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Abstract

The regression problem with a large number of variables appears in various fields
of science, sparse methods make this problem more interpretable and more precise.
In this work we present the method Elastic Net, which outperforms the Lasso in
some situations. The elastic net have the grouping effect, while lasso does not, this
is that strongly correlated predictors tend to "behave" in the same way. The lasso
does not work well when the number of predictors is much grater than the number of
observations, p� n. However, elastic net is useful in this situation.
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Introduction

The sentence "I’ve got all these variables, but I don’t know which ones to use", and the
question "How can one improve the performance of the model available" could define
the basis of this work.

Therefore, the goal is to find a model that helps to make these decisions, that is, to
decide which variables are significant and which ones are not. The regression problem
with a large number of variables appears in various fields of science. This phenomenon
is occurring more and more frequently due to advances in technology.

Some of the requirements in a variable selection model are:

• More interpretable models

• More accurate predictions

• Stability, in the sense small changes in the data should not lead big changes in
the predictors.

Traditional variable selection methods, such as ridge regression, fail in one or more of
the above requirements. Modern procedures such as Lasso (Tibshirani, 1996), gener-
ally improve stability and predictions. Group Lasso is a natural extension of Lasso,
which selects the variables in a grouped way. In section 2 the methods named on this
paragraph will be presented.

Although Lasso works successfully in many occasions, it has some limitations:

• The number of predictors may be much grater than the number of observations
(p� n)

• Explanatory covariates may be strongly correlated.

Therefore, between section 3 and section 4, it is presented the model Elastic Net in
order to overcome these limitations.

In section 5 there is an explanation of the R-studio package elasticnet. Finally, to fix
ideas, in section 6 there are two numerical examples using popular data sets from the
literature and a simulation case.
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Chapter 1

The Linear model

Consider the linear model, which is expressed as:

y = α + xtβ + ε (1.1)

where:

• x is the predictor vector

• β is a p-dimensional unknown parameter

• α ∈ R is unknown

• ε is the error vector, which its mean is 0 and its variance is σ2

From a group of pairs (x1, y1),. . ., (xn, yn), the ordinary least squares (OLS) consist
on finding α and β which minimizes the sum of the square of the errors between the
data yj and the predictions ŷj = α + xtjβ.
The OLS estimator β̂ is obtained by solving the next optimization problem

arg min
α∈R, β∈Rp

n∑
i=1

(yi − α− xtiβ)2 (1.2)

Let X̃ :

X̃ =

1 x1
...

...
1 xn


Now, the problem (1.2) is:

arg min
α∈R,β∈Rp

(
y − X̃t

(
α

β

))t(
y − X̃t

(
α

β

))
(1.3)

9
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Necessary and sufficient condition of optimality

Calling f (α,β) the objetive function in (1.3), it is a convex and differentiable function.
Therefore, a necessary and sufficient condition for (α,β) to be an optimal solution of
(1.2) is:

∇f(α, β) = 0 (1.4)

Using the hypothesis that XtX is invertible, (1.4) has an unique solution.

ˆ(α
β

)
= (X̃tX̃)−1X̃ty (1.5)

In the following lines, (1.5) is proved.

f(α, β) =

(
y − X̃t

(
α

β

))t(
y − X̃t

(
α

β

))
Denoting

(
α
β

)
as θ:

f(θ) =
(
y − X̃tθ

)t (
y − X̃tθ

)
=

n∑
i=1

(yi − x̃tiθ)
2

So;
δ

δθk
f(θ) = 2

n∑
i=1

(yi − x̃tiθ)(−x̃ik)

Therefore;
∇f(θ) = −2X̃t(y − X̃θ)

∇f(θ) = 0⇔ −2X̃t(y−X̃θ) = 0⇔ X̃t(y−X̃θ) = 0⇔ X̃ty = X̃tX̃θ ⇔ θ = (X̃tX̃)−1X̃ty
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1.1 Logit Model
A Logit (logistic) model is useful to examine how prediction variables influence a bi-
nary response y. This response may take the values 1 and 0 to denote the existence or
a lack of a certain qualitative characteristic (a woman can be pregnant or not, . . .). The
logit model is created to estimate the probability of y = 1 with a logistic function of
linear combinations of x.

Consider a binary response variable y (n×1) (the value y = 1 indicating the existence
of a qualitative characteristic and the value y = 0 indicating the lack of it). This model
assumes that the probability for observing yi = 1, with xi= (xi1, . . . , xip)

T , is given by
a logistic function of a linear combination of x.

p(xi) = P (yi = 1|xi) =
exp(β0 +

∑p
j=1 βjxij)

1 + exp(β0 +
∑p

j=1 βjxij)
(1.6)

The next function implies the probability of the lack of the characteristic:

1− p(xi) = P (yi = 0|xi) =
1

1 + exp(β0 +
∑p

j=1 βjxij)
(1.7)

With (1.6) and (1.7):

log
{

p(xi)

1− p(xi)

}
= β0 +

p∑
j=1

βjxij (1.8)

(1.8) indicates that the logit model is equivalent to a log-linear model for the odd ratio
p(xi)/(1 − p(xi)). A positive value of βj indicates that the variable xj will assist the
existence of the characteristic as the odd ratio increase. A βj = 0 corresponds to the
lack of an effect of the variable xj on the qualitative characteristic. For independent
and identically distributed observations, the probability function is:

L(β0, β) =
n∏
i=1

p(xi)
yi(1− p(xi))1−yi

The maximum probability estimators (β) are obtained from solving the maximization
problem (β̂0, β̂) = arg maxβ0,β logL(β0, β) where:

logL(β0, β) =
n∑
i=1

[yi log{p(xi)}+ (1− yi) log{1− p(xi)}] (1.9)



12 1.1. Logit Model



Chapter 2

Basic regularization methods

This chapter will present three basic shrinkage methods, Ridge Regression, the Lasso
and the Group Lasso. These methods are used since retaining a subset of the predictors
and discarding the rest makes a more interpretable model and it probably has lower
prediction error than the full model. Furthermore, those methods are more continuous
than subset selection and they are not affected by high variability.

2.1 Ridge Regression
This method was the first regularization method introduced in statistics [4]. In Ridge
regression the coefficients are shrunk by imposing a penalty on their size. Those coef-
ficients minimize a sum of square in which a penalization term is added.

β̂ridge = arg min
β
{
N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

β2
j } (2.1)

In this equation, λ ≥ 0 is a parameter which manages the amount of shrinkage, as λ
rises, the amount of shrinkage increases. It is equivalent to write the ridge problem as:

β̂ridge = arg min
β

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2, subject to

p∑
j=1

β2
j ≤ s, (2.2)

There is a one to one correspondence between λ in (2.1) and s in (2.2). When there are
many correlated variables, their coefficients can exhibit high variance. The solutions
of this problem is not equivariant under scaling of the predictors. As a result, we can
standardize the predictors before solving (2.1). In addition, observe that β0 is not in
the penalty term, so we can use centered predictors, each xij gets replaced by xij − x̄.
and β0 is estimated by ȳ = 1

N

∑N
i=1 yi. The other coefficients are estimated by a ridge

regression, using the centered xij . As the centering has been done, the matrix X has p

13
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columns, because the first column is 0 after the centering.

Writing (2.1) in matrix form,

RSS(λ) = (y −Xβ)T (y −Xβ) + λβTβ (2.3)

The solutions are:
β̂ridge = Ry (2.4)

with
R = (XTX + λI)−1XT

where I is the p×p identity matrix. Observe that with the choice of the penalty term
(βTβ), the solution is a linear function of y. Ridge regression makes the problem
nonsingular, even if XTX is a singular matrix, as the solution adds a constant to the
diagonal of XTX before the inversion.

The problem of that method is that the coefficients are shrunk toward zero when
λ→∞, but they would not be exactly zero.

2.2 The Lasso
The Lasso is a shrinkage method as ridge regression, with slight but important differ-
ences. The Lasso estimated is:

β̂lasso = arg min
β

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2, subject to

p∑
j=1

|βj| ≤ s, (2.5)

As in ridge regression, the coefficients can be standardized in order to re-parametrize
β0, which is ȳ. The Lasso problem can be written in the Lagranganian form:

β̂lasso = arg min
β

{
1

2

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

|βj|

}
. (2.6)

Observe the similarity to the ridge regression problems (2.1) and (2.2). While in Ridge
regression the penalty is

∑p
j=1 β

2
j , in Lasso is

∑p
j=1 |βj|. That difference causes a

nonlinear solution in the yi. If we make s sufficiently small in (2.5) some coefficients
will be exactly zero. Therefore, the Lasso is like a continuous subset selection. If s
is chosen bigger than s0 =

∑p
j=1 |β̂j|, where β̂j is the solution of (OLS), the Lasso

solution are those β̂j . However, if s = s0
2

, then the coefficients are shrunk by about 50%
on average [11]. Lasso moves each coefficient by a constant λ, truncating at zero. It is
good as if a coefficient is zero the problem become easier.
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2.2.1 The lasso in the logit model
The lasso can be extended to the logit model. The linear predictor Xβ is related to the
conditional mean µ of the variable y through the logit function log(µ/(1− µ)). Since
y is a binary variable, it is binomial-distributed and µ = p(xi). Therefore, the logit
model for y is the same as it is defined in (1.8)

The lasso estimate for the logistic model is obtained by solving this optimization prob-
lem:

β̂ = arg min
β

{
n∑
i=1

g(−yixTi β)

}
, subject to

p∑
j=1

|βj| ≤ s, (2.7)

where s≥ 0 is the tuning parameter, and g(u) = log(1 + exp(u)) is the log-loss function.
An equivalent representation of the lasso estimate β̂ in the logit model is:

arg min
β

{
n∑
i=1

g(−yixTi β) + λ

p∑
j=1

|βj|

}
(2.8)

In 2003 an asymptotically convergent algorithm to solve the optimization problem
(2.8) was developed. The details can be found in [5]

Another way to obtain the lasso estimate in the logit model is by maximizing the prob-
abilistic function of the logit model (1.9) with lasso constraint.

Let l(β) = logL(β). The Lasso estimate, β, is obtained by maximizing the penalized
log-probabistic function:

β̂ = arg max
β

{
n∑
i=1

l(β)

}
, subject to

p∑
j=1

|βj| ≤ s, (2.9)

It can be solved by a nonlinear programming procedure. An equivalent representation
of the lasso estimate β̂ in the logit model is:

arg max
β

{
n∑
i=1

l(β)− λ
p∑
j=1

|βj|

}
(2.10)
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2.3 The Group Lasso
Group Lasso is motivated by the fact that predictors can occur in some groups, so it
would be better to obtain a solution which uses only a few of the groups. Assume that
there are K groups and the coefficients vector is structured as:

βG = (βT1 , . . . , β
T
K)T

A sparse set of groups is produced, and all entries of βk, k = 1, . . . , K are nonzero or
all of them are zero. The group Lasso problem is formulated as:

min
β

∥∥∥∥∥y −
K∑
k=1

X(k)β(k)

∥∥∥∥∥
2

2

+ λ
K∑
k=1

√
pk‖β(k)‖2 (2.11)

where X(l) is the submatrix of X with the columns corresponding to the variables in
group l, β(l) the coefficient of group k and pk is the length of β(k). In this criterion, the
objetive function is nonsmooth for β(k) = 0 in ‖β(k)‖2. The sparsity is determined by
λ. If pk = 1 for each group, this criterion gives the lasso solution.

The computation of the solution involves calculating the necessary and sufficient KKT
conditions for β̂ to be a solution of (2.11). The solution of the KKT condition is:

β̂k =

(
λ
√
pk

‖β̂k‖
+ (X(k))TX(k)

)−1
(X(k))T r̂k (2.12)

where r̂k is defined as r̂k = y -
∑

l 6=kX
(k)β̂k. To obtain a full solution, it was proposed

to use a blockwise coordinate descent algorithm which applies the estimate (2.12) to
k = 1 , . . . , K



Chapter 3

Naive elastic net

3.1 Definition

Let y = (y1, . . . , yn)T be the response and X = [x1| . . . |xp] a matrix, in which xj =
(x1j, . . . , xnj)

T , j = 1, . . . , p are the predictors. One can standardize y and X, so it is
assumed that the response is centered and the predictors are standardized,

n∑
i=1

yi = 0,
n∑
i=1

xij = 0, and
n∑
i=1

x2ij = 1, for j = 1, 2, . . . , p. (3.1)

For any fixed λ1 ≥ 0 and λ2 ≥ 0, the naive elastic net criterion is defined as:

L(λ1, λ2, β) = ‖y −Xβ‖2 + λ2‖β‖22 + λ1‖β‖1 (3.2)

where

‖β‖22 =

p∑
j=1

β2
j and ‖β‖1 =

p∑
j=1

|βj|

The naive elastic net estimator β̂ is the minimizer of (3.2).

Let α = λ2
λ1+λ2

. Solving β̂ in(3.2) is the same as optimizing:

β̂ = arg min
β
‖y −Xβ‖2, subject to α‖β‖22 + (1− α)‖β‖1 ≤ s for some s. (3.3)

The function α‖β‖22 + (1 − α)‖β‖1 is called elastic net penalty, which is a convex
combination of ridge and Lasso penalty. When α = 1 naive elastic net becomes ridge
regression, and when α = 0 naive elastic net becomes the Lasso. For α ∈ [0,1), the
elastic net penalty function does not have first derivate at 0 and it is strictly convex for
α ≥ 0

17
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3.2 Solution
This section shows a method to solve the naive elastic net problem. It becomes the so-
lution equivalent to a lasso type, so the naive elastic net solution has also computational
advantages as lasso.

Lemma 3.2.1. Let (y,X) and (λ1, λ2) be given data, define an artificial data (y∗,X∗)
by

X∗(n+p)×p =
1

1 + λ2

(
X√
λ2I

)
, y∗(n+p) =

(
y

0

)
Let γ = λ1√

1+λ2
and β∗ =

√
1 + λ2β, then the naive elastic net can be written as

L(γ, β) = L(γ, β∗) = ‖y∗ −X∗β∗‖2 + γ‖β∗‖1 (3.4)

Let
β̂∗ = arg min

β∗
L(γ, β∗)

then
β̂ =

1√
1 + λ2

β̂∗

Proof

In this proof one starts in equation (3.4), and one has to finish in equation (3.2).

‖y∗−X∗β∗‖2+γ‖β∗‖1 =

∥∥∥∥(y0
)
− (1 + λ2)

− 1
2

(
X√
λ2I

)√
(1 + λ2)β

∥∥∥∥2+ λ1√
1 + λ2

∥∥∥√(1 + λ2)β
∥∥∥
1

Simplifying:

‖y∗ −X∗β∗‖2 + γ‖β∗‖1 =

∥∥∥∥(y0
)
−
(

X√
λ2I

)
β

∥∥∥∥2 + λ1‖β‖1

Working on the first addend:∥∥∥∥(y0
)
−
(

X√
λ2I

)
β

∥∥∥∥2 =

[(
y

0

)
−
(

X√
λ2I

)
β

]t [(
y

0

)
−
(

X√
λ2I

)
β

]
=

(y −Xβ)t(y −Xβ) + (0−
√
λ2Iβ)t(0−

√
λ2Iβ) =

(y −Xβ)t(y −Xβ) + (0−
√
λ2β

tI)(0−
√
λ2Iβ) =

‖y −Xβ‖2 + λ2β
tβ = ‖y −Xβ‖2 + λ2‖β‖2

Finally replacing , (3.2) is obtained �
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Lemma 3.2.1 states that naive elastic net problem can be transformed to an equivalent
lasso problem. The sample size in the expanded problem is n+p and X∗ has rank p, this
means that naive elastic net can select all p predictors in all situations. This Lemma
also shows that naive elastic net can do an automatic variable selection similar to lasso.
In the next section it is shown that the naive elastic net has the "grouping" effect, which
means that it select correlated variables, this property is not shared by lasso.
In the case of an ortogonal design, the naive elastic net solution is:

β̂i(naive elastic net) =
(|β̂i(ols)| − λ1

2
)+

1 + λ2
sgn(β̂i(ols)) (3.5)

where β̂i(ols) = XTy and ()+ denotes the positive part. The solution of ridge regres-
sion is given by β̂(ridge) = β̂(ols)

(1+λ2)
, and the lasso is β̂i(lasso) = (|β̂i(ols)|−λ1

2
)+sgn(β̂i(ols)).

3.3 The grouping effect
In the "large p, small n" problem, the grouped variables situation is an important
corcern, which has appeared a number of times in the literature. In this section we
consider the generic penalization method.

β̂ = arg min
β
‖y −Xβ‖2 + λJ(β) (3.6)

where J(·) is a functional and λ ≥ 0

A regression method presents the grouping effect if the regression coefficients of a
group of highly correlated variables have a tendency to be equal. In particular, if some
variables are exactly equal, the regression method would assign identical coefficients.

Lemma 3.3.1. Assume xi = xj , i, j ∈ {1, . . . , p} and let λ > 0

1. If J(·) is strictly convex, then β̂i = β̂j

2. If J(β) = ‖β‖1, then β̂iβ̂j ≥ 0 and β̂∗ is another minimizer of (3.6), where

β̂∗k =


β̂k if k 6= i and k 6= j

(β̂i + β̂j)· (s) if k = i

(β̂i + β̂j)· (1 - s) if k = j

for any s ∈ [0,1]
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The proof of this Lemma is found in [2]. It shows a clear distinction between strictly
convex and lasso penalties, which are convex but not strictly convex. The strictly
convex penalty certifies the grouping effect when some variables are exactly equal.
However the lasso in general does not have a unique solution. The naive elastic net
penalty with λ2 > 0 is strictly convex, so it has the assertion (1) property.

Theorem 3.3.1. Given data (y,X) and parameters (λ1, λ2), suppose the response y
is centered and the predictors X are standardized. Let β̂(λ1, λ2) be the naive elastic
net estimate. Suppose β̂i(λ1, λ2)β̂j(λ1, λ2) > 0. Let

Dλ1,λ2(i, j) =
1

‖y‖
‖β̂i(λ1, λ2)− β̂j(λ1, λ2)‖,

then Dλ1,λ2(i, j) ≤ 1
λ2

√
2(1− ρ), where ρ = xTi xj , the sample correlation.

Proof

As β̂i(λ1, λ2)β̂j(λ1, λ2) > 0, then both β̂i(λ1, λ2) and β̂j(λ1, λ2) are non-zero. More-
over, sign(β̂i(λ1, λ2)) = sign(β̂j(λ1, λ2) ). Since β̂(λ1, λ2) is the minimizer of (3.2),

∂L(λ1, λ2, β)

∂βk
|β=β̂(λ1,λ2) = 0 if β̂k(λ1, λ2) 6= 0 (3.7)

Consequently,

− 2xTi (y −Xβ̂(λ1, λ2)) + λ1sign(β̂i(λ1, λ2)) + 2λ2β̂i(λ1, λ2) = 0 (3.8)

− 2xTj (y −Xβ̂(λ1, λ2)) + λ1sign(β̂j(λ1, λ2)) + 2λ2β̂j(λ1, λ2) = 0 (3.9)

Substracting (3.9) from (3.8) gives:

(xTj − xTi )(y −Xβ̂(λ1, λ2)) + λ2(β̂i(λ1, λ2)− β̂j(λ1, λ2)) = 0

Because sign(β̂i(λ1, λ2)) = sign(β̂j(λ1, λ2)). It is equivalent to:

β̂i(λ1, λ2)− β̂j(λ1, λ2) =
1

λ2
(xTi − xTj )r̂(λ1, λ2) (3.10)

where r̂(λ1, λ2) = y − Xβ̂(λ1, λ2). As X is standardized, ‖xTi − xTj ‖2 = 2(1 − ρ),
ρ = xTi xj. Since β̂ is the minimizer of (3.2):

L(λ1, λ2, β̂(λ1, λ2)) ≤ L(λ1, λ2, β = 0),

i.e, ‖r̂(λ1, λ2)‖2 + λ2‖β̂(λ1, λ2)‖2 + λ1‖β̂(λ1, λ2)‖1 ≤ ‖y‖2.
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Then ‖r̂(λ1, λ2)‖ ≤ ‖y‖. Finally (3.10) implies:

Dλ1,λ2(i, j) ≤
1

λ2

‖r̂(λ1, λ2)‖
‖y‖

‖xTj − xTi ‖ ≤
1

λ2

√
2(1− ρ)

�

Dλ1,λ2(i, j) shows the difference between the coefficients paths of predictors i and j.
If xi and xj are highly correlated, this theorem says that the difference between the
coefficients paths of predictors i and j is about 0. This theorem also provides an upper
bound which describes quantitatively the grouping effect of the naive elastic net.

The lasso does not have the grouping effect quality. The scenario where there is a group
of variables among which the pairwise correlations are very high occurs frequently in
practice, and lasso tends to select only one variable from the group and does not care
which one select . In [7] the reader can find a theoretical explanation of this effect.
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Chapter 4

Elastic Net

4.1 Deficiency of the naive elastic net
The naive elastic net overcomes some limitations of the lasso. However, empirical ev-
idence shows that the naive elastic net does not perform correctly except if it is very
close to either lasso or ridge. It is called naive for that reason.

The naive elastic net estimator is a two-phase process: Firstly, one finds the ridge re-
gression coefficients for each fixed λ2, subsequently one does the lasso shrinkage on
the lasso coefficient solution paths. It appears to incur a double quantity of shrinkage.
Double shrinkage does not help to reduce the variances much and adds non neces-
sary extra bias, compared with ridge or lasso shrinkage. In this section we show an
improvement of the prediction performance of the naive elastic net by correcting this
double shrinkage.

4.2 The elastic net estimate
Given data (y,X), (λ1,λ2) as penalty parameters, and extended data (y∗,X∗), the naive
elastic net solves a lasso type problem 3.2.1.

β̂∗ = arg min
β∗

{
‖y −X∗β∗‖2 +

λ1√
1 + λ2

‖β∗‖1
}

(4.1)

The elastic net (rectified) estimates β̂ are defined by:

β̂(elastic net) =
√

1 + λ2β̂
∗ (4.2)

Recalling β̂(naive elastic net) = λ1√
1+λ2

β̂∗, so :

β̂(elastic net) = (1 + λ2)β̂(naive elastic net) (4.3)

23
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Therefore, the elastic net is a rescaled naive elastic net coefficient. A scaling trans-
formation is the simplest method to undo de shrinkage, moreover, it maintains the
variable-selection property of the naive elastic net. Hence, the elastic net has all the
good properties of the naive elastic net described in the previous chapter. Experimen-
tally, it is seen that elastic net performs very well when is compared with ridge and
lasso.

In this section we present a theoretical justification for choosing 1 + λ2 as the scaling
factor, considering the solution of the naive elastic net when the predictors are orthog-
onal.

A motivation for the (1 + λ2) rescaling comes from a decomposition of the ridge oper-
ator. As X is standardized.

XTX =


1 ρ12 · ρ12

1 · ·
1 ρp−1,p

1


p×p

,

where ρi,j is the sample correlation between i and j predictors. Ridge estimates are
given in (2.4), now it is considered λ = λ2.

R can be rewritten as:

R =
1

1 + λ2
R∗ =

1

1 + λ2


1 ρ12

1+λ2
· ρ12

1+λ2

1 · ·
1 ρp−1,p

1+λ2

1


−1

XT (4.4)

where R∗ is like the usual OLS operator
(
(XTX)−1XT

)
except the correlations are

shrunk by the factor 1
1+λ2

, it will be called semi-correlation. Therefore, from (4.4) one
can interpret that the ridge operator as semi-correlation followed by a scaling shrink-
age.
When ridge’s grouping effect is combined with the lasso, the 1

1+λ2
shrinkage step is not

needed and removed by scaling. Although, ridge requires 1
1+λ2

shrinkage to control the
estimation variance, in the new method, it is enough to rely on the lasso shrinkage to
control the variance and obtain sparsity.

Let β̂ = β̂(elastic net). The next theorem gives another view of the elastic net,

Theorem 4.2.1. Given data (y,X) and (λ1, λ2), then the elastic net estimates β̂ are
given by:

β̂ = arg min
β

{
βT
(
XTX + λ2I

1 + λ2

)
β − 2yTXβ + λ1‖β‖1

}
(4.5)
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Proof

Let β̂ the elastic net estimator. Using the definitions in (3.2.1) and (4.1),

β̂ = arg min
β

{∥∥∥∥y∗ −X∗
β√

1 + λ2

∥∥∥∥2 +
λ1√

1 + λ2

∥∥∥∥ β√
1 + λ2

∥∥∥∥
1

}
=

arg min
β

{
βt
(
X∗tX∗

1 + λ2

)
β − 2

y∗tX∗√
1 + λ2

β + y∗ty∗ +
λ1‖β‖1
1 + λ2

}
(4.6)

Replacing the indentities:

X∗tX∗ =

(
XtX + λ2I

1 + λ2

)
y∗tX∗ =

(
ytX

1 + λ2

)
y∗ty∗ = yty

On the equation (4.6),

β̂ = arg min
β

{
1

1 + λ2
{βt
(
XtX + λ2I

1 + λ2

)
β − 2ytXβ + λ1‖β‖1}+ yty

}
=

= arg min
β

{
βt
(
XtX + λ2I

1 + λ2

)
β − 2ytXβ + λ1‖β‖1

}
�

When λ2 = 0, Elastic net is equal to Lasso, so:

β̂(lasso) = arg min
β

{
βT (XTX)β − 2yTXβ + λ1‖β‖1

}
(4.7)

Therefore, this theorem interprets the elastic net as a stabilized version of the lasso. Ap-
preciate that Σ̂ = XTX is a sample version of the correlation matrix (Σ) and XTX+λ2I

1+λ2

= (1-γ)Σ̂ + γ I with γ = λ2
1+λ2

shrinks Σ̂ towards identity matrix. (4.5) and (4.7) say
that rescaling after the elastic net penalization is equivalent to change Σ̂ with its shrunk
version in the lasso.
The lasso is a case of elastic net when λ2 = 0. The other interesting case appears when
λ2→∞:

β̂(∞) = arg min
β

βTβ − 2yTXβ + λ1‖β‖1

β̂(∞) has a closed form applying the KKT conditions:

β̂(∞)i =

(
|yTxi| −

λ1
2

)
+

sgn(yTxi), i = 1, 2, . . . , p (4.8)
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4.3 Elastic net in logit model
The Elastic net penalty can be applied to the logit model, similar to 2.2.1, when the
lasso logit model is developed. Recalling the log-probabilistic function of the logit
model (1.8)

logL(β0, β) =
n∑
i=1

[yi log{p(Xi)}+ (1− yi) log{1− p(Xi)}]

The penalized form of the logit model using Elastic net penalization is:

arg max
β

{
n∑
i=1

l(β)− (α‖β‖2 + (1− α)‖β‖1)

}
(4.9)

where l(β) = log L(β). The solution of (4.9) can be found by means of a Newton
algorithm which can be found on [5]

4.4 Comparison between Lasso and Elastic net
It has been presented a new shrinkage method, but why is this method "better" than
Lasso? Everybody knows that Lasso has good properties, but, for example, it does
not perform satisfactorily when the predictors are highly correlated or the number of
predictors (p) is much greater than the number of observations (n). In this section we
present a different theoretical situation where Elastic net overcomes Lasso.

4.4.1 Introduction and Notation
Let p the number of predictors, and q the number of predictors with non-zero coeffi-
cients in the true linear model, p and q being fixed. Assume the data follow a regression
model.

y = Xβ + ε (4.10)

where ε = (ε1, . . . , εn)T is a vector of independent and identically distributed additive
Gaussian noise with µ = 0 and variance σ2. Assume the first q elements of β are non-
zeroes. Let β(1) = (β1, · · · , βq) and β(2) = (βq+1, · · · , βp), then β(1) 6= 0 element-wise
and β(2) = 0.
Let X1 be the first q columns of X, X2 the last p − q columns and C(n) = 1

n
XTX, in

this section will be denoted C for simplicity. C can be expressed in block wise form:

C =

(
C11 C12

C21 C22

)
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where Cij = 1
n
XT

(i)X(j). It is shown when p and q are fixed, there is a condition called
Irrepresentable Condition (IC) on the covariance matrix, which is necessary and suffi-
cient for the Lasso’s consistency. IC is presented on [8]

Irrepresentable condition. There exists a positive constant δ > 0 (independent of n),
with:

‖C21C
−1
11 (sign(β(1))‖∞ ≤ 1− δ (4.11)

In [9] the reader can find a necessary and sufficient condition for the Elastic Net when
p and q are fixed. It is called Elastic Irrepresentable Condtition (EIC).

Elastic Irrepresentable condition. There exists a positive constant δ > 0 (independent
of n), with: ∥∥∥∥∥C21

(
C11 +

λ2
n
I

)−1(
sign(β(1)) +

2λ2
λ1

β(1)

)∥∥∥∥∥
∞

≤ 1− δ (4.12)

Observe that EIC is IC when λ2 = 0 and C11 is invertible. When C11 is invertible, λ2
is fixed, λ1 and n goes to∞, the EIC reverts to the IC. If the Irrepresentable Condition
holds, then there exist λ1 > 0 and λ2 > 0 which make Elastic Irrepresentable Condition
hold. The results for the general scaling conditions of p, q and n are in [3].

4.4.2 Comparison
In this section Elastic net model selection is compared with that of the Lasso. Obvi-
ously, when Lasso selects the true model, Elastic net can also select the true model.

Proposition 4.4.1. IC implies that for any λ1 > 0, there exists λ2, such that EIC holds,
but the EIC does not imply IC.

This result is trivial as λ2 = 0 or small λ2 > 0 leads EIC revert to IC: This proposition
says that when IC holds, the EIC holds, so Elastic net can select the true model. A
good question is what prior information is needed to suggest that the Elastic net selects
the true model while Lasso does not? It is a hard question, but there are some situations
when EIC holds and IC does not.

Consider the case when q (the number of predictors with non-zero coefficients) is equal
to p− 1, so, there exists only one irrelevant predictor. Now a necessary and sufficient
condition such that EIC holds is given.

First some regularity conditions are given on the model, they are easily satisfied.
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0 < Lmin ≤ Λ(C11) ≤ Lmax, (4.13)

‖β‖2 ≥ c1, for a positive constant c1 > 0, (4.14)

‖[C21]i‖2 ≥ c2 for a positive constant c2 > 0 for i = 1, . . . , p− q, (4.15)

where Lmin and Lmax are positive constants, Λ(·) means the eigenvalues of a matrix,
and [·]i denotes the ith row of a matrix. Consider β and C fixed.

Theorem 4.4.1. Let (4.13), (4.14) and (4.15), and suppose that p - q = 1. When IC
does not hold, for the sequence of λ1 with λ1

√
q

n
→ 0, there exists λ2 that EIC holds

when n is very big if and only if one of the two following conditions is satisfied:

C21C
−1
11 sign(β(1)) ≥ 1 and C21C

−1
11 β(1) < 0 (4.16)

C21C
−1
11 sign(β(1)) ≤ −1 and C21C

−1
11 β(1) > 0 (4.17)

A proof of this theorem can be found in [3]

When p − q ≥ 2 it is difficult to give a necessary and sufficient condition that EIC
holds but (4.16) and (4.17) are necessary conditions for EIC hold. It is stated in this
corollary:

Corollary 4.4.1. Let (4.13), (4.14) and (4.15), and suppose that p - q > 1. When IC
does not hold, for the sequence of λ1 with λ1

√
q

n
→ 0, there exists λ2 that EIC holds

when n is very big only if, for all i = 1,. . ., p - q

[C21]iC
−1
11 β(1) < 0 when [C21]iC

−1
11 sign(β(1)) ≥ 1 (4.18)

[C21]iC
−1
11 β(1) > 0 when [C21]iC

−1
11 sign(β(1)) ≤ −1 (4.19)
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Elastic net in R studio

In this chapter we will describe the version 1.3 of the package elasticnet, which was
created by Zou and Hastie in 2020, and the most important commands of the package
glmnet, which was created by Friedman, Zou, Hastie . . . in 2021. The elasticnet
package uses some functions from the package lars, therefore, before using it, one
should install lars. Those packages provide functions for fitting the solution path of
the Elastic net.

Before showing the package, a brief explanation about the Least Angle regression
(LAR) algorithm is shown as it is needed in elasticnet. Least angle regression uses
a similar strategy to that employed by forward stepwise regression, but it incorporates
the predictors gradually, so each predictor takes part in the model as much as it "de-
serves". In the first step, it identifies the predictor most correlated with the response.
Instead of adjusting this predictor completely, LAR moves the coefficient of this pre-
dictor continuously towards its least squares value. When another variable "catches
up" in terms of correlation with the residual, the process stops. The second variable
then joins the active set, and their coefficients move together so that their correlations
move simultaneously, decreasing in value. This process continues until all variables
are in the model, and ends with the full least squares fit.

29
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5.1 Elasticnet package

cv.enet
This function calculates the K-fold cross validated mean squared prediction error
for elastic net.

Usage

cv.enet(x, y,K = 10, lambda, s,mode, trace = FALSE, plot.it = TRUE, se =
TRUE, . . .)

Arguments

x Input to lars
y Input to lars
K Number of folds (10 predefined)
lambda Elastic net penalty parameter

s
Abscissa value at which the cross validation curve should be com-
puted. Its values depends on the mode = argument

mode

mode ∈ ("step", "fraction", "norm", "penalty"). If mode = "step",
the s = argument indexes the LARS step number. When mode
="fraction", then s is a number between 0 and 1, it refers to
the ratio of the L1 norm of the coefficients vector. If mode =
"norm", s refers to the L1 norm of the coefficient vector. If mode
= "penalty", s should be the 1-norm penalty parameter

trace Show computations? ( FALSE default)
plot.it Plot it? ( TRUE default)
· · · Additional arguments to enet

Values

Invisibly returns a list with components (one can plot this with plotCVLars), this list is:

fraction The values of s
cv The CV curve at each value of s
cv.error The standard error of CV curve
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enet
Fits Elastic Net regression models using the LARS algorithm which computes the
complete elastic net solution for all values of the shrinkage parameter. It has the same
computational cost as the least square fit.

Usage

enet(x, y, lambda,max.steps, normalize = TRUE, intercept = TRUE, trace =
FALSE, eps = .Machine$double.eps)

Arguments

x Matrix of the predictors.
y response.
lambda Elastic net penalty parameter. For lambda = 0 do the Lasso fit.

max.steps
The maximum steps the function can take. 50* min(p,n − 1),
where p is the number of variables, and n is the number of sam-
ples. It can be used to perform early sttoping

normalize Standardize the predictors?( TRUE default)
intercept Center the predictors? ( TRUE default)
trace Show computations? ( FALSE default)
eps An effective zero

Values
enet returns an object which can be printed, plotted and predicted

plot.enet
Produces a plot of an enet fit.

Usage

plot(x, xvar = c(”fraction”, ”penalty”, ”L1norm”, ”step”), use.color =
FALSE, . . .)
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Arguments

x An enet object.

xvar

The class of x against which to plot. If xvar= " fraction" (default)
it plots against the fraction of the L1 norm. of the coefficient
vector. If xvar = "penalty" it plots against the 1-norm penalty pa-
rameter. If xvar = "L1norm" ( also can be written as xvar = "L1")
it plots against the L1 norm of the coefficient vector. Finally, if
xvar = "step" it plots against the LARS step number.

use.color Use color on the plot? ( FALSE default)
. . . Arguments for a generic plot

Value

NULL

predict.enet
Makes predictions from a fitted elastic net model, with this function one is allowed to
extract a prediction at a particular point on the path using the LARS algorithm, as long
as, enet() produces the entire path.

Usage

predict(object, newx, s, type = c(”fit”, ”coefficients”),mode =
c(”step”, ”fraction”, ”norm”, ”penalty”), naive = FALSE, ...)



Chapter 5. Elastic net in R studio 33

Arguments

object A fitted enet object.

newx
It depends on the value of type. When type = "fit", newx should
be the values of x at which the fit is required. Otherwise, when
type="coefficient", newx can be ommited.

s
A value, or a vector of values which index the path. It depends on
mode argument (mode = "step" default).

type
If type = "fit", it returns the fitted values. If type = "coefficients",
it returns the coefficients

mode

mode ∈ ("step", "fraction", "norm", "penalty") If mode = "step",
the s = argument indexes the LARS step number, the coefficients
will be returned corresponding to the values corresponding to step
s . When mode ="fraction", then s is a number between 0 and 1, it
refers to the ratio of the L1 norm of the coefficients vector, relative
to the norm at the full solution. If mode = "norm", s refers to the
L1 norm of the coefficient vector. If mode = "penalty", s should
be the 1-norm penalty parameter. .

naive Naive elastic net fit? ( FALSE default).
. . . Arguments for a generic plot.

Value

A vector/matrix of coefficients, or a vector/matrix of fitted values

print.enet
Prints method for enet objects.

Usage

print(x, ...)

Arguments

x An enet object.
. . . Arguments for a generic plot.

Value

NULL
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5.2 glmnet package
The glmnet package is more general than elasticnet, e.g. logistic regression can be
performed. However, it is more difficult to use, so we will overview only the most
important commands of this package.

glmenet
fits a generalized linear model with elastic net regularization

Usage

glmnet(x, y, family = c(”gaussian”, ”binomial”), alpha = 1, . . .)

Arguments

x input matrix

y
response vector, quantitative if family = "gaussian", a factor with
two levels if family = "binomial" (logit)

alpha
elastic net penalty. Alpha = 1 gives lasso penalty and alpha = 0
ridges penalty.

. . . other arguments

Values

An object with S3 class "glmenet", "enet" or "lognet" depending on family value. The
object can be printed, predicted or plotted with the commands print predict and plot.

beta The coefficients matrix
. . . other values
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Numerical examples

In this chapter, some examples will be displayed, a simulation case and two database
experiments.

6.1 Prostate Database

6.1.1 Description
Name: Prostate, [1] .
In this dataframe there are 97 observations of prostate-specific antigen(psa) and some
clinical measures in men, in order to fit a linear model to the psa.

Predictors

• lcavol: logarithm of cancer volume

• lweight: logarithm of prostate weight

• age: age of the man

• lbph: logarithm of the amount of capsular hyperplasia

• svi: seminal vesicle invasion

• lcp: logarithm of capsular penetration

• gleason: Gleason score

• pgg45: percent of Gleason scores 4 or 5

Response

• lpsa: logarithm of psa

35
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6.1.2 Ordinary Least Square regression
In this section, an OLS regression will be done to the database described in the previ-
ous section. After loading the data with the commands:

prostate= read.csv(”prostate.txt”, sep = ””, dec = ”.”, header = TRUE)
prostate=prostate[,2:10]

Now the OLS regression is done with this command:
ols <- lm (lpsa ., data = prostate)
After running summary(ols), the coefficients and some information are shown on R
console as follows.

Figure 6.1: Summary of the OLS model

Observations:
In Figure 6.1, the Pr(> |t|) column shows the p-values for the next hypothesis test:{

H0 : βi = 0
H1 : βi 6= 0

(6.1)

Therefore, one can conclude that the variables for which the null hypothesis is rejected
are lcavol, lweight, lbph, svi and age. Conversely, the variables for which the null
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hypothesis is plausible are lcp, gleason and pgg45, so those variables might not be
significant on the OLS regression model.

Moreover, one can appreciate that theR2 coefficient is equal to 0.65, so the model may
approximate slightly good the dataset.

Now a set of figures are going to be displayed, they summarize the OLS model running
the command plot(ols).

The Figure 6.2 shows fitted values versus residuals; one can observe that the red line
is almost y = 0, that means that the linear fit is good. Moreover, one can see three
distiguished observations: 47, 95 and 39.

nn Figure 6.3 it has been done a normality analysis via a Q-Q plot in order to see if
the data might follow a normal distribution, as the data almost fits to the discontinuous
line, except at the start and at the end because of the outliers, one could conclude that
the data follows a normal distribution.

The Figure 6.4 shows a homocedasticity test, as the red line in the figure fits to an
horizontal line, one could accept the homocedasticity.

The Figure 6.5 is useful to detect the outliers (aberrant observations), 69, 95 and 47
they will not be equal as the three distiguished observations of the Figure 6.2. Ob-
serve that 69 and 47 are distiguished and outliers, so if one repeats the OLS regression
removing the outliers it will fit better.

Figure 6.2: How good is the linear model?
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Figure 6.3: Normality test

Figure 6.4: Homoscedasticity test
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Figure 6.5: Outliers?

6.1.3 Lasso regression model

In this section the Lasso method is going to be used. At first one has to load the lars
package with the command library(lars). The data must be in the class X as matrix
and y as numeric in order to use the lars functions, so using this command the data
has the correct class. X = as.matrix(prostate[,1:8]) and y =prostate[,9].

Using the following command the Lasso regression is done.

lasso < - lars(X,y,type=c("lasso"))

With the following command the Lasso coefficient path is obtained.

plot(lasso)

In the Figure 6.7 there is an image in which the lasso regression method is done. From
the right to the left, one can see that the predictor’s coefficients are shrinking to zero in
every algorithm step.

In the Figure 6.6 we display the coefficients of the method in every step of the al-
gorithm. Observe that in every step one coefficient becomes a non-zero coefficient.
The first variable for which its coefficient becomes zero is lcp, so for this algorithm
lcp is the least significant variable. However, on Figure 6.1 one can see that the least
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significant variable is gleason on the OLS model.

In the Figure 6.8 we show the first 15 predictions obtained with the Lasso regression.
In the first column, the Lasso model does not have any variable, on the second column,
the model has one variable, then successively.
On the R-studio object lasso, defined before, one can extract the value of λ = (λ1, . . . , λ8),
where λi is the value of λ on the step i. λintercept → ∞ is the value for which all pre-
dictors are equal to 0 on the model. The following table is a three-column table. The
first column displays the different values of λ. The second column displays, the pro-
portions between λ1 and the others values of λ. Finally on the third column, the mean
squared error (MSE) of the predictions for every value of λ is given.

λi values λi
λ1

proportions MSE
λintercept =∞ - 1.318739
λ1 = 8.3067969 1 0.7875459
λ2 = 4.1805708 0.50327110 0.7241959
λ3 = 3.5705887 0.42983942 0.5179826
λ4 = 1.4068330 0.16935926 0.5078044
λ5 = 1.2293599 0.14799446 0.4774012
λ6 = 0.6286376 0.07567750 0.4600064
λ7 = 0.3630874 0.04370967 0.4541516
λ8 = 0.2164061 0.02605169 0.4439012

Table 6.1: λ, proportions and MSE

Observe that the model with least MSE is the model with all variables. However, there
are slightly difference between the MSE of the model with 5 variables and that of the
model with all variables.

Figure 6.6: Lasso coeffcients
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Figure 6.7: Lasso regression

Figure 6.8: Lasso predictions
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6.1.4 Elastic Net Regression

In this section we show how to run Elastic net regression in R. The package elasticnet
is needed, so one starts loading the library with the command library(elasticnet), as
in lasso regression the data must be on the same class, X = as.matrix(prostate[,1:8])
and y =prostate[,9].

Using the next command the Elastic net regression is done.

elastic < - enet(X,y,lambda = λ)

Depending on the value of λ one has a different elastic net regression, for λ = 0 the
Lasso is obatined. One can see that Figure 6.7 and Figure 6.9 are the same plot.
This is obvious as elastic net is lasso when λ = 0. Other interesting case is when λ
= 1, where the ridge regression is obtained. In Figure 6.10 the reader can find the
coefficient paths of the elastic net when λ = 1.

The following table gives the MSE table, where the rows are the different values of λ
and the columns are the number of predictors are used in the model.

0 1 2 3 4 5 6 7 8
0 1.319 0.788 0.724 0.518 0.508 0.477 0.460 0.454 0.443

0.1 1.319 0.823 0.728 0.531 0.498 0.473 0.470 0.453 0.451
0.2 1.319 0.850 0.730 0.551 0.541 0.493 0.481 0.471 0.464
0.3 1.319 0.871 0.732 0.614 0.542 0.492 0.488 0.479 0.480
0.4 1.319 0.888 0.733 0.669 0.545 0.494 0.491 0.492 0.500
0.5 1.319 0.901 0.734 0.715 0.549 0.497 0.492 0.508 0.522
0.6 1.319 0.912 0.748 0.734 0.552 0.500 0.494 0.529 0.546
0.7 1.319 0.922 0.770 0.733 0.556 0.503 0.497 0.552 0.571
0.8 1.319 0.930 0.788 0.732 0.560 0.506 0.501 0.578 0.598
0.9 1.319 0.937 0.803 0.730 0.563 0.508 0.505 0.606 0.626
1 1.319 0.943 0.816 0.729 0.567 0.510 0.510 0.637 0.655

Table 6.2: MSE for different values of λ on elastic net regression

In this table, one can appreciate that the minimum value of the MSE is for λ = 0 and
8 predictors, this means that the best model is the LASSO because λ = 0 , but this
would not be true if the data were divided into a training set (67 observations) and a
test set (30 observations). It is obtained that the lasso performs much better than OLS,
moreover elastic net performs better than lasso, see [2].
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Figure 6.9: Elastic net regression. λ = 0

6.2 Hitters database

6.2.1 Description

Name: Hitters, this database is included in the package ISLR.
This data frame has 322 observations of some stats from the players of the Major
League Baseball. There are 19 predictors and the response is the salary of the player
(to see more information of the predictors see [10]). This database has some obser-
vations with a Na value, so before doing the regression one has to eliminate such
observations. To load the database it is used the command:

data(Hitters, package = "ISLR")
Hitters = na.omit(Hitters)

6.2.2 Ordinary Least Square regression

In this section, an OLS regression will be done to the database described in the previous
section. It is done with the following command:
ols <- lm (Salary ., data = Hitters)
After running summary(ols), the coefficients and some information are shown in the
R console, see Figure 6.11.
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Figure 6.10: Elastic net regression. λ = 1

Figure 6.11: Summary of the OLS model
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Observations:
In Figure 6.11, the Pr(> |t|) column shows the p-values for the following hypothesis
test: {

H0 : βi = 0
H1 : βi 6= 0

(6.2)

Therefore, one can conclude that the variables for which the null hypothesis is rejected
are AtBat, Hits, Walks, Cwalks, PutOuts and DivisionW. Conversely, the null hy-
pothesis is plausible for the other variables, so those variables might not be significant
on the OLS regression model.

Moreover, one can appreciate that theR2 coefficient is equal to 0.51, so the model may
approximate mildly good the dataset.

Now a set of figures are going to be displayed, they summarize the OLS model running
the command plot(ols).

The Figure 6.12 shows fitted values versus residuals; one can observe that the red line
is almost y = 0, that means that the linear fit is good. Moreover, one can see three
distiguished observations: Mike Schimidt, Ozzie Smith and Reggie Jackson.

In Figure 6.13 it has been done a normality analysis via Q-Q plots in order to see if
the data might follow a normal distribution, as the data almost fits to the discontinuous
line, except at the start and at the end because of the outliers, one could conclude that
the data follows a normal distribution.

The Figure 6.14 shows a homocedasticity test. Observe that the red line in the figure
increases if the x increases, so it does not fit to an horizontal line and the homocedas-
ticity is rejected.

TheFigure 6.15 is useful to detect the outliers (aberrant observations), Mike Schimidt,
Reggie Jackson and Pete Rose they will not be equal as the three distiguished obser-
vations of the Figure 6.12. Observe that Mike Schimidt and Reggie Jackson are
distiguished and outliers, so if one repeat the OLS regression eliminating the outliers
it will fit better.
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Figure 6.12: How good is the linear model?

Figure 6.13: Normality test
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Figure 6.14: Homoscedasticity test

Figure 6.15: Outliers?
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6.2.3 Lasso regression model

In this section the lasso is used. At first one has to load the lars package with the
command library(lars). The data must be in the class X as matrix and y as numeric
in order to use the lars functions, so using this command the data has the correct class.
X = as.matrix(Hitters[,-19]) and y =HItters[,19].

Using the following command the Lasso regression is done.

lasso < - lars(X,y,type=c("lasso"))

With the following command the Lasso coefficient path is obtained.

plot(lasso)

Figure 6.16 there is an image in which one can see the coefficient paths. From the
right to the left, one can see that the predictor’s coefficients are shrinking into zero in
every algorithm step.

Figure 6.17 displays the coefficients of the method in the first 9 steps of the algo-
rithm. Observe that in every step one coefficient becomes a non-zero coefficient. The
first variable for which its coefficient becomes non-zero is CRBI, so for this algorithm
CRBI is the most significant variable.

Figure 6.18 shows the first 15 predictions obtained with the Lasso regression. In the
first column, the Lasso model does not have any variable, on the second column, the
model has one variable, then successively.

On the R-studio object lasso, defined before, one can extract the value of λ = (λ1, . . . , λ20),
where λi is the value of λ on the step i. λintercept → ∞ is the value for which all pre-
dictors are equal to 0 in the model. The following table is a three-column table for
which it is shown the 10 first rows. The first column displays the different values of
λ. The second column displaying the ratio between λ1 and the remaining λ values.
Finally, the third column displays the mean squared error (MSE) of the predictions for
every value of λ.
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λi values λi
λ1

proportions MSE
λintercept =∞ - 202734.3

λ1 = 4139.979895 1 185851.4
λ2 = 3563.598481 0.8607767601 169696.3
λ3 = 2926.749171 0.7069476773 159221.2
λ4 = 2625.666890 0.6342221355 131235.2
λ5 = 1643.051047 0.3968741610 120530.6
λ6 = 1197.966217 0.2893652258 104888.7
λ7 = 284.87903 0.0688116940 104370.5
λ8 = 221.627467 0.0535334645 104189.9
λ9 = 203.185815 0.0490789377 103683

· · · · · · · · ·

Table 6.3: λ, proportions and MSE

From 6.3 one can deduce that the more variables the model has, the better the fit (in the
training sample). However looking at MSE and values of λ a model with 6 variables
will be a really good model and the difference between the MSE is so small, moreover
the proportion becomes so small from λ7. On Figure 6.17 there is the order for which
the predictors are included in the model. So for λ6 the predictors that are used are:
CRBI, CRuns, Hits, Walks, PutOuts and DivisionW

Figure 6.16: Lasso regression
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Figure 6.17: Lasso coeffcients

Figure 6.18: Lasso predictions

6.2.4 Elastic Net Regression
In this section the Elastic Net regression is going to be done, the package elasticnet is
needed, so one starts loading the library with the command library(elasticnet), as in
lasso regression the data must be on the same class, X = as.matrix(Hitters[,-19]) and
y =Hitters[,19].

Using the next command the Elastic Net regression is done.

elastic < - enet(X,y,lambda = λ)

Depending on the value of λ one has a different elastic net regression, for λ = 0 the
Lasso is obtained. One can observe that Figure 6.16 and Figure 6.19 are the same
plot. This is obvious as elastic net is lasso when λ = 0. Another interesting case is
when λ = 1, where the ridge regression is obtained. Figure 6.20 displays the coeffi-
cient paths of the elastic net when λ = 1.
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The following table gives the MSE values, where the rows are the different values of
the 8 first λ values, and the columns are the number of predictors are used in the model.

0 1 2 3 4 5 6 7 . . .
0 202734 185851 169696 159221 131235 120530 104888 104370 . . .

0.125 202734 196696 168564 160599 149527 148439 135415 129337 . . .
0.25 202734 198748 173150 167465 161466 157560 151800 133154 . . .

0.375 202734 199615 179721 166218 162341 161371 159795 137547 . . .
0.5 202734 200094 183332 166462 164975 160421 159711 139536 . . .

0.625 202734 200397 185611 168382 163689 159528 159387 146523 . . .
0.75 202734 200607 187179 169848 162517 158882 158655 154065 . . .

0.875 202734 200760 188323 171008 161446 160049 158318 157797 . . .
1 202734 200877 189195 171950 162937 160393 157719 156939 . . .

Table 6.4: MSE for different values of λ on elastic net regression

6.3 Simulation study

In this section the data are simulate. We have 8 independent predictors and a response
variable which is generated with the model:

y = xβ + ε, ε ∼ N(0, 10).

Where x ∼ N(0, 1). The simulated data consists of a training set (50 values) obser-
vations and an independent test set (1000 values). β = (3, 1.5, 2, 0, 0, 0, 0, 0), so the
predictors x1,x2,x3 are significant for the model and the other predictors are noise.

6.3.1 Ordinary Least Square regression

On this section, an OLS regression will be done to the simulated database described in
the previous section. The command to do the regression is:
ols <- lm (response ., data = Y)
After running summary(ols), the coefficients and some information are shown on R
console are shown onFigure 6.21
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Figure 6.19: Elastic net regression. λ = 0

Figure 6.21: Summary of the OLS model
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Figure 6.20: Elastic net regression. λ = 1

In Figure 6.21, the Pr(> |t|) column shows the p-values for the next hypothesis
testing: {

H0 : βi = 0
H1 : βi 6= 0

(6.3)

Therefore, one can conclude that the variables for which the null hypothesis is rejected
are x1, x3 and x6. Conversely, the variables for which the null hypothesis is plausi-
ble are the others variables, so those variables might not be significant on the OLS
regression model, but it is wrong because as the model is generated, one knows that
the variable x2 is significant and the variable x6 is not significant. So this model is not
a good model. Moreover, observe that the R2 coefficient is equal to 0.35, so the model
may fit poorly the dataset. Using the test set, a prediction of the response is made in
order to calculate the MSE, and it is obtained a MSE = 119.623.

6.3.2 Lasso regression model
In this section Lasso method is going to be used. At first one has to load the lars pack-
age with the command library(lars). Now, using the following command the Lasso
regression is done. As the data must be in the correct class, X1 is the train predictor
matrix, and y1 is the train response vector



54 6.3. Simulation study

lasso <-lars(X1,y1,type=c("lasso")),

with the following command the Lasso coefficient path is obtained.

plot(lasso)

Figure 6.23 shows the coefficient path of the Lasso model. From the right to the left,
one can see that the variable’s coefficients are turning into zero in every algorithm step.

Figure 6.24 shown the first 15 predictions obtained with Lasso regression. Observe
that it is started on the observation 51, this is because the prediction is done on the test
set. In the first column, the Lasso model does not have any variable, on the second
column, the model has one variable, then successively.

Figure 6.22 displays the coefficients of the method in all step of the algorithm. Ob-
serve that in every step one coefficient becomes a non-zero coefficient. Remark that
for this method the x6, which is a noise variable, is more significant than x2, so it in-
cludes a noise variable in the model, one can discard the variables x4,x5 and x7 which
are noise.

From the R-studio object lasso, one can extract the value of λ = (λ1, . . . , λ7), where λi
is the value of λ on the step i. λintercept → ∞ is the value for which all predictors are
equal to 0 on the model. The following table is a three-column table. The first column
displays the different values of λ. The second column displays the rations between λ1
and the remaining values of λ. Finally the third column gives the mean squared error
(MSE) of the predictions with the different values of λ.

λi values λi
λ1

proportions MSE
λintercept =∞ - 117.2976
λ1 = 23.844675 1 116.7017
λ2 = 22.524614 0.94463915 116.5146
λ3 = 22.417098 0.94013018 107.5621
λ4 = 10.469690 0.43907877 107.6049
λ5 = 9.589658 0.40217188 111.8514
λ6 =3.109187 0.13039337 113.8192
λ7 = 2.077276 0.08711698 119.5968

Table 6.5: λ, proportions and MSE

Remark from 6.5 that the least MSE occurs when the model has 3 variables, this is
when λ = 22.42, looking at Figure 6.22 the model has the predictors x1, x3 and x6. So
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with Lasso regression x2 is not significant. However, the MSE on the Lasso model is
MSE = 107.5621 so this model has done a better prediction that OLS, but the predictor
x2 still not being significant while it is.

Figure 6.22: Lasso coeffcients

Figure 6.23: Lasso regression
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Figure 6.24: Lasso predictions

6.3.3 Elastic Net Regression
In this section the Elastic Net regression is going to be done, the package elasticnet is
needed, so one starts loading the library with the command library(elasticnet).

Using the next command the Lasso regression is done.

elasticsim < - enet(X1,y1,lambda = λ)

Depending on the value of λ one has a different elastic net regression, for λ = 0 the
Lasso is obtained Figure 6.25. Figure 6.26 displays the coefficient paths of the elas-
tic net when λ = 1.

The following table is the MSE table, where the rows are the different values of λ and
the columns are the number of predictors are used in the model.
In this table, one can appreciate that the minimum value of the MSE is for λ = 1 and
4 predictors, this means that the best model is the ridge regression, as λ = 1, now
the elastic net selects 4 variable. After seeing coefficients trace, the predictors which
elastic net selects are x1, x2, x3 and x6, so now, the three variables that generate the
simulation are used are in the model. Moreover, the MSE is better than Lasso and
OLS. MSE = 106.511.
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0 1 2 3 4 5 6 7
0 117.298 116.702 116.515 107.562 107.605 111.851 113.819 119.597

0.125 117.298 116.692 116.525 107.407 107.295 111.621 113.586 117.108
0.25 117.298 116.683 116.534 107.402 107.080 111.526 113.501 115.511

0.375 117.298 116.677 116.542 107.451 106.922 111.503 113.498 114.422
0.5 117.298 116.671 116.548 107.518 106.801 111.522 113.541 113.645

0.625 117.298 116.666 116.553 107.590 106.705 111.565 112.310 113.070
0.75 117.298 116.661 116.558 107.661 106.628 111.248 111.601 112.634

0.875 117.298 116.657 116.562 107.727 106.564 110.447 111.625 112.294
1 117.298 116.654 116.565 107.788 106.511 109.832 111.673 112.025

Table 6.6: MSE for different values of λ on elastic net regression

Figure 6.25: Elastic net regression. λ = 0
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Figure 6.26: Elastic net regression. λ = 1
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