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Abstract

In this Bachelor dissertation permutation tests are reviewed both theoretically

and practically. Chapter 1 is a brief introduction to set the reader on the starting

point of this project. Non-parametric methods and some basic concepts would

be defined. Chapter 2 is the theoretical core of this dissertation. Permutation

techniques are exhaustively introduced, as well as the construction of tests based

on this idea, the behaviour of p-values, a succinct review of the critical region and

an overview of permutational equivalence. Chapter 3 complements the previous

chapter as theoretical framework development continues. Test unbiasedness, con-

ditional power function, confidence intervals and general asymptotic properties

are illustrated here. Finally, Chapter 4 shows some practical experiments where

theoretical concepts approached in Chapters 2 and 3 are applied to real-world

scenarios.
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Resumen

En este trabajo se presentan los tests de permutaciones de forma tanto teórica

como práctica. El Caṕıtulo 1 es una breve introducción para situar al lector en el

punto de partida del proyecto. Se definen los métodos no paramétricos y algunos

conceptos claves. El Caṕıtulo 2 es el núcleo teórico del ensayo. Las técnicas

de permutaciones se explican en profundidad, aśı como la construcción de tests

basados en esta idea, el comportamiento de su p-valor, una breve introducción

de la región cŕıtica y el concepto de equivalencia permutacional. El Caṕıtulo 3

complementa el caṕıtulo anterior continuando el desarrollo teórico. La insesgadez

de los tests, la funcion potencia condicionada, intervalos de confianza y algunas

propiedades asintóticas generales son los protagonistas de esta parte. Finalmente,

en el Caṕıtulo 4 se exponen algunos experimentos prácticos donde los conceptos

teóricos analizados previamente en los caṕıtulos 2 y 3 se aplican a casos reales.

9





Chapter 1

Introduction

Permutation tests were simultaneously introduced by Fisher and Pitman in

1937.

Fisher introduced it in [1] by studying a previous experiment carried out by

Charles Darwin and Francis Galton which consisted in measuring and seeking

evidence for mean differences in a group of plants which were crossed and self

fertilised respectively (in fact, this scenario would be our general framework: two

populations with one of them having been through some kind of treatment).

Fisher made a similar experiment by measuring crossed and self fertilised plants

again. His purpose was to determine if both populations have the same mean, just

as Darwin and Galton did. Fisher stated an equivalent hypothesis by assuming

that both populations were drawn from the same distribution and compared the

difference of means without making distinction between cross and self fertilised

plants: he took two subsets and rearranged them in every way he could, studying

the behaviour of the mean in both of them.

Though Fisher was a pioneer by using this kind of statistical method in an ex-

periment, he did not formalise it theoretically. It was Pitman in [2] who formally

introduced the concept of permutation tests. He wanted to propose statistical

methods with no assumptions about the underlying population (this is known

as non-parametric framework, more on that later). He introduced the notion of

11



12 1.1. The metaphysical duality of non-parametric statistics

splitting data and rearranging it by considering the resulting separations neutral,

concordant or discordant depending on its behaviour with respect to the original

data. The final decision on the hypothesis testing would be based on the number

of each kind of separations.

Despite not working together, both Fisher and Pitman intended to introduce

new statistical methods with little assumptions about the form of the distribu-

tions. This is know as non-parametric tests, or more generally, non-parametric

statistics.

1.1 The metaphysical duality of non-parametric

statistics

The definition of the non-parametric framework leads to a clear division be-

tween authors. This division is clearly illustrated in [1], where Fisher approached

both trends.

”In recent years tests using the physical act of randomisation to supply (on the

Null Hypothesis) a frequency distribution, have been largely advocated under the

name of ”Non-parametric” tests. They assume less knowledge, or more ignorance,

of the experimental material than do the standard tests, and this has been an

attraction to some mathematicians who often discuss experimentation without

personal knowledge of the material.”

Ronald A. Fisher

The first current of this concept is more anthropocentric, presenting non-

parametric statistics as the researcher’s own election. It is presented in [3] as

follows:

”The basic idea of nonparametric inference is to use data to infer an unknown

quantity while making as few assumptions as possible. Usually, this means using

statistical models that are infinite-dimensional. Indeed, a better name for non-



Chapter 1. Introduction 13

parametric inference might be infinite-dimensional inference. But it is difficult to

give a precise definition of nonparametric inference, and if I did venture to give

one, no doubt I would be barraged with dissenting opinions.”

Larry Wasserman

However, he clarifies the problem that stems from defining this concept. As

it can be observed, the non-parametric framework is presented as pure decision

and not as a result of ignorance or mathematical inability. This is the second

approach when defining it. There are situations where data does not stick to

some known population or statistical method. This is a more sceptical standpoint

where ignorance and limitations are courageously assumed. This could be found

in [4]:

”However, in a real-world problem everything does not come packaged with

labels of populations of origin. A decision must be made as to what populations

properties may judiciously be assumed for the model.”

J.D. Gibbons

These are the two main currents of non-parametric statistics definitions. Let

us now set our conditions to develop permutation tests.

1.2 Prerequisites

Permutation tests would be strongly based on conditional distributions. We

will abuse of the use of sufficiency, so let us introduce it:

Definition 1.2.1. Suppose that (X1, ..., Xn) have a joint distribution that de-

pends on a vector of parameters θ for θ ⊂ Θ where Θ is the parameter space. A

statistic T (X1, ..., Xn) is a sufficient statistic for θ if the conditional distribution

of (X1, ..., Xn) given T = t does not depend on θ for any value of t in the support

of T .

The classical interpretation of a sufficient test statistic is that no information

about the distribution is lost when using the statistic instead of the sample itself.
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We thus can make a one-dimensional reduction through sufficient statistics.

However, there would be some situations where this one-dimensional reduction

would not be possible, and we will select a set of statistics {T1, ..., Tp} which would

be jointly sufficient. This would be our later scenario: conditioning with respect

to a set of sufficient statistics in order to free the distribution of any possible

unknown parameters.

Another concept which would be relevant when working in this framework

would be exchangeability.

Definition 1.2.2. Let X1, ..., Xn be a finite set of random variables, with p(X1, ..., Xn)

denoting their joint distribution. The variables X1, ..., Xn are said to be exchange-

able if:

p(X1, ..., Xn) = p(Xπ(1), ..., Xπ(n))

for every permutation π ∈ S(n), with S(n) the symmetric group.

For example, in case we are dealing with continuous variables (the existence

of the density function is then assumed), exchangeability could be written as

∫
Ω

f(x1, ..., xn) =

∫
Ω

f(π(x1), ..., π(xn))

in every non-null measure subset Ω.

Exchangeability is a weaker notion than independence. We just want the

order of the variables not to be relevant, which is slightly permissive than the

strict notion of independence. What is more, it is obvious that independence

implies exchangeability whereas it is not always true the other way.

This would be a basic concept when working with permutation tests. It would

be necessary the null distribution to be exchangeable, as it seems pretty logic not

to be able to differentiate between observations under two equally distributed

populations.
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No more early concepts would be needed in the development of this project,

as new items would be gradually introduced and reviewed.





Chapter 2

Theory of Permutation Tests

In this chapter we will introduce the basic concepts of permutation tests. We

will use the two-sample design as a guide, following the spirit of [7]. Conditionality

and exchangeability would be our cornerstone to develop the theoretical body as

described in 1.2.

As it was also said in advance, the conditioning will be done with respect to

a set of sufficient statistics.

Let X be a random variable taking values on the sample space X , and P ∈ P
the underlying distribution belonging to a non-parametric family of distributions

(if P were a parametric family, classical parametric methods could be employed).

The existence of the density function of P , fP (x), is assumed. This function

would sometimes be interpreted as the density function itself whereas it could be

also used to refer to the likelihood function. No distinction will be made as the

context will be self-explanatory to determine which one we are referring to.

Let X1 = {X11, ..., X1n1} ∈ X n1 and X2 = {X21, ..., X2n2} ∈ X n2 be two inde-

pendent identically distributed samples data from the models P1 and P2 respec-

tively, both P1, P2 ∈ P . We will write X = {X11, ..., X1n1 , X21, ..., X2n2} ∈ X n,

uniting the two i.d.d sample data; whose model is P = P n1
1 ·P n2

2 , as X11, ..., X1n1

are i.i.d from P1, X21, ..., X2n2 are i.d.d. from P2, and the models P1 and P2

17



18

present independence; and where n = n1 + n2. From now on we will write

X = (X1,X2) = {X(i), i = 1, ..., n; n1, n2} to lighten notation, where the first

n1 data come from the first sample, and Xn1+1, ..., Xn belong to the second one.

Finally, we will note X∗ = {X(u∗i ), i = 1, ..., n; n1, n2} the resulting data sample

from applying the permutation u∗ = (u∗1, ..., u
∗
n) to X.

Remark that when permuting mixing observations between both populations

is permitted. In fact, this would be the key point of permutation tests. If P1

and P2 were identically distributed, this exchange should not be of relevance.

However, if it is not the case, that is, P1 6= P2, changing data would be relevant

when measuring statistics on the permuted data set.

We develop the theoretical body in this project standing on testing problems

for stochastic dominance generated by some possible fixed effects as a result of the

application of a treatment. Stochastic dominance implies one sided alternatives.

Two sided alternatives would be discussed later. Under this assumption, our null

hypothesis is

H0 : {P1 = P2}

whereas the alternative hypothesis is

H1 : {X1 + δ1 > X2 + δ2}

with δ1 and δ2 the respective fixed effects in each population.

In case we had quantitative variables, the null hypothesis could equivalently

be stated as

H0 : {F1(t) = F2(t) ∀ t ∈ R}

and the alternative as

H1 : {F1(t) ≤ F2(t) ∀ t ∈ R}

where the strict inequality is given in a set of non null probability for both dis-

tributions. It is important to underline that under the null hypothesis data are
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exchangeable. Although it is an assumption, it naturally stems from the fact

that we should not be able to distinguish whether data come from the first or

from the second sample as both populations behave equally; and that under the

alternative, due to stochastic dominance, it is obvious that CDFs do not cross.

Without loss of generality, we can assume that δ1 = δ > 0 and P [δ2 = 0] = 1.

This might be interpreted as the first sample receiving a real treatment, where

we want to test whether the treatment leads or not to some effects, while the

second sample is under a placebo effect. Now, our hypotheses can be written as

H0 : {δ = 0} vs. H1 : {δ > 0}

This alternative implies that δi > 0 for at least one individual of the first sample.

We will use X(δ) = {X11 + δ1, ..., X1n1 + δn1 , X21, ..., X2n2} to note the data set

under the alternative, whereas X(0) denotes the data set in H0 (with no effects

produced).

It is also important to remark that the alternative hypothesis H1 : {δ > 0}
does not imply δi > 0 ∀ i = 1, .., n1, so the treatment may have some effects

on some subjects of the first simple whereas it might not produce any effects on

others.

2.1 Conditional Aspects of Permutation Tests

We now introduce the first concept related to permutation tests: the condi-

tional reference space.

Definition 2.1.1. The conditional reference space is the set of points of the

sample space X which carry the same information as X in terms of the likelihood

function. It is noted X|X

According to the definition, this space contains the points X∗ such that the

ratio fP (X)/fP (X∗) does not depend on P . Under the null hypothesis the density

function fP (X) =
∏

j,i P (Xji) is assumed to be exchangeable in its arguments as
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fP (X) = fP (X∗) and thus all permutations X∗ of X are in X|X. That is, the

conditional reference space can be expressed as X|X = {
⋃
u∗ X(u∗i ), i = 1, ..., n},

the set of all possible permutations of the observed data set X. One important

consequence is that every element X∗ ∈ X|X is a set of sufficient statistics for the

distribution P in H0.

Another consequence is that the sample space X is partitioned into orbits X|X
so that any point X ∈ X belongs to one and only one orbit. We then have two

disjunctive cases: if X1 ∈ X|X2 then the orbits are equal, X|X1 = X|X2 , whereas

X2 /∈ X|X1 instantly implies that orbits of X1 and X2 do not intersect, that is,

X|X1

⋂
X|X2 = ∅.

These consequences allow us to think about permutations as one element when

working in the permutation approach, which is naturally consistent. We would

not difference between points in the same orbit, but between orbits. Attending to

this and enhancing the idea, the sample space could be written as X =
⋃
X/X|X

where X/X|X denotes the partition of the sample space into orbits (the sample

space is perceived as a quotient space, which embodies the notion of conditional

reference spaces acting as units). Conditional reference spaces X|X are also known

as permutation sample spaces.

The next aspect related to conditional procedures is conditioning with respect

to a set of sufficient statistics in H0. When we condition with respect to X|X the

null conditional probability of an event A ∈ A given X|X is independent of P due

to its sufficiency. We then have that the permutation distribution induced by any

statistic T : X → R, noted FT (t|X|X) = FT ∗(t) = P[T ∗ ≤ t|X|X] does not depend

of P , so it is P -invariant. This is a great advantage as any conditional inference

is free of any distribution belonging to nonparametric families. Furthermore, we

can define and give a closed form of the permutation probability of every A ∈ A
for finite sample sizes thanks to the finiteness of points in X|X, whose cardinal

number is M =
∑
X|X I(X∗ ∈ X|X) <∞, and to the independence on P :
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P[X∗ ∈ A|X|X] =

∑
X∗∈A fP (X∗)∑

X∗∈X|X fP (X∗)
=

∑
X|X I(X∗ ∈ A)

M

because for every permutation X∗ ∈ X|X we have fP (X) = fP (X∗). We can thus

define the permutation measurable space (X|X,A|X), where A|X = A
⋂
X|X (the

projection of events on the permutation sample space).

Attending to the permutation probability introduced before, the following

proposition is stated.

Proposition 2.1.1. Let us assume that
∑
X|X I(X∗ = x) = 1 if x ∈ X|X and 0

elsewhere. Then permutations X∗ are equally likely in H0:

P[X = x|X|X] =

1/M if x ∈ X|X
0 if x /∈ X|X

and the elements of the same orbit X|X are conditionally uniformly distributed

over it.

This proposition allows us to conclude that under the null hypothesis, the

permutation distribution P[X∗ = x|X|X] just depends on the resulting data set

X. The data set X can be interpreted as the n-dimensional parameter for the

permutation cumulative distribution function FT ∗ .

Here we have an important difference in the alternative. A set of sufficient

statistics is (X1,X2) being the data exchangeable within but not between sam-

ples, and so the observed data X is not uniformly distributed over X|X condition-

ally.

We now introduce the empirical probability measure (EPM) and its analogous

in case of quantitative variables, the empirical distribution function (EDF).

Definition 2.1.2. Let X∗ ∈ X|X be a permutation of the observed data set X.

The empirical probability measure of an event A ∈ A is defined as:

P̂X∗(A) =
∑
i≤n

I(X∗i ∈ A)/n =
∑
i≤n

I(Xi ∈ A)/n = P̂X(A) (2.1)
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which is a permutation invariant function. In case we have quantitative variables,

we can also definde the empirical distribution function (EDF) as:

F̂X∗(t) =
∑
i≤n

I(X∗i ≤ t)/n =
∑
i≤n

I(Xi ≤ t)/n = F̂X(t) (2.2)

which is permutationally invariant as well .

An interesting result related to these concepts is stated. Although the EPM

is the general version of the empirical function, we will deal with quantitative

variables, so we state it just for the EDF.

Proposition 2.1.2. Let X ∈ X . Then F̂X is a permutation invariant function

which characterises X|X. Thus, the conditional sample space can be defined as the

set of points in X which share the same EDF.

This proposition is consequence of the partition of X conformed by the dif-

ferent orbits X|X.

A consequence of this result is that the EDF is a sufficient statistical function

for P in the null hypothesis. Hence, conditioning on the conditional reference

space is equivalent to doing so on F̂X. Another consequence is that for any

statistic T ,

P[T (X∗) ≤ t|X|X] = P[T (X∗) ≤ t|F̂X] = P[T (X∗) ≤ t|F̂X∗ ]

for all t ∈ R and all permutation X∗ ∈ X|X. According to this equivalence, the

permutation null distribution of T can be interpreted as a process of without

replacement random experiment from a uniformly distributed population whose

distribution is the EDF. This interpretation is clearly different to that of bootstrap

methods, where the selection is made with replacement.

An asymptotic result with mild assumptions is obtained for the null permu-

tation distribution of T . If we have sufficiently large n1 and n2 then the null

permutation distribution P[T (X) ≤ t|F̂X] approximates its unconditional coun-

terpart P[T (X) ≤ t]
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2.2 What is a Permutation Test

Let us suppose a test statistic T for which, without loss of generality, large

values of T are evidence against H0. Of course, if it is not the case, we can

consider a suitable transformation of the test to be in this situation.

Definition 2.2.1. On the previous conditions, the permutation support induced

by (T,X) is defined as the set TX = {T (X∗) : X∗ ∈ X|X}

This set is essentially conformed by all the possible values which the statistic

T assumes by permuting the data set X.

We now assume the null hypothesis as true. In light of 2.1.1, X∗ is uniformly

distributed over the conditional space. Let us put M as the cardinal number

of X|X∗ , and let us consider T ∗(1) ≤ T ∗(2) ≤ · · · ≤ T ∗(M), the members of TX in a

non-decreasing order. If we now fix a value α ∈ (0, 1), Tα(X) = Tα = T ∗(Mα)

denotes the permutation critical value related to the statistic T and the data set

X, where Mα =
∑
X|X I[T (X∗) < Tα] is the number of values assumed by T in

the permutation support lower than Tα. Note that the behaviour of the critical

value not only depends on the data set observed X but also on X|X, as Mα would

vary depending on the values assumed by T in the respective permutation sample

space of X. That is, if we get another observed data set X∗ verifying X∗ ∈ X|X,

the critical value satisfies Tα = Tα(X) = Tα(X∗) as the two orbits coincide and

so do the permutation supports. The critical value is orbit-invariant, so for each

α ∈ (0, 1), Tα is a fixed value in TX which varies as X varies in X just in case we

jump into a different orbit.

2.2.1 Constructing Permutation Tests

We now move on to construct the tests based on permutational aspects. As

it is widely known, there are two kind of tests: randomized and non-randomized

tests.

Randomized Permutation Tests
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We first focus on randomized tests. Let us note φR the test associated with

the pair (T,X):

φR =


1 if T 0 > Tα

γ if T 0 = Tα

0 if T 0 < Tα

where T 0 = T (X) is the value of the test statistic T examined on the observed

data set X and γ is a probability given by

γ =
α− P[T 0 > Tα|X|X]

P[T 0 = Tα|X|X]

The test itself is not complete. When T 0 = Tα, we should define an auxiliary

rule of decision based on a independent experiment. This can be made by running

a variable U ∼ U(0, 1) and rejecting H0 in case U ≥ γ.

Let us write the conditional expectation in H0:

E[φR(X)|X|X] = P[T 0 > Tα|X|X] + γ · P[T 0 = Tα|X|X]

= P[T 0 > Tα|X|X] +
[α− P[T 0 > Tα|X|X]] · P[T 0 = Tα|X|X]

P[T 0 = Tα|X|X]

= α

what shows that randomized permutation tests are exact tests for all X ∈ X and

any α ∈ (0, 1). Indeed, they verify a stronger condition, the uniform similarity

property:

Proposition 2.2.1. Under exchangeability of data X, the conditional rejection

probability of a randomized test φR is X-P -invariant in H0 for all P ∈ P and all

X ∈ X .

The proof can be found in [5]. It can be appreciated once again how robust

permutation test are in a nonparametric framework, freeing not only the dis-

tribution but also the test and its critical region from any underlying unknown

population and observed data.
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Non-Randomized Permutation Tests

Let us study now the other type of tests, non-randomized ones. These tests

have the form:

φ =

1 if T 0 ≥ Tα

0 if T 0 < Tα

In contrast with the randomized version of permutation tests, the conditional

expectation in H0 (and coinciding with the type I error rate in non-randomized

tests) is:

E[φ(X)|XX] = P[T 0 ≥ Tα|X|X] =
∑
X|X

I[T (X∗) ≥ Tα]/M = αa ≥ α

Considering the significance level function LX(t) = P[T ∗ ≥ t|X|X], and given a

pair (T,X), the possible α-values for the test, called attainable α-values, are those

where the significance level function is discontinuous, that is, when lX(t) > 0,

with lX(t) the derivative of LX(t). Thus, the set ΛX = {LX(t) : lX(t) > 0}
(step points of the significance level function) contains these attainable α-values.

This is always a discrete set which depends on T , X and n. Because of this,

non-randomized permutation tests do not admit all values of type I error rate in

practice.

Let us study the behaviour of ΛX. In case that it exists a constant c ≥ 1

verifying that for all values in the permutation support
∑
X|X I(T ∗ = t) = c (i.e.,

ΛX does not contain multiple points or these points have constant multiplicity),

ΛX becomes X-invariant, though it does not become free of its dependence on n.

In this case, the set ΛX has the form ΛX = {mc/M, m = 1, ...,M/c}, and αa-

values have constant jumps of c/M . Due to this, non-randomized tests become

conservative when we choose a desired type I error rate αd which does not belong

to ΛX and an attainable α-value with αd ≥ αa. Of course, if the desired rate is

in the set of attainable α-values, exactness is obtained.



26 2.2. What is a Permutation Test

However, if TX does not verify the condition previously showed, the set ΛX is

X-variant. This might lead to an apparent decrease of the power function when

increasing sample size.

2.2.2 Analyzing the p-Value

Determining the critical values Tα is not a trivial task, so we resort to the p-

value associated with (T,X). Recall the p-value is the probability of the statistic

T assuming values as extreme or more than the obtained with the data observed

X, that is, T (X). Attending to this, we define the p-value in the permutation

context as

λ = λT (X) = P[T ∗ ≥ T 0|X|X]

Note the p-value can be also expressed in terms of the significance level function

as LX(T 0).

The p-value is a non-increasing function of T 0 (it is obvious that if T 0 in-

creases, the probability of obtaining bigger values than T 0 decreases or remains

equal). It is also in bijection with the attainable α-values of the test, verifying

that if λT > α, then T 0 < Tα and vice versa. This relationship solves the problem

of obtaining the critical values Tα to determine whether to reject or not the null

hypothesis. In effect, once the p-value has been calculated, we can exclusively

attend to it to determine the decision. Hence, the test can also be expressed as

φ =

1 if λT (X) ≤ α

0 if λT (X) > α

Now the attainable α-values play the role of critical values, and the p-value

can be used as a test statistic to construct the hypothesis testing.

If X is a continuous variable and T is a regular function, these tests verify

the similarity property in the almost sure form.

Proposition 2.2.2. If X is continuous and T is a regular function, then the
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attainable α-values of φ are independent of both the data set X and the underlying

population P for almost all X ∈ X with probability one with respect to P .

This is given because in case X is continuous, the probability of finding ties

in the data set is zero. Moreover, this is an important result as the attainable

α-values are just depending on the statistic T , so we just need to compute the

calculus to obtain them once.

However, for discrete or mixed variables, the case where ties in the data set

may have positive probability, the attainable values of significance depend on X,

losing the similarity property. In spite of this lost of properties, this is just in the

finite sample case, being valid for large samples as it is verified asymptotically.

Under the assumptions of the previous proposition, we could state a property

about the distribution of p-values in the invariant set Λ.

Proposition 2.2.3. If X continuous and T is a regular function, the p-values

λT (X) are uniformly distributed in Λ.

This proposition is deeply related to the uniform distribution of the permuta-

tions over the conditional reference space (2.1.1), as the p-values are in one-to-one

relationship with the data set.

Corollary 2.2.1. Let us suppose that there are not repeated elements in TX.

Then under H0 the elements of TX are equally likely.

The corollary is straightforward from the uniform distribution of attainable

α-values over Λ, because if no elements are repeated in the permutation support,

there is a bijection between Λ and T (X).

Computing the p-value

Properties related to p-values of permutation tests have been exposed. How-

ever, a problem obviously arises when obtaining the p-value of a test. Recall the

p-value was defined as the probability of finding values more extreme than the
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observed, that is , P[T ∗ ≥ T 0|X|X]. This implies evaluating the test statistic T

on all possible permutations X∗ ∈ X|X. But when n is too large this is obviously

impractical.

We then go to a Monte Carlo algorithm to approximate the p-value. The

algorithm is described as follows:

1. In first place, calculate the observed value of T , T 0 = T [X(δ)].

2. Randomly permute the observed data set X∗(δ) and assess T (X∗(δ)).

3. Repeat last step B times

4. Finally, the p-value is estimated as λ̂ =
B∑
i=1

I[T ∗i (X∗) ≥ T 0]/B, that, is,

the proportion of permutations where the observed value T 0 is exceeded.

The set created by resampling, {X∗b b = 1, ..., B}, is a random sample from the

permutation space, so the corresponding values of T , {T ∗b , b = 1, ..., B} resemble

the null permutation of T . Furthermore, based on Glivenko-Cantelli theorem,

the estimation of the p-value λ̂ converge to its real value.

Naturally, if n is sufficiently small, we can exactly compute the value of the

p-value as

λ =
∑
X|X

I[T ∗ ≥ T 0]/M

2.3 Statistics Permutationally Equivalent

With a view to simplify the most possible the structure of the tests itself,

we introduce a concept which will allow us to use simpler statistics instead of

complex data functions.

Definition 2.3.1. Let us suppose X ∈ X and two statistics T1, T2. T1 and T2 are

said to be permutationally equivalent if [T1(X
∗) ≤ T1(X)] is verified if and only

if [T2(X
∗) ≤ T2(X)] for all X ∈ X , X∗ ∈ X|X. It is noted T1 ≈ T2.
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Then two statistics are permutationally equivalent if the values assumed by

them in the sample space respect an order notion. As this relation is verified

pointwise (that is, once considered an orbit X|X this is verified for any X∗ ∈ X|X),

we can give an accurate description of the permutation support of two equivalent

statistic.

Let us assume (T1,X) and (T2,X), with T1 and T2 permutationally equivalent.

These two pairs would respectively induce the permutation supports T 1
X and T 2

X.

As the relationship [T1(X
∗) ≤ T1(X)] implies [T2(X

∗) ≤ T2(X)] and vice versa,

it is straightforward that [T1(X
∗) ≥ T1(X)] if and only if [T2(X

∗) ≥ T2(X)].

Attending to this, the respective p-values are λ1 = P[T1(X
∗) ≥ T 0

1 ] and λ2 =

P[T2(X
∗) ≥ T 0

2 ]. Assuming finiteness in the sample space, λ1 =
∑
X|X I[T1(X∗) ≥

T 0
1 ] and λ2 =

∑
X|X I[T2(X∗) ≥ T 0

2 ].

From the relationship previously exposed, it is trivially concluded that λ1 =

λ2. This let us go from certain complex test using a convoluted statistic to other

pretty much simpler in case we find an equivalent statistic to the first one.

In conclusion, permutation equivalence may be understood as a transforma-

tion of the permutation support which does not alter the order of its elements

nor their ranks.

Recall that, if we want to simplify a test, we should be capable of finding

some easier (beforehand) statistic permutationally equivalent to the one we are

handling. We state some results which ease this task.

Theorem 2.3.1. Let us suppose that it exists an increasing bijection between T1

and T2. Then T1 ≈ T2 and P[T1(X
∗) ≤ T1(X)|X|X ] = P[T2(X

∗) ≤ T2(X)|X|X ].

Proof. Let us consider ϕ : R → R the relationship between the two statistics,

with T2 = ϕ(T1). Then we have:

[T1(X
∗) ≤ T1(X)]↔ [ϕ(T1(X

∗)) ≤ ϕ(T1(X))] = [T2(X
∗) ≤ T2(X)]
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On the other hand, as ϕ is a bijection, considering ϕ−1,

[T2(X
∗) ≤ T2(X)]↔ [ϕ−1(T2(X

∗)) ≤ ϕ−1(T2(X))] = [T1(X
∗) ≤ T1(X)]

This theorem fits with the notion we explained in advance. T 2
X is just a

translation of T 1
X. A similar result is given when there is a decreasing relationship.

Corollary 2.3.1. Let us suppose that it exists a decreasing bijection between

T1 and T2. Then T1 ≈ T2 in the sense that [T1(X
∗) ≤ T1(X)] if and only if

[T2(X
∗) ≥ T2(X)].

In this case, we are mirroring the permutation support with respect to T 0.

It is an inversion which also invert ranks, but under a bijection. That is, let us

assume again finiteness in the sample space X|X, say M is its cardinal. Then the

th-element of T 1
X would be the (M − th+ 1)-element of T 2

X.

Because of this, p-values do not behave as before. Now the relationship be-

tween both critical values is λ2 = 1 − λ1. We can then have a case where H0

is rejected using T1 but we would clearly not reject it when using T2. Though

this could appear a contradiction, recall we are interpreting large values of the

statistic as evidence against the null hypothesis, and large values of T1 mean little

values of T2. We just need to reconsider the critical region of our test if T2 is

desired.

It is also worth noting that the permutationally-equivalent relation is in fact an

equivalence relation. This could help us to find a not-so-complex but neither not-

so-simple statistic T2 as an intermediate equivalence between T3 and T1, where T3

is intended to be a difficult statistic to compute whereas T1 is a pretty appealing

one.

We end the section with the most practical result about this concept.
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Proposition 2.3.1. If T1 and T2 are one-to-one related when restricted to the

data set X, then T1 ≈ T2.

The proof of this is straightforward from the proof of the previous theorem.

This result is frequently used when proving the equivalence of test statistics.

Let us illustrate the usefulness of this proposition. Consider T ∗1 = X̄∗1 − X̄∗2 ,

and T ∗2 =
∑

iX
∗
2i. Using that

∑
jiX

∗
ji =

∑
jiXji = KX, we can then write

T ∗1 =
1

n1

∑
i

X∗1i −
1

n2

[KX −
∑
i

X∗1i] = [
n

n1n2

]
∑
i

X∗1i −
1

n2

KX ≈
∑
i

X∗1i

as n
n1n2

and 1
n2
KX are permutationally invariant. Thus T1 and T2 are one-to-

one related, and we can conclude they are permutationally equivalent. Observe

that we have passed from the difference of both sample means to the sum of the

individuals of just one sample.

2.4 The Test Statistic and the Critical Region

The first discussion to approach in this section is the preference for statistics

based on divergence.

We have developed the theory standing on a test statistic based on divergence.

However, no rational reason has been explained to justify this selection. Let us

present the arguments which would vindicate that.

In first place, following [5], we have two important results related to the choice

of an optimal permutation tests.

Lemma 2.4.1. Let ψ be any test of invariance hypothesis testing whose size is

less or equal than α. Then there exists a permutation test φ verifying∫
φ ≥

∫
ψ

for any distribution P ∈ P
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This lemma shows that permutation tests are better as any arbitrary test

when testing invariance.

The second result is related to how choosing the most powerful tests when

testing invariance hypothesis again.

Lemma 2.4.2. Let H0 be an invariance hypothesis. Let fH1 be the density of

P in H1, and X ∈ X . We order the points of the sample space in terms of fH1

resulting in fH1(X
∗
(1)) ≥ fH1(X

∗
(2)) ≥ · · · ≥ fH1(X

∗
(M)). Then the most powerful

test of size α is

φR =


1 if fH1 > fα

γ if fH1 = fα

0 if fH1 < fα

where for any fixed α ∈ (0, 1), fα is the critical value, Mα is the number of points

which lay within the critical region and

γ =
α− P[f(X) > fα(X)]

P[f(X)]
= fα(X)

With this result, along with the previous one, we can think that we do have

solved the problem of choosing a suitable test. However, the disadvantage of this

result is clear: we need to know the analytical form of the distribution P , and

since we are working in a nonparametric framework, this results impracticable.

We need to make a different approach to justify the selection of our test

statistics.

In fact, this selection is mainly heuristic. As P is assumed to be unknown

in the non-parametric framework, we can not make use of the previous results

to establish a best statistic. In spite of this, there is an analogy in permutation

tests and the parametric solution when we are working with large sample sizes.

As stated in [6],

Proposition 2.4.1. Let T be a best statistic for the parametric family P, and

assume that the unconditional critical region does not depend on any specific
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alternative. Then its permutation counterpart is asymptotically equivalent (and

the permutation version of T is asymptotically a best statistic for P).

Though it is a powerful result as we are able to determine a best (asymptoti-

cally) permutation statistic for the family of distributions, this is a very particular

case where P is parametric. Since we have introduced permutation tests to work

in a non-parametric framework, following the nature of the previous results to

determine an optimal tests, this result is very restrictive.

In light of these previous results, the choice of divergence turns out to be

pretty heuristic. Results claiming optimal properties for tests are so rigid that the

hypotheses are scarcely verified. What is more, permutation tests are presented

to cover nonparametric situations, so meeting the requirements to apply some

optimality results seems impractical.

The other question to analyse is why large values are evidence against H0, a

fact which we have arbitrarily imposed.

As well as the selection of T , it is mainly heuristic, though we have some

reasons backing up this fact. The first one is that this choice is supported on

a suitable transformation which provides equivalence of tests. We can trans-

form our test into another one in which the alternative distribution stochastically

dominates the null distribution. What is more, we would prove in 3.1 that the

null distribution of a statistic T is dominated by its alternative distribution in

one-sided critical regions. Thanks to this, power functions of tests would be

monotonic increasingly with respect to the effects we are testing (more on this

later in 3.2).





Chapter 3

More Properties of Permutation

Tests

We continue on the same conditions previously stated, that is, we assume a

one-dimensional variable X taking values on sample space X with probability

distribution P , and that in H1 the distribution of X1 is shifted by a constant

quantity δ with respect to that of X2. We are in stochastic dominance scenario,

with F1(x) ≤ F2(x) ∀ x ∈ R.

Moreover, we continue assuming that the constant effect δ is positive. We

would write the variable as X(δ̂) = {Xji = δ̂ji + Zji, i = 1, ..., nj, j = 1, 2} in

the alternative from now on, where Zji are random deviates exchangeable which

follow an unknown distribution P . We also assume δ̂2i = 0 for i = 1, ..., n2

as we previously did, so there are no effects on the second group (recall the

placebo effect). Under this assumptions, we can represent the data set as X(δ) =

(Z1 + δ,Z2), with δ = (δ11, ..., δ1n1). This notation emphasizes the exclusively

activity of the treatment on the first sample, with no effects on the second one.

It is important to remark that δ = (δ11, ..., δ1n1) is such that δ1i > 0 for at least

one i = 1, .., n1, and thus the null and the alternative state different situations.

35
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In these conditions, out hypotheses would be

H0 : {δ = 0} vs. H1 : {δ > 0}

3.1 Unbiasedness

Firstly let us introduce the concept of unbiasedness for a test statistic. We

recover this definition from [5].

Definition 3.1.1. Let φ be a test. φ is said to be unbiased if it verifies that

βφ(θ0) ≤ α ≤ βφ(θ1)

for every size α ∈ (0, 1) and every specific alternative in H1, where βφ(θ) is the

power function of the test.

The notion of test unbiasedness is related to a comparison between the rejec-

tion behaviour of the test under the null and the alternative hypothesis respec-

tively. It essentially states that the probability of rejecting is always higher when

the alternative hypothesis is true than when the null hypothesis is true. Due to

our determination of the rejection region for permutation tests (which is of the

form [Tα,∞) as large values of T were evidence against the null hypothesis), this

definition can be equivalently stated as

P[T (X) ≥ Tα|H0] ≤ α ≤ P[T (X(δ)) ≥ Tα|H1]

Owing to our test φ is based on the test statistic T , we will say that T possesses

unbiasedness instead of the test itself. We should not confuse this with the notion

of unbiasedness related to the expected value of T . However, as the latter concept

is defined in the parametric framework, there would be no chance of provoking

confusion since we are working in a nonparametric scenario.

We have a sufficient condition for determining the unbiasedness of T .
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Proposition 3.1.1. Let T be a test statistic. If the null distribution of T , TH0,

is dominated by every distribution from H1, TH1, then the test φ based on T is

unbiased.

Proof. The proof is straightforward from the definition of stochastic dominance.

Let TH1 dominate TH0 for any alternative, and let us fix a type I error rate

α ∈ (0, 1). Then we have

P[TH0 ≥ Tα] ≤ α ≤ P[TH1 ≥ Tα]

However, this concept has been defined in an unconditional scenery. Since we

are developing permutation tests from a conditional standpoint, we introduce the

conditional counterpart of this notion.

Definition 3.1.2. Let T be a test statistic. T is said to be conditionally or

permutationally unbiased if the p-values verify

P[λT (X(δ)) ≤ αa|X|X(δ)] ≥ P[λT (X(0)) ≤ αa|X|X(0)] = αa

for every X ∈ X and any δ ∈ H1, where X(δ) = (Z1 + δ,Z2), X(0) = (Z1,Z2),

and αa is any attainable α-value.

Similarly to the classic definition of test unbiasedness, the interpretation of the

definition is basically that rejecting is more likely when the alternative hypothesis

is true than doing so when it is the null hypothesis the one which is true.

In a similar way to the unconditional case, we can introduce a sufficient con-

dition to obtain conditional unbiasedness.

Proposition 3.1.2. Let T be a test statistic. If T is such that

λT (X(δ)) = P[T (X∗(δ)) ≥ T 0(δ)|X|X(δ)]

≤ P[T (X∗(0)) ≥ T 0(0)|X|X(0)] = λT (X(0))

then T is conditionally unbiased.
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We just have to use the monotony of the distribution function to get the

result.

Note that this sufficient condition just involves the respective p-values under

both hypotheses. If we have smaller p-values in the alternative hypothesis, it

would be more likely to reject using the same levels of significance than in the

null.

Of course, the reader could instinctively think that conditional unbiasedness

is a more restrictive notion than the traditional one. This is in fact true, as we

state in this proposition.

Proposition 3.1.3. If T is conditionally unbiased, then it is also unconditionally

unbiased.

This result naturally stems from the definition of conditional probability, as

the unconditional rejection probability of the permutation test based on T is

∫
X
P[λT (X(δ)) ≤ α|X|X(δ)]fP (X(δ)) ≥ α

because under the assumption that T is conditionally unbiased, it is verified that

P[λT (X(δ)) ≤ α|X|X (δ)] ≥ α and
∫
X fP = 1 as it is a density function.

The converse, however, is not true. This reinforces the idea of conditional

unbiasedness being a more stringent concept than the unconditional one.

3.1.1 Characteristics of Conditional Unbiasedness

Let us dig into the concept previously introduced. Given an observed data

set X, the two observed values of T are T 0(0) = T 0(X(0)) (under H0) and T 0(δ)

= T 0(X(δ)) (under H1). Consider a permutation of the observed data set, re-

sulting into two different values of T , T ∗(0) = T (X∗(0)) and T ∗(δ) = T (X∗(δ))

respectively. We now define the increment of T due to the fixed effects δ as
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∆T (X(δ)) = T (X(δ))− T (X(0)), and the difference of values resulted from per-

muting as ∆T (X∗(δ)) = T (X∗(δ)) − T (X∗(0)). These increments allow us to

compare the behaviour of T under both hypotheses.

Before continuing, we should make some assumptions on the statistic T we

are working with. The first one is that T will have the form

T = S1(X1)− S2(X2) (3.1)

We assume Sj to be symmetric functions, which implies invariance under rear-

rangement of data (Sj(Xj) = Sj(X
∗
j), with X∗j any rearrangement of the data set

Xj). It is typical to consider Sj some kind of sample mean or median. The second

assumption will be the non-decreasing monotony of Sj, so Sj(X + X′) ≥ Sj(X)

for any data set X and any non-negative X′ ≥ 0. This second assumption en-

hances the idea of large values of T being evidence against H0 as effects would

be such that δ > 0. A final observation is that T is non-increasing in its second

n2 arguments.

Back on the increments, we have that ∆T (X(δ)) = T (X(δ)) − T (X(0)) ≥ 0,

because T is not decreasing in its first n1 arguments along with the observation

that it is non-increasing in its second n2 arguments.

We can also stablish a one-to-one pointwise relationship between the condi-

tional permutation spaces of H0 and H1. If we fix a permutation u∗ = (u∗1, ..., u
∗
n)

of u = (u1, ..., un), then X∗(0) = {Z(u∗i ), i = 1, ..., n; n1, n2} gives a unique

point in the alternative sample space, which is X∗(δ) = {Z(u∗i ) + δ(u∗i ), i =

1, ..., n; n1, n2}. It is also true the other way.

Therefore, p-values in H0 are

λT (X(0)) = P[T (X∗(0)) ≥ T 0(0)|X|X(0)]

whereas in H1, they can be expressed as
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λT (X(δ)) = P[T (X∗(δ)) ≥ T 0(δ)|X|X(δ)]

= P[T (X∗(0)) + ∆T (X∗(δ))−∆T (X(δ)) ≥ T (X(0))|X|X(0)]

Two key points here. The first has been continuously repeated and it is that

the effects δ are only active on the first sample, i.e., on the first n1 observations

of X. The second one is that, due to the previous assumptions, the difference in

any data permutation ∆(X∗(δ)) tends to be smaller than ∆(X(δ)) because some

effects are exchanged between the first and the second sample and T is assumed

to be non-decreasing on its first n1 arguments. Let us clarify this.

The data set originally is (Z1 +δ,Z2) = (Z11 +δ11, ..., Z1n1 +δ1n1 , Z21, ..., Z2n2)

in the alternative. When we consider a permutation u∗ = (u∗1, ..., u
∗
n), the new

data set is (Z∗1 + δ∗,Z∗2) = u∗(Z11 + δ11, ..., Z1n1 + δ1n1 , Z21, ..., Z2n2) = (u∗11(Z11)+

u∗11(δ11), ..., u
∗
1n1

(Z1n1) + u∗1n1
(δ1n1), u

∗
21(Z21), ..., u

∗
2n2

(Z2n2)), where some values of

the first sample, which are larger than those of the second sample in the al-

ternative due to positive fixed effects, could have been permuted to the second

sample.

Therefore, ∆(X∗(δ)) − ∆(X(δ)) is expected to assume non-positive values.

Depending on how this occurs, different types of conditional unbiasedness are

presented:

1. If ∆(X∗(δ))−∆(X(δ)) ≤ 0 for all X∗ ∈ X|X and for all data sets X ∈ X ,

then λT (X(0)) ≥ λT (X(δ)). This is denominated strictly uniform conditional

unbiasedness.

2. If ∆(X∗(δ)) − ∆(X(δ)) ≤ 0 is verified in terms of permutation distribu-

tion instead of pointwise, then the p-values also verify λT (X(0)) ≥ λT (X(δ))

distributionally talking.

3. If for some data set X ∈ X and some permutation X∗ ∈ X|X ∆(X∗(δ)) −
∆(X(δ)) > 0 is given, then we may not have conditional unbiasedness. This could

happen when the two CDF cross.
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We will make use of the first kind of conditional unbiasedness, the strict

uniform one, which is the most practical one.

3.1.2 Strictly Uniform Conditional Unbiasedness

Let us prove strictly uniform conditional unbiasedness for test statistics of the

form we have proposed earlier, T (X) = S1(X1)− S2(X2).

The observed value in H0 is

T 0(0) = S1(Z1)− S2(Z2)

whereas, under H1, the statistic T assumes the value

T 0(δ) = S1(Z1 + δ1)− S2(Z2)

Permutating the data set under H0 and H1, we obtain

T ∗(0) = S1(Z
∗
1)− S2(Z

∗
2)

and

T ∗(δ) = S1(Z
∗
1 + δ∗1)− S2(Z

∗
2 + δ∗2) = T ∗(0) + ∆S(Z∗1, δ

∗
1)−∆S(Z∗2, δ

∗
2)

We introduce the term δ2 as some active effects of the first n1 subjects may have

been permuted to the second sample.

Now let us make the following appreciations:

� ∆S(Z∗2, δ
∗
2) ≥ ∆S(Z∗2, 0) = 0 = ∆S(Z2, 0) as effects δ∗2 are non-negative and

Sj are invariant over rearrangement.

� ∆S(Z∗1, δ
∗
1) ≤ ∆S(Z∗1, δ1) as it may be some values of the effects produced

on the second sample in δ∗1, which are null.

� Finally, observe that ∆S(Z∗1, δ1) = ∆S(Z1, δ1) in distribution because the

points of the conditional reference space are uniformly distributed.
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Due to all of this, ∆S(Z∗1, δ
∗
1) − ∆S(Z∗2, δ

∗
2) ≤ ∆S(Z1, δ1) pointwise, so the

p-value verifies

λT (X(δ)) = P[T (X∗(δ)) ≥ T 0(X(δ))|X|X(δ)]

= P[T (X∗(δ))− T (X∗(0)) + T (X∗(0)) + T 0(X(0))− T 0(X(0)) ≥ T 0(δ))|X|X(δ)]

= P[T (X∗(0)) + ∆S(Z∗1, δ
∗
1)−∆S(Z∗2, δ

∗
2)−∆S(Z1, δ1) ≥ T 0(X(0))|X|X(0)]

≤ P[T ∗(X(0)) ≥ T 0(X(0))|X|X(0)] = λT (X(0))

It has been proved that permutation tests are conditionally unbiased for every

attainable level of significance, independently of the population P and for all data

set X ∈ X .

Another important result is that, given two fixed effects δ and δ′ such that

δ ≤ δ′, the respective p-values behave as λ(X(δ)) ≥ λ(X(δ′)). We can regard

p-values as non-decreasingly quantities with respect to the fixed effects of the

treatment. In terms of effects, the larger the effect, the smaller the p-value (and

so the more likely to reject null effects), which is heavily consistent with the

theory we are presenting.

This aspect would help us when it comes to obtain confidence intervals for

fixed effects δ.

Two-Sided Alternatives

Now, instead of one-sided alternative, i.e., H1 : {δ ≤ δ0} or H1 : {δ ≥ δ0}, we

will focus on two-sided alternatives, where

H0 : {X1 = X2} vs. H1 : {X1 6= X2}

The first problem presented is that if fixed effects verify δ 6= 0, a situation where

δ provoking positive effects on some subjects while negative ones on others is

perfectly compatible. If a suitable transformation φ of the sample space is such

that φ(X(δ)) > φ(X(0)), it is totally analogous to the ideas presented so far.

However, this transformation φ is not easy to determine, and this makes the

analysis substantially difficult.
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As a solution, a relaxation on the sign of the fixed effects is assumed. Accord-

ing to this, we will accept that if δ is such that |X1+δ−X2| > 0, this would imply

that |δ| > 0 in the alternative. To tackle this test, we will choose statistics which

consider not only the difference between two samples but also its absolute value.

For example, some useful statistics for this tests would be the absolute mean

divergence, T = |
∑

iX1i(δ)/n1−
∑

iX2i/n2|, being some non-degenerate regular

function of the sample means a possible approach, the squared mean divergence,

T = [
∑

iX1i(δ)/n1 −
∑

iX2i/n2]
2 , or the absolute divergence of a statistic T

following the form of 3.1.

Confidence intervals for δ would be another suitable option to approach these

tests which will be discussed later.

Furthermore, according to this sign relaxation, the p-value would be calculated

as

λT (X(δ)) = 1− P[−|T 0| ≤ T ≤ |T 0|])

due to the unknown direction of the effects (observe that the statistic T could

assume extreme values in a negative direction if the alternative is such that

H1 : {|δ| > 0}

with δ < 0

3.2 Conditional Power Function

Let us now discuss the power function of these tests. Recall the power of a

test is the probability of rejecting the null hypothesis when it is the alternative

the one which is true. We thus look for tests which have a high power function.

In a similar way to previous concepts which have been introduced, we give a

conditional version of this notion.

Definition 3.2.1. In a permutation test framework, the conditional power func-

tion is defined as
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W [(δ, α, T )|X|X] = P[λT (X(δ)) ≤ α|X|X(δ)]

= E[I[λT (X∗(δ))]|X|X∗(δ)]

Observe that this function depends on the considered level of significance, the

statistic involved, the supposed effects and the sample size. The behaviour of W

with respect to the statistic T is not uniform, whereas how the sample size affects

would be discussed later.

With respect to δ, attending to the comment of the inverse order which effects

δ, δ′ and their respective p-values verify (recall the last paragraph of 3.1.2), it is

straightforward that if δ < δ′ then

W [(δ, α, T )|X|X] ≤ W [(δ′, α, T )|X|X]

for every X ∈ X and any attainable α-value (in fact, this is highly consistent

because the larger the effects are, the more likely to reject null effects.)

As well as the p-value, computing the conditional power function is not a

trivial task. Remark that λT (X∗(δ)) is the p-value calculated on X∗(δ) = (Z∗1 +

δ,Z∗2), so we need to compute it on all possible permutations of the random

deviations Z.

Following the same philosophy of p-value estimation, we propose a Monte

Carlo algorithm to get an approximation of the conditional power function:

1. First consider the pooled deviates Z and the effects δ.

2. Randomize Z obtaining Z∗, resulting X∗l (δ) = (Z∗l1 + δ,Z∗l2) and apply the

Monte Carlo algorithm for obtaining an approximation of the p-value λ̂T (X∗l (δ)),

all this for N times.

3. The approximation is Ŵ =
∑
l

I[λ̂(X∗l (δ)) ≤ α]/N

Remark that the conditional power function is a non-decreasing function of

α. In effect, if we fix 0 < α1 ≤ α2 < 1, it is easily followed that

W [(δ, α1, T )|X|X] ≤ W [(δ, α2, T )|X|X]
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due to

P[λT (X(δ)) ≤ α1|X|X(δ)] ≤ P[λT (X(δ)) ≤ α2|X|X(δ)]]

just attending to monotony (of course, the more relaxed the level of significance,

the more likely to reject the null hypothesis).

However, a striking detail flourishes when examining the previous algorithm.

It uses the random deviates Z, but in practice, these deviations are homogeneous

along with the supposed effects δ. We should be able to separate them in order

to apply the mechanism, so we introduce an alteration in the algorithm which

contemplates an estimation of these deviations.

It is as follows:

1. Consider a suitable statistic T for estimating δ, obtaining a point estimation

δ̂ from the observed data set X(δ) . A point estimation of the random deviations

is Ẑ = (X1 − δ̂,X2).

2. Randomize the estimated deviations Ẑ∗, with X̂∗l (δ) = {Ẑ∗l1 + δ, Ẑ∗l2} and

compute the p-value λ̂T (X∗l (δ)) for N times.

3. The estimation is Ŵ =
∑

l I[λ̂T (X∗l (δ)) ≤ α]/N .

In case the underlying population P is known (including its analytical form)

we can obtain the unconditional power function as

W (δ, α, T, P, n) = EX [W (δ, α, T, n)|X|X]

=

∫
X
I[λT (X(δ)) ≤ α|X|X]fP (X(δ))

Remark that due to averaging with respect the sample space X we first have

to take the mean with respect to the conditional distributions over X|X and then

take the mean of these with respect to the partition of the sample space into

orbits. A similar Monte Carlo algorithm to the one explained for the conditional

power function could be applied:

1. Choose a value of δ and simulate a sample of size n from P . Add the effects

to the first n1 deviates, resulting in Xl(δ) = (Zl1 + δ,Xl2). Do this N times.
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2. Compute the p-value λ̂T (X∗l (δ)) for each sample obtained in 1.

3. The estimation is Ŵ =
∑

l I[λ̂T (X∗l (δ)) ≤ α]/N .

To obtain a function in δ, α, T and n, we just need to compute the algorithm

for different values of these elements.

The unconditional power function could be used to determine if a statistic T

is unbiased checking if it verifies Ŵ (δ, α, T, P, n) ≥ α.

This function can also be interpreted as a least squares estimation, due to its

obtaining through an expectancy.

3.2.1 Let’s make it unconditional!

In light of the results previously described we set out the possibility of ob-

taining unconditional decisions based on the conditional ones we have already

obtained.

Let us consider a non-randomized permutation test in the previous condi-

tions. As we have seen, these tests verify two important properties which will be

extremely handy to develop this topic. The first one is the conditionally unbi-

asedness they present, while the second one is the similarity property. Thanks

to these two facts, conditional inference conclusions might be extended to a non

conditional framework.

Due to the similarity property, for any attainable α-value the unconditional

power function in H0 verifies

W (0, α, T, n) =

∫
X
P[λT (X(0)) ≤ α|XX]fP (X) = α

whereas, attending to unbiasedness, for each δ > 0,

W (δ, α, T, n) =

∫
X
P[λT (X(δ)) ≤ α|XX]fP (X) ≥ α

This way, we are permitted to extend our conditional results to populations P

from which our samples have been taken, that is, unconditionally. For example,
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suppose we are testing a drug on the data set X. Owing to this result, in case

that evidence against H0 is presented and thus rejected, we can conclude that

effects are non-null not only on the individuals of our concrete sample but also

from every person belonging to P . However, this extension is not valid if the

density function fP of a population P is almost zero, as similarity property or

conditional unbiasedness may not be guaranteed.

3.3 Constructing Confidence Intervals

This section would illustrate one of the most practical and useful utilities. We

want to propose confidence intervals for the fixed effects δ of the treatment.

Let us suppose two samples X1 = δ + Z1i for i = 1, ..., n1 and X2 = Z2i for

i = 1, ..., n2, and X the concatenation of the two samples we have been using all

along this work. Our goal is to find two values δlow and δup verifying

P[δlow ≤ δ ≤ δup|X|X(δ)] = 1− α

for any α ∈ (0, 1).

In fact, these limits are functions of the data set X(δ). We now announce a

handy proposition for finding these quantities.

Proposition 3.3.1. Let IC(δ)1−α = (δlow, δup) be a confidence interval for δ

of confidence level 1 - α. Then all the values δ′ for which the null hypothesis

H0 : {X1(δ)− δ′ = X2} against H1 : {X1(δ)− δ′ 6= X2} is accepted at level α are

contained in IC.

The proof of this result is basically due to the relationship between confidence

intervals at level 1− α and tests based on rejecting when the null value does not

fall within the interval. That is, considering the test

φ =

1 if δ /∈ (δlow, δup)

0 if δ ∈ (δlow, δup)
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we know this is an α size test. If we subtract a certain quantity δ′ for which the

null hypothesis stated before is not rejected, then it is because that value clearly

falls within the 1− α confidence interval for the real value of δ.

Then based on this proposition, for a given statistic T and an observed data

set X, our aim is to determine the set of values for which the null hypothesis is

not rejected. The fact of T being permutationally equivalent to an estimator δ̂

for δ ease this task (for example, T =
∑

iX1i/n1 −
∑

iX2i/n2 = X̄1 − X̄2).

Once again we resort to Monte Carlo simulation for finding the lower limit

δlow (respectively, an algorithm for δup is presented later).

1. In first place, once ε (the desired width of the interval) and the level of

confidence α are fixed, pick a negative number η < 0 and consider

X1(η) = {X1i(δ)− (δ̂ + η), i = 1, ..., n1}

2. Using also a Monte Carlo procedure based on B iterations, compute the

empirical distribution function of T , F̂ ∗B(T 0
η ), on T ∗(η) = X̄∗1 (η) − X̄∗2 (η) (with

T 0
η = T [X(η)]).

3. Repeat the previous steps varying the η value until |1−F̂ ∗B(T 0
η )−α/2| < ε/2,

resulting in δlow = δ̂ + η.

The algorithm for obtaining the upper limit is similar, just introducing a

little variation. We will want to satisfy the condition |F̂ ∗B(T 0
η )− α/2| < ε/2, and

δup = δ̂ + η with η > 0 in this case.

The initial selection of η seems to be pretty heuristic. To make that approxi-

mation, we can attend to some values resulting from some parametric method if

possible.

In case the permutation support T (X) and the related attainable α-values

are defined in discrete sets, the lower and upper limits are predetermined by the

values in the permutation support whereas the probability of the interval is deter-

mined by the jumps of the permutation distribution function on the permutation
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support. These intervals will be of the form T(k) < t < T(k+1), leaving inside a

probability of

F ([T(k+1)|X|X])− F ([T(k)|X|X])

3.4 Asymptotic Properties

3.4.1 Consistency

Keeping our aim of exploring different properties of permutation tests, we now

move on to the notion of consistency, which is intimately related to the power

function of a test. Recall a statistic T is said to be consistent if, for fixed values

of α ∈ (0, 1) and δ > 0, the unconditional power function verifies

lim
n→∞

W (δ, α, n) = 1

This concept remarks that the test based on the test statistic T is almost

infallible when the sample size becomes extremely large, as we are providing an

asymptotic probability of 1 for rejecting the null hypothesis when it is false.

3.4.2 Asymptotic Behaviour of the Critical Value

In contrast with parametric tests, where the critical value is a fixed quantity,

this now could vary as X varies in X , that is, they are random variables (recall

2.2.2). Let us study how does this variable Tα behave when the sample size goes

to infinity following [6].

Let us assume Xn ∈ X n, Mn and T (Xn), all of them considered successions.

We shall also assume that Mn →∞ and
∑
X|X(T ∗ < Tα)/Mn → 1−α as n→∞

(that is, the test is of size α).

Consider the randomized test

φR =


1 if T (Xn) > (tα)n

a(x) if T (Xn) = (tα)n

0 if T (Xn) < (tα)n
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with 0 ≤ a(x) < 1 and suppose that the following two conditions are satisfied:

(1) There exists a constant l such that (Tα)n → l in probability.

(2) There exists a function J(y) continuous at y = l such that for every y at

which J(y) is continuous,

P[T (Xn) ≤ y]→ J(y)

Under these assumptions, we have

P[T (Xn) > (Tα)n|Xn] ≤ EX|X [φR(Xn)] ≤ P[T (Xn) ≥ (Tα)n|Xn]

which, thanks to (1) and (2), clearly leads to

EX|X [φR(Xn)]→ 1− J(l)

Both l and J(y) depends on the sequence Pn. However, the dependence of

J(y) is stronger than that of l. Due to this, we may introduce an alternative

condition for (1):

(1’) F (y|X|X)→ F (y) in probability for every y at which F (y) is continuous,

where F (y) is a distribution function, the equation F (y) = 1 − α has a unique

solution y = l and F (y) is continuous at y = l.

Actually this latter assumption implies (1). In effect, by definition

P[(Tα)n ≤ y] = P[F (y|X|X) ≥
∑
X|X

(T ∗ < Tα)/Mn]

for every y ∈ R. Let y be a point of continuity of F (y). As we have assumed,∑
X|X(T ∗ < Tα)/Mn → 1 − α = F (l), and y < l implies F (y) < F (l), so the

right-hand side tends to 0 if y < l. It analogously tends to 1 in case y > l, and

then (Tα)n → l in probability.

What is more, let X∗n be a permutation of Xn, and X′n another element in

the sample space, the three of them mutually independent. If T (X∗n) and T (X′n)

have the limiting joint distribution F (y) · F (y′), then for every y at which F (y)
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is continuous F (y|X|X)→ F (y) in probability and, if the equation F (y) = 1− α
has a unique solution y = l, it is also verified that (Tα)n → l in probability.

We now define the test φ′:

φ′ =


1 if T (Xn) > (tα)n

γn if T (Xn) = (tα)n

0 if T (Xn) < (tα)n

assuming that the test has size α. If the previous assumption (1’) is satisfied,

then we can firmly claim (tα)n → l. If (2) is also satisfied, we have E[φ′(Xn)]→
1− J(l).

Considering the subfamily of distributions P̂ ⊆ P for which (1’) and (2) holds,

if P̂ contains all sequences induced by H0, then φR and φ′ are asymptotically

equivalent in terms of power.

An interesting application of this could be seen when testing symmetry. When

approximating by a standard normal distribution the permutation distribution

of a test statistic, (1’) holds. Because of this, the test based on the sample mean

asymptotically behaves as the one-sided Student’s t-test of size α.





Chapter 4

Applying Theory

Once we have introduced the main theoretical aspects of permutation tests,

we move on to illustrate them in some practical cases. The first case we will be

studying is the one which embodies the theoretical framework that has been de-

veloped in this project. This is the hypothesis testing determining the existence of

some kind of fixed effects on two populations versus the absence of these possible

effects. The second case would present another hypothesis testing environment

on which permutation approach would be useful. In this case we will be testing

whether some distribution is symmetric or not. Finally, a third case would be in-

troduced to show a possible permutation approach in a different nature problem,

as we would be dealing with categorical variables.

4.1 Testing Fixed Effects

As it was introduced, the first applied case concerning our study is testing

the existence of non-null fixed effects. The dataset used for this task is related

to the COVID-19 pandemic ([9]). This file contains 59 variables which gather

information about the pandemic around the world, such as the date when data

was collected, the country it belongs to; and other variables which are directly

related to the disease itself by measuring some pandemic features such as daily

new cases, total deaths, or the basic reproduction number of the disease (usually

53
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noted R0).

Our purpose here is to statistically determine, through a hypothesis testing,

if vaccination is effective or not. As it is widely known, Israel was the fastest

country when vaccinating its population. Because of these, we will isolate data

coming from Israel and we will be working on this dataset.

We select the daily new cases of this country from 02/21/2020 to 06/30/2021,

studying the vaccination impact on this variable.
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Furthermore, we will make a second filter by splitting the data into two groups.

The first one is the data within 02/21/2020 to 02/26/2021, while the second group

is the data collected between 02/27/2021 and 06/30/2021. The reason behind

this particular date is that it is the day when 50% of Israelis had already received

at least one COVID-19 vaccine dose. We now study the behaviour of new daily

cases in both groups.

Let us denote X1 = (X11, X12, ..., X1367) the observations coming from the

first group and X2 = (X21, X12, ..., X2128) the second group. Remark our sample

size is n = 495, with n1 = 367 and n2 = 128. We have two populations, and we

suspect the first one is affected by some kind of fixed effects due to the absence of

vaccination. As there are less vaccinated inhabitants in the first group, the prob-

ability of being infected with COVID-19 could seem to be higher than the that

in the second sample. This leads to our scheme (X1 + δ,X2) and the hypothesis

testing

H0 : {δ = 0} vs. H1 : {δ > 0}

First thing we should make is testing normality of both populations. Of

course, if normality is not rejected, we could assume it and consequently apply

traditional parametric methods such as an ANOVA or a t-student test. We run
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the well-known Shapiro-Wilk test to this aim.

As we see, both p-values are extremely small, leading to the rejection of

normal behaviour in both populations. We should then look for some statistical

alternatives, which would clearly be the permutation approach.

The next step when testing is a pretty sensitive issue: we should determine

what statistic T should we select to base our test on. As we have expounded

previously, the difference of averaged means seems a suitable statistic to our aim.

We thus select T =
∑n1

i=1X1i/n1 −
∑n2

i=1X2i/n2. Observe that under the alter-

native T would assume lower values when mixing observations between samples,

as the first population is provided of not null side effects, whereas the second one



Chapter 4. Applying Theory 57

assumes lower values.

At this point, results explained in section 2.3 become extremely useful. We will

work with the test statistic T̃ =
∑n1

i=1X1i/n1 due to its permutational equivalence

to T . This fact eases the computational aspect of permutation tests.

After setting the test up we should now compute the p-value. We go to the

Monte Carlo algorithm presented in 2.2.2, fixing B = 1000.

Figure 4.1: MC Algorithm Implementation following 2.2.2

The resulting p-value allows us to reject the null hypothesis and strongly

conclude that δ effects are such that δ > 0.

Running the algorithm for B = 10000, we obtain

We can appreciate that the p-value decreases as the number of iterations B

increases. Attending to the final comment made in 2.2.2, we can ensure through
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Glivenko-Cantelli theorem that the p-value converges to its real value as B goes

to infinity. The fact that the p-value has decreased as B has increased enhances

the idea of the real value of λ being sufficiently small so as to reject the null

hypothesis.

4.1.1 Balancing data

As Taleb states in [8], we should go from problems arisen due to empiricism

to books and not the other way. Here we illustrate a situation which suitably

embodies this idea.

The first time the previous experiment was carried out was 04/03/2021. At

this time the sample size was n = 408, with the first group size n1 = 372 whereas

the second one was n2 = 35. There is a huge difference between sample sizes.

Data is heavily unbalanced, being the majority of the observations in the first

group. Let us see how this fact could massively affect to our results.

Recall the T statistic we have proposed has the form T (X) = S1(X1)−S2(X2).

Let us suppose now that the difference of group sizes is pretty considerable, with

n1 > n2 (the case n2 > n1 is totally analogous). This would clearly lead to a

problem when mixing observation between groups, as changes in the structure of

the observed sample X1 (here the group which dominates in size terms) would be

insignificant, and consequently values assumed by T when permuting data would

be very similar to that assumed in T 0(X). As a consequence, the estimation of

the p-value using the Monte Carlo Algorithm, which is

λ̂ =
B∑
i=1

I[T ∗i (X∗) ≥ T 0]/B

could be disproportionately bigger than its real approximation, causing severe

mistakes in our decisions.

Let us show this problem in a concrete example going back to the situation

which gave rise to this section. The probability of obtaining an individual coming
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from the second group on the first observation of the first group when permuting

data is n2/n = 0.09 whereas that of obtaining someone proceeding from the first

group is 0.91.

Let us suppose we have been lucky and an individual from the second group

has been set in the first place of the permuted sample of the first group. At

this point, the probability of obtaining someone from the second group in the

second place of X∗1 is (n2 − 1)/(n− 1) = 0.083, while that of obtaining someone

proceeding from the first group is now 0.917. It is clear that we are not going to

be that lucky every time, and if we keep in mind we have to repeat this process

B times, all the more reason to realize this would not work (just the simple Law

of Large Numbers argument reinforces this fact).

Computing the MC Algorithm with the data previously presented for B =

1000, the resulting estimated p-value was λ̂ = 0.221, which would categorically

lead us to the non-rejection of the null hypothesis, concluding that we cannot

refute δ = 0. As it can be appreciated, the conclusion of this testing is vehemently

opposed to that of the first experiment with balanced data.

In conclusion, we need to treat with balanced data (or balancing it if not the

case) to avoid conclusion fallacies.

4.2 Testing Symmetry

Now that we have shown an effective application of the permutation strategy

based on the theoretical framework, let us illustrate this technique in a hypothesis

testing of different nature with respect to that previously studied.

In this case, we will study the symmetry of a population. Our aim is to

determine if the followed distribution is symmetric, that is

H0 : F (x) = 1− F (−x)
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versus the alternative

H1 : F (x) 6= 1− F (−x)

Remark this symmetry is studied with respect to zero.

Let us consider the sample data X = (X1, ..., Xn). In order to approach this

problem, we write X = Y1−Y2 as the difference of two possible underlying paired

observations. This could be interpreted as Xi the result of measuring some event

in two different times, say 1 and 2, resulting in Xi = Y1i− Y2i. It is clear that Xi

is the difference of two paired observations (as the individual on which Y1 and Y2

have been measured is the same).

Attending to this, we can equivalently state the hypothesis testing as

H0 : Y1 = Y2

versus the alternative hypothesis

H1 : Y1 6= Y2

We now focus on the latter.

Remark that under H0 (that is, Y1 = Y2) we can exchange observations be-

tween variables without distinction as they follow the same distribution. So given

the observations y1 and y2, it is verified that FY1(y1) = FY2(y1) and FY2(y2) =

FY1(y2). Because of this, if we have an observation xi = y1i − y2i, FX(xi) =

FY1(y1i)−FY2(y2i) = FY1(y2i)−FY2(y1i), and we can thus infer that xi = y2i− y1i
in probability terms.

This fact is translated into random sign assignment of Xi, as Xi = Y1i−Y2i =

Y2i − Y1i in case of symmetry. According to this, our permutation sample space

could be written as X|X = {
⋃
U XiUi , i = 1, ..., n} with Ui ∼ 1− 2B(1, 1/2).

Finally, a suitable test statistic would be T = Md(X) or T = |
∑

iXi/n|. It

is easy to observe that in H0 these statistics would assume values close to 0 as



Chapter 4. Applying Theory 61

signs are basically randomly distributed, whereas in H1 the mean would assume

more dispersed values and the absolute mean would assume larger values.

An important observation is that if data is suspected to be symmetric with re-

spect to a different value than the origin, we just have to make the transformation

X−Md(X) if necessary.

Let us implement everything previously showed. The dataset we are going

to analyse is about the Programme for International Student Assessment (com-

monly known as PISA study), which is a worldwide study to evaluate educational

systems of different countries by measuring students’ performance on Mathemat-

ics, science and reading. For this study, we have selected the mean performance

of n = 72 countries in Mathematics of the 2015 report.
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Figure 4.2: Population point cloud including the mean. It seems to be more dense

on the upper side. Mean in blue and median in red.

Let us write X = (X1, ..., X72) the observed sample. Similarly to the previous

dataset, we study the normal behaviour of the population through the Shapiro-

Wilk test
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The resulting p-value leads us to reject normality. We will approach this

testing using the most obvious test statistic: the median. Furthermore, we would

centre data with respect to the median to have a clearer graphical interpretation.

Let us first use T = Md(X). It is extremely similar to the process attached

in the first study case, but we now have to introduce the random sign assignment

discussed before. We run the MC algorithm setting B = 10000

The p-value turns out to be

so we should reject the null hypothesis, resulting in asymmetry.
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Centring data with respect to the, we can appreciate data is slightly right-

biased, so higher values seem more probable than little ones. If the distribution

were symmetric, we should expect a head as heavy as the tail. This is highly

consistent with the decision we have made about the hypothesis testing.

4.2.1 Asymptotic behaviour for symmetry statistics

Let us consider the test statistic

T =
n∑
i=1

Xi · Ui/(
n∑
i=1

X2
i )1/2

The denominator is invariant at the permutation sample space. As E(T ) = 0

and V ar(T ) = 1, we can conclude T is the sum of n independent variables. Due

to the PCLT, T ∼ N (0, 1) in the limit.

4.3 A study for Ordered Categorical Variables

The third case study heavily differs from the two previous ones. Our aim

now is to test different nature variables to those hitherto studied. We would be
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treating with categorical variables which would intrinsically possess some order

notion.

The current framework would be a categorical variable X partitioned into

h ≥ 2 classes, {Ak, k = 1, ..., h}. As we commented in advanced on the previous

paragraph, the relationship Ak < Aj for every pair where 1 ≤ k < j ≤ h would

be some self-explanatory issue.

Given two independent random samples X1 and X2 our purpose here is to

conclude whether categories are equally distributed in both samples or if distri-

butions vary from one sample to another. In terms of hypotheses testing, this

would be stated as

H0 : F1(k) = F2(k) ∀ k = 1, ..., h

against the alternative hypothesis claiming some difference on the impact of at

least one class, that is

H1 : F1(k) 6= F2(k) for some k = 1, ..., h

The notation Fj(k) = P{Xj ≤ Ak}, j = 1, 2 is clearly consistent due to the

order notion associated to classes.

The dataset that we will be using in this study case is related to the number of

deaths provoked by smoking in different countries periodically from 1990 to 2017

[10]. The socio-economic level of each country is also gathered in the dataset.

This would be our target variable.

We then want to study if the socio-economic level is a meaningful factor in

smoking deaths. For this task, we select the number of passings in each country

in 1992 and we compare it to that in 2017. To make a distinction, we would split

data into two groups, the first group being countries where the number of deaths

have decreased whereas the second groups is conformed by those where deaths

have increased. This way we have two independent random samples to test the

hypothesis testing of interest.
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This split results in two samples: the first one is X1 = (X11, ..., X156) whereas

the second one is X2 = (X21, ..., X2138). As it can be appreciated on the upper

histogram, the majority of death differences accumulate around 0.

Figure 4.3: A remarkable outlier could be appreciated.

However, we can detect numerously outliers in the sample, including one which

is specially far from the rest of observations. This case is China, a country where

deaths has hugely gone up.
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Once we have split and skimmed the data, let us analyse the variable of in-

terest. The socio-economic level of each country is specified in four different cat-

egories: low, lower-middle, upper-middle and high. As we previously explained,

classes respect some kind of order relationship.

Low Lower-middle Upper-middle High

X1 7 17 8 24

X2 48 54 23 13

Table 4.1: Distribution of countries attending to socio-economic level

As we can see, richer countries prevail among those where deaths have de-

creased (almost half of them are rich countries), whereas poorer countries tend

to be in the second group, where deaths have gone up.

As well as in the previous cases, we need now to determine a suitable statistic

test to carry out the experiment. Attending to our aim of determining if categories

are equally distributed over both samples, we propose a statistic involving the

respective EDFs. This statistic is

T =
h−1∑
k=1

[F̂1(k)− F̂2(k)]2 · (F̂ (h)[1− F̂ (h)])−1

where F̂1 is the EDF of the first sample, F̂2 the EDF of the second sample, and

F̂ the joint EDF. Observe that the denominator is permutationally invariant, so

attending again to 2.3, we can dismiss this term and use the statistic

T =
h−1∑
k=1

[F̂1(k)− F̂2(k)]2

which uniquely compares the squared differences of every class in each sample.
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Remark that jumps are the probability of coming across with each class. In

the first sample, the biggest gap is the one between the third and the fourth

category, that is between upper-middle socio-economic level countries and rich

countries. However, this changes in X2. The biggest jumps here are the one

between 0 and the first category, poor countries, and the one between poor and

lower-middle socio-economic level countries, meaning a higher presence of poorer

countries in the second sample.

Let us compute the p-value. We make use of the Monte Carlo algorithm

(2.2.2) again to estimate it. Setting B = 1000
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the resulting estimation is

This p-value clearly leads to rejecting the null hypothesis. We can conclude

that the socio-economic level of a country plays an meaningful role when it comes
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to smoke habits, leading to more deaths in poorer countries.
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