

Orlicz spaces associated to a quasi-Banach function space: applications to vector measures and interpolation

Ricardo del Campo¹ · Antonio Fernández² · Fernando Mayoral² · Francisco Naranjo²

Received: 20 September 2019 / Accepted: 5 June 2020 / Published online: 2 July 2020 © Universitat de Barcelona 2020

Abstract

The Orlicz spaces X^{Φ} associated to a quasi-Banach function space X are defined by replacing the role of the space L^1 by X in the classical construction of Orlicz spaces. Given a vector measure *m*, we can apply this construction to the spaces $L^1_w(m)$, $L^1(m)$ and $L^1(||m||)$ of integrable functions (in the weak, strong and Choquet sense, respectively) in order to obtain the known Orlicz spaces $L^{\Phi}_w(m)$ and $L^{\Phi}(m)$ and the new ones $L^{\Phi}(||m||)$. Therefore, we are providing a framework where dealing with different kind of Orlicz spaces in a unified way. Some applications to complex interpolation are also given.

Keywords Orlicz spaces \cdot Quasi-Banach function spaces \cdot Vector measures \cdot Complex interpolation

Mathematics Subject Classification 46E30 · 46G10

1 Introduction

The Banach lattice $L^1(m)$ of integrable functions with respect to a vector measure m (defined on a σ -algebra of sets and with values in a Banach space) has been systematically studied during the last 30 years and it has proved to be a efficient tool to describe the optimal domain of operators between Banach function spaces (see [18] and the references

Antonio Fernández afcarrion@us.es
Ricardo del Campo rcampo@us.es
Fernando Mayoral mayoral@us.es
Francisco Naranjo naranjo@us.es

¹ Dpto. Matemática Aplicada I, ETSIA, Universidad de Sevilla, Ctra. de Utrera km. 1, 41013 Sevilla, Spain

² Dpto. Matemática Aplicada II, ETSI, Universidad de Sevilla, Camino de los Descubrimientos, s/n, 41092 Sevilla, Spain therein). The Orlicz spaces $L^{\Phi}(m)$ and $L^{\Phi}_{w}(m)$ associated to m were introduced in [8] and they have recently shown in [5] their utility in order to characterize compactness in $L^{1}(m)$.

On the other hand, the quasi-Banach lattice $L^1(||m||)$ of integrable functions (in the Choquet sense) with respect to the semivariation of m was introduced in [9]. Some properties of this space and their corresponding $L^p(||m||)$ with p > 1 have been obtained, but in order to achieve compactness results in $L^1(||m||)$ we would need to dispose of certain Orlicz spaces related to $L^1(||m||)$.

In [10] some generalized Orlicz spaces X_{ϕ} have been obtained by replacing the role of the space L^1 by a Banach function space X in the classical construction of Orlicz spaces. Moreover, the spaces X they consider are allways supposed to possess the σ -Fatou property. However, these Orlicz spaces do not cover our situation since:

- the space $L^1(||m||)$ is only a quasi-Banach function space, and
- in most of the time $L^{1}(m)$ lacks the σ -Fatou property.

Thus, the purpose of this work is to provide a construction of certain Orlicz spaces X^{Φ} valid for the case of X being an arbitrary quasi-Banach function space (in general without the σ -Fatou property), with the underlying idea that it can be applied simultaneously to the spaces $L^1(||m||)$ and $L^1(m)$ among others. In a subsequent paper [6] we shall employ these Orlicz spaces $L^1(||m||)^{\Phi}$ and their main properties here derived in order to study compactness in $L^1(||m||)$.

The organization of the paper goes as follows: Section 2 contains the preliminaries which we will need later. Section 3 contains a discussion of completeness in the quasi-normed context without any additional hypothesis on σ -Fatou property. Section 4 is devoted to introduce the Orlicz spaces X^{Φ} associated to a quasi-Banach function space X and obtain their main properties. In Sect. 5, we show that the construction of the previous section allows to capture the Orlicz spaces associated to a vector measure and we take advantage of its generality to introduce the Orlicz spaces associated to its semivariation. Finally, in Sect. 6 we present some applications of this theory to compute their complex interpolation spaces.

2 Preliminaries

Throughout this paper, we shall always assume that Ω is a nonempty set, Σ is a σ -algebra of subsets of Ω , μ is a finite positive measure defined on Σ and $L^0(\mu)$ is the space of (μ -a.e. equivalence classes of) measurable functions $f: \Omega \to \mathbb{R}$ equipped with the topology of convergence in measure.

Recall that a *quasi-normed space* is any real vector space X equipped with a *quasinorm*, that is, a function $\|\cdot\|_X : X \to [0, \infty)$ which satisfies the following axioms:

(Q1) $||x||_{x} = 0$ if and only if x = 0.

(Q2) $\|\alpha x\|_X = |\alpha| \|x\|_X$, for $\alpha \in \mathbb{R}$ and $x \in X$. (Q3) There exists $K \ge 1$ such that $\|x_1 + x_2\|_X \le K(\|x_1\|_X + \|x_2\|_X)$, for all $x_1, x_2 \in X$.

The constant K in (Q3) is called a quasi-triangle constant of X. Of course if we can take K = 1, then $\|\cdot\|_X$ is a norm and X is a normed space. A quasi-normed function space over μ is any quasi-normed space X satisfying the following properties:

- (a) X is an ideal in $L^0(\mu)$ and a quasi-normed lattice with respect to the μ -a.e. order, that is, if $f \in L^0(\mu), g \in X$ and $|f| \le |g| \mu$ -a.e., then $f \in X$ and $||f||_X \le ||g||_X$.
- (b) The characteristic function of Ω , χ_{Ω} , belongs to *X*.

If, in addition, the quasi-norm $\|\cdot\|_X$ happens to be a norm, then X is called a *normed function space*. Note that, with this definition, any quasi-normed function space over μ is continuously embedded into $L^0(\mu)$, as it is proved in [18, Proposition 2.2].

Remark 1 Many of the results that we will present in this paper are true if we assume that the measure space (Ω, Σ, μ) is σ -finite. In this case, the previous condition (b) must be replaced by

(b') The characteristic functions χ_A belong to X for all $A \in \Sigma$ such that $\mu(A) < \infty$.

Nevertheless we prefer to present the results in the finite case for clarity and simplicity in the proofs.

We say that a quasi-normed function space X has the σ -Fatou property if for any positive increasing sequence $(f_n)_n$ in X with $\sup \|f_n\|_X < \infty$ and converging pointwise μ -a.e. to a function f, then $f \in X$ and $\|f\|_X = \sup_n \|f_n\|_X$. And a quasi-normed function space X is said to be σ -order continuous if for any positive increasing sequence $(f_n)_n$ in X converging pointwise μ -a.e. to a function $f \in X$, then $\|f - f_n\|_X \to 0$.

A complete quasi-normed function space is called a *quasi-Banach function space* (briefly q-B.f.s.). If, in addition, the quasi-norm happens to be a norm, then X is called a *Banach function space* (briefly B.f.s.). It is known that if a quasi-normed function space has the σ -Fatou property, then it is complete and hence a q-B.f.s. (see [18, Proposition 2.35]) and that inclusions between q-B.f.s. are automatically continuous (see [18, Lemma 2.7]).

Given a countably additive vector measure $m : \Sigma \to Y$ with values in a real Banach space Y, there are several ways of constructing q-B.f.s. of integrable functions. Let us recall them briefly. The *semivariation* of m is the finite subadditive set function defined on Σ by

$$||m||(A) := \sup \{ |\langle m, y^* \rangle|(A) : y^* \in B_{Y^*} \},\$$

where $|\langle m, y^* \rangle|$ denotes the variation of the scalar measure $\langle m, y^* \rangle : \Sigma \to \mathbb{R}$ given by $\langle m, y^* \rangle (A) := \langle m(A), y^* \rangle$ for all $A \in \Sigma$, and B_{Y^*} is the unit ball of Y^* , the dual of Y. A set $A \in \Sigma$ is called *m*-null if ||m||(A) = 0. A measure $\mu := |\langle m, y^* \rangle|$, where $y^* \in B_{Y^*}$, that is equivalent to m (in the sense that $||m||(A) \to 0$ if and only if $\mu(A) \to 0$) is called a *Ryba-kov control measure* for m. Such a measure always exists (see [7, Theorem 2, p.268]). Let $L^0(m)$ be the space of (*m*-a.e. equivalence classes of) measurable functions $f : \Omega \to \mathbb{R}$. Thus, $L^0(m)$ and $L^0(\mu)$ are just the same whenever μ is a Rybakov control measure for m.

A measurable function $f : \Omega \to \mathbb{R}$ is called *weakly integrable* (with respect to *m*) if *f* is integrable with respect to $|\langle m, y^* \rangle|$ for all $y^* \in Y^*$. A weakly integrable function *f* is said to be *integrable* (with respect to *m*) if, for each $A \in \Sigma$ there exists an element (necessarily unique) $\int_A f \, dm \in Y$, satisfying

$$\left\langle \int_{A} f \, dm, y^* \right\rangle = \int_{A} f \, d\langle m, y^* \rangle, \quad y^* \in Y^*.$$

Given a measurable function $f : \Omega \to \mathbb{R}$, we shall also consider its distribution function (with respect to the semivariation of the vector measure *m*)

$$\|m\|_{f} : t \in [0, \infty) \to \|m\|_{f}(t) := \|m\|\left(\left[|f| > t\right]\right) \in [0, \infty),$$

where $[|f| > t] := \{w \in \Omega : |f(w)| > t\}$. This distribution function is bounded, non-increasing and right-continuous.

Let $L^1_w(m)$ be the space of all (*m*-a.e. equivalence classes of) weakly integrable functions, $L^1(m)$ the space of all (*m*-a.e. equivalence classes of) integrable functions and $L^1(||m||)$ the space of all (*m*-a.e. equivalence classes of) measurable functions *f* such that its distribution function $||m||_f$ is Lebesgue integrable in $(0, \infty)$. Letting μ be any Rybakov control measure for *m*, we have that $L^1_w(m)$ becomes a B.f.s. over μ with the σ -Fatou property when endowed with the norm

$$||f||_{L^{1}_{w}(m)} := \sup \left\{ \int_{\Omega} |f| \, d|\langle m, y^{*} \rangle| : y^{*} \in B_{Y^{*}} \right\}.$$

Moreover, $L^1(m)$ is a closed σ -order continuous ideal of $L^1_w(m)$. In fact, it is the closure of $\mathscr{S}(\Sigma)$, the space of simple functions supported on Σ . Thus, $L^1(m)$ is a σ -order continuous B.f.s. over μ endowed with same norm (see [18, Theorem 3.7] and [18, p.138])). It is worth noting that space $L^1(m)$ does not generally have the σ -Fatou property. In fact, if $L^1(m) \neq L^1_w(m)$, then $L^1(m)$ does not have the σ -Fatou property. See [2] for details.

On the other hand, $L^1(||m||)$ equipped with the quasi-norm

$$\|f\|_{L^1(\|m\|)} := \int_0^\infty \|m\|_f(t) \, dt.$$

is a q-B.f.s. over μ with the σ -Fatou property (see [4, Proposition 3.1]) and it is also σ -order continuous (see [4, Proposition 3.6]). We will denote by $L^{\infty}(m)$ the B.f.s. of all (*m*-a.e. equivalence classes of) essentially bounded functions equipped with the essential sup-norm.

3 Completeness of quasi-normed lattices

In this section we present several characterizations of completeness which will be needed later. We begin by recalling one of them valid for general quasi-normed spaces (see [10, Theorem 1.1]).

Theorem 1 Let X be a quasi-normed space with a quasi-triangle constant K. The following conditions are equivalent:

(i) X is complete.

(ii) For every sequence $(x_n)_n \subseteq X$ such that $\sum_{n=1}^{\infty} K^n ||x_n||_X < \infty$ we have $\sum_{n=1}^{\infty} x_n \in X$. In this case, the inequality $\left\|\sum_{n=1}^{\infty} x_n\right\|_X \le K \sum_{n=1}^{\infty} K^n ||x_n||_X$ holds.

The next result is a version of Amemiya's Theorem ([10, Theorem 2, p.290]) for quasinormed lattices.

Theorem 2 Let X be a quasi-normed lattice. The following conditions are equivalent:

- (i) X is complete.
- (ii) For any positive increasing Cauchy sequence $(x_n)_n$ in X there exists $\sup x_n \in X$.

Proof (i) \Rightarrow (ii) is evident because the limit of increasing convergent sequences in a quasinormed lattice is always its supremum.

(ii) \Rightarrow (i) Let $(x_n)_n$ be a positive increasing Cauchy sequence in X. It is sufficient to prove that $(x_n)_n$ is convergent in X for X being complete (see, for example [1, Theorem 16.1]). By hypothesis, there exists $x := \sup_n x_n \in X$. We have to prove that $(x_n)_n$ converges to x and for this it is enough the convergence of a subsequence of $(x_n)_n$. So, let us take a subsequence of $(x_n)_n$, that we still denote by $(x_n)_n$, such that $||x_{n+1} - x_n||_X \leq \frac{1}{K^n n^3}$, for all $n \in \mathbb{N}$ where K is a quasi-triangle constant of X. Thus, the sequence $y_n := \sum_{i=1}^n i(x_{i+1} - x_i)$ is positive, increasing and Cauchy. Indeed, given m > n, we have

$$\|y_m - y_n\|_X \le \sum_{i=n+1}^m iK^{i-n} \|x_{i+1} - x_i\|_X \le \frac{1}{K^n} \sum_{i=n+1}^m \frac{1}{i^2}.$$

Applying (ii) again, we deduce that there exists $y := \sup_{n} y_n \in X$. Moreover, given $n \in \mathbb{N}$, we have

$$n(x - x_n) = n\left(\sup_{m > n} x_{m+1} - x_n\right) = n \sup_{m > n} (x_{m+1} - x_n) = n \sup_{m > n} \sum_{i=n}^m (x_{i+1} - x_i) \le \sup_{m > n} y_n = y.$$

Therefore, $0 \le x - x_n \le \frac{1}{n}y$ and hence $||x - x_n||_X \le \frac{1}{n}||y||_X \to 0.$

Applying Theorem 2 to the sequence of partial sums of a given sequence, we see that completeness in quasi-normed lattices can still be characterized by a Riesz-Fischer type property.

Corollary 1 Let X be a quasi-normed lattice with a quasi-triangle constant K. The following conditions are equivalent:

(i) X is complete.

(ii) For every positive sequence $(x_n)_n \subseteq X$ such that $\sum_{n=1}^{\infty} K^n ||x_n||_X < \infty$ there exists $\sup_n \sum_{n=1}^n x_i \in X.$

4 Orlicz spaces X^{ϕ}

In this section we introduce the Orlicz spaces X^{Φ} associated to a quasi-Banach function space X and a Young function Φ and obtain their main properties.

Recall that a *Young function* is any function $\Phi : [0, \infty) \to [0, \infty)$ which is strictly increasing, continuous, convex, $\Phi(0) = 0$ and $\lim_{t \to \infty} \Phi(t) = \infty$. A Young function Φ satisfies the following useful inequalities (which we shall use without explicit mention) for all $t \ge 0$:

$$\begin{cases} \Phi(\alpha t) \le \alpha \, \Phi(t) & \text{if } 0 \le \alpha \le 1, \\ \Phi(\alpha t) \ge \alpha \, \Phi(t) & \text{if } \alpha \ge 1. \end{cases}$$

In particular, from the second of the previous inequalities it follows that for all $t_0 > 0$ there exists C > 0 such that $\Phi(t) \ge Ct$ for all $t \ge t_0$. For a given $t_0 > 0$, just take $C := \frac{\Phi(t_0)}{t_0} > 0$ and observe that $\Phi(t) = \Phi\left(t_0 \frac{t}{t_0}\right) \ge \frac{t}{t_0} \Phi(t_0) = Ct$ for all $t \ge t_0$.

Moreover, it is easy to prove using the convexity of $\boldsymbol{\Phi}$ that

$$\boldsymbol{\varPhi}\left(\sum_{n=1}^{N} t_n\right) \leq \sum_{n=1}^{N} \frac{1}{2^n \alpha^n} \boldsymbol{\varPhi}(2^n \alpha^n t_n) \tag{1}$$

for all $N \in \mathbb{N}$, $\alpha \ge 1$ and $t_1, \ldots, t_N \ge 0$.

A Young function Φ has the Δ_2 -property, written $\Phi \in \Delta_2$, if there exists a constant C > 1 such that $\Phi(2t) \leq C\Phi(t)$ for all $t \geq 0$. Equivalently, $\Phi \in \Delta_2$ if for any c > 1 there exists C > 1 such that $\Phi(ct) \leq C\Phi(t)$, for all $t \geq 0$.

Definition 1 Let Φ be a Young function. Given a quasi-normed function space X over μ , the corresponding (generalized) *Orlicz class* \widetilde{X}^{Φ} is defined as the following set of (μ -a.e. equivalence classes of) measurable functions:

$$\widetilde{X}^{\Phi} := \left\{ f \in L^0(\mu) : \Phi(|f|) \in X \right\}.$$

Proposition 1 Let Φ be a Young function and X be a quasi-normed function space over μ . Then, \widetilde{X}^{Φ} is a solid convex set in $L^{0}(\mu)$. Moreover, $\widetilde{X}^{\Phi} \subseteq X$.

Proof Let $f, g \in \widetilde{X}^{\Phi}$ and $0 \le \alpha \le 1$. According to the convexity and monotonicity properties of Φ we have $\Phi(|\alpha f + (1 - \alpha)g|) \le \alpha \Phi(|f|) + (1 - \alpha)\Phi(|g|) \in X$. The ideal property of X yields $\Phi(|\alpha f + (1 - \alpha)g|) \in X$ which means that $\alpha f + (1 - \alpha)g \in \widetilde{X}^{\Phi}$ and proves the convexity of \widetilde{X}^{Φ} . Clearly, \widetilde{X}^{Φ} is solid, since $|h| \le |f|$ implies that $\Phi(|h|) \le \Phi(|f|) \in X$, for any $h \in L^0(\mu)$. Moreover, since Φ is a convex function, there exists C > 0 such that $\Phi(t) \ge Ct$, for all t > 1. Thus, for all $f \in \widetilde{X}^{\Phi}$,

$$|f| = |f|\chi_{\left[|f|>1\right]} + |f|\chi_{\left[|f|\le1\right]} \le \frac{1}{C}\boldsymbol{\Phi}\left(|f|\chi_{\left[|f|>1\right]}\right) + \chi_{\Omega} \le \frac{1}{C}\boldsymbol{\Phi}(|f|) + \chi_{\Omega} \in X,$$

which gives $f \in X$.

Definition 2 Let Φ be a Young function. Given a quasi-normed function space X over μ , the corresponding (generalized) Orlicz space X^{Φ} is defined as the following set of (μ -a.e. equivalence classes of) measurable functions:

$$X^{\boldsymbol{\Phi}} := \left\{ f \in L^{0}(\mu) : \exists c > 0 : \frac{|f|}{c} \in \widetilde{X}^{\boldsymbol{\Phi}} \right\}.$$

Proposition 2 Let Φ be a Young function and X be a quasi-normed function space over μ . Then, X^{Φ} is a linear space, an ideal in $L^{0}(u)$ and $\widetilde{X}^{\Phi} \subset X^{\Phi} \subset X$.

Proof Let $f, g \in X^{\Phi}$ and $\alpha \in \mathbb{R}$. Then, there exist $c_1, c_2 > 0$ such that $\frac{|f|}{c_1}, \frac{|g|}{c_2} \in \widetilde{X}^{\Phi}$. Setting $c := \max\{c_1, c_2\}$ and using the convexity of \widetilde{X}^{Φ} we have

$$\frac{|f+g|}{2c} \le \frac{1}{2} \frac{|f|}{c} + \frac{1}{2} \frac{|g|}{c} \le \frac{1}{2} \frac{|f|}{c_1} + \frac{1}{2} \frac{|g|}{c_2} \in \widetilde{X}^{\Phi}$$

and hence $\frac{|f+g|}{2c} \in \widetilde{X}^{\Phi}$ since \widetilde{X}^{Φ} is solid, which proves that $f + g \in X^{\Phi}$. Note that this also implies that $nf \in X^{\Phi}$ for any $n \in \mathbb{N}$. Taking $n_0 \in \mathbb{N}$ such that $|\alpha| \le n_0$, it follows that there exists $c_0 > 0$ such that $\frac{|\alpha f|}{c_0} \le \frac{n_0 |f|}{c_0} \in \widetilde{X}^{\Phi}$, which yields $\frac{|\alpha f|}{c_0} \in \widetilde{X}^{\Phi}$ and so $\alpha f \in X^{\Phi}$. It is evident that $\widetilde{X}^{\Phi} \subseteq X^{\Phi}$ and X^{Φ} inherits the ideal property from \widetilde{X}^{Φ} , since $|h| \le |f|$ implies that $\frac{|h|}{c_1} \le \frac{|f|}{c_1} \in \widetilde{X}^{\Phi}$ for any $h \in L^0(\mu)$. Moreover, taking into account Proposition 1,

we have $\frac{|f|}{C} \in \widetilde{X}^{\Phi} \subseteq X$ and so $f \in X$ which proves that $X^{\Phi} \subseteq X$.

Definition 3 Let Φ be a Young function and X be a quasi-normed function space over μ . Given $f \in X^{\Phi}$, we define

$$\|f\|_{X^{\varPhi}} := \inf \left\{ k > 0 : \frac{|f|}{k} \in \widetilde{X}^{\varPhi} \text{ with } \left\| \varPhi\left(\frac{|f|}{k}\right) \right\|_{X} \le 1 \right\}.$$

The functional $\|\cdot\|_{X^{\Phi}}$ in X^{Φ} is called the Luxemburg quasi-norm.

Proposition 3 Let Φ be a Young function and X be a quasi-normed function space (respectively, normed function space) over μ . Then, $\|\cdot\|_{X^{\Phi}}$ is a quasi-norm (respectively, norm) in X^{Φ} . Moreover, X^{Φ} equipped with the Luxemburg quasi-norm, is a quasi-normed (respectively, normed) function space over μ .

Proof First, note that
$$\|\cdot\|_{X^{\Phi}} : X^{\Phi} \to [0, \infty)$$
. Given $f \in X^{\Phi}$, there exists $c > 0$ such that $\Phi\left(\frac{|f|}{c}\right) \in X$. Let $M := \left\| \Phi\left(\frac{|f|}{c}\right) \right\|_{X} < \infty$. On the one hand, if $M \le 1$ then

П

 $||f||_{X^{\Phi}} \leq c < \infty$. On the other hand, if M > 1 then $\Phi\left(\frac{|f|}{Mc}\right) \leq \frac{1}{M} \Phi\left(\frac{|f|}{c}\right) \in X$ and so $\left\| \boldsymbol{\Phi}\left(\frac{|f|}{Mc}\right) \right\|_{L^{\infty}} \leq \frac{1}{M} \left\| \boldsymbol{\Phi}\left(\frac{|f|}{c}\right) \right\| = 1, \text{ which implies that } \|f\|_{X^{\Phi}} \leq Mc < \infty.$ If f = 0, then $\left\| \boldsymbol{\Phi} \left(\frac{|f|}{c} \right) \right\|_{x^{\Phi}} = 0 \le 1$ for all c > 0 and so $\|f\|_{x^{\Phi}} = 0$. Now, suppose that $||f||_{X^{\Phi}} = 0$ and that $\mu([f \neq 0]) > 0$, that is, $\left\| \Phi\left(\frac{|f|}{c}\right) \right\|_{X} \le 1$ for all c > 0 and there exist $\varepsilon > 0$ and $A \in \Sigma$ such that $\mu(A) > 0$ and $|f|\chi_A \ge \varepsilon \chi_A$. Given c > 0, we have $\Phi\left(\frac{\varepsilon}{c}\right)\chi_A \le \Phi\left(\frac{|f|\chi_A}{c}\right) \le \Phi\left(\frac{|f|}{c}\right)$. Therefore, $\left\| \boldsymbol{\Phi}\left(\frac{|f|}{c}\right) \right\|_{Y} \geq \left\| \boldsymbol{\Phi}\left(\frac{\varepsilon}{c}\right) \boldsymbol{\chi}_{A} \right\|_{Y} = \boldsymbol{\Phi}\left(\frac{\varepsilon}{c}\right) \| \boldsymbol{\chi}_{A} \|_{X}$

and keeping in mind that $\lim_{t \to \infty} \Phi(t) = \infty$, we can take c > 0 such that

$$\boldsymbol{\varPhi}\left(\frac{\varepsilon}{c}\right) \|\boldsymbol{\chi}_A\|_X > 1$$

which yields a contradiction.

On the other hand, given $f \in X^{\Phi}$ and $\lambda \in \mathbb{R}$, it is clear that

$$\begin{split} \|\lambda f\|_{X^{\varPhi}} &= \inf\left\{k > 0 : \left\|\varPhi\left(\frac{|\lambda f|}{k}\right)\right\|_{X} \le 1\right\} = \inf\left\{k > 0 : \left\|\varPhi\left(\frac{|f|}{\frac{k}{|\lambda|}}\right)\right\|_{X} \le 1\right\} \\ &= |\lambda| \inf\left\{\frac{k}{|\lambda|} > 0 : \left\|\varPhi\left(\frac{|f|}{\frac{k}{|\lambda|}}\right)\right\|_{X} \le 1\right\} = |\lambda| \|f\|_{X^{\varPhi}}. \end{split}$$

Now, let $f, g \in X^{\Phi}$ and take $K \ge 1$ as in (Q3). Given a, b > 0 such that $\left\| \Phi\left(\frac{|f|}{a}\right) \right\| \le 1$

and
$$\left\| \Phi\left(\frac{b}{b}\right) \right\|_{X} \leq 1$$
, we have

$$\Phi\left(\frac{|f+g|}{K(a+b)}\right) \leq \frac{1}{K} \Phi\left(\frac{|f+g|}{a+b}\right) \leq \frac{1}{K} \Phi\left(\frac{a}{(a+b)}\frac{|f|}{a} + \frac{b}{(a+b)}\frac{|g|}{b}\right)$$

$$\leq \frac{1}{K} \frac{a}{(a+b)} \Phi\left(\frac{|f|}{a}\right) + \frac{1}{K} \frac{b}{(a+b)} \Phi\left(\frac{|g|}{b}\right).$$

Hence,

which

 $\left\| \Phi\left(\frac{|y|+g|}{K(a+b)}\right) \right\|_{X} \le \frac{a}{(a+b)} \left\| \Phi\left(\frac{|y|}{a}\right) \right\|_{X} + \frac{\nu}{(a+b)} \left\| \Phi\left(\frac{|b|}{b}\right) \right\|_{X} \le 1$ implies that $||f + g||_{X^{\phi}} \leq K(a + b)$. By the arbitrariness of a and b we deduce that $\|f + g\|_{X^{\phi}} \le K(\|f\|_{X^{\phi}} + \|g\|_{X^{\phi}}).$

Thus, we have proved that $\|\cdot\|_{X^{\Phi}}$ is a quasi-norm in X^{Φ} with the same quasi-triangle constant as the one of the quasi-norm of X. Moreover, we have already proved that X^{Φ} equipped with the Luxemburg quasi-norm is a quasi-normed space and an ideal in $L^0(\mu)$. It is also clear that the Luxemburg quasi-norm is a lattice quasi-norm: $|f| \leq |g|$ implies that

 $\Phi\left(\frac{|f|}{k}\right) \le \Phi\left(\frac{|g|}{k}\right)$ for all k > 0 and this guarantees that $||f||_{X^{\Phi}} \le ||g||_{X^{\Phi}}$. In addition, $\chi_{\Omega} \in X^{\Phi}$, since $\Phi\left(\frac{|\chi_{\Omega}|}{c}\right) = \Phi\left(\frac{1}{c}\right)\chi_{\Omega} \in X$, for all c > 0, and hence X^{Φ} is in fact a quasinormed function space.

Remark 2 The inclusion of $X^{\Phi} \subseteq X$ is continuous provided X and X^{Φ} be q-B.f.s. We will see in Theorem 3 that the completeness is transferred from X to X^{Φ} .

Once we have checked that X^{Φ} is quasi-normed function space, it is immediate that $L^{\infty}(\mu)$ is contained in X^{Φ} and this inclusion is continuous with norm $\|\chi_{O}\|_{X^{\Phi}}$. The next result establishes the relation between the norm of this inclusion and the norm $\|\chi_{\Omega}\|_{X}$ of the continuous inclusion of $L^{\infty}(\mu)$ into X.

Lemma 1 Let $\boldsymbol{\Phi}$ be a Young function and X be a quasi-normed function space over $\boldsymbol{\mu}$.

(i) For all $A \in \Sigma$ with $\mu(A) > 0$, $\|\chi_A\|_{X^{\Phi}} = \frac{1}{\boldsymbol{\Phi}^{-1}\left(\frac{1}{\|\chi_A\|_X}\right)}$. $\|f\|_{L^{\infty}(\mu)}$

(ii) For all
$$f \in L^{\infty}(\mu)$$
, $||f||_{X^{\Phi}} \leq \frac{\|f\|_{L^{\infty}(\mu)}}{\Phi^{-1}\left(\frac{1}{\|\chi_{\sigma}\|_{Y}}\right)}$

Proof (i) Write $\alpha := \frac{1}{\boldsymbol{\Phi}^{-1}\left(\frac{1}{\|\boldsymbol{\mu}_{\boldsymbol{\mu}}\|}\right)}$. On the one hand, $\left\|\boldsymbol{\varPhi}\left(\frac{|\boldsymbol{\chi}_A|}{\alpha}\right)\right\|_{\boldsymbol{\chi}} = \boldsymbol{\varPhi}\left(\frac{1}{\alpha}\right) \|\boldsymbol{\chi}_A\|_{\boldsymbol{\chi}} = \boldsymbol{\varPhi}\left(\boldsymbol{\varPhi}^{-1}\left(\frac{1}{\|\boldsymbol{\chi}_A\|_{\boldsymbol{\chi}}}\right)\right) \|\boldsymbol{\chi}_A\|_{\boldsymbol{\chi}} = 1,$

and so $\|\chi_A\|_{X^{\Phi}} \leq \alpha$. On the other hand, given k > 0 such that $\frac{\chi_A}{k} \in \widetilde{X}^{\Phi}$ with $\left\| \Phi\left(\frac{\chi_A}{k}\right) \right\|_X \leq 1$, we have $\Phi\left(\frac{1}{k}\right) \|\chi_A\|_X \leq 1$, that is, $\Phi\left(\frac{1}{k}\right) \leq \frac{1}{\|\chi_A\|_X}$ or, equivalently, $\frac{1}{k} \leq \Phi^{-1} \left(\frac{1}{\|\chi_A\|_{Y}} \right), \text{ which finally leads to } \alpha \leq k \text{ and so } \alpha \leq \|\chi_A\|_{X^{\Phi}}.$ (ii) Since $|f| \leq ||f||_{L^{\infty}(\mu)} \chi_{\Omega}$, for any $f \in L^{\infty}(\mu)$, we have $||f||_{X^{\phi}} \leq ||f||_{L^{\infty}(\mu)} ||\chi_{\Omega}||_{X^{\phi}}$ and

the result follows applying (i) to χ_{Ω} .

The following two results explore the close relationship between the quantities $||f||_{X^{\Phi}}$ and $\|\Phi(|f|)\|_X$. This entails interesting consequences on boundedness in X^{Φ} , allowing us to obtain a sufficient condition and a necessary condition for it.

Lemma 2 Let Φ be a Young function, X be a quasi-normed function space over μ and $H \subset L^0(\mu).$

- (i) If f ∈ X̃^Φ, then ||f||_{X^Φ} ≤ max{1, ||Φ(|f|)||_X}.
 (ii) If {Φ(|h|) : h ∈ H} is bounded in X, then H is bounded in X^Φ.

Proof (i) On the one hand, $\|\Phi(|f|)\|_X \leq 1$ directly implies that

$$||f||_{X^{\Phi}} \le 1 = \max\{1, ||\boldsymbol{\Phi}(|f|)||_{X}\}$$

On the other hand, if $\|\boldsymbol{\Phi}(|f|)\|_X \ge 1$, then $\boldsymbol{\Phi}\left(\frac{|f|}{\|\boldsymbol{\Phi}(|f|)\|_X}\right) \le \frac{1}{\|\boldsymbol{\Phi}(|f|)\|_X} \boldsymbol{\Phi}(|f|) \in X$ and hence $\boldsymbol{\Phi}\left(\frac{|f|}{\|\boldsymbol{\Phi}(|f|)\|_X}\right) \in X$ with $\|\boldsymbol{\Phi}\left(\frac{|f|}{\|\boldsymbol{\Phi}(|f|)\|_X}\right)\|_X \le 1$. This also leads to $\|f\|_{X^{\Phi}} \le \|\Phi(|f|)\|_{X} = \max\{1, \|\Phi(|f|)\|_{X}\}$

(ii) If $\|\Phi(|h|)\|_X \le M < \infty$, for all $h \in H$, according to (i) we have that $||h||_{X^{\Phi}} \le \max\{1, ||\Phi(|h|)||_X\} \le \max\{1, M\} < \infty$, for all $h \in H$. П

Lemma 3 Let Φ be a Young function, X be a quasi-normed function space over μ and $f \in X^{\Phi}$.

- (i) If $||f||_{X^{\Phi}} < 1$, then $f \in \widetilde{X}^{\Phi}$ with $||\Phi(|f|)||_{X} \le ||f||_{X^{\Phi}}$. (ii) If $||f||_{X^{\Phi}} > 1$ and $f \in \widetilde{X}^{\Phi}$, then $||\Phi(|f|)||_{X} \ge ||f||_{X^{\Phi}}$.
- (iii) If $H \subseteq X^{\Phi}$ is bounded, then there exists a Young function Ψ such that the set $\{\Psi(|h|): h \in H\}$ is bounded in X.

Proof (i) Given
$$0 < k < 1$$
 such that $\frac{|f|}{k} \in \widetilde{X}^{\Phi}$ with $\left\| \Phi\left(\frac{|f|}{k}\right) \right\|_{X} \le 1$, we have $\Phi(|f|) = \Phi\left(k\frac{|f|}{k}\right) \le k \Phi\left(\frac{|f|}{k}\right) \in X.$

Therefore, $\Phi(|f|) \in X$ with $\|\Phi(|f|)\|_X \le k \left\|\Phi\left(\frac{|f|}{k}\right)\right\|_X \le k$ and keeping in mind that $||f||_{X^{\Phi}} < 1$, we obtain

$$\|\boldsymbol{\Phi}(|f|)\|_{X} \le \inf\left\{0 < k < 1 : \frac{|f|}{k} \in \widetilde{X}^{\boldsymbol{\Phi}} \text{ with } \left\|\boldsymbol{\Phi}\left(\frac{|f|}{k}\right)\right\|_{X} \le 1\right\} = \|f\|_{X^{\boldsymbol{\Phi}}}.$$

(ii) Let $0 < \varepsilon < \|f\|_{X^{\Phi}} - 1$ and observe that $\left\| \Phi\left(\frac{\|f\|}{\|f\|_{X^{\Phi}} - \varepsilon}\right) \right\| > 1$. Thus, $\|\Phi(|f|)\|_{X} = \left\|\Phi\left((\|f\|_{X^{\phi}} - \varepsilon)\frac{|f|}{\|f\|_{Y^{\phi}} - \varepsilon}\right)\right\|_{X^{\phi}}$ $\geq \left(\|f\|_{X^{\phi}} - \varepsilon\right) \left\| \Phi\left(\frac{|f|}{\|f\|_{X^{\phi}} - \varepsilon}\right) \right\| \geq \|f\|_{X^{\phi}} - \varepsilon,$

and letting $\varepsilon \to 0$, it follows that $\| \boldsymbol{\Phi}(|f|) \|_{X} \ge \| f \|_{X^{\phi}}$.

(iii) Take M > 0 such that $||h||_{X^{\phi}} < M$, for all $h \in H$. Since $\left\|\frac{h}{M}\right\|_{Y^{\phi}} < 1$, for all $h \in H$, (i) guarantees that $\Phi\left(\frac{|h|}{M}\right) \in X$ with $\left\|\Phi\left(\frac{|h|}{M}\right)\right\|_{Y} \le \left\|\frac{h}{M}\right\|_{X^{\Phi}} < 1$, for all $h \in H$. Defining $\Psi(t) := \Phi\left(\frac{l}{M}\right)$, for all $t \ge 0$, we produce a Young function such that $\{\Psi(|h|) : h \in H\}$ is bounded in X. We are now in a position to establish the remarkable fact that Orlicz spaces X^{Φ} are always complete for any q-B.f.s. X. It is worth pointing out that standard proofs in the Banach setting require the σ -Fatou property of X to obtain the σ -Fatou property of X^{Φ} (see the next Theorem 4) and as a byproduct, the completeness of this last space. However, as we have said before, there are many complete spaces without the σ -Fatou property, to which it is not possible to apply Theorem 4. Herein lies the importance of the result that we will show next about completeness of X^{Φ} .

Theorem 3 Let Φ a Young function and X be a q-B.f.s. over μ . Then, X^{Φ} is complete (and hence it is a q-B.f.s. over μ).

Proof Let $(h_n)_n$ be a positive increasing Cauchy sequence in X^{Φ} and take $K \ge 1$ as in (Q3). Then, we can choose a subsequence of $(h_n)_n$, that we denote by $(f_n)_n$, such that $\|f_{n+1} - f_n\|_{X^{\Phi}} < \frac{1}{2^{2n}K^{2n}}$, for all $n \in \mathbb{N}$. Thus,

$$\|2^n K^n (f_{n+1} - f_n)\|_{X^{\Phi}} < \frac{1}{2^n K^n} < 1$$

for all $n \in \mathbb{N}$, and by Lemma 3 it follows that

$$\left\| \Phi \left(2^{n} K^{n} (f_{n+1} - f_{n}) \right) \right\|_{X} \leq \left\| 2^{n} K^{n} (f_{n+1} - f_{n}) \right\|_{X^{\Phi}} < \frac{1}{2^{n} K^{n}}, \quad n \in \mathbb{N}.$$

which proves that $\sum_{n=1}^{\infty} K^n \left\| \Phi \left(2^n K^n (f_{n+1} - f_n) \right) \right\|_X \le \sum_{n=1}^{\infty} \frac{1}{2^n} < \infty$. The completeness of X ensures that the function $f := \sum_{n=1}^{\infty} \Phi \left(2^n K^n (f_{n+1} - f_n) \right) \in X$, by Theorem 1. Note that $f \in L^0(\mu)$ and the convergence of that series is also μ -a.e., since X is continuously included in $L^0(\mu)$. Given $N \in \mathbb{N}$, let $g_N := \sum_{n=1}^{N} (f_{n+1} - f_n)$ and denote by $g := \sup_N g_N$ pointwise μ -a.e. Applying (1) with $\alpha := K$, it follows that for all $N \in \mathbb{N}$,

$$\begin{split} \boldsymbol{\varPhi}(g_N) &= \boldsymbol{\varPhi}\left(\sum_{n=1}^N (f_{n+1} - f_n)\right) \leq \sum_{n=1}^N \frac{1}{2^n K^n} \boldsymbol{\varPhi}\left(2^n K^n (f_{n+1} - f_n)\right) \\ &\leq \sum_{n=1}^N \boldsymbol{\varPhi}(2^n K^n (f_{n+1} - f_n)) \leq f \end{split}$$

Therefore, $0 \le g_N \le \Phi^{-1}(f) \in L^0(\mu)$ for all $N \in \mathbb{N}$ and so $g \in L^0(\mu)$ with $0 \le g \le \Phi^{-1}(f) \in X^{\Phi}$, which guarantees that $g \in X^{\Phi}$. But

$$f_{N+1} = \sum_{n=1}^{N} (f_{n+1} - f_n) + f_1 = g_N + f_1$$

for all $N \in \mathbb{N}$ and so there also exists $\sup f_n = g + f_1 \in X^{\Phi}$. Since $(f_n)_n$ is a subsequence of the original increasing sequence $(h_n)_n$, the supremum of the whole sequence must exists and be the same as the supremum of the subsequence. By applying Amemiya's Theorem 2 we conclude that X^{Φ} is complete.

If the q-B.f.s. X has the σ -Fatou property, then we can improve a little more our knowledge about X^{Φ} as the following proposition makes evident.

Theorem 4 Let Φ be a Young function and X be a q-B.f.s. over μ with the σ -Fatou property.

(i) If
$$0 \neq f \in X^{\Phi}$$
 then $\frac{|f|}{\|f\|_{X^{\Phi}}} \in \widetilde{X}^{\Phi}$ with $\left\| \Phi\left(\frac{|f|}{\|f\|_{X^{\Phi}}}\right) \right\|_{X} \le 1.$

- (ii) If $f \in X^{\Phi}$ with $||f||_{X^{\Phi}} \le 1$ then $f \in \widetilde{X}^{\Phi}$ with $||\Phi(|f|)||_{X}^{A} \le ||f||_{X^{\Phi}}$.
- (iii) X^{Φ} also has the σ -Fatou property.

Proof (i) Take a sequence $(k_n)_n$ such that $k_n \downarrow ||f||_{X^{\Phi}}$ and $\left\| \boldsymbol{\Phi}\left(\frac{|f|}{k_n}\right) \right\|_X \leq 1$, for all $n \in \mathbb{N}$. Then, $\frac{|f|}{k_n} \uparrow \frac{|f|}{||f||_{X^{\Phi}}}$ and so $\boldsymbol{\Phi}\left(\frac{|f|}{k_n}\right) \uparrow \boldsymbol{\Phi}\left(\frac{|f|}{||f||_{X^{\Phi}}}\right)$, since $\boldsymbol{\Phi}$ is continuous and increasing. The σ -Fatou property of X guarantees that $\boldsymbol{\Phi}\left(\frac{|f|}{||f||_{X^{\Phi}}}\right) \in X$ and $\left\| \boldsymbol{\Phi}\left(\frac{|f|}{||f||_{X^{\Phi}}}\right) \right\|_X = \sup_n \left\| \boldsymbol{\Phi}\left(\frac{|f|}{k_n}\right) \right\|_X \leq 1$.

(ii) According to (i) and the inequality

$$\boldsymbol{\Phi}(|f|) = \boldsymbol{\Phi}\left(\|f\|_{X^{\phi}} \frac{|f|}{\|f\|_{X^{\phi}}}\right) \le \|f\|_{X^{\phi}} \, \boldsymbol{\Phi}\left(\frac{|f|}{\|f\|_{X^{\phi}}}\right)$$

we deduce that $\boldsymbol{\Phi}(|f|) \in X$ and $\|\boldsymbol{\Phi}(|f|)\|_X \leq \|f\|_{X^{\phi}} \left\| \boldsymbol{\Phi}\left(\frac{|f|}{\|f\|_{X^{\phi}}}\right) \right\|_X \leq \|f\|_{X^{\phi}}.$ (iii) Let $(f_n)_n$ in X^{ϕ} with $0 \leq f_n \uparrow f$ μ -a.e. and $M := \sup_n \|f_n\|_{X^{\phi}} < \infty$. Then,

(iii) Let $(f_n)_n$ in X^{Φ} with $0 \le f_n \uparrow f$ μ -a.e. and $M := \sup_n \|f_n\|_{X^{\Phi}} < \infty$. Then, $\Phi\left(\frac{f_n}{M}\right) \uparrow \Phi\left(\frac{f}{M}\right) \mu$ -a.e. and $\left\|\frac{f_n}{M}\right\|_{X^{\Phi}} \le 1$ for all $n \in \mathbb{N}$. Applying (ii), we deduce that $\Phi\left(\frac{f_n}{M}\right) \in X$ with $\left\|\Phi\left(\frac{f_n}{M}\right)\right\|_X \le 1$ for all $n \in \mathbb{N}$ and using the σ -Fatou property of X, it follows that $\Phi\left(\frac{f}{M}\right) \in X$ with $\left\|\Phi\left(\frac{f}{M}\right)\right\|_X \le 1$ for all $n \in \mathbb{N}$ and using the σ -Fatou property of X, it $f \in X^{\Phi}$ with $\|f\|_{X^{\Phi}} \le M$ and we also have $M \le \|f\|_{X^{\Phi}}$, since $f_n \le f \in X^{\Phi}$. Thus, $\|f\|_{X^{\Phi}} = M$, which proves that X^{Φ} has the σ -Fatou property.

The relation between the Orlicz class and its corresponding Orlicz space is greatly simplified when the Young function has the Δ_2 -property. In addition, this has far-reaching consequences on convergence in X^{Φ} as we state in the next result.

Theorem 5 Let X be a quasi-normed function space over μ and $\Phi \in \Delta_2$.

- (i) The Orlicz space and the Orlicz class coincide: $X^{\Phi} = \widetilde{X}^{\Phi}$.
- (ii) $||f_n||_{X^{\Phi}} \to 0$ if and only if $||\Phi(|f_n|)||_X \to 0$, for all $(f_n)_n \subseteq X^{\Phi}$.
- (iii) If X is σ -order continuous, then X^{Φ} is also σ -order continuous.

Proof (i) Given $f \in X^{\Phi}$, there exists c > 0 such that $\Phi\left(\frac{|f|}{c}\right) \in X$. If $c \le 1$, then $\boldsymbol{\Phi}(|f|) = \boldsymbol{\Phi}\left(c \; \frac{|f|}{c}\right) \le c \; \boldsymbol{\Phi}\left(\frac{|f|}{c}\right) \in X,$

and if c > 1, then there exist C > 1 such that $\Phi(ct) \leq C\Phi(t)$ for all $t \geq 0$ by the Δ_2 -property of Φ . Therefore, $\Phi(|f|) = \Phi\left(c \frac{|f|}{c}\right) \le C \Phi\left(\frac{|f|}{c}\right) \in X$. In any case, it follows that $\Phi(|f|) \in X$, which means that $f \in \tilde{X}^{\Phi}$.

(ii) If $||f_n||_{X^{\Phi}} \to 0$, then $||\Phi(|f_n|)||_X \to 0$ as a consequence of Lemma 3 (i). Suppose now that $||f_n||_{X^{\Phi}}$ does not converges to 0. Then, there exists $\varepsilon > 0$ and a subsequence $(f_{n_k})_k$ of $(f_n)_n$ such that $||f_{n_k}||_{X^{\Phi}} > \varepsilon$ for all $k \in \mathbb{N}$. We can assume that $\varepsilon < 1$ and that $(f_{n_k})_k$ is the whole $(f_n)_n$ without loss of generality. Since $\Phi \in \Delta_2$ and $\frac{1}{\varepsilon} > 1$, there exist C > 1 such that $\boldsymbol{\varPhi}\left(\frac{|f_n|}{\varepsilon}\right) \leq C\boldsymbol{\varPhi}(|f_n|). \text{ By (i), we deduce that } \boldsymbol{\varPhi}\left(\frac{|f_n|}{\varepsilon}\right)^{\mathcal{E}} \in X \text{ and hence } \left\|\boldsymbol{\varPhi}\left(\frac{|f_n|}{\varepsilon}\right)\right\| > 1.$ Thus, $\|\boldsymbol{\Phi}(|f_n|)\|_X \ge \frac{1}{C} \left\|\boldsymbol{\Phi}\left(\frac{|f_n|}{\epsilon}\right)\right\|_X > \frac{1}{C} > 0$, which means that $\|\boldsymbol{\Phi}(|f_n|)\|_X$ does not con-

verges to 0.

(iii) Let $(f_n)_n$ and f in X^{Φ} such that $0 \le f_n \uparrow f \mu$ -a.e. Then, $\Phi(f - f_n) \downarrow 0 \mu$ -a.e. Since X is σ -order continuous, it follows that $\|\Phi(f-f_n)\|_X \to 0$ and by (ii) this implies that $||f - f_n||_{X^{\Phi}} \to 0$, which gives the σ -order continuity of X^{Φ} .

5 Application: Orlicz spaces associated to a vector measure

First of all observe that classical Orlicz spaces $L^{\Phi}(\mu)$ with respect to a positive finite measure μ are obtained applying the construction X^{Φ} of section 4 to the B.f.s. $X = L^{1}(\mu)$, that is, $L^{\Phi}(\mu) = L^{1}(\mu)^{\Phi}$ equipped with the norm $\|\cdot\|_{L^{\Phi}(\mu)} := \|\cdot\|_{L^{1}(\mu)^{\Phi}}$. Using these classical Orlicz spaces, the Orlicz spaces $L^{\Phi}_{w}(m)$ and $L^{\Phi}(m)$ with respect to a vector measure $m : \Sigma \to Y$ were introduced in [8] in the following way:

$$L^{\Phi}_{w}(m) := \left\{ f \in L^{0}(m) : f \in L^{\Phi}(|\langle m, y^* \rangle|), \ \forall \, y^* \in Y^* \right\},\$$

equipped with the norm

$$\|f\|_{L^{\Phi}_{\omega}(m)} := \sup \left\{ \|f\|_{L^{\Phi}(|\langle m, y^* \rangle|)} : y^* \in B_{Y^*} \right\},\$$

and $L^{\Phi}(m)$ is the closure of simple functions $\mathscr{S}(\Sigma)$ in $L^{\Phi}_{w}(m)$. The next result establishes that these Orlicz spaces $L^{\Phi}_{w}(m)$ and $L^{\Phi}(m)$ can be obtained as generalized Orlicz spaces X^{Φ} by taking X to be $L^1_w(m)$ and $L^1(m)$, respectively.

Proposition 4 Let Φ be a Young function and $m : \Sigma \to Y$ a vector measure.

- (i) $L^{\Phi}_{w}(m) = L^{1}_{w}(m)^{\Phi} \text{ and } \|f\|_{L^{\Phi}_{w}(m)} = \|f\|_{L^{1}_{w}(m)^{\Phi}}, \text{ for all } f \in L^{\Phi}_{w}(m).$ (ii) $L^{\Phi}(m) \subseteq L^{1}(m)^{\Phi} \text{ and if } \Phi \in \Delta_{2}, \text{ then } L^{\Phi}(m) = L^{1}(m)^{\Phi}.$

Proof (i) Suppose that $f \in L^1_w(m)^{\Phi}$ and let k > 0 such that $\Phi\left(\frac{|f|}{k}\right) \in L^1_w(m)$ with $\left\| \Phi\left(\frac{|f|}{k}\right) \right\|_{L^{1}(\mathbb{R}^{d})} \leq 1. \text{ Given } y^{*} \in B_{Y^{*}} \text{ we have } \Phi\left(\frac{|f|}{k}\right) \in L^{1}(|\langle m, y^{*} \rangle|) \text{ with }$ $\left\| \boldsymbol{\varPhi}\left(\frac{|f|}{k}\right) \right\|_{L^1((m_1,s))} \leq \left\| \boldsymbol{\varPhi}\left(\frac{|f|}{k}\right) \right\|_{L^1(m)} \leq 1.$

This implies that $f \in L^{\Phi}(|\langle m, y^* \rangle|)$ with $||f||_{L^{\Phi}(|\langle m, y^* \rangle|)} \leq k$. Hence, $f \in L^{\Phi}_w(m)$ with $\|f\|_{L^{\Phi}_{w}(m)} \le \|f\|_{L^{1}_{w}(m)^{\Phi}}.$

Reciprocally, suppose now that $f \in L^{\varPhi}_{w}(m)$, write $M := \|f\|_{L^{\varPhi}_{w}(m)}$ and let $y^* \in B_{Y^*}$. Since $f \in L^{\Phi}(|\langle m, y^* \rangle|)$ and $||f||_{L^{\Phi}(|\langle m, y^* \rangle|)} \leq M$, we have that $\frac{1}{M} \in L^{\Phi}(|\langle m, y^* \rangle|)$ with $\left\|\frac{f}{M}\right\|_{L^{\Phi}(|\langle m, y^*\rangle|)} \le 1. \text{ Applying Theorem 4 (ii) to the space } X = L^1(|\langle m, y^*\rangle|), \text{ it follows that}$ $\boldsymbol{\Phi}\left(\frac{|f|}{M}\right) \in L^1(|\langle m, y^*\rangle|) \text{ with } \left\|\boldsymbol{\Phi}\left(\frac{|f|}{M}\right)\right\|_{L^1(|\langle m, y^*\rangle|)} \leq \left\|\frac{f}{M}\right\|_{L^{\Phi}(|\langle m, y^*\rangle|)} \leq 1. \text{ Then, the arbi-}$ trariness of $y^* \in B_{Y^*}$ guarantees that $\Phi\left(\frac{|f|}{M}\right) \in L^1_w(m)$ with $\left\| \Phi\left(\frac{|f|}{M}\right) \right\|_{W^*} \le 1$ and hence

 $f \in L^1_w(m)^{\Phi}$ with $||f||_{L^1_w(m)^{\Phi}} \leq M$. (ii) Since $L^1(m)^{\Phi}$ is a B.f.s., simple functions $\mathscr{I}(\Sigma) \subseteq L^1(m)^{\Phi}$ and $L^1(m)^{\Phi}$ is a closed subspace of $L^1_w(m)^{\Phi}$. Thus, taking in account (i), we deduce that $L^{\Phi}(m) \subseteq L^1(m)^{\Phi}$. If in addition $\Phi \in \Delta_2$, we have

$$L^{1}(m)^{\Phi} = \{ f \in L^{0}(m) : \Phi(|f|) \in L^{1}(m) \} = L^{\Phi}(m),$$

where the first equality is due to Theorem 5 (i) applied to $X = L^{1}(m)$ and the second one can be found in [8, Proposition 4.4]. П

The Orlicz spaces $L^{\Phi}(m)$ have been recently employed in [5] to locate the compact subsets of $L^{1}(m)$. Motivated by the idea of studying compactness in $L^{1}(||m||)$ (see [6] for details), we introduce the Orlicz spaces $L^{\Phi}(||m||)$ as the Orlicz spaces X^{Φ} associated to the q-B.f.s. $X = L^{1}(||m||)$. For further reference, we collect together all the information that our general theory provide about these new Orlicz spaces.

Definition 4 Let Φ be a Young function and $m : \Sigma \to Y$ a vector measure. We define the Orlicz spaces associated to the semivariation of m as $L^{\Phi}(||m||) := L^{1}(||m||)^{\Phi}$ equipped with $||f||_{L^{\Phi}(||m||)} := ||f||_{L^{1}(||m||)^{\Phi}}$, for all $f \in L^{\Phi}(||m||)$.

Corollary 2 Let Φ be a Young function, $m : \Sigma \to Y$ a vector measure and μ any Rybakov control measure for m. Then,

- (i) $L^{\Phi}(||m||)$ is a q-B.f.s. over μ with the σ -Fatou property.
- (ii) If $\Phi \in \Delta_2$, then $L^{\Phi}(||m||)$ is σ -order continuous.
- $L^{\Phi}(||m||) \subseteq L^{1}(||m||)$ with continuous inclusion. (iii)

Proof Apply Theorems 3, 4 and 5 to the q-B.f.s $X = L^1(||m||)$. See also Proposition 2 and Remark 2. **Corollary 3** Let Φ be a Young function, $m : \Sigma \to Y$ a vector measure, $f \in L^{\Phi}(||m||)$ and $H \subseteq L^{0}(m)$.

- (i) If $\Phi(|f|) \in L^1(||m||)$, then $||f||_{L^{\Phi}(||m||)} \le \max\{1, ||\Phi(|f|)||_{L^1(||m||)}\}$.
- (ii) If $||f||_{L^{\Phi}(||m||)} \le 1$, then $\Phi(|f|) \in L^{1}(||m||)$ and $||\Phi(|f|)||_{L^{1}(||m||)} \le ||f||_{L^{\Phi}(||m||)}$.
- (iii) If $||f||_{L^{\Phi}(||m||)} > 1$ and $\Phi(|f|) \in L^{1}(||m||)$, then $||\Phi(|f|)||_{L^{1}(||m||)} \ge ||f||_{L^{\Phi}(||m||)}$.
- (iv) If $\{\Phi(|h|) : h \in H\}$ is bounded in $L^1(||m||)$, then H is bounded in $L^{\Phi}(||m||)$.
- (v) If H is bounded in $L^{\Phi}(||m||)$, then there exists a Young function Ψ such that $\{\Psi(|h|) : h \in H\}$ is bounded in $L^{1}(||m||)$.

Proof Particularize Lemmas 2 and 3 to $X = L^1(||m||)$. Note that, in fact, we can use (ii) of Theorem 4.

Corollary 4 Let $\Phi \in \Delta_2, m : \Sigma \to Y$ a vector measure and $(f_n)_n \subseteq L^{\Phi}(||m||)$.

- (i) $L^{\Phi}(||m||) = \{f \in L^{0}(m) : \Phi(|f|) \in L^{1}(||m||)\}.$
- (ii) $||f_n||_{L^{\Phi}(||m||)} \to 0$ if and only if $||\Phi(|f_n|)||_{L^1(||m||)} \to 0$.

Proof Apply Theorem 5 to the space $X = L^1(||m||)$.

6 Application: interpolation of Orlicz spaces

In this section all the q-B.f.s. will be supposed to be complex. This means that $L^0(\mu)$ will be assumed to be in fact the space of all (μ -a.e. equivalence classes of) \mathbb{C} -valued measurable functions on Ω . Recall that a complex q-B.f.s X over μ is the *complexification* of the real q-B.f.s. $X_{\mathbb{R}} := X \cap L^0_{\mathbb{R}}(\mu)$, where $L^0_{\mathbb{R}}(\mu)$ is the space of all (μ -a.e. equivalence classes of) \mathbb{R} -valued measurable functions on Ω (see [18, p.24] for more details) and this allows to extend all the real q-B.f.s. defined above to complex q-B.f.s. following a standard argument.

The complex method of interpolation, $[X_0, X_1]_{\theta}$ with $0 < \theta < 1$, for pairs (X_0, X_1) of quasi-Banach spaces was introduced in [10] as a natural extension of Calderón's original definition for Banach spaces. It relies on a theory of analytic functions with values in quasi-Banach spaces which was developed in [10] and [10]. It is important to note that there is no analogue of the Maximum Modulus Principle for general quasi-Banach spaces, but there is a wide subclass of quasi-Banach spaces called *analytically convex* (A-convex) in which that principle does hold. For a q-B.f.s. X it can be proved that analytical convexity is equivalent to *lattice convexity* (L-convexity), i.e., there exists $0 < \varepsilon < 1$ so that if $f \in X$ and $0 \le f_i \le f, i = 1, ..., n$, satisfy $\frac{f_1 + \cdots + f_n}{n} \ge (1 - \varepsilon)f$, then $\max_{1 \le i \le n} \|f_i\|_X \ge \varepsilon \|f_i\|_X$ (see [10, Theorem 4.4]). This is also equivalent to X be s-convex for some s > 0 (see [10, Theorem 2.2]). We recall that X is called s-convex if there exists $C \ge 1$ such that

$$\left\| \left(\sum_{k=1}^{n} |f_k|^s \right)^{\frac{1}{s}} \right\|_X \le C \left(\sum_{k=1}^{n} ||f_k||_X^s \right)^{\frac{1}{s}}$$

for all $n \in \mathbb{N}$ and $f_1, \ldots, f_n \in X$. Observe that, *X* is *s*-convex if and only if its *s*-th power $X_{[s]}$ is 1-convex, where the *s*-th power $X_{[s]}$ of a q-B.f.s. *X* over μ (for any $0 < s < \infty$) is the q-B.f.s. $X_{[s]} := \left\{ f \in L^0(\mu) : |f|^{\frac{1}{s}} \in X \right\}$ equipped with the quasi-norm $\|f\|_{X_{[s]}} = \left\| \|f\|^{\frac{1}{s}}_{s} \right\|_{X}^{s}$, for all $f \in X_{[s]}$ (see [18, Proposition 2.22]).

The following result provides a condition under which the L-convexity of X can be transferred to its Orlicz space X^{Φ} . When X possesses the σ -Fatou property, this can be derived from [10, Proposition 3.3], but we make apparent that this property can be dropped. Recall that a function ψ on the semiaxis $[0, \infty)$ is said to be *quasiconcave* if $\psi(0) = 0, \psi(t)$ is positive and increasing for t > 0 and $\frac{\psi(t)}{t}$ is decreasing for t > 0. Observe that a quasiconcave function ψ satisfies the following inequalities for all $t \ge 0$:

$$\begin{cases} \psi(\alpha t) \ge \alpha \psi(t) & \text{if } 0 \le \alpha \le 1, \\ \psi(\alpha t) \le \alpha \psi(t) & \text{if } \alpha \ge 1. \end{cases}$$

Theorem 6 If X is an L-convex q-B.f.s. and $\Phi \in \Delta_2$, then X^{Φ} is L-convex.

Proof Since $\Phi \in \Delta_2$, there exists s > 1 such that $\Phi(2t) \le s\Phi(t)$ for all $t \ge 0$. From the inequality

$$t\Phi'(t) \le \int_t^{2t} \Phi'(u) \, du \le \int_0^{2t} \Phi'(u) \, du = \Phi(2t) \le s\Phi(t), \ t > 0$$

it is easy to check that $\frac{\boldsymbol{\Phi}(t)}{t^s}$ is decreasing and then $\frac{\boldsymbol{\Phi}\left(t^{\frac{1}{s}}\right)}{t}$ so is. Therefore, the function $\psi(t) := \boldsymbol{\Phi}\left(t^{\frac{1}{s}}\right)$ is quasiconcave. Take $0 < \delta < 1$ such that $(1 - \delta)^s = 1 - \varepsilon$, where ε is the constant from the L-convexity of X. Let $f \in X^{\boldsymbol{\Phi}}$ and $0 \le f_i \le f$, i = 1, ..., n satisfying $\frac{f_1 + \dots + f_n}{n} \ge (1 - \delta)f$. We can also assume that $||f||_{X^{\boldsymbol{\Phi}}} = 1$ without loss of generality. Note that this implies $||\boldsymbol{\Phi}(f)||_X \ge 1$. If we suppose, on the contrary, that $||\boldsymbol{\Phi}(f)||_X < 1$ and we take 0 < k < 1 such that $||\boldsymbol{\Phi}(f)||_X < k^s < 1$, then

$$\left\|\boldsymbol{\varPhi}\left(\frac{f}{k}\right)\right\|_{X} = \left\|\boldsymbol{\psi}\left(\frac{f^{s}}{k^{s}}\right)\right\|_{X} \le \frac{1}{k^{s}} \|\boldsymbol{\psi}(f^{s})\|_{X} = \frac{1}{k^{s}} \|\boldsymbol{\varPhi}(f)\|_{X} < 1$$

and therefore $||f||_{X^{\phi}} < k < 1$. Moreover, we have $0 \le \Phi(f_i) \le \Phi(f) \in X$ and

$$\frac{\boldsymbol{\Phi}(f_1) + \dots + \boldsymbol{\Phi}(f_n)}{n} \ge \boldsymbol{\Phi}\left(\frac{f_1 + \dots + f_n}{n}\right) \ge \boldsymbol{\Phi}((1-\delta)f)$$
$$\ge (1-\delta)^s \boldsymbol{\psi}(f^s) = (1-\delta)^s \boldsymbol{\Phi}(f) = (1-\varepsilon)\boldsymbol{\Phi}(f).$$

Thus, the L-convexity of X implies that $\max_{1 \le i \le n} \| \boldsymbol{\Phi}(f_i) \|_X \ge \varepsilon \| \boldsymbol{\Phi}(f) \|_X \ge \varepsilon$ and hence $\max_{1 \le i \le n} \| f_i \|_{X^{\Phi}} \ge \varepsilon > \delta$ by (i) of Lemma 3.

The Calderón product $X_0^{1-\theta}X_1^{\theta}$ of two q-B.f.s. X_0 and X_1 over μ is the q-B.f.s. of all functions $f \in L^0(\mu)$ such that there exist $f_0 \in B_{X_0}$, $f_1 \in B_{X_1}$ and $\lambda > 0$ for which

$$|f(w)| \le \lambda |f_0(w)|^{1-\theta} |f_1(w)|^{\theta}, \quad w \in \Omega \ (\mu\text{-a.e.})$$

$$\tag{2}$$

endowed with the quasi-norm $\|f\|_{X_{\alpha}^{1-\theta}X_{\alpha}^{\theta}} = \inf \lambda$, where the infimum is taken over all λ satisfying (2). The complex method gives the result predicted by the Calderón product for nice pairs of q-B.f.s. (see [10, Theorem 3.4]).

Theorem 7 Let Ω be a Polish space and let μ be a finite Borel measure on Ω . Let X_0, X_1 be a pair of σ -order continuous L-convex q-B.f.s. over μ . Then $X_0 + X_1$ is L-convex and $[X_0, X_1]_{\theta} = X_0^{1-\theta} X_1^{\theta}$ with equivalence of quasi-norms.

On the other hand, it is easy to compute the Calderón product of two Orlicz spaces associated to the same q-B.f.s:

Proposition 5 Let X be a q-B.f.s. over μ , Φ_0 , Φ_1 Young functions, $0 < \theta < 1$ and Φ such that $\Phi^{-1} := (\Phi_0^{-1})^{1-\theta} (\Phi_1^{-1})^{\theta}$. Then $(X^{\Phi_0})^{1-\theta} (X^{\Phi_1})^{\theta} = X^{\Phi}$.

Proof Given $f \in X^{\Phi}$, there exists c > 0 such that $h := \Phi\left(\frac{|f|}{c}\right) \in X$ and hence $f_0 := \Phi_0^{-1}(h) \in X^{\Phi_0}$ and $f_1 := \Phi_1^{-1}(h) \in X^{\Phi_1}$. Taking $\alpha := \max\{\|f_0\|_{X^{\Phi_0}}, \|f_1\|_{X^{\Phi_1}}\}$, it follows that

$$|f| = c \, \boldsymbol{\Phi}^{-1}(h) = c \, (\boldsymbol{\Phi}_0^{-1}(h))^{1-\theta} (\boldsymbol{\Phi}_1^{-1}(h))^{\theta} = c |f_0|^{1-\theta} |f_1|^{\theta} \le c \alpha \left(\frac{f_0}{\alpha}\right)^{1-\theta} \left(\frac{f_1}{\alpha}\right)^{\theta},$$

which yields $f \in (X^{\Phi_0})^{1-\theta} (X^{\Phi_1})^{\theta}$. Conversely, if $f \in (X^{\Phi_0})^{1-\theta} (X^{\Phi_1})^{\theta}$, then there exist $\lambda > 0$, $f_0 \in X^{\Phi_0}$ and $f_1 \in X^{\Phi_1}$ such $f_1 \in X^{\Phi_1}$ that $|f| \leq \lambda |f_0|^{1-\theta} |f_1|^{\theta}$. This implies the existence of c > 0 such that $h_0 := \Phi_0\left(\frac{|f_0|}{c}\right) \in X$ and $h_1 := \Phi_1\left(\frac{|f_1|}{c}\right) \in X$. Thus, taking $h := h_0 + h_1 \in X$, we deduce that $|f| \le \lambda |f_0|^{1-\theta} |f_1|^{\theta} = \lambda c \left(\frac{|f_0|}{c}\right)^{1-\theta} \left(\frac{|f_1|}{c}\right)^{\theta} = \lambda c (\boldsymbol{\Phi}_0^{-1}(h_0))^{1-\theta} (\boldsymbol{\Phi}_1^{-1}(h_1))^{\theta}$ $\leq \lambda c (\boldsymbol{\Phi}_0^{-1}(h))^{1-\theta} (\boldsymbol{\Phi}_1^{-1}(h))^{\theta} = \lambda \boldsymbol{\Phi}^{-1}(h) \in X^{\boldsymbol{\Phi}},$

and hence $f \in X^{\Phi}$.

Combining the three previous results, we obtain conditions under which the complex method applied to Orlicz spaces associated to a q-B.f.s. over μ keeps on producing an Orlicz space associated to the same q-B.f.s.

Corollary 5 Let Ω be a Polish space and let μ be a finite Borel measure on Ω . Let X be an L-convex, σ -order continuous q-B.f.s. over μ , $\Phi_0, \Phi_1 \in \Delta_2, 0 < \theta < 1$ and Φ such that $\Phi^{-1} := (\Phi_0^{-1})^{1-\theta} (\Phi_1^{-1})^{\theta}$. Then, $[X^{\Phi_0}, X^{\Phi_1}]_{\theta} = X^{\Phi}$.

Proof According to Theorems 5 and 6, the hypotheses guarantee that X^{Φ_0} and X^{Φ_1} are *L*-convex, σ -order continuous q-B.f.s. Therefore, the result follows by applying Theorem 7 and Proposition 5.

Let us denote $L^{s}(||m||) := L^{1}(||m||)_{\left[\frac{1}{s}\right]}$, for $0 < s < \infty$ and $m : \Sigma \to Y$ a vector measure. In [4, Proposition 4.1] we proved that if s > 1, then $L^{s}(||m||)$ is *r*-convex for every r < s. In fact, this is true for all $0 < s < \infty$ because if $0 < s \le 1$ and r < s, then $\frac{s}{r} > 1$ and hence $L^{\frac{s}{r}}(||m||)$ is 1-convex, that is $L^{s}(||m||)_{[r]}$ is 1-convex, which is equivalent to $L^{s}(||m||)$ be *r*-convex. This means that $L^{s}(||m||)$ is *L*-convex for all $0 < s < \infty$. In particular, $L^{1}(||m||)$ is *L*-convex and we can apply Corollary 5 to it.

Corollary 6 Let Ω be a Polish space and let μ be a Borel measure which is a Rybakov control measure for m. Let $\Phi_0, \Phi_1 \in \Delta_2, 0 < \theta < 1$ and Φ such that $\Phi^{-1} := (\Phi_0^{-1})^{1-\theta} (\Phi_1^{-1})^{\theta}$. Then, $[L^{\Phi_0}(||m||), L^{\Phi_1}(||m||)]_{\theta} = L^{\Phi}(||m||)$.

For a similar result about complex interpolation of Orlicz type spaces $L^{\Phi}(m)$ and $L^{\Phi}_{w}(m)$ see [3, Corollary 4.2 and Theorem 4.5].

Note that, for p > 1, $\frac{1}{p}$ -th powers are an special case of Orlicz spaces, since $X_{\left[\frac{1}{p}\right]} = X^{\Phi_{[p]}}$, where $\Phi_{[p]}(t) = t^p$. If we particularize the previous Corollary to these powers, then we obtain the interpolation result below for $L^p(||m||)$ spaces. In fact, this result is valid for all $0 < p_0, p_1 < \infty$ due to the fact that the Calderón product *commutes* with powers for all indices.

Corollary 7 Let Ω be a Polish space and let μ be a Borel measure which is a Rybakov control measure for m. Let $0 < \theta < 1$ and $0 < p_0, p_1 < \infty$. Then $[L^{p_0}(||m||), L^{p_1}(||m||)]_{\theta} = L^p(||m||)$, where $\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}$.

Acknowledgements This research has been partially supported by La Junta de Andalucía (Spain) under the Grant FQM-133.

References

- 1. Aliprantis, C.D., Burkinshaw, O.: Locally Solid Riesz Spaces. Academic Press, London (1978)
- Curbera, G.P., Ricker, W.J.: Banach lattices with the Fatou property and optimal domains of kernel operators. Indag. Math. 17(2), 187–204 (2006)
- del Campo, R., Fernández, A., Mayoral, F., Manzano, A., Naranjo, F.: Complex interpolation of Orlicz spaces with respect to a vector measure. Math. Nachr. 287, 23–31 (2014)
- del Campo, R., Fernández, A., Mayoral, F., Naranjo, F.: Reflexivity of function spaces associated to a \$\sigma \$-finite vector measure. J. Math. Anal. Appl. 438, 339–350 (2016)
- del Campo, R., Fernández, A., Mayoral, F., Naranjo, F.: The de la Vallée–Poussin theorem and Orlicz spaces associated to a vector measure. J. Math. Anal. Appl. 470, 279–291 (2019)
- del Campo, R., Fernández, A., Mayoral, F., Naranjo, F.: Compactness in quasi-Banach function spaces with applications to L1 of the semivariation of a vector measure. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114(112) (2020). https://doi.org/10.1007/s13398-020-00840-4
- Diestel, J., Jr. Uhl, J.J.: Vector Measures, American Mathematical Society, Mathematical Surveys, 15, Providence R.I. (1977)
- Delgado, O.: Banach function subspaces of L1 of a vector measure and related Orlicz spaces. Indag. Math. 15(4), 485–495 (2004)

- Fernández, A., Mayoral, F., Naranjo, F.: Real interpolation method on spaces of scalar integrable functions with respect to vector measures. J. Math. Anal. Appl. 376(1), 203–211 (2011)
- Jain, P., Persson, L.E., Upreti, P.: Inequalities and properties of some generalized Orlicz classes and spaces. Acta Math. Hung. 117(1–2), 161–174 (2007)
- 11. Kalton, N.: Convexity conditions for non-locally convex lattices. Glasgow Math. J. 25, 141–152 (1984)
- 12. Kalton, N.: Analytic functions in non-locally convex spaces. Stud. Math. **83**, 275–303 (1986)
- 13. Kalton, N.: Plurisubharmonic functions on quasi-Banach spaces. Stud. Math. 84, 297–324 (1986)
- Kalton, N., Mitrea, M.: Stability results on interpolation scales of quasi-Banach spaces and applications. Trans. Am. Math. Soc. 350(10), 3903–3922 (1998)
- Kamińska, A., Maligranda, L., Persson, L.E.: Indices, convexity and concavity of Calderón–Lozanovskii spaces. Math. Scand. 92, 141–160 (2003)
- 16. Kantorovich, L.V., Akilov, G.P.: Functional Analysis. Pergamon Press, Oxford (1982)
- Maligranda, L.: Type, cotype and convexity properties of quasi-Banach spaces. In: Proceedings of the International Symposium on Banach and Function Spaces, pp. 83–120. Yokohama Publ, Yokohama (2004)
- Okada, S., Ricker, W.J., Sánchez Pérez, E.A.: Optimal domain and integral extension of operators acting in function spaces. In: Operator Theory: Advances and Applications, vol. 180. Birkhäuser Verlag, Basel (2008)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.