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Abstract
The Orlicz spaces X� associated to a quasi-Banach function space X are defined by replac-
ing the role of the space L1 by X in the classical construction of Orlicz spaces. Given a 
vector measure m,  we can apply this construction to the spaces L1

w
(m), L1(m) and L1(‖m‖) 

of integrable functions (in the weak, strong and Choquet sense, respectively) in order to 
obtain the known Orlicz spaces L�

w
(m) and L�(m) and the new ones L�(‖m‖). Therefore, 

we are providing a framework where dealing with different kind of Orlicz spaces in a uni-
fied way. Some applications to complex interpolation are also given.

Keywords Orlicz spaces · Quasi-Banach function spaces · Vector measures · Complex 
interpolation

Mathematics Subject Classification 46E30 · 46G10

1 Introduction

The Banach lattice L1(m) of integrable functions with respect to a vector measure m 
(defined on a �-algebra of sets and with values in a Banach space) has been systemati-
cally studied during the last 30 years and it has proved to be a efficient tool to describe the 
optimal domain of operators between Banach function spaces (see [18] and the references 
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therein). The Orlicz spaces L�(m) and L�
w
(m) associated to m were introduced in [8] and 

they have recently shown in [5] their utility in order to characterize compactness in L1(m).
On the other hand, the quasi-Banach lattice L1(‖m‖) of integrable functions (in the Cho-

quet sense) with respect to the semivariation of m was introduced in [9]. Some properties 
of this space and their corresponding Lp(‖m‖) with p > 1 have been obtained, but in order 
to achieve compactness results in L1(‖m‖) we would need to dispose of certain Orlicz 
spaces related to L1(‖m‖).

In [10] some generalized Orlicz spaces X
�

 have been obtained by replacing the role of 
the space L1 by a Banach function space X in the classical construction of Orlicz spaces. 
Moreover, the spaces X they consider are allways supposed to possess the �-Fatou property. 
However, these Orlicz spaces do not cover our situation since:

• the space L1(‖m‖) is only a quasi-Banach function space, and
• in most of the time L1(m) lacks the �-Fatou property.

Thus, the purpose of this work is to provide a construction of certain Orlicz spaces X� 
valid for the case of X being an arbitrary quasi-Banach function space (in general without 
the �-Fatou property), with the underlying idea that it can be applied simultaneously to the 
spaces L1(‖m‖) and L1(m) among others. In a subsequent paper [6] we shall employ these 
Orlicz spaces L1(‖m‖)� and their main properties here derived in order to study compact-
ness in L1(‖m‖).

The organization of the paper goes as follows: Section  2 contains the preliminaries 
which we will need later. Section 3 contains a discussion of completeness in the quasi-nor-
med context without any additional hypothesis on �-Fatou property. Section 4 is devoted to 
introduce the Orlicz spaces X� associated to a quasi-Banach function space X and obtain 
their main properties. In Sect.  5, we show that the construction of the previous section 
allows to capture the Orlicz spaces associated to a vector measure and we take advantage 
of its generality to introduce the Orlicz spaces associated to its semivariation. Finally, in 
Sect. 6 we present some applications of this theory to compute their complex interpolation 
spaces.

2  Preliminaries

Throughout this paper, we shall always assume that � is a nonempty set, � is a �-algebra 
of subsets of �, � is a finite positive measure defined on � and L0(�) is the space of ( �-a.e. 
equivalence classes of) measurable functions f ∶ � → ℝ equipped with the topology of 
convergence in measure.

Recall that a quasi-normed space is any real vector space X equipped with a quasi-
norm, that is, a function ‖ ⋅ ‖X ∶ X → [0,∞) which satisfies the following axioms: 

 (Q1) ‖x‖X = 0 if and only if x = 0.

 (Q2) ‖�x‖X = ���‖x‖X , for � ∈ ℝ and x ∈ X.

 (Q3) There exists K ≥ 1 such that ‖‖x1 + x2
‖
‖X ≤ K

(
‖
‖x1

‖
‖X + ‖

‖x2
‖
‖X

)
, for all x1, x2 ∈ X.

The constant K in (Q3) is called a quasi-triangle constant of X. Of course if we can take 
K = 1, then ‖ ⋅ ‖X is a norm and X is a normed space. A quasi-normed function space over 
� is any quasi-normed space X satisfying the following properties: 
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(a) X is an ideal in L0(�) and a quasi-normed lattice with respect to the �-a.e. order, that 
is, if f ∈ L0(�), g ∈ X and |f | ≤ |g| �-a.e., then f ∈ X and ‖f‖X ≤ ‖g‖X .

(b) The characteristic function of �, �
�
, belongs to X.

If, in addition, the quasi-norm ‖ ⋅ ‖X happens to be a norm, then X is called a normed 
function space. Note that, with this definition, any quasi-normed function space over � 
is continuously embedded into L0(�), as it is proved in [18, Proposition 2.2].

Remark 1 Many of the results that we will present in this paper are true if we assume that 
the measure space (�,�,�) is �-finite. In this case, the previous condition (b) must be 
replaced by 

 (b’) The characteristic functions �A belong to X for all A ∈ � such that 𝜇(A) < ∞.

Nevertheless we prefer to present the results in the finite case for clarity and simplicity 
in the proofs.

We say that a quasi-normed function space X has the �-Fatou property if for any 
positive increasing sequence (fn)n in X with sup

n

‖fn‖X < ∞ and converging pointwise �-

a.e. to a function f,   then f ∈ X and ‖f‖X = sup
n

‖fn‖X . And a quasi-normed function 

space X is said to be �-order continuous if for any positive increasing sequence (fn)n in X 
converging pointwise �-a.e. to a function f ∈ X, then ‖‖f − fn

‖
‖X → 0.

A complete quasi-normed function space is called a quasi-Banach function space 
(briefly q-B.f.s.). If, in addition, the quasi-norm happens to be a norm, then X is called a 
Banach function space (briefly B.f.s.). It is known that if a quasi-normed function space 
has the �-Fatou property, then it is complete and hence a q-B.f.s. (see [18, Proposi-
tion 2.35]) and that inclusions between q-B.f.s. are automatically continuous (see [18, 
Lemma 2.7]).

Given a countably additive vector measure m ∶ � → Y  with values in a real Banach 
space Y,   there are several ways of constructing q-B.f.s. of integrable functions. Let us 
recall them briefly. The semivariation of m is the finite subadditive set function defined 
on � by

where �⟨m, y∗⟩� denotes the variation of the scalar measure ⟨m, y∗⟩ ∶ � → ℝ given by 
⟨m, y∗⟩(A) ∶= ⟨m(A), y∗⟩ for all A ∈ �, and BY∗ is the unit ball of Y∗, the dual of Y. A set 
A ∈ � is called m-null if ‖m‖(A) = 0. A measure � ∶= �⟨m, y∗⟩�, where y∗ ∈ BY∗ , that is 
equivalent to m (in the sense that ‖m‖(A) → 0 if and only if �(A) → 0 ) is called a Ryba-
kov control measure for m. Such a measure always exists (see [7, Theorem 2, p.268]). Let 
L0(m) be the space of (m-a.e. equivalence classes of) measurable functions f ∶ � → ℝ. 
Thus, L0(m) and L0(�) are just the same whenever � is a Rybakov control measure for m.

A measurable function f ∶ � → ℝ is called weakly integrable (with respect to m) if f 
is integrable with respect to �⟨m, y∗⟩� for all y∗ ∈ Y∗. A weakly integrable function f is 
said to be integrable (with respect to m) if, for each A ∈ � there exists an element (nec-
essarily unique) ∫A

f dm ∈ Y , satisfying

‖m‖(A) ∶= sup
�
�⟨m, y∗⟩�(A) ∶ y∗ ∈ BY∗

�
,



484 R. del Campo et al.

1 3

Given a measurable function f ∶ � → ℝ, we shall also consider its distribution function 
(with respect to the semivariation of the vector measure m)

where 
[
|f | > t

]
∶= {w ∈ 𝛺 ∶ |f (w)| > t}. This distribution function is bounded, non-

increasing and right-continuous.
Let L1

w
(m) be the space of all (m-a.e. equivalence classes of) weakly integrable func-

tions, L1(m) the space of all (m-a.e equivalence classes of) integrable functions and 
L1(‖m‖) the space of all (m-a.e. equivalence classes of) measurable functions f such that 
its distribution function ‖m‖f  is Lebesgue integrable in (0,∞). Letting � be any Rybakov 
control measure for m,   we have that L1

w
(m) becomes a B.f.s. over � with the �-Fatou 

property when endowed with the norm

Moreover, L1(m) is a closed �-order continuous ideal of L1
w
(m). In fact, it is the closure of 

S(�), the space of simple functions supported on �. Thus, L1(m) is a �-order continu-
ous B.f.s. over � endowed with same norm (see [18, Theorem 3.7] and [18, p.138])). It 
is worth noting that space L1(m) does not generally have the �-Fatou property. In fact, if 
L1(m) ≠ L1

w
(m), then L1(m) does not have the �-Fatou property. See [2] for details.

On the other hand, L1(‖m‖) equipped with the quasi-norm

is a q-B.f.s. over � with the �-Fatou property (see [4, Proposition 3.1]) and it is also �
-order continuous (see [4, Proposition 3.6]). We will denote by L∞(m) the B.f.s. of all 
(m-a.e. equivalence classes of) essentially bounded functions equipped with the essential 
sup-norm.

3  Completeness of quasi‑normed lattices

In this section we present several characterizations of completeness which will be 
needed later. We begin by recalling one of them valid for general quasi-normed spaces 
(see [10, Theorem 1.1]).

Theorem 1 Let X be a quasi-normed space with a quasi-triangle constant K. The following 
conditions are equivalent: 

 (i) X is complete.

�

∫A

f dm, y∗
�

= ∫A

f d⟨m, y∗⟩, y∗ ∈ Y∗.

‖m‖f ∶ t ∈ [0,∞) → ‖m‖f (t) ∶= ‖m‖
��
�f � > t

��
∈ [0,∞),

‖f‖L1
w
(m) ∶= sup

�

∫
�

�f � d�⟨m, y∗⟩� ∶ y∗ ∈ BY∗

�

.

‖f‖L1(‖m‖) ∶= ∫
∞

0

‖m‖f (t) dt.
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 (ii) For every sequence (xn)n ⊆ X such that 
∞�

n=1

Kn‖xn‖X < ∞ we have 
∞∑

n=1

xn ∈ X. In this 

case, the inequality 
�
�
�
�
�

∞�

n=1

xn

�
�
�
�
�X

≤ K

∞�

n=1

Kn‖xn‖X holds.

The next result is a version of Amemiya’s Theorem ( [10, Theorem 2, p.290]) for quasi-
normed lattices.

Theorem 2 Let X be a quasi-normed lattice. The following conditions are equivalent: 

 (i) X is complete.
 (ii) For any positive increasing Cauchy sequence (xn)n in X there exists sup

n

xn ∈ X.

Proof (i) ⇒ (ii) is evident because the limit of increasing convergent sequences in a quasi-
normed lattice is always its supremum.

(ii) ⇒ (i) Let (xn)n be a positive increasing Cauchy sequence in X. It is sufficient to prove 
that (xn)n is convergent in X for X being complete (see, for example [1, Theorem 16.1]). By 
hypothesis, there exists x ∶= sup

n

xn ∈ X. We have to prove that (xn)n converges to x and for 

this it is enough the convergence of a subsequence of (xn)n. So, let us take a subsequence of 
(xn)n, that we still denote by (xn)n, such that ‖xn+1 − xn‖X ≤ 1

Knn3
, for all n ∈ ℕ where K is 

a quasi-triangle constant of X. Thus, the sequence yn ∶=
n∑

i=1

i(xi+1 − xi) is positive, increas-

ing and Cauchy. Indeed, given m > n, we have

Applying (ii) again, we deduce that there exists y ∶= sup
n

yn ∈ X. Moreover, given n ∈ ℕ, 

we have

Therefore, 0 ≤ x − xn ≤ 1

n
y and hence ‖x − xn‖X ≤ 1

n
‖y‖X → 0.   ◻

Applying Theorem 2 to the sequence of partial sums of a given sequence, we see that 
completeness in quasi-normed lattices can still be characterized by a Riesz-Fischer type 
property.

Corollary 1 Let X be a quasi-normed lattice with a quasi-triangle constant K. The follow-
ing conditions are equivalent:

 (i) X is complete.

‖ym − yn‖X ≤
m�

i=n+1

iKi−n‖xi+1 − xi‖X ≤ 1

Kn

m�

i=n+1

1

i2
.

n(x − xn) = n

(

sup
m>n

xm+1 − xn

)

= n sup
m>n

(xm+1 − xn) = n sup
m>n

m∑

i=n

(xi+1 − xi) ≤ sup
m>n

yn = y.
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 (ii) For every positive sequence (xn)n ⊆ X such that 
∞�

n=1

Kn‖xn‖X < ∞ there exists 

sup
n

n∑

i=1

xi ∈ X.

4  Orlicz spaces X˚

In this section we introduce the Orlicz spaces X� associated to a quasi-Banach function 
space X and a Young function � and obtain their main properties.

Recall that a Young function is any function � ∶ [0,∞) → [0,∞) which is strictly 
increasing, continuous, convex, �(0) = 0 and lim

t→∞
�(t) = ∞. A Young function � satis-

fies the following useful inequalities (which we shall use without explicit mention) for 
all t ≥ 0:

In particular, from the second of the previous inequalities it follows that for all t0 > 0 there 
exists C > 0 such that �(t) ≥ Ct for all t ≥ t0. For a given t0 > 0, just take C ∶=

𝛷(t0)

t0
> 0 

and observe that �(t) = �

(

t0
t

t0

)

≥ t

t0
�(t0) = Ct for all t ≥ t0.

Moreover, it is easy to prove using the convexity of � that

for all N ∈ ℕ, � ≥ 1 and t1,… , tN ≥ 0.

A Young function � has the �2-property, written � ∈ �2, if there exists a constant C > 1 
such that �(2t) ≤ C�(t) for all t ≥ 0. Equivalently, � ∈ �2 if for any c > 1 there exists 
C > 1 such that �(ct) ≤ C�(t), for all t ≥ 0.

Definition 1 Let � be a Young function. Given a quasi-normed function space X over �, 
the corresponding (generalized) Orlicz class X̃� is defined as the following set of ( �-a.e. 
equivalence classes of) measurable functions:

Proposition 1 Let � be a Young function and X be a quasi-normed function space over �. 
Then, X̃� is a solid convex set in L0(�). Moreover, �X𝛷

⊆ X.

Proof Let f , g ∈ X̃� and 0 ≤ � ≤ 1. According to the convexity and monotonicity proper-
ties of � we have �(|�f + (1 − �)g|) ≤ ��(|f |) + (1 − �)�(|g|) ∈ X. The ideal property of 
X yields �(|�f + (1 − �)g|) ∈ X which means that �f + (1 − �)g ∈ X̃� and proves the con-
vexity of X̃�. Clearly, X̃� is solid, since |h| ≤ |f | implies that �(|h|) ≤ �(|f |) ∈ X, for any 
h ∈ L0(�). Moreover, since � is a convex function, there exists C > 0 such that �(t) ≥ Ct, 
for all t > 1. Thus, for all f ∈ X̃�,

{
�(�t) ≤ � �(t) if 0 ≤ � ≤ 1,

�(�t) ≥ � �(t) if � ≥ 1.

(1)�

(
N∑

n=1

tn

)

≤
N∑

n=1

1

2n�n
�(2n�ntn)

X̃� ∶=
{
f ∈ L0(�) ∶ �(|f |) ∈ X

}
.
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which gives f ∈ X.   ◻

Definition 2 Let � be a Young function. Given a quasi-normed function space X over �, 
the corresponding (generalized) Orlicz space X� is defined as the following set of ( �-a.e. 
equivalence classes of) measurable functions:

Proposition 2 Let � be a Young function and X be a quasi-normed function space over �. 
Then, X� is a linear space, an ideal in L0(�) and �X𝛷

⊆ X𝛷
⊆ X.

Proof Let f , g ∈ X� and � ∈ ℝ. Then, there exist c1, c2 > 0 such that 
|f |

c1
,
|g|

c2
∈ X̃�. Setting 

c ∶= max{c1, c2} and using the convexity of X̃� we have

and hence 
|f + g|

2c
∈ X̃� since X̃� is solid, which proves that f + g ∈ X�. Note that this also 

implies that nf ∈ X� for any n ∈ ℕ. Taking n0 ∈ ℕ such that |�| ≤ n0, it follows that there 
exists c0 > 0 such that 

|�f |

c0
≤ n0|f |

c0
∈ X̃�, which yields 

|�f |

c0
∈ X̃� and so �f ∈ X�.

It is evident that �X𝛷
⊆ X𝛷 and X� inherits the ideal property from X̃�, since |h| ≤ |f | 

implies that 
|h|

c1
≤ |f |

c1
∈ X̃� for any h ∈ L0(�). Moreover, taking into account Proposition 1, 

we have 
|f |

c1
∈ �X𝛷

⊆ X and so f ∈ X which proves that X𝛷
⊆ X.   ◻

Definition 3 Let � be a Young function and X be a quasi-normed function space over �. 
Given f ∈ X�, we define

The functional ‖ ⋅ ‖X� in X� is called the Luxemburg quasi-norm.

Proposition 3 Let � be a Young function and X be a quasi-normed function space (respec-
tively, normed function space) over �. Then, ‖ ⋅ ‖X� is a quasi-norm (respectively, norm) in 
X�. Moreover, X� equipped with the Luxemburg quasi-norm, is a quasi-normed (respec-
tively, normed) function space over �.

Proof First, note that ‖ ⋅ ‖X� ∶ X� → [0,∞). Given f ∈ X�, there exists c > 0 such that 

�

(
|f |

c

)

∈ X. Let M ∶=
‖
‖
‖
‖
‖

𝛷

(
|f |

c

)‖
‖
‖
‖
‖X

< ∞. On the one hand, if M ≤ 1 then 

|f | = |f |𝜒[|f |>1] + |f |𝜒[|f |≤1] ≤ 1

C
𝛷

(

|f |𝜒[|f |>1]

)

+ 𝜒
𝛺
≤ 1

C
𝛷(|f |) + 𝜒

𝛺
∈ X,

X𝛷 ∶=

{

f ∈ L0(𝜇) ∶ ∃ c > 0 ∶
|f |

c
∈ �X𝛷

}

.

|f + g|

2c
≤ 1

2

|f |

c
+

1

2

|g|

c
≤ 1

2

|f |

c1
+

1

2

|g|

c2
∈ X̃�

‖f‖X𝛷 ∶= inf

�

k > 0 ∶
�f �

k
∈ �X𝛷 with

�
�
�
�
�

𝛷

�
�f �

k

��
�
�
�
�X

≤ 1

�

.
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‖f‖X𝛷 ≤ c < ∞. On the other hand, if M > 1 then �
(
|f |

Mc

)

≤ 1

M
�

(
|f |

c

)

∈ X and so 
‖
‖
‖
‖
‖

�

(
|f |

Mc

)‖
‖
‖
‖
‖X

≤ 1

M

‖
‖
‖
‖
‖

�

(
|f |

c

)‖
‖
‖
‖
‖

= 1, which implies that ‖f‖X𝛷 ≤ Mc < ∞.

If f = 0, then 
‖
‖
‖
‖
‖

�

(
|f |

c

)‖
‖
‖
‖
‖X

= 0 ≤ 1 for all c > 0 and so ‖f‖X� = 0. Now, suppose that 

‖f‖X� = 0 and that 𝜇
([
f ≠ 0

])
> 0, that is, 

‖
‖
‖
‖
‖

�

(
|f |

c

)‖
‖
‖
‖
‖X

≤ 1 for all c > 0 and there exist 

𝜀 > 0 and A ∈ � such that 𝜇(A) > 0 and |f |�A ≥ ��A. Given c > 0, we have 

�

(
�

c

)

�A ≤ �

(
|f |�A

c

)

≤ �

(
|f |

c

)

. Therefore,

and keeping in mind that lim
t→∞

�(t) = ∞, we can take c > 0 such that

which yields a contradiction.
On the other hand, given f ∈ X� and � ∈ ℝ, it is clear that

Now, let f , g ∈ X� and take K ≥ 1 as in (Q3). Given a, b > 0 such that 
‖
‖
‖
‖
‖

�

(
|f |

a

)‖
‖
‖
‖
‖X

≤ 1 

and 
‖
‖
‖
‖
‖

�

(
|g|

b

)‖
‖
‖
‖
‖X

≤ 1, we have

Hence, 
‖
‖
‖
‖
‖

�

(
|f + g|

K(a + b)

)‖
‖
‖
‖
‖X

≤ a

(a + b)

‖
‖
‖
‖
‖

�

(
|f |

a

)‖
‖
‖
‖
‖X

+
b

(a + b)

‖
‖
‖
‖
‖

�

(
|g|

b

)‖
‖
‖
‖
‖X

≤ 1 which 

implies that ‖f + g‖X� ≤ K(a + b). By the arbitrariness of a and b we deduce that 
‖f + g‖X� ≤ K(‖f‖X� + ‖g‖X� ).

Thus, we have proved that ‖ ⋅ ‖X� is a quasi-norm in X� with the same quasi-triangle 
constant as the one of the quasi-norm of X. Moreover, we have already proved that X� 
equipped with the Luxemburg quasi-norm is a quasi-normed space and an ideal in L0(�). It 
is also clear that the Luxemburg quasi-norm is a lattice quasi-norm: |f | ≤ |g| implies that 

�
�
�
�
�

�

�
�f �

c

��
�
�
�
�X

≥ �
�
�
�
�

�
�

c

�

�A

�
�
�
�X

= �

�
�

c

�

‖�A‖X

𝛷

�
𝜀

c

�

‖𝜒A‖X > 1

‖𝜆f‖X𝛷 = inf

�

k > 0 ∶
�
�
�
�
�

𝛷

�
�𝜆f �

k

��
�
�
�
�X

≤ 1

�

= inf

⎧
⎪
⎨
⎪
⎩

k > 0 ∶

�
�
�
�
�
�
�

𝛷

⎛
⎜
⎜
⎝

�f �

k

�𝜆�

⎞
⎟
⎟
⎠

�
�
�
�
�
�
�X

≤ 1

⎫
⎪
⎬
⎪
⎭

= �𝜆� inf

⎧
⎪
⎨
⎪
⎩

k

�𝜆�
> 0 ∶

�
�
�
�
�
�
�

𝛷

⎛
⎜
⎜
⎝

�f �

k

�𝜆�

⎞
⎟
⎟
⎠

�
�
�
�
�
�
�X

≤ 1

⎫
⎪
⎬
⎪
⎭

= �𝜆�‖f‖X𝛷 .

�

(
|f + g|

K(a + b)

)

≤ 1

K
�

(
|f + g|

a + b

)

≤ 1

K
�

(
a

(a + b)

|f |

a
+

b

(a + b)

|g|

b

)

≤ 1

K

a

(a + b)
�

(
|f |

a

)

+
1

K

b

(a + b)
�

(
|g|

b

)

.
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�

(
|f |

k

)

≤ �

(
|g|

k

)

 for all k > 0 and this guarantees that ‖f‖X� ≤ ‖g‖X� . In addition, 

�
�
∈ X�, since �

(
|�

�
|

c

)

= �

(
1

c

)

�
�
∈ X, for all c > 0, and hence X� is in fact a quasi-

normed function space.   ◻

Remark 2 The inclusion of X𝛷
⊆ X is continuous provided X and X� be q-B.f.s. We will 

see in Theorem 3 that the completeness is transferred from X to X�.

Once we have checked that X� is quasi-normed function space, it is immediate that 
L∞(�) is contained in X� and this inclusion is continuous with norm ‖�

�
‖X� . The next 

result establishes the relation between the norm of this inclusion and the norm ‖�
�
‖X of 

the continuous inclusion of L∞(�) into X.

Lemma 1 Let � be a Young function and X be a quasi-normed function space over �.

 (i) For all A ∈ � with 𝜇(A) > 0, ‖�A‖X� =
1

�−1

�
1

‖�A‖X

� .

 (ii) For all f ∈ L∞(�), ‖f‖X� ≤ ‖f‖L∞(�)

�−1

�
1

‖�
�
‖X

� .

Proof (i) Write � ∶=
1

�−1

�
1

‖�A‖X

� . On the one hand,

and so ‖�A‖X� ≤ �. On the other hand, given k > 0 such that 
�A

k
∈ X̃� with 

‖
‖
‖
‖
�

(
�A

k

)‖
‖
‖
‖X

≤ 1, we have �
�
1

k

�

‖�A‖X ≤ 1, that is, �
�
1

k

� ≤ 1

‖�A‖X
 or, equivalently, 

1

k
≤ �

−1

�
1

‖�A‖X

�

, which finally leads to � ≤ k and so � ≤ ‖�A‖X� .

(ii) Since �f � ≤ ‖f‖L∞(�)��
, for any f ∈ L∞(�), we have ‖f‖X� ≤ ‖f‖L∞(�)‖��

‖X� and 
the result follows applying (i) to �

�
.   ◻

The following two results explore the close relationship between the quantities ‖f‖X� 
and ‖�(�f �)‖X . This entails interesting consequences on boundedness in X�, allowing us to 
obtain a sufficient condition and a necessary condition for it.

Lemma 2 Let � be a Young function, X be a quasi-normed function space over � and 
H ⊂ L0(𝜇).

 (i) If f ∈ X̃�, then ‖f‖X� ≤ max{1, ‖�(�f �)‖X}.

 (ii) If {�(|h|) ∶ h ∈ H} is bounded in X,  then H is bounded in X�.

Proof (i) On the one hand, ‖�(�f �)‖X ≤ 1 directly implies that

�
�
�
�
�

�

�
��A�

�

��
�
�
�
�X

= �

�
1

�

�

‖�A‖X = �

�

�
−1

�
1

‖�A‖X

��

‖�A‖X = 1,
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On the other hand, if ‖�(�f �)‖X ≥ 1, then �
�

�f �

‖�(�f �)‖X

�

≤ 1

‖�(�f �)‖X
�(�f �) ∈ X and 

hence �

�
�f �

‖�(�f �)‖X

�

∈ X with 
�
�
�
�
�

�

�
�f �

‖�(�f �)‖X

��
�
�
�
�X

≤ 1. This also leads to 

‖f‖X� ≤ ‖�(�f �)‖X = max{1, ‖�(�f �)‖X}.

(ii) If ‖𝛷(�h�)‖X ≤ M < ∞, for all h ∈ H, according to (i) we have that 
‖h‖X𝛷 ≤ max{1, ‖𝛷(�h�)‖X} ≤ max{1,M} < ∞, for all h ∈ H.   ◻

Lemma 3 Let � be a Young function, X be a quasi-normed function space over � and 
f ∈ X�.

 (i) If  ‖f‖X𝛷 < 1, then f ∈ X̃� with ‖�(�f �)‖X ≤ ‖f‖X� .

 (ii) If  ‖f‖X𝛷 > 1 and f ∈ X̃�, then ‖�(�f �)‖X ≥ ‖f‖X� .

 (iii) If H ⊆ X𝛷 is bounded, then there exists a Young function Ψ such that the set 
{Ψ(|h|) ∶ h ∈ H} is bounded in X.

Proof (i) Given 0 < k < 1 such that 
|f |

k
∈ X̃� with 

‖
‖
‖
‖
‖

�

(
|f |

k

)‖
‖
‖
‖
‖X

≤ 1, we have

Therefore, �(|f |) ∈ X with ‖�(�f �)‖X ≤ k
�
�
�
�
�

�

�
�f �

k

��
�
�
�
�X

≤ k and keeping in mind that 

‖f‖X𝛷 < 1, we obtain

(ii) Let 0 < 𝜀 < ‖f‖X𝛷 − 1 and observe that 
�
�
�
�
�

𝛷

�
�f �

‖f‖X𝛷 − 𝜀

��
�
�
�
�X

> 1. Thus,

and letting � → 0, it follows that ‖�(�f �)‖X ≥ ‖f‖X� .

(iii) Take M > 0 such that ‖h‖X𝛷 < M, for all h ∈ H. Since 
‖
‖
‖
‖

h

M

‖
‖
‖
‖X𝛷

< 1, for all h ∈ H, (i) 

guarantees that �
(
|h|

M

)

∈ X with 
‖
‖
‖
‖
‖

𝛷

(
|h|

M

)‖
‖
‖
‖
‖X

≤ ‖
‖
‖
‖

h

M

‖
‖
‖
‖X𝛷

< 1, for all h ∈ H. Defining 

Ψ(t) ∶= �

(
t

M

)

, for all t ≥ 0, we produce a Young function such that {Ψ(|h|) ∶ h ∈ H} is 
bounded in X.   ◻

‖f‖X� ≤ 1 = max{1, ‖�(�f �)‖X}.

�(|f |) = �

(

k
|f |

k

)

≤ k �

(
|f |

k

)

∈ X.

‖𝛷(�f �)‖X ≤ inf

�

0 < k < 1 ∶
�f �

k
∈ �X𝛷 with

�
�
�
�
�

𝛷

�
�f �

k

��
�
�
�
�X

≤ 1

�

= ‖f‖X𝛷 .

‖�(�f �)‖X =
�
�
�
�
�

�

�

(‖f‖X� − �)
�f �

‖f‖X� − �

��
�
�
�
�X

≥ (‖f‖X� − �)
�
�
�
�
�

�

�
�f �

‖f‖X� − �

��
�
�
�
�X

≥ ‖f‖X� − �,
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We are now in a position to establish the remarkable fact that Orlicz spaces X� are 
always complete for any q-B.f.s. X. It is worth pointing out that standard proofs in the 
Banach setting require the �-Fatou property of X to obtain the �-Fatou property of X� 
(see the next Theorem 4) and as a byproduct, the completeness of this last space. How-
ever, as we have said before, there are many complete spaces without the �-Fatou prop-
erty, to which it is not possible to apply Theorem 4. Herein lies the importance of the 
result that we will show next about completeness of X�.

Theorem 3 Let � a Young function and X be a q-B.f.s. over �. Then, X� is complete (and 
hence it is a q-B.f.s. over �).

Proof Let (hn)n be a positive increasing Cauchy sequence in X� and take K ≥ 1 as in (Q3). 
Then, we can choose a subsequence of (hn)n, that we denote by (fn)n, such that 
‖fn+1 − fn‖X𝛷 <

1

22nK2n
, for all n ∈ ℕ. Thus,

for all n ∈ ℕ, and by Lemma 3 it follows that

which proves that 
∞∑

n=1

Kn‖‖
‖
𝛷
(
2nKn

(
fn+1 − fn

))‖
‖
‖X

≤
∞∑

n=1

1

2n
< ∞. The completeness of X 

ensures that the function f ∶=
∞∑

n=1

�
(
2nKn

(
fn+1 − fn

))
∈ X, by Theorem  1. Note that 

f ∈ L0(�) and the convergence of that series is also �-a.e, since X is continuously included 

in L0(�). Given N ∈ ℕ, let gN ∶=

N∑

n=1

(fn+1 − fn) and denote by g ∶= sup
N

gN pointwise �-a.e. 

Applying (1) with � ∶= K, it follows that for all N ∈ ℕ,

Therefore, 0 ≤ gN ≤ �
−1(f ) ∈ L0(�) for all N ∈ ℕ and so g ∈ L0(�) with 

0 ≤ g ≤ �
−1(f ) ∈ X�, which guarantees that g ∈ X�. But

for all N ∈ ℕ and so there also exists sup
n

fn = g + f1 ∈ X�. Since (fn)n is a subsequence of 

the original increasing sequence (hn)n, the supremum of the whole sequence must exists 
and be the same as the supremum of the subsequence. By applying Amemiya’s Theorem 2 
we conclude that X� is complete.   ◻

‖
‖2

nKn(fn+1 − fn)
‖
‖X𝛷 <

1

2nKn
< 1

‖
‖
‖
𝛷
(
2nKn

(
fn+1 − fn

))‖
‖
‖X

≤ ‖
‖
‖
2nKn

(
fn+1 − fn

)‖
‖
‖X𝛷

<
1

2nKn
, n ∈ ℕ,

�(gN) = �

(
N∑

n=1

(fn+1 − fn)

)

≤
N∑

n=1

1

2nKn
�
(
2nKn

(
fn+1 − fn

))

≤
N∑

n=1

�(2nKn(fn+1 − fn)) ≤ f

fN+1 =

N∑

n=1

(fn+1 − fn) + f1 = gN + f1
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If the q-B.f.s. X has the �-Fatou property, then we can improve a little more our 
knowledge about X� as the following proposition makes evident.

Theorem 4 Let � be a Young function and X be a q-B.f.s. over � with the �-Fatou property. 

 (i) If  0 ≠ f ∈ X� then 
�f �

‖f‖X�

∈ X̃� with 
�
�
�
�
�

�

�
�f �

‖f‖X�

��
�
�
�
�X

≤ 1.

 (ii) If f ∈ X� with ‖f‖X� ≤ 1 then f ∈ X̃� with ‖�(�f �)‖X ≤ ‖f‖X� .

 (iii) X� also has the �-Fatou property.

Proof (i) Take a sequence (kn)n such that kn ↓ ‖f‖X� and 
‖
‖
‖
‖
‖

�

(
|f |

kn

)‖
‖
‖
‖
‖X

≤ 1, for all n ∈ ℕ. 

Then, 
�f �

kn
↑

�f �

‖f‖X�

 and so �
�
�f �

kn

�

↑ �

�
�f �

‖f‖X�

�

, since � is continuous and increasing. 

The �-Fatou property of X guarantees that �
�

�f �

‖f‖X�

�

∈ X and 

(ii) According to (i) and the inequality

we deduce that �(|f |) ∈ X and ‖�(�f �)‖X ≤ ‖f‖X�

�
�
�
�
�

�

�
�f �

‖f‖X�

��
�
�
�
�X

≤ ‖f‖X� .

(iii) Let (fn)n in X� with 0 ≤ fn ↑ f  �-a.e. and M ∶= sup
n

‖fn‖X𝛷 < ∞. Then, 

�

(
fn

M

)

↑ �

(
f

M

)

 �-a.e. and 
‖
‖
‖
‖

fn

M

‖
‖
‖
‖X�

≤ 1 for all n ∈ ℕ. Applying (ii), we deduce that 

�

(
fn

M

)

∈ X with 
‖
‖
‖
‖
‖

�

(
fn

M

)‖
‖
‖
‖
‖X

≤ 1 for all n ∈ ℕ and using the �-Fatou property of X,   it 

follows that �
(

f

M

)

∈ X with 
‖
‖
‖
‖
‖

�

(
f

M

)‖
‖
‖
‖
‖X

= sup
n

‖
‖
‖
‖
‖

�

(
fn

M

)‖
‖
‖
‖
‖X

≤ 1. This implies that 

f ∈ X� with ‖f‖X� ≤ M and we also have M ≤ ‖f‖X� , since fn ≤ f ∈ X�. Thus, 
‖f‖X� = M, which proves that X� has the �-Fatou property.   ◻

The relation between the Orlicz class and its corresponding Orlicz space is greatly simpli-
fied when the Young function has the �2-property. In addition, this has far-reaching conse-
quences on convergence in X� as we state in the next result.

Theorem 5 Let X be a quasi-normed function space over � and � ∈ �2.

 (i) The Orlicz space and the Orlicz class coincide: X� = X̃�.

 (ii) ‖fn‖X� → 0 if and only if  ‖�(�fn�)‖X → 0, for all (fn)n ⊆ X𝛷.

 (iii) If X is �-order continuous, then X� is also �-order continuous.

�
�
�
�
�

�

�
�f �

‖f‖X�

��
�
�
�
�X

= sup
n

�
�
�
�
�

�

�
�f �

kn

��
�
�
�
�X

≤ 1.

�(�f �) = �

�

‖f‖X�

�f �

‖f‖X�

�

≤ ‖f‖X� �

�
�f �

‖f‖X�

�
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Proof (i) Given f ∈ X�, there exists c > 0 such that �
(
|f |

c

)

∈ X. If c ≤ 1, then

and if c > 1, then there exist C > 1 such that �(ct) ≤ C�(t) for all t ≥ 0 by the �2-property 

of �. Therefore, �(|f |) = �

(

c
|f |

c

)

≤ C �

(
|f |

c

)

∈ X. In any case, it follows that 

�(|f |) ∈ X, which means that f ∈ X̃�.

(ii) If ‖fn‖X� → 0, then ‖�(�fn�)‖X → 0 as a consequence of Lemma 3 (i). Suppose now 
that ‖fn‖X� does not converges to 0. Then, there exists 𝜀 > 0 and a subsequence (fnk )k of (fn)n 
such that ‖fnk‖X𝛷 > 𝜀 for all k ∈ ℕ. We can assume that 𝜀 < 1 and that (fnk )k is the whole 
(fn)n without loss of generality. Since � ∈ �2 and 1

𝜀
> 1, there exist C > 1 such that 

�

(
|fn|

�

)

≤ C�(|fn|). By (i), we deduce that �
(
|fn|

�

)

∈ X and hence 
‖
‖
‖
‖
‖

𝛷

(
|fn|

𝜀

)‖
‖
‖
‖
‖X

> 1. 

Thus, ‖𝛷(�fn�)‖X ≥ 1

C

�
�
�
�
�

𝛷

�
�fn�

𝜀

��
�
�
�
�X

>
1

C
> 0, which means that ‖�(�fn�)‖X does not con-

verges to 0.
(iii) Let (fn)n and f in X� such that 0 ≤ fn ↑ f  �-a.e. Then, �

(
f − fn

)
↓ 0 �-a.e. Since 

X is �-order continuous, it follows that ‖�
�
f − fn

�
‖X → 0 and by (ii) this implies that 

‖f − fn‖X� → 0, which gives the �-order continuity of X�.   ◻

5  Application: Orlicz spaces associated to a vector measure

First of all observe that classical Orlicz spaces L�(�) with respect to a positive finite meas-
ure � are obtained applying the construction X� of section 4 to the B.f.s. X = L1(�), that is, 
L�(�) = L1(�)� equipped with the norm ‖ ⋅ ‖L�(�) ∶= ‖ ⋅ ‖L1(�)� . Using these classical Orlicz 
spaces, the Orlicz spaces L�

w
(m) and L�(m) with respect to a vector measure m ∶ � → Y were 

introduced in [8] in the following way:

equipped with the norm

and L�(m) is the closure of simple functions S(�) in L�
w
(m). The next result establishes 

that these Orlicz spaces L�
w
(m) and L�(m) can be obtained as generalized Orlicz spaces X� 

by taking X to be L1
w
(m) and L1(m), respectively.

Proposition 4 Let � be a Young function and m ∶ � → Y  a vector measure.

 (i) L�
w
(m) = L1

w
(m)� and ‖f‖L�

w
(m) = ‖f‖L1

w
(m)� ,  for all f ∈ L�

w
(m).

 (ii) L𝛷(m) ⊆ L1(m)𝛷 and if � ∈ �2, then L�(m) = L1(m)�.

�(|f |) = �

(

c
|f |

c

)

≤ c �

(
|f |

c

)

∈ X,

L�
w
(m) ∶=

�
f ∈ L0(m) ∶ f ∈ L�(�⟨m, y∗⟩�), ∀ y∗ ∈ Y∗

�
,

‖f‖L�
w
(m) ∶= sup

�
‖f‖L�(�⟨m,y∗⟩�) ∶ y∗ ∈ BY∗

�
,
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Proof (i) Suppose that f ∈ L1
w
(m)� and let k > 0 such that �

(
|f |

k

)

∈ L1
w
(m) with 

‖
‖
‖
‖
‖

�

(
|f |

k

)‖
‖
‖
‖
‖L1

w
(m)

≤ 1. Given y∗ ∈ BY∗ we have �
�
�f �

k

�

∈ L1(�⟨m, y∗⟩�) with 

 This implies that f ∈ L�(�⟨m, y∗⟩�) with ‖f‖L�(�⟨m,y∗⟩�) ≤ k. Hence, f ∈ L�
w
(m) with 

‖f‖L�
w
(m) ≤ ‖f‖L1

w
(m)� .

Reciprocally, suppose now that f ∈ L�
w
(m), write M ∶= ‖f‖L�

w
(m) and let y∗ ∈ BY∗ . Since 

f ∈ L�(�⟨m, y∗⟩�) and ‖f‖L�(�⟨m,y∗⟩�) ≤ M, we have that 
f

M
∈ L�(�⟨m, y∗⟩�) with 

�
�
�
�

f

M

�
�
�
�L�(�⟨m,y∗⟩�)

≤ 1. Applying Theorem 4 (ii) to the space X = L1(�⟨m, y∗⟩�), it follows that 

�

�
�f �

M

�

∈ L1(�⟨m, y∗⟩�) with 
�
�
�
�
�

�

�
�f �

M

��
�
�
�
�L1(�⟨m,y∗⟩�)

≤ �
�
�
�

f

M

�
�
�
�L�(�⟨m,y∗⟩�)

≤ 1. Then, the arbi-

trariness of y∗ ∈ BY∗ guarantees that �
(
|f |

M

)

∈ L1
w
(m) with 

‖
‖
‖
‖
‖

�

(
|f |

M

)‖
‖
‖
‖
‖L1

w
(m)

≤ 1 and hence 

f ∈ L1
w
(m)� with ‖f‖L1

w
(m)� ≤ M.

(ii) Since L1(m)� is a B.f.s., simple functions S(𝛴) ⊆ L1(m)𝛷 and L1(m)� is a closed 
subspace of L1

w
(m)�. Thus, taking in account (i), we deduce that L𝛷(m) ⊆ L1(m)𝛷. If in 

addition � ∈ �2, we have

where the first equality is due to Theorem 5 (i) applied to X = L1(m) and the second one 
can be found in [8, Proposition 4.4].   ◻

The Orlicz spaces L�(m) have been recently employed in [5] to locate the compact 
subsets of L1(m). Motivated by the idea of studying compactness in L1(‖m‖) (see [6] for 
details), we introduce the Orlicz spaces L�(‖m‖) as the Orlicz spaces X� associated to 
the q-B.f.s. X = L1(‖m‖). For further reference, we collect together all the information 
that our general theory provide about these new Orlicz spaces.

Definition 4 Let � be a Young function and m ∶ � → Y  a vector measure. We define the 
Orlicz spaces associated to the semivariation of m as L�(‖m‖) ∶= L1(‖m‖)� equipped 
with ‖f‖L�(‖m‖) ∶= ‖f‖L1(‖m‖)� , for all f ∈ L�(‖m‖).

Corollary 2 Let � be a Young function, m ∶ � → Y  a vector measure and � any Rybakov 
control measure for m. Then,

 (i) L�(‖m‖) is a q-B.f.s. over � with the �-Fatou property.
 (ii) If � ∈ �2, then L�(‖m‖) is �-order continuous.
 (iii) L𝛷(‖m‖) ⊆ L1(‖m‖) with continuous inclusion.

Proof Apply Theorems 3, 4 and 5 to the q-B.f.s X = L1(‖m‖). See also Proposition 2 and 
Remark 2.   ◻

�
�
�
�
�

�

�
�f �

k

��
�
�
�
�L1(�⟨m,y∗⟩�)

≤ �
�
�
�
�

�

�
�f �

k

��
�
�
�
�L1

w
(m)

≤ 1.

L1(m)� = {f ∈ L0(m) ∶ �(|f |) ∈ L1(m)} = L�(m),
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Corollary 3 Let � be a Young function, m ∶ � → Y  a vector measure, f ∈ L�(‖m‖) and 
H ⊆ L0(m).

(i) If  �(�f �) ∈ L1(‖m‖), then ‖f‖L�(‖m‖) ≤ max{1, ‖�(�f �)‖L1(‖m‖)}.

(ii) If  ‖f‖L�(‖m‖) ≤ 1, then �(�f �) ∈ L1(‖m‖) and ‖�(�f �)‖L1(‖m‖) ≤ ‖f‖L�(‖m‖).

(iii) If  ‖f‖L𝛷(‖m‖) > 1 and �(�f �) ∈ L1(‖m‖), then ‖�(�f �)‖L1(‖m‖) ≥ ‖f‖L�(‖m‖).

(iv) If  {�(|h|) ∶ h ∈ H} is bounded in L1(‖m‖), then H is bounded in L�(‖m‖).
(v) If H is bounded in L�(‖m‖), then there exists a Young function Ψ such that 

{Ψ(|h|) ∶ h ∈ H} is bounded in L1(‖m‖).

Proof Particularize Lemmas 2 and 3 to X = L1(‖m‖). Note that, in fact, we can use (ii) of 
Theorem 4.   ◻

Corollary 4 Let � ∈ �2, m ∶ � → Y  a vector measure and (fn)n ⊆ L𝛷(‖m‖).

 (i) L�(‖m‖) = {f ∈ L0(m) ∶ �(�f �) ∈ L1(‖m‖)}.

 (ii) ‖fn‖L�(‖m‖) → 0 if and only if ‖�(�fn�)‖L1(‖m‖) → 0.

Proof Apply Theorem 5 to the space X = L1(‖m‖).   ◻

6  Application: interpolation of Orlicz spaces

In this section all the q-B.f.s. will be supposed to be complex. This means that L0(�) 
will be assumed to be in fact the space of all ( �-a.e. equivalence classes of) ℂ-valued 
measurable functions on �. Recall that a complex q-B.f.s X over � is the complexifica-
tion of the real q-B.f.s. X

ℝ
∶= X ∩ L0

ℝ
(�), where L0

ℝ
(�) is the space of all ( �-a.e. equiva-

lence classes of) ℝ-valued measurable functions on � (see [18, p.24] for more details) 
and this allows to extend all the real q-B.f.s. defined above to complex q-B.f.s. follow-
ing a standard argument.

The complex method of interpolation, [X0,X1]� with 0 < 𝜃 < 1, for pairs (X0,X1) of 
quasi-Banach spaces was introduced in [10] as a natural extension of Calderón’s origi-
nal definition for Banach spaces. It relies on a theory of analytic functions with values 
in quasi-Banach spaces which was developed in [10] and [10]. It is important to note 
that there is no analogue of the Maximum Modulus Principle for general quasi-Banach 
spaces, but there is a wide subclass of quasi-Banach spaces called analytically convex 
(A-convex) in which that principle does hold. For a q-B.f.s. X it can be proved that ana-
lytical convexity is equivalent to lattice convexity (L-convexity), i.e., there exists 
0 < 𝜀 < 1 so that if f ∈ X and 0 ≤ fi ≤ f , i = 1,… , n, satisfy 

f1 +⋯ + fn

n
≥ (1 − �)f , then 

max
1≤i≤n ‖fi‖X ≥ �‖f‖X (see [10, Theorem 4.4]). This is also equivalent to X be s-convex for 
some s > 0 (see [10, Theorem 2.2]). We recall that X is called s-convex if there exists 
C ≥ 1 such that
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for all n ∈ ℕ and f1,… , fn ∈ X. Observe that, X is s-convex if and only if its s-th power X[s] 
is 1-convex, where the s-th power X[s] of a q-B.f.s. X over � (for any 0 < s < ∞ ) is the 
q-B.f.s. X[s] ∶=

{

f ∈ L0(�) ∶ |f |
1

s ∈ X
}

 equipped with the quasi-norm ‖f‖X[s]
=
�
�
�
�f �

1

s
�
�
�

s

X
, 

for all f ∈ X[s] (see [18, Proposition 2.22]).
The following result provides a condition under which the L-convexity of X can be 

transferred to its Orlicz space X�. When X possesses the �-Fatou property, this can be 
derived from [10, Proposition 3.3], but we make apparent that this property can be dropped. 
Recall that a function � on the semiaxis [0,∞) is said to be quasiconcave if �(0) = 0, �(t) 
is positive and increasing for t > 0 and 

�(t)

t
 is decreasing for t > 0. Observe that a quasi-

concave function � satisfies the following inequalities for all t ≥ 0:

Theorem 6 If X is an L-convex q-B.f.s. and � ∈ �2, then X� is L-convex.

Proof Since � ∈ �2, there exists s > 1 such that �(2t) ≤ s�(t) for all t ≥ 0. From the 
inequality

it is easy to check that �(t)

ts
 is decreasing and then 

�

(

t
1

s

)

t
 so is. Therefore, the function 

�(t) ∶= �

(

t
1

s

)

 is quasiconcave. Take 0 < 𝛿 < 1 such that (1 − �)s = 1 − �, where � is the 
constant from the L-convexity of X. Let f ∈ X� and 0 ≤ fi ≤ f , i = 1,… , n satisfying 
f1 +⋯ + fn

n
≥ (1 − �)f . We can also assume that ‖f‖X� = 1 without loss of generality. Note 

that this implies ‖�(f )‖X ≥ 1. If we suppose, on the contrary, that ‖𝛷(f )‖X < 1 and we take 
0 < k < 1 such that ‖𝛷(f )‖X < ks < 1, then

and therefore ‖f‖X𝛷 < k < 1. Moreover, we have 0 ≤ �(fi) ≤ �(f ) ∈ X and

Thus, the L-convexity of X implies that max
1≤i≤n ‖�(fi)‖X ≥ �‖�(f )‖X ≥ � and hence 

max
1≤i≤n ‖fi‖X𝛷 ≥ 𝜀 > 𝛿 by (i) of Lemma 3.   ◻

�
�
�
�
�
�
�

�
n�

k=1

�fk�
s

� 1

s
�
�
�
�
�
�
�X

≤ C

�
n�

k=1

‖fk‖
s
X

� 1

s

{
�(�t) ≥ � �(t) if 0 ≤ � ≤ 1,

�(�t) ≤ � �(t) if � ≥ 1.

t𝛷�(t) ≤ �
2t

t

𝛷
�(u) du ≤ �

2t

0

𝛷
�(u) du = 𝛷(2t) ≤ s𝛷(t), t > 0

�
�
�
�
�

𝛷

�
f

k

��
�
�
�
�X

=
�
�
�
�
�

𝜓

�
f s

ks

��
�
�
�
�X

≤ 1

ks
‖𝜓(f s)‖X =

1

ks
‖𝛷(f )‖X < 1,

�(f1) +⋯ +�(fn)

n
≥ �

(
f1 +⋯ + fn

n

)

≥ �((1 − �)f )

≥ (1 − �)s�(f s) = (1 − �)s�(f ) = (1 − �)�(f ).
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The Calderón product X1−�
0

X�

1
 of two q-B.f.s. X0 and X1 over � is the q-B.f.s. of all 

functions f ∈ L0(�) such that there exist f0 ∈ BX0
, f1 ∈ BX1

 and 𝜆 > 0 for which

endowed with the quasi-norm ‖f‖X1−�
0

X�

1
= inf �, where the infimum is taken over all � satis-

fying (2). The complex method gives the result predicted by the Calderón product for nice 
pairs of q-B.f.s. (see [10, Theorem 3.4]).

Theorem 7 Let � be a Polish space and let � be a finite Borel measure on �. Let X0, X1 
be a pair of �-order continuous L-convex q-B.f.s. over �. Then X0 + X1 is L-convex and 
[X0,X1]� = X1−�

0
X�

1
 with equivalence of quasi-norms.

On the other hand, it is easy to compute the Calderón product of two Orlicz spaces 
associated to the same q-B.f.s:

Proposition 5 Let X be a q-B.f.s. over �, �0, �1 Young functions, 0 < 𝜃 < 1 and � such that 
�

−1 ∶= (�−1
0
)1−�(�−1

1
)� . Then 

(
X�0

)1−�(
X�1

)�
= X�.

Proof Given f ∈ X�, there exists c > 0 such that h ∶= �

(
|f |

c

)

∈ X and hence 

f0 ∶= �
−1
0
(h) ∈ X�0 and f1 ∶= �

−1
1
(h) ∈ X�1 . Taking � ∶= max{‖f0‖X�0 , ‖f1‖X�1 }, it fol-

lows that

which yields f ∈
(
X�0

)1−�(
X�1

)�
.

Conversely, if f ∈
(
X�0

)1−�(
X�1

)�
, then there exist 𝜆 > 0, f0 ∈ X�0 and f1 ∈ X�1 such 

that |f | ≤ �|f0|
1−�|f1|

� . This implies the existence of c > 0 such that h0 ∶= �0

(
|f0|

c

)

∈ X 

and h1 ∶= �1

(
|f1|

c

)

∈ X. Thus, taking h ∶= h0 + h1 ∈ X, we deduce that

and hence f ∈ X�.   ◻

Combining the three previous results, we obtain conditions under which the complex 
method applied to Orlicz spaces associated to a q-B.f.s. over � keeps on producing an 
Orlicz space associated to the same q-B.f.s.

Corollary 5 Let � be a Polish space and let � be a finite Borel measure on �. Let X be 
an L-convex, �-order continuous q-B.f.s. over �, �0,�1 ∈ �2, 0 < 𝜃 < 1 and � such that 
�

−1 ∶= (�−1
0
)1−�(�−1

1
)� . Then, [X�0 ,X�1 ]

�
= X�.

(2)|f (w)| ≤ �|f0(w)|
1−�|f1(w)|

� , w ∈ � (�-a.e. )

|f | = c�−1(h) = c (�−1
0
(h))1−�(�−1

1
(h))� = c|f0|

1−�|f1|
� ≤ c�

(
f0

�

)1−�(
f1

�

)�

,

|f | ≤ �|f0|
1−�|f1|

� = �c

(
|f0|

c

)1−�(
|f1|

c

)�

= �c(�−1
0
(h0))

1−�(�−1
1
(h1))

�

≤ �c(�−1
0
(h))1−�(�−1

1
(h))� = ��

−1(h) ∈ X�,
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Proof According to Theorems 5 and 6, the hypotheses guarantee that X�0 and X�1 are 
L-convex, �-order continuous q-B.f.s. Therefore, the result follows by applying Theorem 7 
and Proposition 5.   ◻

Let us denote Ls(‖m‖) ∶= L1(‖m‖)� 1

s

�, for 0 < s < ∞ and m ∶ � → Y  a vector measure. 

In [4, Proposition 4.1] we proved that if s > 1, then Ls(‖m‖) is r-convex for every r < s. In 
fact, this is true for all 0 < s < ∞ because if 0 < s ≤ 1 and r < s, then s

r
> 1 and hence 

L
s

r (‖m‖) is 1-convex, that is Ls(‖m‖)[r] is 1-convex, which is equivalent to Ls(‖m‖) be 
r-convex. This means that Ls(‖m‖) is L-convex for all 0 < s < ∞. In particular, L1(‖m‖) is 
L-convex and we can apply Corollary 5 to it.

Corollary 6 Let � be a Polish space and let � be a Borel measure which is a Rybakov con-
trol measure for m. Let �0,�1 ∈ �2, 0 < 𝜃 < 1 and � such that �−1 ∶= (�−1

0
)1−�(�−1

1
)� . 

Then, [L�0 (‖m‖),L�1 (‖m‖)]
�
= L�(‖m‖).

For a similar result about complex interpolation of Orlicz type spaces LΦ(m) and LΦ
w
(m) 

see [3, Corollary 4.2 and Theorem 4.5].
Note that, for p > 1, 1

p
-th powers are an special case of Orlicz spaces, since X[

1

p

] = X�[p] , 

where �[p](t) = tp. If we particularize the previous Corollary to these powers, then we 
obtain the interpolation result below for Lp(‖m‖) spaces. In fact, this result is valid for all 
0 < p0, p1 < ∞ due to the fact that the Calderón product commutes with powers for all 
indices.

Corollary 7 Let � be a Polish space and let � be a Borel measure which is a Rybakov con-
trol measure for m. Let 0 < 𝜃 < 1 and 0 < p0, p1 < ∞. Then 
[Lp0 (‖m‖),Lp1 (‖m‖)]

�
= Lp(‖m‖), where 1

p
=

1 − �

p0
+

�

p1
.
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