hamilto-
nian and result in the ground state (or low-energy state)
of the final problem Hamiltonian. A customized quan-
tum annealing process might shorten the annealing time
while reducing the energy excitation to generate a better
solution within less time. This annealing protocol could
be given by control theory or other optimal methods,
e.g., shortcut to adiabaticity in spin system [37–40], that
controls the preparation and evolution of qubits in the
quantum annealer. Quality of the solutions could also be
improved by quantum annealer with more qubits, larger
connectivity, and less noise, which will be released by
D-Wave in mid-2020 named Pegasus [41]. Alternative

hardware will be coherent quantum annealer, which is
still far from the practical application but could be built
with current technologies while providing preliminary re-
sults [42–44].

VI. CONCLUSION

We proposed a combined quantum annealing algorithm
inspired in Ref. [30] to solve logistic network design prob-
lems, but which can also be applied to a large variety of
optimization problems. The algorithm is tested with 12
NDP problems, and the results are in very good agree-
ment with the already-known best solutions given by
Lindo. This research is another convincing evidence for
the feasibility of applying quantum annealing for opti-
mization problems, even when the quantum devices are
limited by the number of qubits, the connectivity, and
the noise.

VII. ACKNOWLEDGMENTS

We acknowledge funding from projects QMiCS
(820505) and OpenSuperQ (820363) of the EU Flag-
ship on Quantum Technologies, Spanish Government
PGC2018-095113-B-I00 (MCIU/ AEI/FEDER, UE),
PID2019-104002GB-C21, PID2019-104002GB-C22
(MCIU/AEI/FEDER, UE), Basque Government
IT986-16, NSFC (Grant No. 12075145), Shang-
hai Municipal Science and Technology Commission
(Grant No. 2019SHZDZX01-ZX04, 18010500400, and
18ZR1415500), and the Shanghai Program for Eastern
Scholar, as well as the and EU FET Open Grant
Quromorphic. This work is supported by the U.S.
Department of Energy, Office of Science, Office of Ad-
vanced Scientific Computing Research (ASCR) quantum
algorithm teams program, under field work proposal
number ERKJ333.

[1] R. H. Ballou, ”Logistics network design: modeling and
informational considerations”, The International Journal
of Logistics Management 6, 39 (1995).

[2] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, ”Op-
timization by simulated annealing”, Science 220, 571
(1983).

[3] F. Glover, ”Tabu search: part I”, ORSA Journal on com-
puting 1, 190 (1989).

[4] F. Glover, ”Tabu search: part II”, ORSA Journal on
computing 2, 4 (1990).

[5] D. E. Goldberg and J. H. Holland, ”Genetic algorithms
and machine learning”, Machine learning 3, 95 (1988).

[6] M. Dorigo, ”Optimization, learning and natural algo-
rithms” (PhD Dissertation, Politecnico di Milano, 1992).

[7] M. Dorigo, V. Maniezzo, and A. Colorni, ”Ant system:
optimization by a colony of cooperating agents”, IEEE
Transactions on Systems, man, and cybernetics, Part B:
Cybernetics 26, 29 (1996).

[8] J. M. Zurada, Introduction to artificial neural systems
(St. Paul: West publishing company, 1992).

[9] V. Jayaraman and A. Ross, ”A simulated annealing
methodology to distribution network design and manage-
ment”, European Journal of Operational Research 144,
629 (2003).

[10] D. Ghosh, ”Neighborhood search heuristics for the unca-
pacitated facility location problem”, European Journal
of Operational Research 150, 150 (2003).

[11] M. Gen and A. Syarif, ”Hybrid genetic algorithm
for multi-time period production/distribution planning”,
Computers & Industrial Engineering 48, 799 (2005).

[12] M. Sun, Computers, ”Solving the uncapacitated facility
location problem using tabu search”, & Operations Re-
search 33, 2563 (2006).

[13] A. B. Finnila, M. A. Gomez, C. Sebenik, C. Stenson, and
J. D. Doll, ”Quantum annealing: A new method for min-
imizing multidimensional functions”, Chemical Physical



8

Letters 219, 343 (1994).
[14] A. Das and B. K. Chakrabarti, ”Colloquium: Quantum

annealing and analog quantum computation”, Reviews
of Modern Physics 80, 1061 (2008).

[15] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press,
Cambridge, UK, 2000).

[16] G. E. Santoro, R. Martoňák, E. Tosatti, and R. Car,
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Appendix A: Simulated Annealing Algorithm for
NDPs

Here we introduce how to perform simulated annealing
algorithm for solving NDPs. We keep the same cooling
schedule and iteration number at each cooling step for a



9

fair comparison. The initial state is an allocation of cus-
tomers that randomly distributed to different sites and
its according configuration of facilities. If a site is visited
by at least once, a facility should be built on this site.
The neighboring function will be, select an arbitrary cus-
tomer among all n customers, and randomly assign the

customer to a site. With the neighboring function and
definition of state, one can evaluate the cost difference,
updating the solution by Metropolis acceptance criterion
as we do in outer layer of combined quantum annealing
algorithm.


