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ABSTRACT The presence of glide symmetries in periodic structures can introduce beneficial modifications
in their electromagnetic properties. The difference between glide and non-glide periodic structures is due to
the distinctive coupling between their constituent sub-unit cells. In this paper, we describe the recent discov-
eries on the remarkable properties of glide-symmetric periodic structures, which include widened stopbands,
reduced dispersion, as well as enhanced anisotropy and magnetic response. These properties are explained
through canonical structures simulated with two methods: mode matching and multimode transfer-matrix
analysis. We also review the recent use of these distinctive properties for solving technological problems
in practical devices such as filters, gap waveguide components, low-leakage flanges, compressed lenses,
low-reflected material transitions and leaky-wave antennas with applications in 5G terrestrial communication
systems, millimetre-wave satellite systems and automated contactless measurement techniques.

INDEX TERMS Anisotropy, electromagnetic band-gap, filters, flanges, gap waveguide technology, glide
symmetry, higher symmetries, leaky-wave antennas, lens antennas, low dispersion, mode matching, multi-

mode analysis, periodic structures.

I. INTRODUCTION

Glide symmetry exists in many forms in nature. For exam-
ple, glide symmetry is found in certain fossils, worms and
sea pens [1]. Even something as simple as our footprints are
glide-symmetric. Thus, it is no wonder that humans have de-
veloped some fascination for glide-symmetric shapes. One of
the most significant early representations of glide reflections
is found in the Moorish tessellations in the Alhambra Palace
in Granada, Spain. These tessellations inspired the 20" cen-
tury Dutch graphic artist Maurits Cornelis Escher, well-known
in popular culture for his art with a strong mathematical
component.

Scientists and mathematicians also find inspiration in the
world around them and the properties of glide symmetries
have naturally been the subject of investigations in various
fields of engineering and physics [2]. If we narrow our sight
to electromagnetics, glide symmetries were first studied in the
’60s and "70s of the last century [3]-[6]. Although periodic
structures with glide symmetries demonstrated that they pos-
sessed distinctive properties in these early works, the research
on the topic stagnated for about three decades [7], [8]. It
was only when powerful computers became easily accessi-
ble, when commercial software for electromagnetic simula-
tion were broadly available, and when the knowledge and
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understanding of periodic structures matured with the advent
of metamaterials [9], [10] and metasurfaces [11], [12], that the
microwave engineering society was ready to fully exploit the
benefits of glide symmetry.

Community interest in glide symmetry was revived in 2016
with practical works demonstrating its remarkable properties
for modern day microwave devices, with applications in 5G
terrestrial communication systems, millimeter-wave satellite
systems and automated contactless measurement techniques
to name a few. For example, glide symmetry can be used to
decrease the dispersion and off-axis anisotropy in unit cells
with a four-fold rotational symmetry (e.g., squared holes)
[13], which is beneficial in lens antenna design [14]. Glide
symmetry is also able to widen the bandwidth and increase
the attenuation of holey periodic structures [15], [16]. Further-
more, glide symmetries increase the on-axis anisotropy in unit
cells with two-fold rotational symmetry (e.g., rectangular and
elliptical holes) [17]. Finally, glide symmetry can enhance the
magnetic response of periodic structures [18]. These proper-
ties were found in various periodic structures confirming that
the benefits of glide symmetry are applicable to a wide range
of practical microwave devices.

In this paper, we will define glide symmetry in Section II. In
Section III, we will briefly explain two of the most commonly
used methods to study glide symmetries: multimode Bloch
analysis and mode matching. Using these two methods, in
Section IV, we will discuss the distinct properties of glide
symmetry and their implications for the design of microwave
devices. In Section V, we enumerate some examples of the
recent use of glide symmetries for practical devices. Our
manuscript ends with the conclusions in Section VI.

Il. DEFINITION OF GLIDE SYMMETRY

A periodic structure possesses glide symmetry if it is invariant
after a translation and a mirroring with respect to a plane
called the “glide plane” [6]. Two examples of glide-symmetric
structures are given in Fig. 1. Moreover, in Fig. 2, we illus-
trate the unit cells of three glide-symmetric periodic structures
and different conventional non-glide counterparts. Simply put,
non-glide periodic structures are structures that do not satisfy
the invariance described above. As such, various definitions
of non-glide counterparts are possible depending on whether
one decides to focus on the electrical properties, mechanical
properties or other possible properties for a given use of the
technology.

Fig. 2(a) shows the unit cell of a one-dimensional (1-D)
glide-symmetric disposition of metallic corrugations corre-
sponding to cell A in the structure in Fig. 1(a), which is
uniform along the y-axis. The corrugations possess 1-D glide
symmetry since they remain unchanged after the operations

x—>x+p/2

y—=y (D
Z—> —Z

where the glide plane z = 0 is taken in the middle of the
two surfaces. In Fig. 2(a), we also illustrate a conventional

458

(@) (b)

FIGURE 1. Examples of glide-symmetric periodic structures:

(a) One-dimensional metallic corrugations. (b) Two-dimensional square
holes. The dark/white colored squares represent the holes in the
lower/upper layer.

@ ®) ©

FIGURE 2. Conventional non-glide (bottom) and glide-symmetric (top)
periodic structure unit cells: (a) One-dimensional metallic corrugations.
(b) Two-dimensional square holes. (c) Two-dimensional rectangular holes.

counterpart which does not possess glide symmetry. This
non-glide periodic structure has a period p/2 and a perfect
electric conductor (PEC) as its top surface. The rationale for
the choice of this non-glide counterpart is to have the same
linear density of corrugations for a fair comparison of electri-
cal properties per unit length where the corrugations have the
same dimensions in both glide and non-glide structures. Note
that this non-glide structure can be defined only if d < p/2.

Figs. 2(b) and 2(c) illustrate two unit cell examples of two-
dimensional (2-D) glide-symmetric and non-glide symmetric
holes embedded in a parallel plate waveguide (note that the
unit cell in the top of Fig. 2(b) corresponds to the cell B
in Fig. 1(b)). The glide-symmetric periodic structures satisfy
the transformations

X — X+ py/2
y—=>y+py/2 )

I— 2
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where the glide plane z = 0 is again in the middle of the
two surfaces. The non-glide counterpart structures here are
mirrored holey surfaces with the same dimensional charac-
teristics as the glide periodic holey surfaces in order to get the
same planar density of holes for a fair comparison of electrical
properties per unit area of the periodic structures. Due to the
differences in the shape of the holes, the response of these two
last structures will be different. In particular, the electromag-
netic response of the structures illustrated in Fig. 2(b) will be
the same in the x- and y-axes; however, the ones in Fig. 2(c)
will behave differently in these two axes.

A periodic structure with glide symmetry can be studied
by means of a generalized Bloch theorem [6]. This theorem
exploits the fact that a glide-symmetric cell can be obtained by
defining a sub-unit cell suitably replicated. A glide-symmetric
is fully characterized with the properties of only one of its
constituent sub-unit cells and the addition of a factor that
accounts for the parity of the symmetry [6], [19], [20]. This
concept is briefly introduced in Section III.

1lIl. METHODS

As is well known, most of the distinctive and useful appli-
cations of periodic structures come from the appearance of
bands in their dispersion diagrams [21]-[24]. Hence, the nu-
merical computation of these dispersion diagrams has been
an essential task in the analysis and/or design of periodic
structures for long [25]-[35], and still is a subject of intense
research [19], [36]-[41]. In the context of periodic structures
with higher symmetries, many of their most salient features
can be directly drawn from a simple reading of their disper-
sion diagram [6], [17], [20], [41], [42].

In the existing literature, three methods have been em-
ployed to analyze and explain the operation of glide-
symmetric structures. These methods are the multimode
transfer-matrix analysis, the mode matching and equivalent
circuit models. Next, we will briefly explain the first two,
since both methods will be used to calculate the numerical re-
sults presented in Section I'V. Information about circuit mod-
els and their use in connection with glide-symmetric struc-
tures can be found in [39], [43]-[46].

A. MULTIMODE TRANSFER-MATRIX ANALYSIS

Although there are many different numerical approaches to
compute the dispersion diagrams (see [19]-[46] and refer-
ences therein), most researchers resort nowadays to commer-
cial simulators for apparent reasons; the most obvious one
being the possibility of dealing with general geometries and
materials. However, these commercial simulators have not
yet solved satisfactorily the evaluation of the dispersion di-
agrams for periodic structures having lossy materials and/or
open boundaries [37], [39], [41]. This fact has motivated the
development of hybrid approaches that can take advantage of
the ability of commercial simulators to provide the general-
ized scattering matrix, [Syc], of the unit cell of the periodic
structure (including now arbitrary geometry, open boundaries,
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and/or lossy materials) and then carry out some relatively
simple post-processing of these data. Most of these hybrid
approaches are based on the eigenvalue problem associated
with the transfer matrix, [Ty.], of the unit cell of the pe-
riodic structure [21], [24]. If only one mode is employed
for obtaining [Sy.] and then transforming it into [T] for
the case of a reciprocal 1-D periodic structure (period p and
wavenumber k, = 8 — ja along the periodicity direction x),
the following simple dispersion equation is found [24]:

2 cos(kyp) = A(w) + D(w) 3)

where o is the angular frequency, and A and D are frequency-
dependent elements of the unit cell ABCD transfer matrix.

The use of one single mode in the input/output physical
ports to compute [T, ] was a limitation early overcome by
different proposals [21], [31]-[35], [37], [41], [42], [47], [48],
which consider N ports at the input/output physical ports
corresponding to N different modes. This procedure makes
it possible to keep the problem restricted to a single unit cell
while taking into account the coupling between adjacent unit
cells through high-order modes. The dispersion equation of
the 1-D periodic structure can now be formally written as the
corresponding 2N-degree polynomial characteristic equation
resulting from the following eigenvalue problem:

[T — e Hor] m =0 @)

with [1] being the identity matrix and V/I the voltage/current
arrays at the output port.

When the 1-D unit cell has glide symmetry, the eigenvalue
problem can be posed for half the unit cell (size p/2) with the
help of auxiliary matrices to give [41], [42]

\% . 0 \%
[Tue/2] |: i| — o Jkep/2 |:[Q] [ ]j| |: i| 5)
I (0] [QIf[TI

with [Tyc/2] being the multi-mode transfer matrix associated
with half the unit cell and [Q] an N xN diagonal block
matrix of elements g;; = +1, with the positive/negative sign
corresponding to even/odd modes with respect to the vertical
z-axis. More details on this approach and its extension to 2-D
periodic structures can be found in [41].

B. MODE MATCHING

In addition to the multimode transfer-matrix analysis, other
modelling methods can be useful to obtain complementary
physical insight. In particular, a mode matching [49] with a
formulation adapted for glide-symmetric unit cells has been
proposed to study structures embedded in metallic or dielec-
tric waveguides [19], [20], [50]-[53]. A simple description of
the approach can be given with reference to Fig. 2(b), where
a single unit cell of the periodic structure can be divided into
different regions. The first region is a parallel-plate waveguide
(PPW) of height g between the two holey metasurfaces. In this
region the total electromagnetic field can be developed into a
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sum of Floquet harmonics by virtue of periodicity. Other re-
gions are the holes drilled inside the bottom and top surfaces.
Each hole can be regarded as a waveguide whose propagation
direction is vertical (the z axis) and whose transverse section
is the hole shape. Inside these regions, the electromagnetic
field can be developed as a sum of waveguide modes. As in
ordinary mode matching approaches, field continuity can be
enforced at the interface of each pair of regions in order to
obtain a homogeneous linear system to solve for the unknown
wavenumber of the Bloch-mode.

However, glide symmetry can be exploited here to for-
mulate a glide-symmetric mode matching. In fact, since a
glide-symmetric structure is defined by only a sub-unit cell,
a generalized Floquet theory can be formulated based on the
glide operator (instead of the translation operator as in peri-
odic structures) [6]:

E(x,y, z) = j:e_J(kXPTX+kY%)E (x - %,y — %, —z) (6)
written here for the electric field E of a Bloch mode. Bloch
modes are therefore associated to eigenvectors of the glide
operator. For a suitable mode matching implementation, the
sub-unit cell can be conveniently defined as the lower half of
the PPW region together with only one hole, the one drilled in
the bottom surface. Only the continuity of fields on the surface
of one hole needs to be taken into account, and the symmetry
of the problem is later enforced with condition (6).

The solution of this problem gives not only the required
dispersion diagram, but also useful physical insight into the
structure. First of all, a decomposition of the field on the hole
surface in terms of hole modes is obtained, which can explain
the propagation properties (anisotropy, frequency dispersion)
when the shape of the hole is modified [51] or the effect
of tightly spaced metasurfaces [43]. Furthermore, symmetry
properties of the Floquet harmonics propagating between the
metasurfaces are also naturally obtained. Glide symmetry en-
forces dual symmetries on the harmonics depending on their
order parity. Each harmonic being defined by two integer
indices m and n, the glide plane is equivalent to a PEC plane
for even harmonics (m + n even) and to a PMC plane for
odd harmonics (m + n odd). This specific property is consid-
ered key to provide the distinctive electromagnetic features of
glide-symmetric structures.

IV. PHENOMENOLOGY

In this Section, we will use the methods briefly introduced
in Section III to demonstrate the distinctive properties from
glide-symmetric periodic structures. In particular, we will dis-
cuss four properties: reduced dispersion, widened stopbands
with higher attenuation, higher levels of anisotropy and en-
hanced magnetic responses. Note that these properties are
not generic, as they depend on the selected periodic structure
and associated design parameters. In order to obtain effective
results, the structures need to be characterized by sufficiently
strong coupling, with discontinuities (e.g. corrugations, holes)
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FIGURE 3. Dispersion diagram calculated with a multimode analysis
(lines) and CST eigenmode solver (markers) for the structures illustrated
in Fig. 2(a), glide and non-glide metallic corrugations, with dimensions
p=15mm,h=0.4mm,d =05mm, and g = 0.2 mm.

in close proximity, which is often encountered in practical
microwave devices. When coupling between discontinuities is
weak, glide and non-glide structures generally provide similar
responses. Some design trade-offs may also be required as
all properties are not achievable simultaneously. The designer
must fine-tune the parameters to achieve the desired prop-
erty for a given device and application. Another important
point to highlight is that the structures discussed in this pa-
per are rectangular waveguides or parallel plate waveguides
(PPW) and the properties are analyzed for their fundamental
transverse electric (TE) or transverse electromagnetic (TEM)
modes, which correspond to the modes of operation of most
microwave devices of interest here.

A. DISPERSION

The first property of glide symmetry, which was re-discovered
in the second decade of the 2000s, is the reduction of the
dispersion [13]. Let us focus our attention on the glide and
non-glide periodic corrugations illustrated in Fig. 2(a). Their
dispersion diagrams are illustrated in Fig. 3, computed with
both the mode matching technique (as derived in [50]) and the
multimode analysis (see dimensions in the caption of Fig. 3).
It is worth noting that for a fair comparison with the case of
glide symmetry, the conventional unit cell has the double of
its periodicity. The glide-symmetric corrugations have a lower
slope for the first mode, which means a higher equivalent
refractive index. Additionally, the first two modes are also
more linear for the glide-symmetric case, which means that its
response is less dispersive. The dispersion behaviour of 1-D
structures has been reported in the literature for corrugated
structures [8], [50], [54], co-planar technology [55], [56],
planar bifilar lines [57], acoustic waves [58], and corrugated
waveguides [59].

VOLUME 1, NO. 1, JANUARY 2021



IEEE Journal of

@ Microwaves

MHz to THz Community

Frequency (GHz)

Frequency (GHz)

FIGURE 4. Dispersion diagram for the first mode, calculated with the
multimode analysis (colors) and mode matching (markers), propagating in
the holey periodic structures represented in Fig. 2(b) with dimensions
Px=py=3mm, h=15mm,a=>b=2.25mm, g=0.3mm.

(a) Glide-symmetric configuration. (b) Mirrored configuration.

In 1-D waveguides or transmission lines, the ability to
modify the propagation constant is not especially interesting.
Only when these waveguides are used to produce leaky-wave
antennas, this propagation constant turns out to be important
since it determines the angle of radiation. On the contrary, the
control of the propagation constant (or equivalent refractive
index) in 2-D configurations is crucial for the design of
metasurfaces and lenses.

In Fig. 4, we represent the phase shifts for the first mode
propagating in the 2-D glide-symmetric and conventional pe-
riodic structures illustrated in Fig. 2(b), with the dimensions
indicated in the caption of Fig. 4. Again, the results are ob-
tained with the multimode transfer-matrix analysis and the
mode matching method (this latter method as derived in [19]).
With these graphs, we demonstrate that glide symmetry does
not only increase the equivalent refractive index, but it also
reduces the spatial dispersion of the first mode. This effect can
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be visualized with the white lines, which are iso-frequency
curves. These curves are more circular in the case of glide
symmetry, especially as the frequency increases. This phe-
nomenon was first reported in [13] and was later used for the
design of planar lenses [60]-[62]. More details about these
designs are provided in Section V.

B. ELECTROMAGNETIC BAND-GAP

The second main finding on glide-symmetric structures was
also first published in 2016 [63], and was related to the
bandwidth and attenuation of glide-symmetric electromag-
netic band gaps (EBGs). In particular, it was demonstrated
that glide-symmetric holes have significantly wider band-
width than conventional mirrored ones [15]. This discov-
ery opened the possibility of using holey periodic structures
for confining waves in parallel plates [16], [64], which was
not possible with conventional holes due to their limited
bandwidth [65].

As an example, in Fig. 5(a), we represent the irreducible
Brillouin zone for the configurations illustrated in Fig. 2(b),
calculated with the eigenmode solver of CST and multimode
transfer-matrix analysis. The dimensions for this simulation
are indicated in the caption of the figure. For these dimen-
sions, the glide-symmetric configuration has a full EBG from
less than 30 GHz up to almost 70 GHz. However, the conven-
tional periodic structure (highlighted with the red frame) does
not have a complete EBG along all propagation directions.
Detailed information about the bandwidth of glide-symmetric
holey periodic structures, and its dependence on the structural
parameters, can be found in [15].

In Fig. 5(b), the normalized attenuation constant is plotted
for the same dimensions (kg is the free-space wavenumber).
In this case, the eigenmode solver of CST cannot provide the
attenuation constant, so only the results from the multimode
analysis are represented. This graph illustrates the minimum
attenuation levels at any direction, demonstrating the advan-
tage of using glide symmetry in this specific configuration.
More information about the dependence of the structural pa-
rameters on the attenuation of glide-symmetric holey periodic
structures can be found in [66]. The application of these EBGs
for some specific designs, such as gap waveguides, filter and
flanges, is discussed in Section V.

C. ANISOTROPY

More recently, it has been demonstrated that glide symme-
try can also be employed to increase the level of anisotropy
(on-axis) of periodic structures. In particular, this concept was
demonstrated for rectangular [19] and elliptical holes [52] in
a parallel plate, and in dielectric slabs with holey cladding on
top and bottom [17].

Here, we illustrate this phenomenology with the configura-
tions shown in Fig. 2(c), which is a parallel plate with rectan-
gular holes. In Fig. 6, we represent the dispersion diagram
of the first mode for glide and conventional configurations
with the dimensions indicated in the caption of the figure.
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FIGURE 5. Real and imaginary part of the wavenumber calculated with a
multimode analysis (lines) and CST eigenmode solver (markers) for the
holey periodic structures represented in Fig. 2(b) with dimensions
Px=py=4mm,h=1.5mm, a=b=3mm, and g=0.05mm.

(a) Irreducible Brillouin zone. (b) Normalized attenuation constant. The
colors of the lines are in correspondence with the colors of the frames in
the insets of panel (b).

These simulations were carried out with the mode matching
(as derived in [19]) and the multimode analysis. With these
graphs, it is demonstrated that glide symmetry produces more
stable elliptical contour lines for a larger range of frequencies.
Additionally, as demonstrated in [17], [52], glide symmetry
is able to produce higher refractive indices than conventional
unit cells. This is beneficial, for example, for compressing
the size of lenses with transformation optics, or for creating
optical illusions. Some of these examples will be discussed
further in Section V.

D. MAGNETIC RESPONSE

Finally, it has recently been discovered that glide symme-
try is able to increase the magnetic response of periodic
structures [18] while maintaining the values of permittivity
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FIGURE 6. Dispersion diagram for the first mode, calculated with the
multimode analysis (colors) and mode matching (markers), propagating in
the holey periodic structures represented in Fig. 2(c) with dimensions
Px=py=3mm, h=1.5mm, a=2.25mm, b =a/4 =0.5625mm, and

g = 0.3 mm. (a) Glide-symmetric configuration. (b) Mirrored

configuration.

nearly invariant. For example, in Fig. 7(a), we illustrate the
effective permittivity and permeability calculated for the rect-
angular holes shown in Fig. 2(c), with the same dimensions
considered in Section IV.A (Fig. 4). These permittivity and
permeability values were calculated with the method proposed
in [67], validated in [17], [18], [68] for glide-symmetric ho-
ley configurations covering a dielectric slab. Fig. 7(a) shows
that, while glide and mirrored configurations have the same
permittivity, their permeability differs, being higher in the
case of glide symmetry. This implies that in the case of glide
symmetry, both the impedance and effective refractive index
are higher, as illustrated in Fig. 7(b).

Generally, the ability to tune the magnetic response, while
maintaining the dielectric constant invariant, permits higher
variations of the impedance for a constant value of an equiv-
alent refractive index. This property is ideal for reducing the

VOLUME 1, NO. 1, JANUARY 2021



IEEE Journal of

@ Microwaves

MHz to THz Community

4r 72
’/

3 -

) L=
] kb
Q lide
~ 1t Hyys &

= = = [y, mirror
0 L L L L 1 L 1

0 5 10 15 20 25 30 35
Frequency (GHz)

4
€7, glide

—~ 3F . R
&= €, mirror
w L
-
Q
Mgl

0 1 1 L 1 1 1 ]

0 5 10 15 20 25 30 35
Frequency (GHz)

(@

n”, glide
- — —=n" mirror

3
—~25 =
& -
5y 2 - T
E isl TTTTTTTTTTT 2%, glide
- — =2z% mirror

1 1 1 L 1 1 1 ]
0 5 10 15 20 25 30 35

Frequency (GHz)
(®)

FIGURE 7. (a) Effective constitutive parameters and (b) effective refractive
index and impedance for the glide- and mirror-symmetric unit cells

in Fig. 2(b) with the same dimensions as those in Fig. 4: py = py = 3mm,
h=1.5mm, a=b=2.25mm, and g = 0.3 mm. The superscript x stands
for propagation along the x-direction. n* and z* are determined by 1,

and €%, which are associated with the magnetic field H, and the electrical

field E,, respectively.

reflections in lenses [18] and absorbers. Some of these cases
will be further discussed in Section V.

V. APPLICATIONS
In this section, we provide a review of recent cases of the suc-
cessful use of glide-symmetric periodic structures in practical
microwave devices.

A. GAP WAVEGUIDE COMPONENTS

Gap waveguide is a technology aimed at simplifying the
integration of circuits and antennas in the millimeter and
sub-millimeter wave range [69]. Its principle of operation is
simple. In a metallic parallel plate, modes can freely propa-
gate. However, if one of the layers is substituted by a PMC, no
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FIGURE 8. Examples of prototypes with glide-symmetric holes. (a) Mode
converter presented in [72]. (b) Leaky-wave antenna presented in [73].
(c) Flanges presented in [64]. (d) Filter presented in [74].

modes are allowed if the air gap between them is smaller than
a quarter-wavelength. Prof. Kildal proposed the use of metal-
lic pins to create such an artificial magnetic conductor [70].
This configuration creates an EBG, so no propagation is al-
lowed at any direction in this surface. Therefore, the waves
can be confined and directed as desired [71].

Pins may be difficult to implement at higher frequencies,
and holey structures are preferred. However, as explained
in Section IV.B, conventional holey periodic structures do
not produce sufficient bandgap and attenuation [65]. Glide
symmetry was recently proposed to overcome this limita-
tion, since it increases the bandwidth of operation and the
attenuation [16]. For example, in Fig. 8(a), we illustrate one
prototype of a mode converter designed in groove gap wave-
guide technology with glide-symmetric holes. More details
about this design can be found in [72]. A second example of
this technology can be found in Fig. 8(b), where we show a
leaky-wave antenna in groove gap waveguide technology [73].
The non-radiating side of this antenna is covered with glide-
symmetric holes to confine the electromagnetic signal inside
the waveguide, as proposed in [75].

In recent years, a number of prototypes of gap waveguide
components implemented with glide-symmetric holes have
been published in the literature, including phase shifters [76],
[77], filters [78] and antenna arrays [79]. This concept has
rapidly evolved, and some authors have proposed alternative
implementations based on glide symmetries. For example,
in [80] the authors proposed the use of a glide-symmetric mul-
tilayer configuration. As a final remark, the EBG properties of
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glide-symmetric metallic pins have also been investigated in
the literature [81], including their possible use in gap wave-
guide technology [82].

B. FLANGES

Since glide-symmetric holey structures provide broadband
EBG, one possible use is in waveguide flanges to interconnect
microwave devices. At high frequency, small air gaps due
to manufacturing imperfections may produce a considerable
amount of leakage. Therefore, the use of periodic structures,
such as metallic pins, was proposed in the literature [83].
Similar to metallic pins, glide-symmetric holes can also be
used to reduce the leakage [64], [84]. Fig. 8(c) shows the
prototype reported in [64] to prove this concept. This is of in-
terest for automated contactless measurement systems where
the device under test may be measured without the need of an
operator fixing the waveguide probes, resulting in significant
time saving in a production phase.

C. FILTERS
Another immediate use of periodic structures with stopbands
is filters. One common solution for wide band higher-order-
mode rejection is the waffle iron filter, which is based on
periodic metallic pins [85]. Again here, glide-symmetric holes
can possibly be used to replace the metallic pins and to pro-
duce filters [74], [86]. Fig. 8(d) illustrates a filter embedded
in a groove waveguide at K;-band, as proposed in [74]. This
solution, similar to the waffle iron, is fully metallic, which
is interesting for some applications such as multiband mi-
crowave devices onboard communication satellites.
Furthermore, glide symmetry has also been employed for
filtering purposes in planar technology [57], [87]. For ex-
ample, in [45] glide-symmetric mushrooms demonstrated to
provide a wider rejection bandwidth than conventional ones.
In [46], glide-symmetric split-ring resonators were employed
in substrate integrated waveguides to increase the bandwidth
of a passband filter operating below the cut-off frequency.

D. MATCHED LAYERS

The majority of the microwave components make use of di-
electric non-magnetic materials only, since they have lower
losses than magnetic ones. However, if the refractive indices
are produced from an equal combination of magnetic and
dielectric properties, the impedance remains invariant. There-
fore, high refractive indices can be achieved without the draw-
back of boundary reflections.

As explained in Section IV.D, glide symmetry is able to
increase the magnetic response of holey periodic structures.
Consequently, these holey periodic structures can be em-
ployed to produce homogeneous lenses with high effective
refractive index and almost no reflections at their borders. This
concept was proven in [18] for a 2-D hyperbolic lens.

The enhanced magnetic properties provided by glide sym-
metries can also be used to match the impedance of dielectric
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FIGURE 9. Impedance matching between parallel plates with different
heights using the glide-symmetric unit cell in Fig. 2(b) with dimensions:
g1 = 0.69mm, and g, = 0.3 mm. The holes replicate the same dimensions
as those in Fig. 4: py = p, =3mm, h = 1.5mm, and a = b = 2.25mm.

materials, as proposed in [18] in substrate integrated technol-
ogy. In Fig. 9, we demonstrate this concept by matching two
different heights in a parallel plate, with the introduction of
glide-symmetric holes in the thinner air gap (middle region).
Since the characteristic impedance of a parallel plate, Z, is
proportional to the intrinsic impedance of the material, n, and
the air gap height, g, (i.e., Z « ng [24]), a holey region with
an effective impedance Z.g ~ 2.3, as calculated in Fig. 7(b),
provides a good impedance matching from a height g| to a
height go = g1/2.3.

Another practical use of this concept was proposed in [73]
for a leaky-wave antenna in groove gap waveguide technol-
ogy. Reducing the side lobe levels of leaky-wave antennas is
possible by reducing their aperture efficiency with an adequate
control of the leakage constant, which is maximum at the cen-
ter and minimum at the borders [75]. In [73], it was demon-
strated that low levels of radiation, for an air gap compatible
with common manufacturing techniques, was possible thanks
to the use of glide symmetry. In this case, glide symmetry
was employed to increase the reflections with an artificial
modification of the equivalent impedance in the radiating
slit. The leaky-wave antenna proposed in [73] is illustrated
in Fig. 8(b).

E. LENSES

As explained in Section IV, glide symmetries offer some ad-
vantages for the propagating mode, such as low dispersion and
higher effective refractive index. These features are beneficial
for 2-D lenses. The first 2-D glide-symmetric configuration
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FIGURE 10. Prototypes of lenses implemented with glide symmetry.
(a) Fully metallic Luneburg lens antenna at K,-band presented in [60].
(b) Printed Maxwell fish eye lens presented in [91].

was proposed in [13], demonstrating its ability to produce a
Luneburg lens. In [60], a Luneburg lens antenna for 5G ter-
restrial communications at K,-band was designed with glide-
symmetric holes. Fig. 10(a) shows a photo of this design. The
benefits of glide symmetries are not limited to holey struc-
tures. For example, glide-symmetric metallic pins also present
advantages with respect to conventional pins, as demonstrated
in [61], [62], [88]. Similar benefits were demonstrated in pla-
nar technologies [89]-[91]. Fig. 10(b) shows a photograph of
the printed Maxwell fish-eye lens prototype proposed in [91].

Other implementations of lenses include the use of glide-
symmetric holes in dielectric materials [92], and artificial
materials created with dielectric slabs loaded with metallic
patches [93]-[96], demonstrating a superior level of effective
refractive index.

Furthermore, materials with an anisotropic response are
required to produce lens compression [97], [98] or optical
illusions [99]. In [17], elliptical glide-symmetric holes were
proposed to produce an enhanced anisotropic response in
the design of a planar compressed Luneburg lens. Similarly,
in [52], elliptical holes in parallel plate configuration were
proposed to produce a compressed Maxwell fish-eye lens.
The electric field for the compressed lens proposed in [52]
is represented in Fig. 11.

F. LEAKY-WAVE ANTENNAS

Another research line that has benefited from the recent dis-
coveries on glide symmetries concerns leaky-wave antennas.
Due to the convergence of the first and second mode in the first
Brillouin zone, glide-symmetric periodic structures are useful
to produce backward radiation [100]. In a recent publica-
tion [101], glide symmetry was used to increase the scanning
abilities of a printed leaky-wave antenna.

Glide-symmetric holes, when loaded in the narrow slit be-
tween the upper and lower lateral walls of a groove-gap wave-
guide, have demonstrated to better control the leaky mode
than their non-glide counterparts [102]. These holes have also
been successfully employed for optimizing the side-lobe lev-
els of leaky-wave antennas [73], [102]. Furthermore, glide
symmetry has been recently proposed to design dispersive
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FIGURE 11. Normalized E; profiles of a compressed Maxwell fish-eye lens
based on glide-symmetric elliptical holes, as designed in [52], for
(a) 9 GHz, (b) 6 GHz, and (c) 3 GHz.

lenses that correct for the beam-squint of leaky-wave anten-
nas. Although this dispersive lens may be designed using
conventional periodic structures, alternative implementations
with glide-symmetric holes in [73] and pins in [103] have been
proposed in the literature. For example, it was demonstrated
in [73] that glide symmetries simplify the manufacturing of
the antenna, requiring fewer holes and with a larger diameter
for the same frequency band, thus reducing the manufacturing
costs. This antenna is illustrated in Fig. 8(b).

VI. CONCLUSION

We have introduced and explained the implications of using
glide symmetry in periodic structures for the design of mi-
crowave devices. The distinctive properties of glide symmetry
were demonstrated by the results obtained with two numerical
techniques: mode matching and multimode analysis. The dif-
ferences between glide and non-glide structures reside in the
coupling between sub-unit cells.

We have identified four important characteristics of glide
symmetry, which are low dispersion, wider band-gaps, and
higher levels of on-axis anisotropy and magnetic responses.
These properties have been used to produce practical mi-
crowave devices such as filters, gap waveguide components,
low-leakage flanges, compressed lenses or leaky-wave an-
tennas, as reported in the recent literature. It is anticipated
that additional properties and applications of glide-symmetric
periodic structures will be identified in the coming years as
research intensifies on this topic.
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