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Abstract

Survival Analysis is a crucial problem in statistics that tries to explain and model
the behaviour of the individuals of a population through some features, one of them
the time elapsed until death occurs.

In this work, different models applied in survival analysis are reviewed, from the
most traditional estimators to some actual algorithms based in machine learning as the
survival trees and forests.

The different models described are compared using the statistical package R with
data from the literature.
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Introduction

Survival Analysis is a crucial problem in statistics that tries to explain and model
the behaviour of the individuals of a population through some features, one of them
the time elapsed until death occurs.

In this work, different models applied in survival analysis are reviewed, from the
most traditional estimators to some actual algorithms based in machine learning as the
survival trees and forests.

This work has the following structure: In chapter 1, the Survival Analysis prob-
lem is introduced, concepts as the notion of censoring and some statistic functions
used in survival are defined. In chapter 2 two estimators traditionally used in Survival
Analysis, namely, Kaplan-Meier estimator and Nelson-Aalen estimator, are defined. In
chapter 3 the random tree and the random forests algorithms are discussed. In chapter
4 a measure of the performance of the model obtained, called c-index, and a measure
of the weight of the features in the model, called variable importance, are defined.
Finally, in chapter 5 we compare the performance of the models proposed using the
statistical package R.
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Chapter 1

Survival Analysis

Survival Analysis is a statistical problem that consists in explaining and modeling
data obtained from measuring different features to some individuals of a population
where one of those features is the time elapsed until a certain event occurs.

Unfortunately, measuring the elapsed time until the considered event may be com-
plicated since it cannot be measured instantaneously as it could be with other attributes.
Instead, it requires an observation time that can also be interrupted for reasons that are
not of interest.

1.1 Censoring
One of the difficulties this analysis presents is censoring, which happens when the

time to event is unknown for some of the individuals. Such unknowledge in data can
be produced for example when one of the individuals is lost during the observation
period for any reason before the event occurred. When data is censored, there is a lack
of information, but not all is lost, as it is known that the individual did not reach the
event before the time it was observed, so there is still some information.

Definition 1.1.1. Let T be the time elapsed until an individual reach an event of inter-
est. This individual is said to present right-censoring (left-censoring) if all the informa-
tion given about T is that T ≥ C (T ≤ C) for a certain C ∈ R. The individual is said
to present interval-censoring if all the information given about T is that C1 ≤ T ≤ C2

with C1, C2 ∈ R, C1 ≤ C2.

In practice, all data is censored as there is no measuring instrument with infinite
precision. However, if the associated interval of time is small enough, compared with
the observation time, then it can be considered as an uncensored time.

9



10 1.2. Survival and hazard functions

1.2 Survival and hazard functions
In statistics, these functions are related to the cumulative distribution function of

a random variable. In particular, in Survival Analysis, they are useful to specify the
distribution of the variable T .

Let T be a non negative and absolutely continuous random variable with distribu-
tion function F (t) = P (T ≤ t). Then, it exits a non-negative function f called the
density function such that F (t) = P (T ≤ t) =

∫ t
−∞ f(s)ds. This is f(t) = dF (t)

dt
.

Definition 1.2.1. The survival function is defined as the probability of the event is
reached beyond the time t, S(t) = P (T > t) = 1− F (t).

Theorem 1.2.1. The survival function has the following properties

1. S(t) is a monotonically non-increasing function.

2. S(t) = 1 ∀t ≤ 0

3. lim
t→∞

S(t) = 0

Definition 1.2.2. The hazard function is defined as

h(t) =
f(t)

S(t)
.

Theorem 1.2.2. The hazard function verifies

h(t) = − d

dt
ln(S(t)). (1.1)

Proof. We know that

f(t) =
dF (t)

dt
=
d(1− S(t))

dt
= −dS(t)

dt
,

therefore substituting and operating the result is obtained

h(t) =
f(t)

S(t)
= − 1

S(t)

dS(t)

dt
= − d

dt
ln(S(t)).

Definition 1.2.3. The function

H(t) =

∫ t

0

h(s)ds

is called the cumulative hazard function.
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Theorem 1.2.3. The cumulative hazard function is related with the survival function
by the equation

S(t) = exp(−H(t)). (1.2)

Proof. If the differential equation (1.1) is integrated, then it is obtained
∫ t
0
−h(s)ds =

ln(S(t))− ln(S(0)). As it is assumed that T ≥ 0, then S(0) = 1, so ln(S(0)) = 0 and
it follows that

S(t) = exp

(
−
∫ t

0

h(s)ds

)
= exp(−H(t)).

1.3 Notation
Let (T,X) be the random vector of the population of interest. Here, T is the time

to the event which will be considered as a non-negative (T ≥ 0) and absolutely contin-
uous random variable andX is a p-variate random vector (that takes values in a sample
space X ) whose components are the rest of the features considered.

If the sample is incomplete, in the sense that it presents some right-censoring, then
there would be L ∈ R, called the limit of observation. This limit is also a random
variable, as it can occur accidentally during the observation time. However, unlike the
random variable T , it is not necessarily continuous; if the experiment ends before the
individual reached the event, then the probability to reach the limit of observation at
the end of the experiment would be nonzero.

In the case where right-censoring is present, the observed time is not necessarily
the time T . Instead, it will be observed a vector (Y,∆) where Y is defined as Y =
min{T, L} and ∆ is the binary variable defined as

∆ =

{
1 if T ≤ L
0 if T > L

.

When ∆ = 1 it is traditionally called a death and when ∆ = 0 it is called a loss.

The random vector (Y,∆, X) has a cumulative distribution function F̄ , F̄ (y, d, x) =
P (Y ≤ y,∆ ≤ δ,X ≤ x).

The objective of Survival Analysis is to infer, from an obtained realization of the
simple random sample (Y1,∆1, X1), (Y2,∆2, X2), ..., (Yn,∆n, Xn), the distribution of
T as a function of the predictor variables X . This is, for each fixed value x of X , the
function Fx(t) = P (T ≤ t|X = x), the probability of reaching the event before the
time t of an individual with x characteristics.
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Theoretically, the observed times are all different for those individuals that reached
the event as T is an absolutely continuous variable and the probability of two individ-
uals reaching the event at the same time is null. However, in practice, the values of the
time obtained in the realization are not continuous but discrete and ties may occur.

Let T = {yi : δi = 1} be the set of times to observed event and q = #(T), the
cardinality of such set. Then there is a unique chain 0 = τ0 < τ1 < τ2 < · · · < τq :
T = {τ1, τ2, ..., τq}. The times τi are the different times at which an event is observed
∀i ∈ {1, ..., q}, τ0 is defined just by convention. Moreover ni is defined as the number
of individuals under observation just before time τi, this is

ni = #{j : tj ≥ τi} ∀i ∈ {1, ..., q}.

Also di is defined as the number of individuals that reach the event (deaths) at time τi,
mathematically

di = #{j : δj = 1, tj = τi} ∀i ∈ {1, ..., q}.



Chapter 2

Traditional estimators

In this section, two of the most traditionally used sample statistics will be intro-
duced because of their importance in Survival Analysis and as a basis for the survival
random forest algorithm.

These estimators can be used when only right-censoring is presented. They are
both non-parametric estimators, this means that no hypothesis is assumed about the
shape of the survival function. Non-parametric estimators are useful when the data
does not follow any recognizable distribution or to identify if data follows any known
shape so if it does, then a parametric method could be used.

To use these estimators some hypotheses must be assumed:

• The time elapsed until the event occurs T and the observation limit L must be
independent variables.

• All data follows the same survival function, there is no dependence with predic-
tor variables.

2.1 Kaplan-Meier estimator
The Kaplan-Meier estimator, introduced in [6], is a sample statistic traditionally

used in Survival Analysis. This statistic is the maximum likelihood estimator, not of
the cumulative distribution, F , but of the survival function defined in 1.2.1.

The Kaplan-Meier estimator is obtained from the product of the estimations of the
conditional probabilities Pi = P (T > τi|T > τi−1) = 1 − P (T ≤ τi|T > τi−1)
∀i ∈ {1, ..., q}.

An estimator of the probability P (T ≤ τi|T > τi−1) is the proportion of individ-
uals that have reached the event at time τi among those individuals for which there

13



14 2.1. Kaplan-Meier estimator

is information available at time τi that have not reached the event before τi−1. An
estimator of Pi is then

P̂i = 1− di
ni
. (2.1)

Theorem 2.1.1. With the notation above, Pi =
P (T > τi)

P (T > τi−1)
.

Proof. By the definition of the conditional probability

Pi = P (T > τi|T > τi−1) =
P ((T > τi) ∩ (T > τi−1))

P (T > τi−1)
.

As τi > τi−1, then P ((T > τi) ∩ (T > τi−1)) = P (T > τi), so the result is
obtained.

Pi =
P (T > τi)

P (T > τi−1)
.

Corollary 2.1.1. The survival function at time τi satisfies S(τi) =
i∏

j=1

Pj .

Proof. From the definition of the survival function it is obtained that

S(τi) = P (T > τi) = P (T > τ0)
i∏

j=1

P (T > τj)

P (T > τj−1)
.

As T is a continuous and positive variable, we have that P (T > τ0 = 0) = 1.
Then, using the theorem above the result is obtained.

S(τi) =
i∏

j=1

P (T > τj)

P (T > τj−1)
=

i∏
j=1

Pj.

The Kaplan-Meier estimator for the survival function is then defined as

ŜKM(t) =
∏
i:τi≤t

i∈{1,...,q}

P̂i =
∏
i:τi≤t

i∈{1,...,q}

(
1− di

ni

)
(2.2)
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2.2 Nelson-Aalen estimator
The Nelson-Aalen estimator is another sample statistic used in Survival Analysis.

It was introduced by Nelson in [9] and by Aalen in [1]. This statistic is an estimator of
the cumulative hazard function.

The Nelson-Aalen estimator of the hazard function is defined as

ĤNA(t) =
∑
i:τi≤t

i∈{1,...,q}

di
ni

(2.3)

This estimator can be transformed as in equation (1.2) to obtain an estimator of the
survival function, namely

ŜNA(t) = exp
(
−ĤNA(t)

)
= exp

− ∑
i:τi≤t

i∈{1,...,q}

di
ni

 =
∏
i:τi≤t

i∈{1,...,q}

exp

(
−di
ni

)
(2.4)

Theorem 2.2.1. The Kaplan-Meier and the Nelson-Alen estimator for the survival
funtion satisfy

ŜKM(t) ≤ ŜNA(t) ∀t ∈ R (2.5)

Proof. Let us fix t ∈ R, then

ŜKM(t)

ŜNA(t)
=

∏
i:τi≤t

i∈{1,...,q}

(
1− di

ni

)
∏
i:τi≤t

i∈{1,...,q}

exp
(
− di
ni

) =
∏
i:τi≤t

i∈{1,...,q}

(
1− di

ni

)
exp

(
− di
ni

)

It is known that 1−x
e−x ≤ 1 so for each i ∈ {1, ..., q} : τi ≤ t it is

(
1− di

ni

)
exp

(
− di
ni

) ≤ 1

and the result is obtained, ŜKM (t)

ŜNA(t)
≤ 1.

An illustrative example will be provided to show how do these two traditional
statistics work.

Example. Five individuals are observed for a week and the time elapsed before they
reach the event of interest is measured. The following information is obtained:
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Individual Observed time Censoring
i yi (days) δi
1 3 0
2 1 1
3 5 1
4 7 0
5 4 0

Table 2.1: Information obtained in an illustrative example

With this data, we have that q = 2 and (τ1, τ2) = (1, 5), then (n1, n2) = (5, 2) and
(d1, d2) = (1, 1).

The quotients di
ni

in this example are d1
n1

= 1
5

and d2
n2

= 1
2
. The estimations for the

conditional probabilities Pi are calculated with the formula (2.1) so P̂1 = 1 − 1
5

= 4
5

and P̂2 = 1− 1
2

= 1
2
.

Then the Kaplan-Meier estimator of the survival function is obtained using the
equation (2.2)

ŜKM(t) =


1 if t < 1

0.8 if 1 ≤ t < 5
0.4 if t ≥ 5

The Nelson-Aalen estimator of the hazard function is obtained with the equation
(2.3)

ĤNA(t) =


0 if t < 1

0.2 if 1 ≤ t < 5
0.7 if t ≥ 5

The transformation of the Nelson-Aalen estimator as an estimator of the survival
function given in (2.4) is:

ŜNA(t) =


1 if t < 1

0.819 if 1 ≤ t < 5
0.497 if t ≥ 5

In the next image, both estimations of the survival function are represented.
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In this example it is seen that the estimations for the survival function provided by
the Kaplan-Meier estimator and the Nelson-Aalen estimator are not survival functions
as lim

t→∞
Ŝ(t) > 0. This also implies that no mean or variance can be directly estimated

from the estimated survival function. The unique case the estimated function is a sur-
vival function is for the Kaplan-Meier estimator when the last observation is a death as
then dq = nq and

(
1− dq

nq

)
= 0 so ŜKM(t) = 0 ∀t ≥ τq.

This problem is often solved considering a time t∗ ≥ τq and defining

Ŝ ′(t) =

{
Ŝ(t) if t < t∗

0 if t ≥ t∗

which is a survival function and mean and variance can be defined.
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Chapter 3

Random Forests

Random forests are a machine learning technique that was introduced by Breiman
in [2]. While they were first proposed for regression and classification, they can easily
be modified to be applied in Survival Analysis [4].

To understand what a random forest is, it is necessary to introduce the concept of a
random tree first.

3.1 Random Trees
A random tree is a tree structure with an association between each node in the

tree and the subsets of a sample space X in a hierarchical way and a prediction at
the endings. Below will be explained the tree structure, the association between the
subsets of the sample space and the tree structure, and the prediction at the endings of
the random tree.

3.1.1 Tree structure

The kind of trees considered in this text consist of a finite set of nodes T =
{N1, N2, ..., Nm} hierarchically related in the way explained below.

• The node N1 is called the root node.

• Each node Ni with i ≥ 2 is related to a single node Nj for some j < i. The node
Nj is said to be the mother of the node Ni.

• Each node Ni verifies one and only one of these statements:

– Either it is not related to any other node than its mother, in which case Ni

is called a leaf.

19



20 3.1. Random Trees

– Either Ni is related to exactly two nodes Nj and Nk with i < j, k that are
its daughters.

• A node Ni is the mother of a node Nj if and only if Nj is one of the daughters
of Ni.

N1

N2

N4 N5

N3

Figure 3.1

The figure 3.1 represents an example of tree. The root is the nodeN1 and the leaves
are the nodes N3, N4 and N5. The node N1 is the mother of the nodes N2 and N3 and
the node N2 is the mother of the nodes N4 and N5. Equivalently, the nodes N2 and
N3 are the daughters of the node N1 and the nodes N4 and N5 are the daughters of the
node N2.

3.1.2 Association between subsets of the sample space and nodes

With each node N of the tree we associate a subset XN of the sample space X
satisfying the following

• The sample space X is associated with the root node N1, XN1 = X .

• If the node Ni is the mother of the nodes Nj and Nk then XNi
= XNj

∪XNk
and

XNj
∩ XNk

= ∅.

For simplicity in the notation, we identify each node N with its associated subset
XN .

An illustrative example is shown in the figure 3.2 with the tree structure in figure
3.1 and the finite sample space X = {a, b, c, d, e, f, g, h, i, j}
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N1

{a, b, c, d, e, f, g, h, i, j}

N2

{a, c, d, i, j}

N4

{a, c, j}
N5

{d, i}

N3

{b, e, f, g, h}

Figure 3.2

3.1.3 Prediction at leaves

The random tree T defines a partition into disjoint subsets of the sample space X
at the leaf nodes. Let L be the set of the leaves in T , then by definition

⋃
L∈L
XL = X

and XL1 ∩ XL2 = ∅ ∀L1, L2 ∈ L : L1 6= L2.

If the behaviour is roughly the same for all the individuals in the same leaf, then it
would be reasonable to try to find a prediction for each leaf instead of for the whole
sample space. This prediction could be the mean for a classification tree, a regression
curve for a regression tree or, what is of most interest in this work, an estimator of the
survival function for a survival tree.

3.2 Growing a random survival tree

Given a sample realization (y1, δ1, x1), (y2, δ2, x2), ..., (yn, δn, xn) from a simple
random sample of the random vector (Y,∆, X), the goal is to grow a random tree so
at each leaf node all the individuals are expected to have the same behaviour. In the
Survival Analysis case, they are expected to have the same survival function, which
can be estimated through the Kaplan-Meier estimator or the Nelson-Aalen estimator at
each leaf node.

In an algorithm that grows a random tree, it is necessary to specify a criterion to
split the data associated in each node into two disjoint subsets and also a stopping cri-
terion, this is, when should the algorithm consider that a node is a leaf node.

Given a sample D, the number of ways the finite set D can be split into two disjoint
subsets is 2#D−1 − 1 (the subsets ∅ and D are not considered as a split). This means
that it increases exponentially fast, so it is unthinkable to try to select a split out of all
the possible ones even for a set of moderate cardinality. Furthermore, if all the possible
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splits were considered, the chosen split can be difficult to interpret.

It is then necessary to reduce the set of splits permitted. A way to reduce the num-
ber of permitted splits is to consider only the simplest and the easiest to interpret, these
are the splits that divide the sample according to only one single predictor variable.
This is, fixed the predictor variable Xj of the vector X , the type of splits allowed are:

• ifXj is an ordered variable, then the split consists of forming the disjoint subsets
{i : xji ≤ c} and its complementary {i : xji > c} where c ∈ R can be chosen.

• if Xj is a nominal variable that takes values in the finite set W = {w1, ..., wkj},
then the subsets that provide the split are {i : xji ∈ S} and its complementary
{i : xji /∈ S} where S ⊂W.

The constant c defined before can apparently take uncountable values, producing
infinite different splits, nevertheless, given the sample D, the variable Xj will at most
take #D different values, so it could be enough to consider #D−1 values of c between
every two consecutive values of the variable Xj to consider all the possible splits in
that variable.

The criteria used to choose the best split among those allowed at each node in a
random tree normally consists of considering a measure of dissimilarity or a distance
between two sets. The split chosen is the one that maximizes the distance between the
disjoint subsets associated to the daughter nodes.

The criterion to select a split out of all the considered splits depends on the kind of
analysis for which the random tree is grown. Some criteria used to split random trees
applied in Survival Analysis can be found in section 4.1 in [13]

One of those criteria is the log-rank criterion, discussed in [8] and [11]. This cri-
terion is among a family of estimators called the Tarone-Ware class of statistics and is
described below.

Let us consider an allowed split at a node in the random tree that is been grown.
This split divides the data set A associated to the node into two different populations
B and C. Let us call qA the number of different times at which the event is observed
in any of the individuals of the population A. For each i ∈ {1, ..., qA}, τA,i is the i-
th observed time to event in A. We define dA,i as the number of deaths in A at time
τA,i and dA,i,B as the number of deaths in B at time τA,i. They are also defined nA,i

and nA,i,B as the number of individuals under observation before time τA,i in A and B

respectively.
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Dead Alive Sum
Population B dA,i,B nA,i,B

Population C

Population A dA,i nA,i

Table 3.1: An illustrative table at time τA,i to better understand these definitions

The class of Tarone-Ware statistics has the form:

TWA,B =

∑qA
i=1wi

(
dA,i,B − Ê0,i,B

)
√∑qA

i=1w
2
i V̂0,i,B

(3.1)

where Ê0,i,B and V̂0,i,B are respectively the expectation and the variance of the number
of deaths in the population B at time τA,i under the null hypothesis: the death rates are
the same at each instant τA,i in both populations B and C. The null hypothesis assump-
tion implies that the number of deaths in the population B follows a hypergeometric
distribution so

Ê0,i,B =
dA,inA,i,B

nA,i

and

V̂0,i,B =

[
dA,i(nA,i − dA,i)

nA,i − 1

] [
nA,i,B

nA,i

(
1− nA,i,B

nA,i

)]
.

The constants wi are weights associated to each table. The most simple and known
statistic from the Tarone-Ware class is the log-rank statistic which is obtained with
the weights wi = 1. Other statistics employed are the Gehan statistic, obtained with
wi = nA,i; the Tarone-Ware statistic, obtained with wi =

√
nA,i and the Harrington-

Fleming statistic, when wi = ŜKM(τA,i) is the Kaplan-Meier survival estimation at
time τA,i. For more information see [11].

The chosen split for each node is the one (among all the allowed splits at the node)
that maximizes the absolute value of one of the Tarone-Ware statistics, for example,
the log-rank statistic.

There are many criteria to decide when a node is considered as a leaf so it has no
daughters but all of them basically entail that the data associated to the nodes is not
too small. In Survival Analysis with right-censored data, a necessary criterion is that
for each leaf node at least one of the individuals in the associated data must reach the
event. This is, all the individuals cannot be censored as otherwise, no estimations are
possible. A commonly used criterion is to fix d0 > 0 and impose that the number of
deaths at each node is bigger or equal than d0.
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Consider the data set (y1, δ1, x1), (y2, δ2, x2), ..., (yn, δn, xn) obtained from a sim-
ple random sample of (Y,∆, X) which takes values in (0,+∞) × {0, 1} × X . The
algorithm to grow a random survival tree is described below

Algorithm

1. All the individuals are associated with the root.

2. At each node repeat

(a) Randomly select r from the p features of X .

(b) Consider all the splits in those r variables that guarantee that the daughter
nodes satisfy that there are at least d0 > 0 deaths associated to each one.

(c) If no split has been considered, then this node is a leaf and the algorithm
continues with another node.

(d) If some splits have been considered, then choose the one that maximizes
the log-rank statistic and grow the tree adding two daughter nodes.

3. At each leaf node an estimator of the survival function is computed from the
individuals in the node, for example, the Kaplan-Meier estimator.

Usually, growing one single random tree does not provide a satisfactory model as it
can provide very different models just because of random selections of the parameters
at each node. This problem can be solved by growing some trees from the same data
and choosing the one that provides the best model. However, better results can be
obtained if the trees are considered together in a random forest.

3.3 Random survival forests
A random forest consists of a set of random trees that together are expected to

provide a stronger and more sophisticated model than a unique tree. When a random
forest is applied to Survival Analysis it is called a random survival forest.

Again, let us consider the data set (y1, δ1, x1), (y2, δ2, x2), ..., (yn, δn, xn) obtained
from a simple random sample of the random vector (Y,∆, X) of the population of
interest. The random survival forest algorithm is described below:

Algorithm

1. B bootstrap samples are randomly chosen. This is, B independent random sam-
ples with replacement of the same size as the data are generated. Note that for
each bootstrap sample approximately 37% of data is not considered. For each
bootstrap sample the not considered data is called OOB (out-of-bag).
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2. From each bootstrap sample, for b ∈ {1, ..., B}, a random tree Tb is grown.

3. For each tree Tb consider all the individuals in the sample at each leaf Lj,b ∈ Lb,
this is {(yi, δi, xi) : xi ∈ XLj,b

}, and compute an estimator for the survival
function Ŝj,b(t), for example the Kaplan-Meier estimator (or the Nelson-Aalen
estimator).

4. The estimation of the survival function for the b-th tree is

Ŝb(t|x) =
∑

j:Lj,b∈Lb

IXLj,b
(x)Ŝj,b(t)

where IY is the indicator function of the subset Y of the set X .

5. The ensemble survival function is obtained by taking the average of the survival
functions of each tree in the forest, this is,

Ŝe(t|x) =
1

B

B∑
b=1

Ŝb(t|x)

6. To predict error also an OOB survival function estimation can be defined. For
each xi in the original sample, the OOB survival function is defined as the av-
erage of the survival functions of each tree for which xi is not in the bootstrap
sample, or equivalently,

ŜOOB(t, xi) =

B∑
b=1

Ii,bŜb(t|xi)

B∑
b=1

Ii,b

where Ii,b = 1 if xi is not in the b-th bootstrap sample and Ii,b = 0 if xi is in the
b-th bootstrap sample.

Similarly, in addition to the ensemble and the OOB survival functions, ensemble
and OOB cumulative hazard functions can be calculated, Ĥe(t, x) and ĤOOB(t, x)
respectively.
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Chapter 4

Performance of model and features

4.1 C-index
In order to measure the accuracy of a survival model, an especial estimator is nec-

essary so the censoring is taken into account. The concordance index, also called
c-index, first introduced in [3], is defined as the probability that, given a pair of in-
dividuals, the prediction model provides a worse outcome for the individual that dies
first. This c-index has a similar interpretation to the area under the ROC curve and can
handle the censored data so it can be used to estimate the performance of a survival
model.

Let us consider that a prediction for the ensemble cumulative hazard function
Ĥe(t|x) has been obtained from the dataset (y1, δ1, x1), (y2, δ2, x2), ..., (yn, δn, xn). We
define the mortality of an individual with features x as

M(x) =
n∑
l=1

Ĥe(yl|x).

Mortality does not depend of the instant of time and provides a measure of the
outcome so comparisons can be made. An individual with features x̄1 is said to have a
worst outcome than an individual with features x̄2 if M(x̄1) >M(x̄2).

Let D =
{(
ỹ1, δ̃1, x̃1

)
,
(
ỹ2, δ̃2, x̃2

)
, ...,

(
ỹm, δ̃m, x̃m

)}
be a dataset (which can

be the same training data used to obtain Ĥe, the OOB data or some new data). Then,
considering that ỹi 6= ỹj ∀i, j : δ̃i = δ̃j = 1, an estimation of the c-index is

CD =
1

M

∑
i:δ̃i=1

∑
j:ỹi≤ỹj

[
I
(
M(x̃i) >M(x̃j)

)
+ 0.5 · I

(
M(x̃i) = M(x̃j)

)]
(4.1)

where M is the number of addends in equation (4.1) and I(·) is the indicator function
(it takes the value 1 if the argument is true and 0 otherwise), more information about
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this estimation of the c-index can be found in [4]. Another estimator for the c-index is
described in [12] and in [13].

With this definition of c-index, if CD = 1, then the concordance of the model is
perfect, this is, the model assigns better outcomes, lower mortality, to the individuals
that live longer. If CD = 0.5, then the model is not better than randomly choosing
which individual will live longer. Finally, if CD = 0, then the model always fails in
the prediction of which individual will live longer.

4.2 Variable Importance
In addition to providing a prediction model for the considered population, random

trees and random forests can provide an estimation of the importance of a single vari-
able Xj of X . The variable importance is a measure of the significance of a variable in
the random tree or the random forest. In this work, two ways to estimate the variable
importance are explained.

The first method, called permutation method, is described in [2]. It consists of
randomly permuting the values that the variable Xj takes between the out-of-bag in-
dividuals and then to compare the c-index estimated with this permuted data and the
c-index obtained with the original oob data. Mathematically, this is, once the ensem-
ble survival function Ŝ(t|x) and the mortality M(x) have been computed from some
training data with OOB data (or any new sample obtained from the the population
of interest) D = {(y1, δ1, x1), (y2, δ2, x2), ..., (yn, δn, xn)}, a permutation σ ∈ Sn is
randomly chosen. We define x̃i = (x1i , x

2
i , ..., x

j
σ(i), ..., x

p
i ) and the permuted data D′ as

D′ = {(y1, δ1, x̃1), (y2, δ2, x̃2), ..., (yn, δn, x̃n)} .
The estimation of the importance of the variable Xj is VIMP = CD − CD′ , where

CD and CD are the concordance indices for the correspondent data.

The other method that will be explained in this work, called random method, is
described in [4]. This method consists of dropping the OOB data of each tree down
the respective tree but at each node split in the variable Xj each individual is drop ran-
domly to one or another daughter, and then to compare the c-index estimated with the
original data and the c-index obtained this way averaged over the trees in the survival
forest.

The variable importance, VIMP, has the following interpretation: if VIMP = 0,
then it means that the prediction does not really depend on the variable Xj , and if
VIMP > 0, then the variable helps to explain the survival of the individuals in the
model. It could also be that VIMP < 0, in this case, the variable in the model would
explain the survival even worse than if the variable was not considered.



Chapter 5

Examples using R

Here we compute some examples to illustrate what has been explained in this work.
For this purpose, we have used the R-package randomForestSRC.

The main function in the R-package randomForestSRC is the function rfsrc
which computes a Breiman’s random forest for different kinds of data such as regres-
sion, classification, right-censored survival and competing risk. This function admits
several arguments, so only the ones used in this work are described below.

Usage: rfsrc(formula, data, ntree, nodesize, samptype)

Arguments

formula A symbolic description of the model to be fit.
data Data frame containing the y-outcome and x-variables.
ntree Number of trees.
nodesize Forest average number of individuals in terminal nodes.
samptype Type of sampling which can be with or without replacement.

The function rfsrc provides an object of class (rfsrc,grow), to obtain infor-
mation from this object we have used the following commands.

Auxiliary commands

print Provides a summary of the computed forest.
subsample Randomly choose some subsamples from data and computes the

variable importance from each subsample obtaining a kind of
confidence importance for VIMP.

Example. We will first study the data set Veteran’s Administration Lung Cancer Trial
presented in [10] which is implemented in the R-package randomForestSRC under
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the name veteran.

This data set consists of 137 advanced lung cancer patients of which 9 are right-
censored. The variables recorded for each patient are:

1. the given chemotherapeutic agent (standard treatment, 1; test treatment, 2),

2. the tumour cell type (squamous, 1; small, 2; adeno, 3; and large, 4),

3. a measure of the medical status provided by the Karnofsky scale which is a score
between 0 and 100 that assigns higher scores to patients that feel better,

4. the time from diagnosis to the beginning of the study in months,

5. the age of the patient in years and

6. a binary variable taking the value 1 if the patient had got previous therapy and 0
if had not.

We show in figure 5.1 the dependence of the time to event in the sample with the
predictor variables. It can be appreciated that patients which celltype is 1 and 4 live
longer than those which celltype is 2 or 3 and that patients with high karno scores also
live longer than those with lower scores. These observations will be reflected in the
variable importance of these two variables.

Figure 5.1: Representation of the time for non-censored data versus the predictor vari-
ables
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In this example we will compute over the data set the Kaplan-Meier estimator, a
single random survival tree and the random survival forest algorithm to show and com-
pare the performance of these algorithms.

We have computed the Kaplan-Meier estimator from a subsample without replace-
ment of 87 of the patients using the function rfsrc with one single tree and the node
size large enough so the tree consists of one single node.

The Kaplan-Meier estimator provides the same survival function for every patient
independently of the predictor variables. This implies that all of them have the same
estimated mortality so the c-index of the model provided applying the Kaplan-Meier
estimator directly is 0.5. In addition, the estimated variable importance is null for each
variable as in fact the model does not consider the variables.

Figure 5.2: Representations of the survival function, the mortality and the VIMP com-
puting the Kaplan-Meier estimator

We have also computed a single random survival tree from a subsample without
replacement of 87 of the patients using the function rfsrc with one single tree and
the node size of 15.

The model obtained divides the patients into 5 different leaves and assigns the
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same survival function for all the patients associated to the same leaf. The survival
function for each leaf is estimated from the few patients associated to that leaf. The
c-index of the model, computed using the out-of-sample data, is near 0.6. The variable
importance is computed for each variable and it is seen that karno, age and cell type
are important variables in the model. This does not necessarily match with the reality
as we have computed only one tree and the variable importance depends on the splits
randomly considered at the nodes of the tree.

trt celltype karno diagtime age prior
0 0.026 0.077 0 0.044 0

Table 5.1: VIMP in a single tree

Figure 5.3: Representations of the survival function, the mortality and the VIMP com-
puting a single tree

Finally, we have computed a random survival forest of 1000 trees grown from sam-
ples with replacement of size 137 and the node size of 15.

This model provides a different survival function for each patient. The average
number of leaves in the trees of the forest is 9.5. The c-index, computed using the
out-of-bag sample of each tree, is 0.71. The most important variables are karno and
cell type and also important are age and diag time.
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trt celltype karno diagtime age prior
0 0.043 0.147 0.008 0.012 0

Table 5.2: VIMP in a random survival forest

Figure 5.4: Representations of the survival function, the mortality and the VIMP com-
puting a random survival forest

Figure 5.5: At the left the survival function for all the individuals in the same leaf of
a tree (the one with minimal mortality). At the right the survival function provided by
the forest for those individuals.

Example. Now we also compute an example where the real distribution of the event
time is known.
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We have randomly generated 25 numbers following an exponential distributions of
rate 1

8
, 1
4
, 1
2

and 1, in total 100 numbers generated that represent the time to event T .

T=rexp(100,rep(c(1/8,1/4,1/2,1),rep(25,4)))

Figure 5.6: Representation of the obtained values for the time to event

We have defined a predictor variable X1 which takes the values 1, 2, 3 and 4 for
the data generated following the exponential distributions 1

8
, 1
4
, 1
2

and 1 respectively.

X1=rep(c(1,2,3,4),rep(25,4))

We have defined tree noise variables generating 300 numbers from a standard nor-
mal distribution.

In order to produce censoring, we have generated 100 numbers following a uniform
distribution between 0 and 15. This defines the variable L, the limits of observation.

Figure 5.7: Representation of the obtained values for the limit of observation
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We have defined the observed time Y as the minimum between the time to event T
and the limit of observation L and δ as 1 if Y = T and 0 otherwise.

Figure 5.8: Summary of the obtained data

Figure 5.9: Representation of the time for non-censored data versus the predictor vari-
ables

We have computed the random survival forest algorithm using the data set obtained
as described before and obtained a forest with an average number of leaves 6.717 and
c-index 0.65. The variable that had the highest importance is the first one as expected
and the survival function is recovered quite well for the different individuals.
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X1 X2 X3 X4

0.129 -0.003 0.015 0.007

Table 5.3: VIMP in the random survival forest

Figure 5.10: Representations of the survival function, the mortality and the VIMP
computing the random survival forest. In black the individuals with X1 = 1, in red
the individuals with X1 = 2, in green the individuals with X1 = 3 and in blue the
individuals with X1 = 4. With the survival function graphic they are also represented
the survival functions associated to the exponential distributions 1

8
in black, 1

4
in red, 1

2

in green and 1 in blue.
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