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Abstract— Many frequency-selective surface (FSS) structures
are based on the use of a single periodic array of slot/apertures in
a conducting sheet embedded in a layered medium. However, it is
well known that stacking several conducting sheets and breaking
the alignment of the stack can bring multiple benefits to the
structure. In this article, the analysis and design of stacks of 2-D
aperture arrays are carried out by exploiting as much as possible
all the potential of a rigorous and systematic formulation based
on the multimodal equivalent circuit approach (ECA). A key fea-
ture of the formulation is that linear transformations between the
apertures of adjacent plates (rotation, translation, and scaling)
can be dealt with from a purely analytical perspective. This fact
is of potential interest for many practical applications, such as
the design of polarization converters, absorbers, filters, and thin
matching layers. When the apertures have an arbitrary geometry,
it can be applied a hybrid approach that combines the ability
of commercial simulators to handle arbitrary geometries with
the fast computation times and physical insight of the ECA.
In general, either the purely analytical or the hybrid approach
can be applied in those many practical scenarios where the
spatial profile of the electric field on the considered apertures
hardly changes with frequency. As an additional feature of the
approach, the dispersion properties (phase/attenuation constants
and Bloch impedance) of infinite periodic stacks can be derived,
and in particular, analytical expressions for the mirror- and
glide-symmetric configurations are provided.

Index Terms— 3-D periodic stacks, analytical treatment,
dispersion analysis, equivalent circuit approach (ECA),
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I. INTRODUCTION

STRUCTURED surfaces have attracted a lot of attention
both in microwaves [1]–[4], THz [5], [6], and the optical

range [7], [8] due to their versatility to control the reflection,
refraction, and diffraction of the impinging waves by simply
adjusting the geometrical parameters of the structure. This key
feature has found multiple applications in science and engi-
neering, such as frequency-selective surface (FSS) [9]–[11],
polarizers [12]–[14], absorbers [5], [15], [16], high-impedance
surfaces [17], [18], and electromagnetic bandgap (EBG)
devices [19], [20].

A subclass of structured surfaces that are of particular inter-
est in electromagnetism is 1-D strip/slit gratings [21], [22] and
2-D periodic arrangements of metal patches and/or perforated
apertures [23]–[30] in a layered medium. For these periodic
structures, the scattering properties associated with an inci-
dent plane wave can be derived from a general waveguide
discontinuity problem where periodic boundary conditions are
applied [31], [32]. From this fact, it directly follows that the
scattering problem can be analyzed in a rigorous manner from
a circuit model perspective [33]–[37].

Most of the structures analyzed in the previous references
consist of a single metal layer embedded in a layered dielectric
medium. Nonetheless, it is well known that stacking several
metal layers opens new possibilities to the design, such as
the existence of transmission and rejection bands, increase
in the operating bandwidth, the appearance of negative-index
refraction bands, and enhanced performance of polarization
converters [27], [38]–[40]. Some equivalent circuits have
been proposed to model the performance of stacked struc-
tures [14], [28], [29], [41]–[43]. However, some of these
works (for instance, [14], [28], [29], [43]) require substantial
assistance from previous full-wave simulations, and the scope
of some others (for instance, [41], [42]) is focused on very
particular configurations and their formulation mainly based
on a heuristic rationale. In these latter works, the proposed
circuit models fail to take into account the strong coupling
between the stacked layers when these are closely spaced.
In the present work, we are interested in an equivalent circuit
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approach (ECA) that manages to include the coupling effects
while offering a good physical insight on the scattering prob-
lem and all of this by means of an analytical procedure [34].
This kind of insightful works starts from basic electromagnetic
principles and even/odd excitation techniques [44], [45] to
study aligned and symmetric configurations, which, nonethe-
less, is a limiting factor of the functionalities of the stacked
structure.

Recently, the range of use of these more rigorous equivalent
circuits was successfully extended in [46] to model aligned
stacks of apertures. Interestingly, breaking the alignment of
the stacked metal layers can lead to enhanced performances
of the stacked structure, especially with the inclusion of
some of the revisited higher symmetries [47]. Glide sym-
metry is a kind of higher symmetry particularly useful in
planar and stacked structures, which involves mirroring and
a displacement of half a period between adjacent layers.
Their effects cannot be modeled with the formulation pre-
sented in [46], as the layers were required to be aligned
along the vertical direction. The implementation of glide
symmetry makes it possible to suppress the lowest stop-
band of the first propagating modes [48], reduce the fre-
quency dispersion of the structure [49]–[51], increase the
equivalent refractive index [52], [53], and produce wideband
anisotropy [54].

The above beneficial properties are expected to be efficiently
analyzed with the extension of the ECA proposed in this work.
To reach this goal, the multimodal equivalent-circuit method-
ology reported in [34] is now extended to accurately com-
pute the scattering properties of asymmetrical and nonaligned
stacks formed by slot-based 2-D periodic arrays with arbitrary
apertures under normal and oblique incidences. The proposed
formulation is a nontrivial extension of the 1-D case reported
in [55], which aims to explore the limits of applicability of
the equivalent-circuit modeling by including a second spatial
dimension and by discussing new possibilities of analysis
and/or applications. Furthermore, stacked slot-based structures
possessing glide symmetry can be studied using the present
circuit perspective. This is a very appreciated feature since
glide-symmetric structures can rarely be described by means
of circuit models due to the strong and nontrivial interaction
between adjacent layers [51], [56]. However, the strong cou-
plings related to closely spaced layers can be fully taken into
account with the present approach. Thus, the proposed ECA
will reveal itself as a very efficient tool for the design of
wideband radomes, polarization converters, filters, absorbers,
and many other devices based on stacked metallo-dielectric
layers, even in complex scenarios.

The work is organized as follows. Section II presents the
formulation applied to the computation of the scattering prop-
erties of asymmetrical and nonaligned stacks of 2-D arbitrarily
shaped apertures. Section III particularizes the study to canon-
ical geometries, such as rectangular and annular apertures.
Section IV analyzes apertures of arbitrary shape. Section V
illustrates how to carry out a dispersion analysis of 3-D
periodic stacks for a frequency range only achieved before
by commercial simulators. Finally, Section VI summarizes the
main conclusions extracted from the work.

Fig. 1. (a) Example of a stack of three asymmetrical and nonaligned
2-D periodic arrays composed of arbitrary apertures. (b) Longitudinal view
illustrating the incidence plane. (c) General circuit model for the stack of
three arbitrary coupled apertures.

II. ANALYSIS

A. Formal Derivation

This section will first briefly outline the general procedure
already reported in previous works of some of the authors to
deal with a stack of N metallic screen periodically perforated
with arbitrary apertures. For simplicity, let us consider the
stack of three nonaligned 2-D periodic arrays composed of
strongly coupled arbitrary apertures displayed in Fig. 1(a),
upon which a time-harmonic incident plane wave of angular
frequency ω = 2π f is obliquely impinging with a wave vector
kinc = (kx0, ky0, kz0) given by

kx0 =
�

ε
(0)
r k0 sin θ cos φ (1)

ky0 =
�

ε
(0)
r k0 sin θ sin φ (2)

kz0 =
�

ε
(0)
r k0 cos θ (3)

where ε(0)
r is the relative permittivity of the incident medium,

k0 is the vacuum wavenumber, and θ and φ are the elevation
and azimuth angles of the incident wave, respectively. The
adjacent metallic screens of the stack are separated with
dielectrics of relative permittivity ε(i)

r and thickness hi .
The tangential electric field on the aperture of a unit cell

of one of the metal screens, Et (x, y, ω), is modeled in the
following way:

Et (x, y, ω) = F(ω) Ea(x, y) (4)

where F(ω) is a frequency-dependent complex factor and
Ea(x, y) is the assumed frequency-independent spatial pro-
file. This assumption, key for the development of the
formulation, is found to be applicable in a wide fre-
quency band for many practical structures, even beyond the
grating-lobe regime [34], [46]. The spatial profile Ea(x, y)
can be expressed in closed form for canonical geometries
(such as the rectangular and annular apertures considered
in Appendix A), which helps to reduce considerably the
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Fig. 2. Detailed circuit model for a three-layer asymmetrical and nonaligned stack of arbitrary apertures. Harmonics of different order are coupled together
through the associated parallel-connected transmission lines loaded with transformers.

computational effort as it will be exploited in Section III. For
more complex aperture geometries, the use of any full-wave
commercial software allows us to extract the spatial profile
from the simulation of a single (nonstacked) free-standing
metallic screen at just one particular frequency value. With
this limited use of the full-wave simulator, we can combine
the advantages of the ECA with the versatility of commercial
software to deal with arbitrary geometries [25]. This advan-
tageous assistance of commercial simulators will be exploited
in Section IV for the analysis of nonaligned stacks of arbitrary
geometry.

Based on the transfer (ABCD) matrix formalism
[31], [57], the formulation derived in [55] for nonaligned
stacks of 1-D periodic slit arrays is now extended to
cover cases of 2-D apertures of arbitrary geometry.
As clearly shown in [55, Fig. 3(b)], the circuit topology
found for the stacks of slit/aperture arrays consists of
blocks of parallel-connected transmission lines loaded with
transformers. Thus, as schematically shown in Fig. 1(b),
the three-screen stacked structure in Fig. 1(a) can be divided
in four blocks: two associated with the so-called external input
and output regions, and other two regions associated with the
internal part of each pair of consecutive coupled arrays. The
resulting network composed of four parallel-connected blocks
is depicted in Fig. 2. At the light of this network, taking into
account the parallel nature of the connections, the external
input–output regions are completely characterized by the
following single admittance:

Y (in)/(out)
ext =

∞�
n,m=−∞
n,m �=(0,0)

��
N (1)/(2),TM

nm,L/R

�2
Y (0),TM

nm

+
�

N (1)/(2),TE
nm,L/R

�2
Y (0),TE

nm

�
(5)

where the index (1)/(2) refers to the (i)th internal region and
the index (0) refers to free space. The network topology of
the internal (i)th block is formed by the parallel-connected
transmission lines associated with the harmonics correspond-
ing with the dielectric layers inside the corresponding pair of
coupled arrays and the transformers at the left- and right-hand
sides of these transmission lines. The internal regions can then
be modeled by the following admittance matrix (i = 1, 2):

Y(i) =
�

Y (i)
11 Y (i)

12

Y (i)
21 Y (i)

22

	
(6)

the entries of which are calculated as (u, v = 1, 2)

Y (i)
uv =

∞�
n,m=−∞

�
Y (i),TM

uv,nm + Y (i),TE
uv,nm

�
(7)

with (TX will stand indistinctly for either TM or TE)

Y (i),TX
11,nm =



N (i),TX

nm,L

�2�
− jY (i),TX

nm cot(k(i)
z,nmhi )

	
(8)

Y (i),TX
12,nm = N (i),TX

nm,L N (i),TX
nm,R

�
jY (i),TX

nm csc(k(i)
z,nmhi )

	
(9)

Y (i),TX
21,nm = N (i),TX

nm,R N (i),TX
nm,L

�
jY (i),TX

nm csc(k(i)
z,nmhi )

	
(10)

Y (i),TX
22,nm =

�
N (i),TX

nm,R

�2
�

− jY (i),TX
nm cot(k(i)

z,nmhi )

	
. (11)

In the above derivations, it has been assumed that the internal
region (i) only comprises a single dielectric (i). As reported
in [24], if the internal region (i) is composed of several
dielectric layers, we should substitute the transmission lines
associated with the harmonics inside the single dielectric by
the corresponding cascade of transmission lines that account
for the layered environment (namely, the terms inside the
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brackets in the above expressions should be substituted by the
corresponding ones associated with the cascade of dielectric
layers). The indices L and R in (5) and (8)–(11) refer,
respectively, to the left- and right-side aperture arrays that
bound the dielectric (i ). Y (i),TX

nm is the wave admittance of the
(n, m)th (TX ≡ TM/TE) harmonic at dielectric (i), defined as

Y (i),TM
nm = 1

η(i)

k(i)

k(i)
z,nm

(12)

Y (i),TE
nm = 1

η(i)

k(i)
z,nm

k(i)
(13)

with η(i) being the wave impedance of the i th medium and
k(i)

z,nm the longitudinal wavenumber of the (m, n)th harmonic
in such medium, given by

k(i)
z,nm =

�
[k(i)]2 − |kt,nm|2 . (14)

In (14), k(i) =
�

ε
(i)
r k0, and kt,nm is its associated transversal

wave vector, expressed as

kt,nm = kxn x̂ + kymŷ = (kx0 + kn)x̂ + (ky0 + km)ŷ (15)

with

kn = 2πn

px
, km = 2πm

py

and px and py being the periods of the unit cell in the x- and
y-directions.

From a circuit standpoint, the coefficients N (i),TX
nm,L/R are

the turn ratios of transformers associated with the (m, n)th
harmonics in region (i) [24]. Mathematically, they stand for
the projection of the (n, m)th harmonic on the 2-D Fourier
transform of the spatial profile E(i)

a,L/R(x, y) at the correspond-
ing left-/right-side apertures, that is

N (i),TM
nm,L/R = �E(i)

a,L/R(kt,nm) · k̂t,nm (16)

N (i),TE
nm,L/R = �E(i)

a,L/R(kt,nm) · 
k̂t,nm × ẑ

�
(17)

where k̂t,nm is the unit vector associated with kt,nm and�E(i)
a,L/R(kt,nm) is the 2-D Fourier transform of the spatial profile

in the left/right apertures of the coupled arrays (i) calculated
at kt,nm .

In general, N (i),TX
nm,L and N (i),TX

nm,R have different and unrelated
values since �E(i)

a,L(kt,nm) can be arbitrarily different from�E(i)
a,R(kt,nm). However, in many practical situations, the left

and right apertures can be related by simple algebraic trans-
formation (translation, rotation, reflection, and dilation), which
then makes it possible to also find simple algebraic relations
between the involved Fourier transforms. As an example,
the misalignment of consecutive periodic arrays is taken into
account by means of�E(i)

a,R(kt,nm) = �E(i)
a,L(kt,nm)e jkt,nm ·d (18)

where d = dx x̂ + dyŷ represents the displacement of the
aperture (this misalignment was already considered in [55] for
1-D periodic arrays). The case of stacks of rotated periodic
arrays will be treated in Section III-B. An interesting case
raises when d = px/2x̂ + py/2ŷ; namely, when the periodic

stack has glide symmetry [47], [56]. Under normal incidence,
it means that (18) turns into�E(i)

a,R(kt,nm) = (−1)n+m �E(i)
a,L(kt,nm) (19)

which implies that

N (i),TM
nm,R = (−1)n+m N (i),TM

nm,L . (20)

This particular relation between the transformer ratios is
in very close correspondence with the discussion in [59]
on the symmetry of the even/odd harmonics when dealing
with glide-symmetric structures. Thus, it is found that each
(n, m) harmonic involves the presence of a magnetic/electric
wall in the middle plane of the subunit cell depending on
whether n + m is even/odd. This interesting feature of Bloch
modes in glide-symmetric structures is key for providing many
of the beneficial properties of these periodic structures [60].

It should be noted that all the previous expressions from (7)
to (17) are frequency-dependent. Thus, the double sum in (7)
would have to be performed for every frequency value in
an eventual frequency sweeping. However, for high-order
(ho) harmonics (k2

xn + k2
ym � εr k2

0), it is apparent that the
wavenumber and wave admittances can be well approximated
as [24], [36]

k(i),ho
z,nm ≈ −jαnm = −j

�
k2

n + k2
m (21)

and

Y (i),ho
nm ≈

⎧⎪⎪⎨⎪⎪⎩
jωε0ε

(i)
r

αnm
≡ jωC (i)

nm , TM harmonics

αnm

jωμ0
≡ 1

jωLnm
, TE harmonics .

(22)

It implies that a great deal of computational effort can be
saved in the computation of (7) by splitting the double infinite
sum into a low order (lo) contribution (|n, m| ≤ N), which
is frequency-dependent but only comprises a few terms, plus
a higher order (ho) contribution (|n, m| ≥ N + 1) that is
frequency independent; namely

Y (i)
uv (ω) =

N�
n,m=−N

�
Y (i),TM,lo

uv,nm (ω) + Y (i),TE,lo
uv,nm (ω)

	

+
∞�

|n,m|≥N+1

�
Y (i),TM,ho

uv,nm + Y (i),TE,ho
uv,nm

	
. (23)

Therefore, the computational effort in the frequency-sweeping
computation of each of the admittance matrices Y(i)(ω) lies
almost entirely in the obtaining of the reduced summation
associated with Ylo(ω), with Yho needed to be computed just
once and stored for subsequent use. In most of the cases
studied in this article, it suffices to take N � 6, although this
value can be smaller if: 1) the upper frequency of analysis is
not close to the onset of the diffraction limit ( f < c/p, with
c being the speed of light) and 2) when the periods of the
unit cell are electrically small, a feature that is found in many
applications of metasurfaces.

For a straightforward computation of the scattering para-
meters, the admittances Y (in)/(out)

ext associated with the external
regions and the Y(i) admittance matrices associated with
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the internal regions are converted to transfer (ABCD) matri-
ces [57]. Given the particular topology found for the equivalent
circuit of a generic stack of M ≥ 2 coupled layers, the problem
can be split up into M − 1 internal blocks plus two additional
external blocks. Thus, the complete network shown in Fig. 2
can be represented in terms of a single transfer matrix com-
puted as the product of the resulting four individual transfer
matrices. It should be pointed out that the final transfer matrix
does contain all the relevant information about the propagating
mode and all higher-order harmonics, as well as the possible
couplings between them.

B. Additional Considerations

Periodic arrays of patch-like scatterers can be regarded as
complementary to aperture-like ones, and thus, the application
of a similar procedure as given above to patch-like arrays
would lead to complementary equivalent circuit topology.
In [24], it was shown that the equivalent-circuit topology
of a single periodic array of patches has all the individual
transmission lines associated with the different harmonics
connected in series, unlike the parallel configuration found
for aperture-like arrays. If two or more patch-like arrays
are to be stacked, the corresponding transmission lines asso-
ciated with harmonics of the same order would have to
be connected, as done in Fig. 2 for the aperture problem.
However, the resulting patch-like connection gives rise to a
very complicated network that, to the best of our knowledge,
cannot be simplified in a similar fashion as in the concate-
nation of simple Y(i) blocks shown in Fig. 2. The lack of
such straightforward connection complicates the mathematical
treatment of the problem enormously and makes it very
difficult to have a simple and insightful physical understanding
of the structure from a circuit model standpoint. For this
reason, stacks of patch-like arrays are out of the scope of this
article.

A relevant issue concerning the application of the ECA
previously proposed is the discussion of its limits of validity.
As already mentioned and previously reported in [58], the most
relevant theoretical limitation of the approach comes from the
validity of assumption (4); namely, the spatial profile of the
tangential field in the apertures does not vary too much with
frequency. From a practical point of view, this assumption
can be found satisfactory up to frequencies below the second
“excitable” resonance of the aperture. Thus, for the case of
an array of rectangular apertures of size a × b (a > b) with
a normally incident electric field directed along the shorter
dimension, the second excitable resonance will occur when
a ≈ 3λ/2, that is, for frequencies satisfying f � 3c/(2a)
(which includes a large frequency range well inside the dif-
fraction regime). In the case of oblique incidence, the limiting
frequency can reduce to f � c/a since the second excitable
resonance may occur at a ≈ λ. For other noncanonical geome-
tries of the aperture, such as the Jerusalem cross, the second
excitable resonance may appear close to the first one, which
would certainly reduce the range of applicability of the present
approach. However, despite this fact, it can be stated that the
ECA is found to work satisfactorily for many practical cases

Fig. 3. (a) Pair of strongly coupled arrays with rectangular apertures arranged
in a glide-symmetric configuration. Transmission coefficient for a separation
between arrays of (b) h = p/5, (c) h = p/20, and (d) h = p/50. TM normal
incidence is assumed. Geometrical parameters of the unit cell: a1 = a2 = 6
mm, b1 = b2 = 3 mm, px = py = p = 10 mm, and εr = 1.

where the numerically intensive full-wave approach can be
advantageously substituted by the much simpler ECA. In fact,
this consideration is one of the main goals of the present work,
where we explore different scenarios that might be thought to
be intractable by means of the present quasi-analytic ECA.

Another limitation discussed in [58] concerns the variation
of the spatial profile in the different arrays of the stack when
the apertures are strongly coupled. This possible variation
might be a relevant limiting factor in many practical cases
since we are implicitly assuming that all the apertures in the
stack have the same spatial profile as the one corresponding to
each aperture taken isolated. In order to assess the relevance
of this limitation, we will compare our ECA results with
those provided by CST in some cases of strong coupling for
the configuration shown in Fig. 3(a). In our simulations with
commercial software CST, we select the frequency solver,
configured with a maximum number of 20 cells per box
model in the tetrahedral mesh, a maximum number of passes
(finer mesh per iteration) of six, and 60 Floquet harmonics.
Fig. 3(b)–(d) shows the transmission coefficient of a pair of
strongly coupled arrays with rectangular apertures arranged in
a glide-symmetric configuration when the separations between
the arrays are p/5, p/20, and p/50, respectively (these cases
correspond to h = λ/5, h = λ/20, and h = λ/50, taking λ
at the onset of the diffraction regime; namely, f = 30 GHz).
The good agreement found between our ECA data with the
ones provided by CST in all these cases makes it apparent that
our assumption of taking the “isolated” spatial profile for the
apertures works reasonably well, even in the extreme scenario
considered in Fig. 3(d).

III. CANONICAL APERTURES

In this section, the proposed ECA is used and tested to com-
pute the scattering properties of stacked structures formed by
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Fig. 4. (a) Symmetrical and aligned stack of ten 2-D arrays formed by
annular apertures presented in [61]. (b) Transmissivity versus frequency for
TM normal incidence. Geometrical parameters of the unit cell: a = 3.8 mm,
b = 4.8 mm, px = py = p = 10 mm, h = 1.575 mm, and εr = 2.65.

apertures for which the spatial dependence of their tangential
electric fields can be expressed by closed-form expressions.

A. Symmetrical and Aligned Stacks

As a first study case, the multilayered structure that is
studied in [61] and shown in Fig. 4(a) is considered. The stack
is made up of ten perfectly aligned metallic screens of periodic
annular apertures separated by a dielectric of permittivity εr .
The metal is assumed to be a perfect electric conductor (PEC),
and no losses are considered in the dielectrics in this stage.
High transmission can be achieved by stacking and alternating
identical metallic and dielectric layers. This is appreciated
in Fig. 4(b), where the transmissivity is computed with the
proposed approach and then compared with the original results
in [61]. For the computation, the electric field in the aperture
is assumed to be well modeled by the function (43) (l = 1)
in the Appendix, N = 5 has been considered in (23), and
the double infinite sum has been truncated to Nmax = 10.
A good agreement is found between our closed-form results
and the set of data in [61]. The good agreement is somewhat
expected since the frequency range analyzed covers the range
of validity of our approach discussed in Section II-B (in this
case, f � 15 GHz). As the number of stacked metallic layers
increases, more transmission peaks appear in the transmission
spectra. For the structure under consideration, a passband
emerges from 6.5 to 12.5 GHz with transmissivity values over
50%. It should be mentioned that all terms involved in the
computation of our data are known in closed-form expressions,

Fig. 5. (a) Glide-symmetric stack of ten 2-D arrays formed by subwavelength
annular apertures. (b) Transmissivity versus frequency for TM normal
incidence. Geometrical parameters of the unit cell: a = 3.8 mm, b = 4.8 mm,
px = py = p = 10 mm, dx = dy = p/2, h = 1.575 mm, and
εr = 2.65.

which allows us to carry out the study shown in Fig. 4 with
a much reduced computational effort.

B. Glide-Symmetric Stacks

As previously discussed, breaking the alignment between
two consecutive layers can bring some advantages to con-
ventional FSSs. In particular, next, we will study the effect
of the introduction of glide symmetry in the structure pre-
viously analyzed. The half-period displacement implicit in
the glide symmetry is taken into account here in a fully
analytical form. To the best of our knowledge, this is the first
reported case where equivalent circuits can accurately model
the strong higher-order coupling between Floquet harmonics
in glide-symmetric FSS structures.

Fig. 5(a) presents the glide-symmetric version of the stacked
structure previously presented in Fig. 4(a), named henceforth
as mirror-symmetric. For a fair comparison, the same geo-
metrical parameters and number of layers have been kept.
Fig. 5(b) illustrates the transmissivity of the glide-symmetric
staked structure. A good agreement is observed between the
proposed formulation and the finite element method (FEM)
of commercial software CST for such complex transmission
spectra. However, our formulation is significantly more com-
putationally efficient than the commercial software. Using the
same computer, the ECA took less than 20 s in the analysis of
the whole frequency range, while CST took more than 30 min
for the same analysis. It is also observed that the passband
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Fig. 6. (a) Asymmetrical and nonaligned stack of two 2-D arrays formed
by annular and rectangular apertures. (b) Magnitude of the transmission
parameter for TM normal incidence. Geometrical parameters of the unit cell:
a1 = 3.8 mm, b1 = 4.8 mm, a2 = a3 = 0.4 mm, b2 = b3 = 0.2 mm,
px = py = p = 1 mm, dy = p/2, h1 = h2 = 0.6 mm, and ε

(1)
r = ε

(2)
r = 2.6.

of the glide-symmetric configuration (8 GHz of bandwidth)
is notably widened compared to the mirror-symmetric struc-
ture (6 GHz of bandwidth). This can be attributed to the
suppression of the stopband related to the first Bloch mode
in the glide-symmetric FSS. However, note that the ripple
level of the structure with glide symmetry is also increased
compared to the mirror-symmetric structure. This is associated
with the mismatching of the impinging free-space wave and
the impedance of the propagating Bloch mode in the stacked
structure. These facts will be discussed in greater detail in
Section V.

C. Asymmetrical and Nonaligned Stacks

The range of use of the circuit model is not limited to
multilayered structures with the same type of apertures, such
as those discussed above. Different types of apertures can be
combined, as shown in Fig. 6(a). Periodic annular and rectan-
gular apertures are stacked in this case, forming a three-layer
structure where the second perforated plate is off-shifted half
a period in y-direction, dy = p/2. The spatial profile of the
electric field assumed to be excited on the rectangular aperture
is given in (39) in the Appendix. Our closed-form results and
the ones obtained with CST are plotted in Fig. 6(b). Good
agreement is observed with CST in a wide frequency band,
reaching a precision to the third and fourth decimal places
(−60 dB) in the rejection bands. The fully analytical nature
of our results should be remarked, in contrast to previous
approaches [46]. Fully analytical results can be obtained as
long as the spatial profile of the considered apertures can
be expressed in a closed form, regardless of the geometry

Fig. 7. (a) Five-layer rotated stack formed by rectangular apertures.
(b) Magnitude of the transmission parameters for TM normal incidence.
Geometrical parameters of the unit cell: a1 = a5 = 7.25 mm, a2 = a4 =
8 mm, a3 = 9 mm, b = 3 mm, px = py = p = 10 mm, h = 1.5 mm, and
εr = 1.

of the apertures and the application of linear transformations
(displacement, rotation, scaling, and so on).

D. Rotated FSS

As previously mentioned, rotation is one of the possible
algebraic transformations that can relate the left and right aper-
tures of a coupled pair. Stacks of rotated periodic structures
are practical configurations, usually applied in the context of
polarization converters [14], [28], [29]. In the frame of our
analytical ECA, the spatial field profile of a single right- or
left-hand side rotated aperture Erot

R/L(r) admits to be represented
in terms of the field profile in a nonrotated aperture EL/R(r)
through the rotation matrix R

Erot
a,R/L(r) = REa,L/R(R−1r) (24)

where r = x x̂ + yŷ and

R =
�

cos α − sin α
sin α cos α

	
(25)

with α being the rotation angle of the apertures in the counter-
clockwise direction. Starting from (24), it can be demonstrated
that the 2-D Fourier transform of the spatial profile in the
rotated aperture can be written in terms of the profile with no
rotation as [62], [63]

�Erot
a, R/L(kt,nm) = R�Ea, L/R



R−1kt,nm

�
. (26)

The obtaining of the 2-D Fourier transform of the rotated
field-profile just demands a simple linear transformation in
terms of the rotation angle α. The computation of the corre-
sponding TM- and TE- transformer ratios is finally achieved
by introducing �Erot

a, R/L(kt,nm) in (16) and (17).
An example of a stack comprising five rotated free-standing

FSSs (q = 1, 2, . . . , 5) is shown in Fig. 7(a), where it can be
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seen that each single metallic screen is periodically perforated
with rectangular apertures of dimensions aq ×bq . The stack
configuration is such that the rotation angle of the first and
fifth (last) layers are α1 = 0◦ and α5 = 90◦, respectively.
This configuration, if efficiently optimized, may constitute a
potential polarization converter. The orientation of the first
and fifth apertures is suitable for conversion from y-polarized
to x-polarized electric fields. To accomplish the conversion,
the intermediate layers (q = 2, 3, 4) have to be conveniently
designed. In the example of Fig. 7(a), the corresponding rota-
tion angles are α2 = 12◦, α3 = 50◦, and α4 = 78◦, following
a growing trend from the first to the fifth screen. Along with
the optimum rotation angle for each screen, the dimensions
of each aperture are also optimized. In particular, an optimum
configuration has been found by keeping the shorter dimension
of the apertures (bq) identical for all the screens, whereas the
larger dimension (aq) is symmetrically distributed (a1 = a5

and a2 = a4). All the above derivations could be carried out
with a much reduced computational effort due to the analytical
nature of the employed ECA.

Fig. 7(b) shows the magnitude of the transmission coef-
ficient of the above structure when it is excited by a nor-
mally impinging plane wave with the electric-field vector
directed along the ŷ-direction. The transmission coefficient
is split into two components: the component corresponding
the co-polarization term (Ey → Ey) and the component
corresponding to the cross-polarization term (Ey → Ex ).
As it can be appreciated in Fig. 7(b), almost full conversion
Ey → Ex is achieved from 20 to 22 GHz, covering a fractional
bandwidth of 9.5% approximately (the co-pol level is below
−20 dB). The agreement between the results provided by CST
and the results obtained by our analytical circuit model is very
good. As a comparison of the required computational effort,
CST took more than 15 min (900 s) to compute 1001 equally
spaced frequency points, while the proposed ECA took less
than 15 s.

E. Metal-Backed FSS

The present ECA can easily deal with scenarios where the
stack of aperture arrays is backed by a metallic screen. The
back metallic screen is simply modeled as a short circuit;
namely, the transmission lines associated with harmonics in
direct contact with the ground plane have to be terminated with
a short circuit. In the circuit representation shown in Fig. 2,
the outgoing dielectric medium was assumed semi-infinite
and has an equivalent admittance, Y out

ext , coming from the
infinite transmission lines in parallel shown in the yellow
box of the equivalent circuit. When this medium is grounded,
the equivalent admittance Y (out)

ext defined in (5) now becomes

Y (out)
ext

=
∞�

n,m=−∞

�
− j

�
N (2),TM

nm,R

�2
Y (out),TM

nm cot



k(out)

z,nmhout

�
−j

�
N (2),TE

nm,R

�2
Y (out),TE

nm cot
�

k(out)
z,nmhout

�	
(27)

Fig. 8. (a) Metal-backed stacked structure acting as an absorber. Absorption
coefficient for (b) TM oblique incidence and (c) TE oblique incidence.
Geometrical parameters of the unit cell: a = 8 mm, b = 1 mm, px = py =
p = 10 mm, h = 0.75 mm, hout = 0.75 mm, and ε̂

(1)
r = 4 × (1 − j0.02).

where Y (out),TM/TE
nm and k(out)

z,nm take into account the relative
permittivity of the grounded dielectric medium, and hout is
the length of the shorted transmission lines (that is, the length
of the grounded dielectric medium). Unlike (5), the summation
in (27) has now to include the fundamental harmonics of order
n = m = 0 for both TE and TM harmonics.

Grounded dielectric FSSs can be employed for the design
of absorbers by introducing, for instance, a lossy dielectric
substrate in the stack. The information about the losses is
included in the permittivity of the lossy material, which,
thus, becomes a complex quantity. An example of a possible
absorber configuration is depicted in Fig. 8(a), where a stack
of two perforated metallic screens with identical rectangular
apertures is considered. A lossy dielectric slab of FR4 is
sandwiched between both layers, having a relative permittivity
of ε(1)

r = 4 and loss tangent tan(δ) = 0.02—the complex
permittivity of the lossy substrate is then given by ε̂(1)

r =
4 × (1 − j0.02). A free-standing ground plane (ε(out)

r = 1)
is placed at a distance hout. The structure is assumed to be
excited by either a TM-polarized or a TE-polarized plane wave
that impinges obliquely with an angle θ (normally incident
waves are considered when θ = 0◦). The geometry of the
unit-cell aperture is chosen to have a high absorption rate in
both polarizations up to an incidence angle of 20◦, though in
a narrow frequency band, as shown in Fig. 8(b) and (c).

The absorption coefficient (Ac) is calculated in terms of the
reflection coefficient as Ac = �

1 − |S11|2, where it is assumed
that the reflected power is only carried by the n, m = (0, 0)
harmonic, whose reflection coefficient is then given by S11.
This assumption is valid below the onset of grating lobes and
the absence of cross-pol effects, which is fully satisfied in the
present case (the symmetry of the rectangular apertures pre-
vents the excitation of the cross-polarization term). The strong
coupling induced by the proximity of the perforated plates can
result in high absorption amplitudes, as this case illustrates.
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The thickness of the whole absorber is much reduced, with a
total size of 1.5 mm, which means a thickness of � λ0/20
at the full-absorption peaks observed in Fig. 8(b) and 8(c).
A slight frequency shift of less than 1% can be appreciated
between some results given by CST and the ECA. The
obtained good accuracy of the ECA demonstrates the ability of
the approach to cover scenarios with stacked arrays, including
the presence of dielectric losses and a reflecting ground
plane. The ability of the proposed ECA to deal with oblique
incident waves is also validated in this example. Scenarios with
θ = 60◦ are well represented for both TM and TE incidence.

It should be noted that the present high accuracy of the
ECA is directly related to the good approximation that the
assumption made in (4) stands for in this case. The accuracy
is expected to be more limited in other situations where the
eventual excitation of higher resonances of the aperture is more
significant. The lack of symmetry in the problem, the electrical
size of the aperture, and the number of plates are factors that
may affect the suitability of the implicit approximation of the
ECA in scenarios where oblique incidence is considered. How-
ever, it should be pointed out that many practical situations
do satisfy the ECA validity conditions, and that is the model’s
application niche that this work is exploring.

IV. ARBITRARY APERTURES

For noncanonical aperture geometries for which the spatial
profile in (4) is not easily expressed in closed form, we can
make use of a hybrid approach that advantageously combines
the use of the equivalent circuit and commercial simula-
tors [25]. More specifically, we can benefit from the ability
of commercial simulators to deal with arbitrary geometries
to extract the spatial profile of the considered aperture when
only a single periodic array is considered in free space. The
extraction of this spatial profile has to be done at a single
frequency point, which is an operation far less computationally
demanding than the simulation of the complete stack in the
full frequency range. From this operation, the transformer
turn ratios in (16) and (17) are obtained after numerically
computing the Fourier transform of the aperture spatial pro-
file. Moreover, linear transformations (rotation, scaling, and
displacement) can still be applied to this Fourier transform in
order to find relations between the apertures of the perforated
plates. As previously discussed, this approach will be valid as
long as the aperture spatial profile does not greatly vary with
frequency.

As an example, Fig. 9(a) presents a three-layer stack formed
by a periodic array of Jerusalem-cross apertures and two
arrays of bowtie-shaped apertures, separated by two different
dielectrics of permittivities: ε(1)

r = 4.7 and εr (2) = 2.5.
The spatial profiles of the different apertures are extracted
with the simulation of single, free-standing layer in CST at
the lowest operating frequency (20 GHz). In this example,
the mesh of the unit cell consists of 60 × 60 hexahedral
elements. In order to show the potential of the approach also
for arbitrary geometries, the apertures of the third layer are
taken as rotated and scaled versions of the apertures that
form the second layer. This can be appreciated in Fig. 9(b),

Fig. 9. (a) Three-layer stack of arbitrary apertures. Geometrical parameters
of the unit cell: a = 4.1 mm, b1 = 1 mm, b2 = 0.5 mm, l = 1.5 mm,
w = 0.4 mm, lb = 2 mm, wb = 2 mm, px = py = p = 8 mm,
h1 = 1.575 mm, h2 = 0.5 mm, ε

(1)
r = 4.7, and ε

(2)
r = 2.5. (b) Magnitude of

the spatial profile at the aperture. The bowtie-shaped apertures of the third
layer are rotated α = 10o and scaled 1.2 times (Sx = Sy = 1.2) with respect to
the apertures of the second layer. (c) Magnitude of the transmission coefficient
for TM normal incidence.

where the absolute value of the aperture spatial profiles is
shown. Thus, in this case, it is only necessary to extract the
spatial profile of the first and second plates E(1,2)

a,L (x, y) since
the Fourier transform of the spatial profile of the third plate can
be expressed as �E(2)

a,R(kt,nm) = R S�E(2)
a,L(R−1S−1kt,nm), where

R is the previously defined rotation matrix and S represents a
scale matrix given by [62], [63]

S =
�

Sx 0
0 Sy

	
. (28)

Note that matrices R and S commute if Sx = Sy , as the
scaling operator is then defined by a diagonal matrix. Fig. 9(c)
illustrates the transmission parameter of the three-layer stack
of arbitrary apertures. A good agreement is observed with
CST, even for such a complex structure. Slight differences
are observed beyond 26 GHz. This is due to the excitation of
the second resonance in the Jerusalem cross, which reduces
the range of validity of the ECA as the assumption of a
frequency-independent spatial profile in (4) is no longer valid
beyond this frequency. As a comparison, CST took more than
20 min (more than 1200 s) to compute 501 equally spaced
frequency points, while the present hybrid approach took,
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in total, less than 40 s. It clearly proves that efficiency of
the present hybrid implementation to compute the scattering
parameters of stacked structures with arbitrary apertures.

V. INFINITE PERIODIC STACKS

A. Dispersion Diagram

As it is well known, the dispersion relation of a periodic
structure along the z-direction can be expressed in terms of
the elements of the transfer matrix of the corresponding unit
cell (period pz ≡ p) as [31], [57]

cosh(γz pz) = A p + Dp

2
(29)

where γ = αz + jβz is the propagation constant of the Floquet
mode and the subindex p means that A p and Dp are elements
of the transfer (ABCD) matrix Tp associated with the unit cell
of longitudinal period pz . Given that A = −Y22/Y21, D =
−Y11/Y21 [57], the dispersion relation can be expressed in
closed form by replacing (7)–(11) into (29) to give

cosh(γz pz)

=
�∞

n,m=−∞

��
NTM/TE

nm,L

�2 + 
NTM/TE

nm,R

�2
	

Y TM/TE
nm cot(kz,nmh)

2
�∞

n,m=−∞ NTM/TE
nm,R NTM/TE

nm,L Y TM/TE
nm csc(kz,nmh)

(30)

where the sum above extends to both TE and TM modes. The
index (i) is removed in the above expression since all the
internal regions are exactly the same in the present infinitely
periodic structure under study. If there are more than one
dielectric between the pair of coupled arrays, the terms inside
the brackets in the second line of the above equation should be
appropriately modified. In many practical situations, the unit
cell of the periodic structure can be chosen to be symmetric,
which implies that A p = Dp or, equivalently, NTM/TE

nm,R =
NTM/TE

nm,L .
As already mentioned in Section II-B, one of the main

limitations of the ECA for the study of the scattering properties
of stacked structures comes from the inadequacy of the method
to deal with frequency sweepings where the spatial profile of
the tangential field on the apertures significantly varies along
the considered frequency range [34]. This fact was physically
linked to the excitation of higher resonances in the aperture.
From a practical point of view, this limitation can be overcome
by expressing the spatial profile with more than one basis
function, as exploited, for instance, in [26]. However, in the
light of (30), one can observe that this equation can still
be utilized to compute the dispersion behavior of high-order
Floquet modes, despite using a single basis function to model
the spatial profile on the aperture, as long as the single spatial
profile employed to compute the transformer ratios in (30) can
match the geometrical variations of the corresponding Floquet
mode. In practice, it means that the function Ea(x, y) should
be chosen with a spatial profile that closely resembles the
different resonant modes of a single aperture.

Following this rationale, the dispersion relation of the peri-
odic mirror-symmetric stack of annular-aperture arrays shown

Fig. 10. (a) Infinite periodic 3-D array formed by annular apertures.
(b) Spatial distributions on the annular apertures analytically computed
with (43). Dispersion diagrams (phase shift and normalized attenuation
constant) of the (c) mirror-symmetric and (d) glide-symmetric configurations.
The results extracted from CST (colored circles) are shown for compari-
son purposes. Parameters of the unit cell: a = 3.8 mm, b = 4.8 mm,
px = py = p = 10 mm, pz = 1.575 mm, and εr = 2.65.

in Fig. 10(a) has been computed by solving:

cosh(γzh) =

∞�
n,m=−∞


NTM/TE

nm

�2�
Y TM/TE

nm cot(kz,nmh)
�

∞�
n,m=−∞


NTM/TE

nm

�2�
Y TM/TE

nm csc(kz,nmh)
� .

(31)

The indices L/R have been suppressed since their difference
is not necessary in this case. The different Floquet modes
supported by the periodic stack are computed with (31) by
imposing the spatial profiles shown in Fig. 10(b). In the
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case of annular apertures, these spatial profiles correspond
to the mathematical form given in (43) in the Appendix for
l = 1, 2, 3, 4 and φ = 0, π/4. These closed-form expressions
of the spatial profiles associated with the Floquet modes are
found to match quite well the actual tangential fields extracted
with CST. A comparison of the results for the phase shift
(βz pz/π) obtained with the simplified procedure proposed
in this work and data provided by the CST Eigensolver is
shown in the left plot of Fig. 10(c), showing a good agreement
between both sets of results.

The dispersion diagram of the glide-symmetric version of
the above periodic structure is shown in Fig. 10(d). For
glide-symmetric periodic structures, it should be taken into
account that the actual unit cell of the structure is symmetric
(and of size pz = 2h in the particular case under study);
namely, (29) reduces to

cosh(γz pz) = A p. (32)

Since the actual unit cell now involves two pair of coupled
arrays (and in the simplest case considered here, two dielectric
layers of size h), it means that A p actually comes from Tp =
T�

p/2T��
p/2, where T�

p/2 stands for the transfer matrix of one of
the two subunit cells of size p/2 that comprises the actual unit
cell (T��

p/2 is the transfer matrix of the remaining subunit cell).
In similarity with the discussion in [64, Sec. 2.2], the original
dispersion relation (29) of the glide-symmetric structure [with
period pz = 2h, as shown in Fig. 10(a)] can alternatively be
rewritten as

cosh(γz pz/2) = �
A p/2 Dp/2 = A p/2. (33)

For glide-symmetric structures, A p/2 turns out to be equal to
Dp/2, which follows after introducing (20) into (8) and (11). It
implies that the dispersion relation of glide-symmetric struc-
tures can be obtained dealing only with the subunit cell of the
structure (of size h in the present case); namely, the dispersion
equation can be written as

cosh(γzh)

=

∞�
n,m=−∞

�
NTM/TE

nm

�2
�

Y TM/TE
nm cot(kz,nmh)

	
∞�

n,m=−∞
(−1)n+m

�
NTM/TE

nm

�2
�

Y TM/TE
nm csc(kz,nmh)

	 .

(34)

The comparison of the dispersion equations for the mirror- and
glide-symmetric structures given in (31) and (34), respectively,
clearly shows that the only difference comes from the factor
(−1)n+m in the denominator of (34).

The fact that only the subunit cell of the glide-symmetric
structure has to be considered is in full correspondence with
the subunit cell concept introduced in the statement of the
generalized Floquet’s theorem reported in [47] for periodic
structures with higher symmetries.

The left plot in Fig. 10(d) shows that the results given by the
closed-form expression in (34) are again in good agreement
with the data computed by CST, which has been obtained
by considering the actual unit cell of period p = 2h. Note
that the considered spatial profiles for the glide-symmetric

periodic stack, illustrated in Fig. 10(b), are the same as
the ones used for the mirror-symmetric periodic stack. The
good agreement obtained for both the mirror-symmetric and
the glide-symmetric periodic stack of aperture arrays clearly
supports the ability of the present closed-form approach to
obtain the dispersion diagram of periodic stacked structures
even beyond the previous limits of validity of the analytical
ECA discussed in [34].

It is worth noting here the correlation between the results of
transmissivity shown in Figs. 4(b) and 5(b) and the dispersion
behavior of the first Floquet mode in Fig. 10(c) and (d),
respectively. The increase in the passband bandwidth observed
in Fig. 5(b) for the glide-symmetric structure completely
agrees with the wider bandpass of the first mode in Fig. 10(d)
with respect to the one in Fig. 10(c). This effect has been
widely reported as one of the advantages of glide-symmetric
structures [60] and is shown here to be also a profitable
characteristic of stacked FSS’s.

A well-known relevant constraint of most electromagnetic
commercial simulators comes from their inability to provide
the attenuation constants of the modes [65]. Fortunately,
the present approach does not have this limitation since it
directly computes the complex propagation constants of the
Floquet modes. The corresponding values for the normal-
ized attenuation constant (αz/k0) for the previously analyzed
mirror- and glide-symmetric structures are shown in the right
plots of Fig. 10(c) and (d), respectively. For the sake of clarity,
only the attenuation constant of the first Floquet mode is
shown. It can be appreciated that, in the common stopband
regions (i.e., from 12.5 to 18.5 GHz), the attenuation constant
of the mirror-symmetric configuration is greater than the one
of the glide-symmetric case. This fact is in agreement with
the results reported in [50] for waveguides loaded with holey
structures.

B. Bloch–Floquet Impedance

As is well known, the introduction of the Bloch–Floquet
impedance, given by

Z±
B = −2Bp

A p − Dp ∓ �
(A p + Dp)2 − 4

(35)

is very helpful for the study of truncated periodic struc-
tures [57]. Unfortunately, most of commercial eigenmode
solvers are not able to directly compute the Bloch
impedance. The present formulation can overcome these
weaknesses and provides accurate information on the Bloch
impedance. Fig. 11(a) and (b) illustrates the real part of
the Bloch impedance for the mirror- and glide-symmetric
infinite periodic stacks already analyzed in Fig. 10. In the
mirror-symmetric structure, after noting that A p = Dp, (35)
reduces to

Z±
B = ± Bp�

A2
p − 1

. (36)
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Fig. 11. Real part of the Bloch impedance for various Bloch modes
in (a) mirror-symmetric and (b) glide-symmetric infinite periodic 3-D
stacks formed by annular apertures. Geometrical parameters of the unit cell:
a = 3.8 mm, b = 4.8 mm, px = py = p = 10 mm, h = 1.575 mm, and
εr = 2.65.

For the glide-symmetric structure, it is found that the Bloch
impedance can alternatively be computed as

Z±
B = ±

�
A p/2 Bp/2

Cp/2 Dp/2
= ±

�
Bp/2

Cp/2
(37)

which means that only the subunit cell of size pz/2 should be
considered in this case.

It can be appreciated that the real part of the Bloch
impedance in the first passband region of the l = 1 mode
in Fig. 11(a) for the mirror-symmetric configuration (around
195  from 7 to 12.5 GHz) is closer to the free-space
impedance (η0 ≈ 377 ) than the one in Fig. 11(b) for the
glide-symmetric structure (around 145  from 8 to 15 GHz).
This fact explains that the ripples in the passband of the
mirror-symmetric structure in Fig. 4 are lower than those for
the glide-symmetric structure in Fig. 5. In addition, the Bloch
impedance is progressively smaller in both configurations for
the second and third passbands of the first mode (l = 1),
which leads to an increased ripple level for the high-frequency
passbands, in agreement with the results reported in [66]
for 1-D grating stacks. High-order modes (l = 2, 3, . . .)
present a much smaller real part of the Bloch impedance
compared to the fundamental mode. Therefore, the resulting
mismatching causes these modes to be strongly reflected and
hardly transmitted in finite stacks.

The Bloch impedance can also be used to improve the
performance of multilayered FSS structures; in particular,
filters and matching layers can be efficiently designed with the
proposed circuit approach by adjusting the Bloch impedance
of the passband regions to match the free space impedance.
As an example, we will show that the passband ripple level
of Fig. 5 can be reduced with this simple procedure. Thus,
Fig. 12(a) illustrates the variation of the passband ripple level
of the glide-symmetric ten-layer stack with glide symmetry as
the inner radius of the annular-ring apertures varies. It can
be observed that the ripples reduce as the inner radius is
smaller, namely, as the width of the annular ring is wider. This
effect comes associated with a corresponding increase in the
Bloch impedance shown in Fig. 12(b), which is progressively
approaching the value of the free space impedance. As a result,
the mismatching between the impedance of the Bloch mode

Fig. 12. Reduction of the passband ripple in the glide-symmetric ten-layer
stack formed by annular apertures. (a) Transmissivity. (b) Bloch impedance
for different inner radii values, a. Geometrical parameters of the unit cell:
b = 4.8 mm, px = py = p = 10 mm, h = 1.575 mm, and εr = 2.65.

and the free space is reduced, and the transmission is enhanced
although, in this case, at the cost of reducing the passband.

VI. CONCLUSION

This article presents a rigorous formulation based on the
multimodal ECA for the analysis and design of stacked
structures formed by 2-D periodic arrays of arbitrary apertures.
It is shown that a key potential of the approach comes from
the fact that linear transformations between adjacent layers
(rotated, translated, and scaled apertures) can be modeled from
a purely analytical perspective. This opens new possibilities
for the efficient design of polarizers, filters, absorbers, thin
matching layers, and other high-frequency devices oriented
to wireless communications. As an example, we show the
design of a broadband transparent structure formed by annular
apertures, a polarization converter, and an absorber formed by
rectangular apertures. Good agreement is observed between
the present approach and the reference results from CST for
all the cases under study. In addition, the present formula-
tion allows for the analysis of glide-symmetric configurations
from a circuit perspective. This is a remarkable feature since
the performance of glide-symmetric structures can rarely be
described with circuit models due to the strong interaction
between adjacent layers.

Purely analytical results are obtained from the circuit
approach as long as the spatial profile of the apertures can
be expressed in closed form, regardless of the geometry of
the apertures and the applied linear transformations. However,
a hybrid approach that combines the use of commercial
software and the circuit model can be applied in those cases
where the spatial profile cannot be expressed in closed form.
This hybrid approach integrates the ability of commercial
simulators to deal with arbitrary geometries with the reduced
computational effort inherent to the ECA. The hybrid approach
is validated with a three-layer stacked structure formed by
Jerusalem-cross and bowtie-shaped apertures.

Finally, it is shown that the dispersion properties of infinite
periodic stacks can be derived with the proposed formulation.
This is a remarkable feature since most commercial eigenmode
softwares are unable to compute the attenuation constant and
Bloch impedance of the modes. In light of the present results,
it is observed that the use of a single spatial profile suffices
to compute the dispersion behavior of high-order Floquet
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modes, as long as the considered profile resembles the different
resonant modes of the aperture. The good agreement shown
supports the ability of our closed-form approach to obtain the
dispersion diagram of periodic stacked structures even beyond
the previous limits marked by reference works.

APPENDIX

This appendix gives the analytical expressions of the spatial
profiles Ea(x, y) [see (4)] considered for the computation of
the stacked structures. It should be remarked that, although
the mathematical form of Ea(x, y) is assumed to be indepen-
dent of the dielectric layers inserted in the stacked structure,
the information of the dielectric environment is fully accounted
for in the ECA by means of the characteristic admittances
(12) and (13) and wavenumbers (14) of the transmission lines
associated with the Floquet harmonics.

Rectangular Apertures

Assuming that the tangential electric field at the aperture is
oriented as follows: TM polarization: φ = 90o, and Ea(x, y) =
Ea(x, y) ŷ and TE polarization: φ = 0o, and Ea(x, y) =
Ea(x, y) x̂, the following spatial profiles can be considered in
the case of a rectangular aperture of dimensions a × b [67]:

Ea1(x, y) ∝
�

cos



πx

a

�
rect



x
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�	
rect



y

b

�
(38)

Ea2(x, y) ∝
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cos( π x
a )�

1 − (2x/a)2
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b
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where the rectangle function is defined as

rect
� x

u

�
=

�
1 , −u/2 ≤ x ≤ u/2

0 , otherwise.
(40)

A further study demonstrated that the spatial distribution (38)
offers more accurate results when the aperture size is narrow,
while (39) can be employed for bigger apertures.

The Fourier transforms of these spatial profiles can be
expressed in closed form as
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with J0(·) being the Bessel function of the first kind and
order zero. The transformer turn ratios NTM/TE

nm can be directly
calculated with (41) and (42) from [45, eqs. (6) and (7)].

Annular Apertures

The spatial profile of annular apertures shares a great
similarity with the one of rectangular apertures. In the case
of annular apertures, field variations occur in the azimuth

direction φ, rather than in the x- or y-directions. According
to [68], [69], the following aperture field can be considered
in an annular ring whose inner and outer radii are a and b,
respectively:

Ea(φ) ∝ cos
�
l(φ − φ0)

�
ρ̂ (43)

where φ0 is the reference azimuth angle, and l stands for the
order of the considered mode. As the variation in the radial
direction has been suppressed, this approximation is valid as
long as the slot width is narrow (1 ≤ b/a � 1.5). For the
fundamental mode (l = 1), the expressions for the transformer
turn ratios NTM/TE

nm are found in [68, eqs. (5) and (6)].
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