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Abstract

Semantic Web Services discovery is commonly a heavyweight task, which has scal-
ability issues when the number of services or the ontology complexity increase,
because most approaches are based on Description Logics reasoning. As more com-
plex services become available, there is a need for solutions that improve discovery
performance. Our proposal tackles this scalability problem by adding a preprocess-
ing stage based on two SPARQL queries that filter service repositories, discarding
service descriptions that do not refer to any property requested by the user before
the actual discovery. By using this approach, the search space for discovery mech-
anisms is fairly reduced, consequently improving the overall performance of this
task. Furthermore, this particular solution do not provide yet another discovery
mechanism, but it is easily applicable to any of the existing ones. Moreover, pro-
posed queries are automatically generated from service requests, transparently to
the user. In order to validate our proposal, a concrete application to a WSMO dis-
covery scenario is showcased in this paper. A comprehensive performance analysis
is also presented in order to test and compare the results obtained from proposed
queries and classical discovery approaches, discussing the benefits of our proposal.
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1 Introduction

Current service discovery solutions that rely on Semantic Web technologies
are not sufficiently scalable, so large and complex service repositories cannot
be properly handled by them. Although there is a great research effort to
improve discovery mechanisms, the underlying reasoning facilities do not
scale well in general [14]. The approach taken in this paper does not consist
on another discovery mechanism, but on the inclusion of a preprocessing stage
where service repositories are filtered using two different queries, so that the
search space for discovery processes is reduced in our experiments, on average,
from 78.65% of the original repository size up to 5.83%, depending on the
query used and the nature of the repository, consequently improving service
discovery by reducing its execution time from a 63.93% to a 11.32% of the
original time needed for each corresponding repository.

Service repositories are increasing the number of registered services at a
high pace, as more services can be found publicl. Furthermore, semantic
definitions of these services are richer and more complex than ever before,
integrating many heterogeneous concepts. That leads to an scenario where
discovery mechanisms based on different logic formalisms have scalability
issues. Consequently, improvements and optimizations on those mechanisms
are needed in order to enhance the usability of Semantic Web Services (SWS)
[7, 9]

In order to alleviate the scalability problem on semantic discovery mech-
anisms, our proposal takes the novel approach of reducing the input for those
mechanisms, so that the resulting process is more streamlined, only reasoning
about services which actually matter with respect to the user request. Thus,
services that can be discarded a priori, because they are not related at all
with requirements and preferences stated by the user, are filtered so that the
search space is considerably reduced prior to actual discovery mechanisms.

For example, consider the following scenario: a semantic service reposi-
tory contains thousands of services from several travel-related domains, such
as hotel bookings, plane tickets, car rentals, and travel insurances. If a user
looks for a service for renting a car, it is not necessary to process the whole
repository to discover candidate services for the user request, but only con-
sider the portion of services that are specifically related to the car rentals
domain concepts, in this case. Thus, on an evenly distributed repository,
where there were the same number of services related to each domain in the
example (hotels, planes, car rentals, and insurances), only 25% of the ser-
vices would be considered for the discovery process, considerably improving

Lseekda.com service crawler has indexed at the moment of writing 28,529 services.



its performance.

For the proposed preprocessing, the user request is analyzed in order to
extract the concepts that are being used in its semantic definition (in the
above example, some of them could be Car or DrivingLicence, for instance).
Then, the repository is filtered so that only services that uses those same con-
cepts are selected to become the input for the subsequent discovery process
(e.g. services whose definitions refer to Car and/or DrivingLicence concepts,
in the latter case). The filter is performed in our approach by two different
SPARQL[27] queries, namely Qsome and Q. The former selects service def-
initions that refers to some (at least one) of the concepts referred by a user
request, assuming that those services may satisfy its requirements and/or
preferences despite the missing information. In turn, the latter query re-
turns only those services whose definitions contain all the concepts referred
by a user request, assuming that services have to fulfill every term of the
request in order to be useful for the user.

Our solution does not pretend to provide yet another discovery mecha-
nism, but to introduce a preprocessing stage, based on an accepted standard,
that yields a notable improvement on heavyweight semantic processes, such
as matchmaking of services. To the best of our knowledge, there is no pro-
posals on filtering semantically-enhanced service repositories, but it is known
that some sort of preprocessing can alleviate discovery and ranking tasks per-
formed on those repositories [2]. To sum up, the main contributions of the
proposal presented in this paper are the following:

1. A technique to improve semantic service discovery performance is pro-
posed, based on a preprocessing stage where repositories are filtered in
order to reduce the search space of subsequent discovery processes.

2. Our proposal is applicable to any discovery mechanism because it is
performed before actual discovery occurs. In this work, a third-party
lightweight Description Logics discovery mechanism is used to illustrate
this point, namely wsMx DL discovery.

3. Preprocessing is performed automatically from user requests, analyzing
them and obtaining standard SPARQL queries without user interac-
tion. Two different queries are presented, enabling two filtering levels,
depending on the user needs and the characteristics of service reposi-
tories. Each one is analyzed and thoroughly discussed throughout the
article.

4. A comprehensive, experimental study is carried out in order to assess
the actual impact of our proposal. Several theoretical scenarios were



generated, from repositories whose services refer to a uniformly dis-
tributed set of concepts, to scenarios where there are some concepts
that are more predominant than others in service descriptions.

The rest of the paper is structured as follows. Firstly, Sec. Pl presents
some background information to contextualize and motivate the proposal.
In Sec. Bl we show how to use SPARQL queries within a discovery scenario,
presenting both generic and more specific queries that can be applied in
different cases. Section M discuss the integration and implementation of our
proposal applied to WSMO service discovery. Then, in Sec. [Blthe experimental
study done is explained, analyzing the results and discussing the advantages
of our proposal. Section [0 outlines the related work on this field. Finally, in
Sec. [7 we discuss the conclusions.

2 Background

Using a Semantic Web query language becomes a straightforward option
to perform SWS discovery and ranking processes in terms of user requests,
because, essentially, these processes search for elements in some sort of per-
sistent storage using selection and ordering criteria. In the following we in-
troduce these background elements of our proposal in order to contextualize
and further motivate our work.

2.1 Querying the Semantic Web

There exists two main approaches for Semantic Web query languages: RDF-
based and DL-based query languages [4, [30]. On the one hand, RDF-based
query languages allow to fetch RDF triples based on matching triple patterns
with RDF graphs. On the other hand, DL-based query languages allow to
query OWL-DL ontologies, being able to search concepts, properties, and
individuals. Although DL-based query languages provide more reasoning
mechanisms than RDF-based ones, the former are not mature enough and
they are in early stages of development [4], so the latter are more widely
used, especially SPARQL [27], which is the current W3C Recommendation.

There are several RDF-based query languages with different features [4],
but SPARQL is the only language that is a W3C recommendation [27]. In
fact, it is fully supported in several implementation. As a consequence,
SPARQL (and its extensions) is the most widely used query language for
the Semantic Web. There are several SPARQL implementations, such as

Zhttp://www.w3.org/2001/sw/DataAccess/tests/implementations
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Figure 1: Integrated ontology for querying a service repository.

Virtuoso, Sesame, or ARQE which is included in the Jena Semantic Web
Framework for Java. The latter is the chosen one for our evaluation tests (cf.
Sec. H).

SPARQL, as an RDF-based query language, can handle RDF triples,
which conforms the very foundations of a Semantic Web ontology. Its main
approach to query semantic repositories is to match RDF patterns, consisting
of triples of subject, predicate, and object. In order to work with said repos-
itories, SPARQL has four different types of queries: SELECT, CONSTRUCT,
DESCRIBE and ASK. Each type serves for a different purpose: SELECT queries
return variables and their bindings directly; CONSTRUCT queries build an RDF
graph based on a template defined in the query; ASK queries test whether or
not a pattern has any solution; and DESCRIBE queries return an RDF graph
not based on a template in the query (as in CONSTRUCT queries) but on a
pre-configured graph.

Currently, the SPARQL recommendation is being revised to apply some
extensions already identified, such as insert/update/delete queries, access
to collection members, or aggregate functions (COUNT, SUM, GROUP BY, etc).
Furthermore, different authors propose extensions to further improve reason-
ing features [17], expressiveness of queries [3], or even approaches that add
DL-based languages features [30]. However, in this work we only use stan-
dard SPARQL to improve discovery processes, though some of the extensions
discussed can be also applied (cf. Sec. [@).

2.2 Semantic Web Services

SWS are often defined using specific ontologies, such as OWL-s [24] or wsMO
[28], which provide basic tools to discover and rank services in terms of user

3Virtuoso: http://www.openlinksw.com/virtuoso/; Sesame:
http://www.openrdf.org/; ARQ: http://jena.sourceforge.net/ARQ/
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requests described within the same ontology. However, these ontologies can
be extended to improve those tasks using other ontologies [13, 25, [35], so
that service descriptions may include information about quality-of-service
and preferences, for instance.

Essentially, a service description, whether it is defined using OWL-S or
WSMO, is composed of several terms that define service features, which can be
related to functional or non-functional properties. Similarly, user requests are
composed of a number of terms that describe the requirements the requested
service has to meet. Each requirement is also related with one or more
particular property.

For instance, WSMO service descriptions feature the service functionality
within a capability description. Capabilities define preconditions, assump-
tions, postconditions and effects about the provided functionality using sev-
eral axioms or terms, and can be annotated to express non-functional prop-
erties. User requests are described as WSMO goals, that provide a similar
structure to define requested services.

Figure [1l shows this abstraction as a generic, integrated ontology, where
UserRequest, ServiceDescription, Term, and Property are the classes
that model previously referred elements, and hasRequirements, hasFeatures
and refersTo are object properties defining the relationships between in-
stances of those classes. Although only requirements are taken into consider-
ation in our proposal, preferences descriptions for SWS ranking may be also
included easily, by using the extended ontology proposed in [13].

In order to decouple our proposal from concrete SWS ontologies, there
is a need for this kind of ontology integration . Thus, our work is defined
after the generic, integrated ontology presented in Fig. [Il that merges user
requests and descriptions from different SWS ontologies, such as OWL-S or
WSMO, by means of specified mappings.

Our proposal is also based on the assumption that service descriptions
and user requests are defined in terms of concepts from a domain ontol-
ogy, which depends on the concrete scenario. As an example, consider the
scenario described in Sec. [I, where a repository contains several services re-
lated to travel domains. Service descriptions may feature several statements
or terms defining their provided capabilities and non-functional properties
using concepts from a travel domain ontology. These referred concepts are
interpreted as Property instances in the proposed integrated ontology. Thus,
a car rental service description will contain some terms that refers to concepts
or properties like Clar or Price, for instance. User requests are described in
a similar way, though related terms are linked using the hasRequirements
object property.
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Figure 2: Semantic discovery and ranking processes.

2.3 Discovering and Ranking

The common use case for discovery and ranking of SWS is depicted in Fig.
Starting from a service repository containing definitions either using OWL-S
[24], wsmo [28], sawsDL [8], or wsMO-Lite [20], for instance, the discovery
process tries to match user requirements with these available service defini-
tions, which are described in terms of domain ontologies. This matchmaking
is usually performed using logic reasoning techniques, such as DL reasoners
[22, 23, 33], logic programming [34, 35], or hybrid approaches [11], 12], 19].
The resulting discovered services are a subset of the initial repository, where
each instance of this subset are considered to be compliant with the user
request, to some extent.

Concerning user requests for SWS discovery and ranking, there are sev-
eral approaches on how to define them. Thus, in standard wSMO they are
described as goals, where the functionality requested by a user is defined, so
it can be used to match corresponding services in the discovery stage. Some
authors extend WSMO goals to also include non-functional properties, which
can be used to rank previously discovered services [35, [12]. Therefore, using
both discovered services and preferences described in the user request [13],
the ranking process returns an ordered list of those services in terms of stated
preferences.

SWS discovery techniques, particularly, suffer from performance and scal-
ability issues in this context. The main motivation of this work is to come
out with a solution that effectively improves discovery and ranking, making
them into more lightweight processes.
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Figure 3: Service procurement architecture including a SPARQL filtering
stage.

3 Filtering Service Repositories using SPARQL

Current SPARQL implementations do not provide sufficient reasoning fa-
cilities to adequately perform SWS discovery and ranking, which tend to
be complex, heavyweight processes. Nevertheless, in this work we propose
the introduction of standard, automatically generated SPARQL queries to
improve the performance of those processes without changing the underly-
ing mechanisms, by pre-selecting service candidates from a repository with
respect to the user requirements.

3.1 Querying a Service Repository

In order to simplify and generalize our proposal, the queries presented in the
following are based on the integrated ontology already shown in Fig. [I so
that they can be easily adapted to use more specific SWS ontologies, using
mappings or mediation ontologies [5]. Cf. Sec. M for a materialization in
WSMO.

Once services and user requests are well established, the stage where
SPARQL can be used to improve discovery and ranking processes has to be
defined. Our proposal adds a new stage previous to the discovery process,
where the service repository is filtered using SPARQL queries. In Fig. [3
the proposed architecture is showcased. The aim of the filtering stage is to
obtain services from the original repository that may be possibly matched
with the user request in the discovery process, discarding those ones that
cannot fulfill that request at all.

The key point in this scenario is that service repositories may contain
thousands of services, but most of them may not be related to the service



requested by the user. Assuming both service descriptions and user requests
are defined using the ontology from Fig. [II, our proposed SPARQL queries for
the filtering stage discriminates service descriptions depending on whether
properties referenced in their terms are present in the user request or not.
To this extent, two different filters can be applied depending on how strict
they are. On the one hand, one of the filters (Qsome) returns those service
descriptions that refer to some (at least one) of the properties that are also
referred by the user request. On the other hand, the stricter filter (Quy)
only returns service descriptions that refer to the same concepts as the user
request. In turn, services whose features do not refer to any of the properties
referred in the requirements of the user request are discarded by both filters,
because in that case it can be inferred that they are not related to the service
the user is searching for.

The firstly proposed filtering query Qsome, shown in Listing [l returns the
URISs set of service descriptions that match the graph patterns enumerated
in the WHERE clause, i.e. those services that some of the properties referred
by their features are also referred by the requirements of the user request.
URInstance is the name of the concrete instance of UserRequest class used
to look for requested services. Thus, service descriptions that do not refer
to any property used in the user request are discarded for the following
discovery stage. Consequently, the number of services that are considered for
discovery (and ranking) may be reduced, improving the overall performance
and scalability of SWS procurement. The actual degree of this improvement
is analyzed in Sec. [l

Listing 1: Qsome SPARQL query.

PREFIX ao: <http://www.isa.us.es/2009/IntegratedOntology .owl#>
SELECT DISTINCT ?7service
WHERE { # match properties referred by services...
?service ao:hasFeatures 7featuredTerms.
?featuredTerms ao:refersTo ?7properties.
# ... with those referred by the user request
: URInstance ao:hasRequirements ?requiredTerms.
?requiredTerms ao:refersTo ?7properties.

Although this query effectively reduce the search space, the pattern match-
ing performed by SPARQL implementations consists on a Cartesian product
between properties from the user preference and services descriptions. Thus,
even service descriptions that only share some, but not all properties with
the user request are returned, though they may not be going to be matched
in the discovery stage, because of the lack of enough information in their
descriptions.

In order to obtain fewer but closer service descriptions with respect to the




user preference, another SPARQL query is proposed, which is more specific
and precise. Qq query selects services from the repository that exactly have
terms about all the properties which are referenced by the user request. In
order to achieve this goal, the query must contain matching patterns for
each property, specifying the property instances that the user is looking for.
Listing 2] shows an example of such a query.

Listing 2: The more specific query Qu.

PREFIX ao: <http://www.isa.us.es/2009/IntegratedOntology .owl#>
SELECT DISTINCT 7service
WHERE { # ?service has at least three properties ...
?service ao:hasFeatures ?7featuredTerml.
?featuredTerml ao:refersTo ?propertyl.
?service ao:hasFeatures 7featuredTerm2.
?featuredTerm2 ao:refersTo ?property2.
?service ao:hasFeatures 7featuredTerm3.
?featuredTerm3 ao:refersTo ?property3.
FILTER ( # ...and these properties are Car, Price and Awvailability
?propertyl =
<http://www.example . org/2009/DomainOntology . owl#Car> &6
?property2 =
<http://www.example.org/2009/DomainOntology . owl#Price> &6
?property3 =
<http://www.example.org/2009/DomainOntology .owl#Availability >

Concretely, this query looks for service descriptions in the repository that
refer to at least three properties (i.e. that matches the six graph patterns of
the WHERE clause), and afterwards it only returns instances whose matched
properties are the specified in the FILTER clause (in the example, Car, Price
and Availability. Note that each property may be defined in different
ontologies, such as wsMo [28], or the proposed by Maximilien et al. [25],
for instance. Nevertheless, this query can be derived from a user request
automatically, so it can be adapted to match the specific properties referenced
in each corresponding user request.

This kind of specific query is more restrictive than the former query,
shown in Listing [I, returning an even more reduced number of candidate
services for the discovery stage, as it is discussed in Sec. However, in
certain scenarios, especially when the user request has several optional terms
(as with preferences for the ranking process), Qsme query may be more
appropriate, so there is a trade-off between precision or flexibility that has
to be considered in each case. Thus, if user requests contain a high number
of mandatory terms (requirements) that have to be fulfilled completely, Q.
will return more accurate results than )., though a hybrid approach may
be also taken if both mandatory and optional terms are included in the user
request.



3.2 Automatic Generation of Queries

Queries need to be defined for each user request, because they depend on
the structure of that request. On the one hand, query Qsome, as shown in
Listing [I only varies on the actual instance of UserRequest being used at
that precise time. In this case the generation of QQm. is straightforward,
because its main structure does not vary.

On the other hand, in order to compose query Q),;, some analysis have
to be done, because concrete properties referred by the user request are used
in the FILTER clause of the query. Thus, Q),; generation depends not only
on the structure of the ontology being used by our proposal, but on the
concrete instance of UserRequest itself, especially on the properties referred
by its terms. As a consequence, (Q,; has to be tailored depending on the
corresponding instances managed by each discovery process. However, the
generation of query (), can be done automatically, maintaining the trans-
parency for the user of our proposed SPARQL filtering stage within the
discovery process. Algorithm [Il shows the procedure that compose Q4 from
a given user request.

Algorithm 1: Generation of query Q.
Input: The user request instance u
Output: A generated SPARQL query Qu;
1 Qu = “PREFIX ont:
<http://www.isa.us.es/2009/AbstractOntology.owl# >"
Quu += “SELECT DISTINCT 7service WHERE {”
1=20
foreach Property p in u.hasRequirements.refersTo do
1+ +
Qau += “Tservice ont:hasFeatures 7featuredTerm” + ¢ 4+ “.”
Qui += “TfeaturedTerm” + ¢ 4+ “ont:refersTo ?property” + @ + “.”
end
Qau += “FILTER (¢
foreach Property p in u.hasRequirements.refersTo do
Quu += “property” + ¢ + “=" + p.IRI
i— —
if 2 > 0 then Qa” +=“&& "7
end

Qan += ) }7

© 00 N O s W N
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The presented algorithm is fairly simple, and presents a linear complexity
on the number of properties referred by the user request. It iterates over
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properties adding the corresponding matching patterns and filter statements
to the query. Thus, it does not depend on the number of services registered
in the repository, or the complexity of the domain ontologies used, so the
overhead of the composition of queries is practically negligible.

4 A WSMO Implementation

Our proposed preprocessing stage can be easily adapted to any SWS frame-
work, so that it can be virtually included within any discovery process. In
order to do so, service descriptions and user requests, expressed using a spe-
cific SWS framework, need to be mapped to our integrated ontology, or the
other way around, so that queries can be used directly as defined in Sec. B.1]
or mapped to the corresponding SWS framework concepts. This mapping
can be defined using ontology mediators [5] or ontology mappings [26], for
instance. Thus, the concrete work that has to be done for each mapping is
summarized in the following steps:

1. Define mappings between concepts of the integrated ontology shown in
Fig. [l and equivalent concepts of the target framework.

2. Rewrite queries discussed in Sec. [B.1] using previously defined map-
pings.

3. Adapt query generation algorithms from Sec. to iterate over the
concepts of the target framework.

Our solution can be easily applied to any SWS frameworks, such as WsMO,
OWL-S, SAWSDL or WSMO-Lite. In the following, the mappings and queries
rewriting to a concrete WSMO implementation are presented.

4.1 Ontology Mapping

In order to to adapt our proposal to the wsSMO ontological model, several
mappings have to be defined. In Table[ll the correspondences between WSMO
entities, and concepts from the integrated ontology used in our proposal (cf.
Sec. B]) are summarized.

Thus, the UserRequest concept from our ontology could be interpreted
as a WSMO Goal, which describes its requirements (Terms in our ontology) as
a requested Capability and some nonFunctionalProperties values. Ad-
ditionally, a ServiceDescription are modeled in WSMO as a webService,
which also features or provides some Capability, as well as nonFunctional-
Properties. Both capabilities and non functional properties instances refer

11



Table 1: Mappings between WSMO and our integrated model

WSMO ontology Integrated ontology
Goal UserRequest
webService ServiceDescription
Capability axioms Terms
nonFunctionalProperties Terms

Concept Property

to several concepts that are interpreted as instances of the Property concept
of our ontology [13].

Using these mappings, our proposed queries can be expressed or rewrote
using WSMO elements, so our preprocessing stage can be executed before any
wsMO discovery implementation, provided that the wsMmL [32] repository to
be used allows to access its semantic definitions in RDF. In the following, we
discuss how to express and generate both queries so that they can be applied
to WSMO services and goals.

In order to implement an application of our proposed filtering stage that
relies on WSMO descriptions, queries should be defined in terms of wsmo
constructs. Basically, Terms in our integrated ontology corresponds to Ca-
pabilities in WSMO, and user requests are modeled as Goals, as described
before. However, there is no direct equivalent to the refersTo relation in
wsSMO. Therefore, this relation must be inferred or extracted from descrip-
tions transparently.

Our approach consists on iterating capability descriptions in order to ob-
tain concepts referred by them, and adding these concepts to service descrip-
tions and goals using non-functional properties in wSML. Additionally, other
properties, such as quality-of-service properties, that may be already present
in the non-functional section of the WSML description, are also included in
the values of the newly added refersTo property, which should contain all the
concepts referred by service descriptions and goals. Algorithm 2 sums up the
procedure to add the refersTo property to services and goals descriptions.

Esentially, Alg. iterate over the WSML axioms that describe service
capabilities for webServices and goals, and look for instantiations of shared
variables that are linked with their concept classes by the member0f con-
struct, which are interpreted as referred properties that have to be added to
the refersTo set. In addition, it also looks at the non-functional properties
and consider their classes as properties referred, consequently including them
in the refersTo set, too.

Although this process could be costly in terms of execution time if there

12



Algorithm 2: Obtain concepts referred by WsML descriptions.
Input: A WSML webService description or goal desc
Output: The webService or goal desc with a refersTo

nonFunctionalProperty

1 if desc.nonFunctional Properties.refersTo = () then
2 refersToSet = ()

3 foreach Azxiom a in desc.capability do

4 foreach Variable var in a do

5 if var is memberOf concept p then

6 ‘ refersToSet = refersToSetUp

7 end

8 end

9 end
10 foreach nonFunctionalProperty nfp in desc do
11 ‘ refersToSet = refersToSet Unfp
12 end
13 desc.nonFunctional Properties.refersTo = refersToSet
14 end

were a high number of services, it can be done off-line before actual discov-
ery and ranking are performed, at least for service descriptions. Thus, the
refersTo non-functional property is only obtained and stored in the reposi-
tory each time a new service description is added or modified, considerably
reducing the overhead when discovering and ranking these descriptions, be-
cause the algorithm only has to be executed for the user goal at execution
time.

4.2 Query Rewriting

Elements based on the wsMO model are described using some variant of
WSML language and are commonly serialized in plain text files. Although
this serialization is performed using the standard WsML syntax, it is possible
to represent WSML constructs using an RDF syntax, so that they can be
queried using SPARQL. In order to translate original wsML files to WSM-
L/RDF [6] representation WSMO4RDF library can be used, which is a part of
the Ontology Representation and Data Integration Framework (ORDI SG)H.

‘http://www.ontotext.com/ordi/ORDI_SG/Wsmo4rdf . html

13


http://www.ontotext.com/ordi/ORDI_SG/Wsmo4rdf.html

Listing 3: Qsome query applied to wsMoO.

PREFIX wsml: <http://www.wsmo.org/wsml/wsml—syntax#>

PREFIX ont: <http://www.isa.us.es/2009/AbstractOntology .owl#>
PREFIX part: <http://www.w3.org /.../SimplePartWhole/part.owl#>
PREFIX rdf: <http://www.w3.0rg/1999/02/22—rdf-syntax—ns#>

SELECT DISTINCT 7service

WHERE {
?service rdf:type wsml: webService.
?service part: hasPart_directly ?wsCap.
?wsCap ont:refersTo ?properties.
: Goal rdf:type wsml: goal .
7goal part: hasPart_directly 7cap.
?cap ont:refersTo ?properties.
}

Thus, the generic query Qsome is applied to WSML/RDF representation
as shown in Listing Bl In this case, service descriptions and goals have to
be differentiated by type checking, because both are related to capabilities
using the same hasPart_directly relation. Nevertheless, both services and
goals are matched as in Listing [Il by properties referred by corresponding
capabilities using the refersTo relation previously obtained. Similarly, Listing
[] presents the WsMO equivalent query for the case of a more specific query
(cf. Listing [2 for the version defined after the integrated ontology presented

before).

Listing 4: Qu query applied to WSMO.

PREFIX wsml: <http://www.wsmo.org/wsml/wsml-syntax#>

PREFIX ao: <http://www.isa.us.es/2009/AbstractOntology .owl#>
PREFIX part: <http://www.w3.org/.../SimplePartWhole/part.owl#>
PREFIX rdf: <http://www.w3.0rg/1999/02/22—rdf-syntax—ns#>

SELECT DISTINCT ?service

WHERE {
?service rdf:type wsml: webService.
?service part: hasPart_directly ?wsCap.
?wsCap ont:refersTo ?propertyl.
?wsCap ont:refersTo ?property2.
?wsCap ont: refersTo ?property3.
FILTER (
?propertyl =
<http://www.example.org/2009/DomainOntology . owl#Car> €&
?property2 =
<http://www.example.org/2009/DomainOntology . owl#Price> &6
?property3 =

<http://www.example.org/2009/DomainOntology .owl#Availability >
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4.3 Query Execution

In our experimental tool, query execution was implemented in Java using the
Jena Semantic Web Framework. First of all, relevant wsML files are parsed
and translated to WSML/RDF representation using WSMO4RDF, so that
Jena is able to process them and execute our proposed SPARQL queries,
conveniently adapted to the WSML/RDF representation. Then, the results
from the query execution are used to filter the list of services that take
part in the discovery process. The discovery implementation used for the
experiments is the lightweight-DL discovery provided by wsMO reference
implementation wsMX, which uses Pellet [31] as the DL reasoner.

Algorithm 3: Generation of query ),y for wsMo.
Input: The goal instance g
Output: A generated SPARQL query Q.

1 Qu = “PREFIX wsml:
<http://www.wsmo.org/wsml/wsml-syntax#>"

2 Qu += “PREFIX ont:
<http://www.isa.us.es/2009/AbstractOntology.owl# >"

3 Qu += “PREFIX part:
<http://www.w3.org/.../SimplePart Whole /part.owl#>"

4 Quu += “PREFIX rdf:

<http://www.w3.org/1999/02/22-rdf-syntax-ns#>"

Quu += “SELECT DISTINCT 7service WHERE {”

Qi += “Tservice rdf:type wsml:webService.”

Qi += “7service part:hasPart_directly ?wsCap.”

1=0

foreach Property p in g.nonFunctional Properties.refersTo do

10 1+ +

11 Qu += “?wsCap ont:refersTo ?property” + ¢ + “.”

12 end

13 Quy += “FILTER (¢

14 foreach Property p in g.nonFunctional Properties.refersTo do

15 Quu += “property” + ¢ + “=" + p.IRI

© 0w N O w»

16 i——
17 if i > 0 then Q. += “ && 7
18 end

19 Qall +: C() }77

Finally, the automatic generation of queries, specifically ).y, has to be
slightly modified to iterate over the values of the refersTo non-functional
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property of the corresponding goal, which contains the classes of the prop-
erties referred by that goal. Algorithm B shows how this generation is per-
formed. Note that, as a previous step, refersTo property of the goal has to
be inferred, as discussed in Alg.

5 Analysis and Evaluation

Our proposed queries have to be thoroughly analyzed, using experimental
results, in order to obtain conclusions about their soundness and benefits.
Each query have been tested in different situations, measuring both time and
size of the resulting repository. In this section, the performed experiments
are described, along with an interpretation and discussion of the results for
that experimental study, which validates our proposal.

5.1 Defining the Experiments

In order to test the suitability and performance of our proposal, there is a
need for a test collection that can be used with the developed tools. Experi-
ments were conducted within a WsSMO discovery scenario, as discussed in Sec.
[l so services and user requests have to be described using WsML. However,
a suitable, complex enough test collection of WSML descriptions is not avail-
able, so we developed a method to generate parametrized test collections,
which could be used for performance tests. Thus, several service repositories
and related ontologies were created for the experiments. In order to populate
these repositories, each service description is generated using concepts from a
DL ontology which contains a simple hierarchy of disjoint properties. Then,
a goal is similarly generated.

Figure [ presents the already discussed discovery scenario that our exper-
iments are contextualized in. The identified parameters, shown using boxes,
allow to test different situations varying their values. Each parameter have
an influence in one of the input artifacts for the studied scenario, namely the
service repository, the domain ontology and the user request, represented in
Fig. M by the dashed arrows. Brief definitions and parameter ranges are
enumerated in the following:

e Repository size (R). The number of services stored in the repository
is a parameter that ranged from 100 to 1,000, with a step of 100, for a
total of 10 different values in the conducted experiments.

e Domain ontology concepts (O). The number of the domain ontol-
ogy concepts, which double as instances of Property class from Fig.
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Figure 4: Parameters and output variables of experiments.

[0, can be also parametrized. In our experiments, this number ranged
from 20 to 100 concepts, incrementing by 20 for each step.

e User request properties (U). Another parameter that varies in
our tests is the proportion of properties referred by the user request
(i.e. goals), with respect to the previous parameter, ie. the number
of available properties defined in the domain ontology. Five different
values were selected for this parameter, ranging from 5 percent to 25
percent. Higher values were not tested because it is unlikely that users
define their requests using a high number of concepts, especially as the
domain ontology size increases.

e Service properties (S). Similarly, the proportion of properties re-
ferred by service descriptions is also parametrized, ranging as user re-
quest properties from 5% to 25%. As in the previous case, it is unlikely
that services manage a lot of concepts, so it is not necessary to test
higher values for this parameter.

The ontology representing the domain managed by services is populated
with a concrete number of simple concepts (O), depending on each generated
repository (R). These concepts are mutually disjoint, with the exception of
a simple hierarchy that is randomly created within the ontology: a super-
concept is chosen among all the concepts, and then a random number of
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concepts are declared as sub-concepts of the former. A scenario with a larger
ontology represents a repository which could contain more heterogeneous
services, i.e. described services offer many different functionalities. More-
over, a larger ontology also means a lower discovery performance, because its
complexity increases.

Goals and services are created after the ontology, by selecting one con-
cept that is going to be part of a simple postcondition of the corresponding
capability, and, with some additional concepts (up to U and S, respectively),
they are directly included in a refersTo non-functional property of the el-
ement described. Note that concepts from the domain ontology are treated
as functional or non-functional property depending on the case, because our
proposal does not make any distinction between the nature of referred prop-
erties.

Additionally, properties referred by each service and the goal are selected
using two different distributions, each one representing a different scenario.
On the one hand, in the case of an uniform distribution of service properties,
each property defined within the domain ontology has the same probability
to appear in service descriptions. Thus, this kind of repository reflects a
situation where services may offer many different functionalities. Potentially,
each concept from the domain ontology will be referred by the same number
of services, i.e. the number of different functionalities among services in the
repository will be approximately the number of concepts of the ontology.

On the other hand, a power-law distribution is also used to select which
properties are referred by service definitions, so most of these definitions
refers to a few common properties. Concretely, a Zipf distribution is used
because it can be applied to our tested scenarios[I]. This distribution is
based on the Zipf’s law [36], which interprets that the frequency of any con-
cept is inversely proportional to its rank in the frequency table, i.e. the most
referred concept will occur twice as often as the second most referred one,
which occurs twice as often as the following most frequent concept, and so
on. In this case, repositories are fairly homogeneous, i.e. they contain many
services with the same functionality, and there are few different functionali-
ties. This scenario may be closer to real-world repositories than uniformly-
distributed repositories, because in general service repositories are focused
on a particular domain. However, larger and more general repositories may
fall in between a uniform and a Zipf distribution of properties referred by
their service descriptions, so it is worth to test both extremes.

For each experiment, several output variables have been measured. In
Fig. 4l the following variables are showcased using dashed boxes, which are
connected with dashed arrows to the measured artifacts and processes:
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e Filtering execution times (7., and T,;). The SPARQL filtering
stage execution time is measured for each corresponding query, so Tsome
contains the execution time in milliseconds of Qsyme, and T,; measures
the same for Q),;. These times actually includes both the repository
serialization to WSML/RDF files and the query execution itself.

e Filtered repository size (R.,,. and R/,). The filtered repository
size is also measured for each query, correspondingly stored in R, .
and R,; variables. These variables can be compared to R to analyze

to what extent the queries have filtered the original repository.

e Discovery execution time (7p;). After filtering, the discovery pro-
cess is performed and its execution time is stored in the Ty, variable.
In our experiments, this variable is measured in three different situa-
tions: (1) without filtering, (2) filtering with Qsome, and (3) filtering
with ., so that time improvement can be analyzed for each kind of
filter.

5.2 Analyzing Tests Results

The implemented testing environment is able to generate several test collec-
tions and perform corresponding benchmarking tests at once. These tests
were executed in a machine with Windows XP Professional SP3, Java 6, 2.4
GHz CPU and 2 GB of RAM. Furthermore, in order to thoroughly study the
benefits of both queries in different situations, tests were conducted varying
the four different parameters as described before.

Each combination of parameter values were used to generate two test
repositories: one using a uniform distribution to pick up service proper-
ties, and the other using a Zipf distribution with 1.0 as its exponent. The
whole generation, filtering and discovery process were executed 10 times for
each parameter combination and distribution, for a total of 25,000 conducted
experiments, measuring each output variable discussed in Sec. Bl Experi-
mental results are detailed, analyzed, and discussed in the following.

5.2.1 Execution Time

FigureBlshows T, and T,; varying R, O, and S parameters. ﬁ As R grows,
total execution time of queries linearly increases, while it shows a greater
slope as more concepts are present in service descriptions (higher values for

5For the sake of clearness, intermediate values for some parameters are omitted in
figures throughout this section.
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Figure 5: Execution time results.

S also confirm that behavior). O also affects the slope, in addition to a
general increase in execution time as the number of concepts in the ontology
rises. The more complex relations that can arise by using larger ontologies
are the main reason for that behavior. Furthermore, query execution time
significantly rises with higher values for both parameters.

In every test case, Tsome (represented in Fig. [l with a continuous line) is
longer than T, (the dash/dot line in the figure). Furthermore, the difference
become larger with higher values for all the three parameters. However, with
lower values, both queries tend to have a similar execution time. Note that
for execution time, U does not affect at all, because they are not directly
referred on any query, so they do not contribute to the complexity of each
query execution (cf. Sec. 5.3 correlations discussion). Moreover, the distribu-
tion used to pick up properties for service descriptions does not affect query
neither T, nor T;.
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5.2.2  Qsome Results

In order to evaluate how Qgome performs, we measured the proportion of
services returned by that query execution with respect to the R value for
each experiment. Figure [l shows how R, . behaves depending on S, U,
@, and the distribution of properties used to create each repository. As we
are showing resulting repository proportions instead of number of services
returned, R does not affect to QQsome performance evaluation, as expected.

In general, Qome filters at a higher degree when the repository follows a
uniform distribution of properties. In contrast, Zipf-distributed repositories
are only filtered to some extent when the proportion of service properties
has a low value (5%). As U and S increases, R, . approaches the number
of services in the original repository (100%). Furthermore, a higher number
of U affects more to the performance decrease of (Qsome, because the more
properties are referred by the user, the more services are likely to use one of
them in their descriptions.

Increasing O mainly produces a higher R, ., which means that very large

domain ontologies reduce filter performance. In conclusion, best scenarios for
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using (some are those where U is low, and there are not many concepts in
the domain ontology (a low O) but they are uniformly distributed among
service descriptions.

5.2.3 Q. Results
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Figure 7: Filtering results for Q.

As in the previous case, R/, with respect to R was measured for each
test collection generated. Results are shown in Fig. [l where a completely
different behavior from Qg,me is depicted. In this case, as U increases, Quu
filters more services (i.e. R.; decreases). However, a higher S shows a less
strict filter. As the nature of (yy is inclusive, i.e. it looks for services that
refer to all the properties of the user request, more concepts referred by
service definitions cause that it is more likely that a service refers to all the
properties of the user request.

Although @,y filters many more services than Q)4oe, higher values of O
or U actually make (), to return no results. This is even more noticeable
with uniformly-distributed repositories. In this case, there might be some
services in the original repository that would fulfill user requests to some
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extent. However, these service descriptions are not likely to contain every
property of the user request, so R/, tends to 0. Thus, the best situations
for filtering repositories using QQ,; query are those where both U and O have
low values.

5.2.4 Discovery Improvement

i1
Distribution of properties Friver

— Qsome

uniform zipf —Qall
100%-] e
=1 80%]
a N\, o
- 603 S o
s . N\ X T
c 40% ] . 3
20% ] — .. °
D — ]
0% -1 S e—- o= =
o
100%-] /—— -]
=1 50%] =3
a 60% ] > 8
€ N AN o
N o =
S 405 . & <
- I
20%] N\ ®
4 Tt oe— L . e e °
0% s
100%-] B
=
=1 80%] =3
a o &
605 a1
H 3
40% °
[ /
20% ~.
=0 oe— ~.
0% -1 s e e —- o=

T T T T T T
05% 15% 25% 05% 15% 25%

Proportion of user request Proportion of user request
properties properties

Figure 8: Performance evaluation of discovery mechanisms.

The actual benefits of using the proposed filters in a discovery scenario
is shown in Fig. B In this figure, Tp; values obtained when performing
discovery after Qg ome and @y filtering are compared with the case where no
filtering stage is performed. Due to the DL discovery implementation used
in experiments (WSMX lightweight DL discovery), some parameters (R and
O) were fixed in order to get results in a reasonable time: a repository size
of 600 service descriptions, and 40 ontology concepts were chosen. Further-
more, Tpy, without any filter applied is constant, so the improvement can
be measured depending on the rest of the parameters (namely U and S5).
Actually, Tpy, increases linearly by R, but exponentially by O [14].

When the service procurement scenario includes some as the choice for
filtering the repository (continuous line), the Ty, improvement is noticeable,
especially with lower values for U and S, though in Zipf-distributed reposi-
tories the improve is not so accused. An increase on both U and S produces
a higher Thy, in this case.
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Table 2: Mean and std. deviation, and IC of evaluated variables.

Uniform Zipf
I o cl1 1 o cl

R,. 63.31% 27.90% +0.64% 93.99% 12.95%  +0.30%

o 082%  3.37%  +0.08%  10.85%  21.40%  +0.49%
Tewome 127s  077s 4£0.02s  129s  0.77s +0.02s
Ta  106s  057s 4£00ls  1.08s  058s =+0.01s

Finally, a filtering stage that uses Q4 before the DL discovery (dash/-
point line) shows a great improvement with respect to plain discovery. How-
ever, as shown in Fig. [{l with uniformly-distributed repositories, a low ex-
ecution time may appear because @)y returns no results, so the afterwards
discovery does. However, with lower proportion of service and user request
properties, the Ty, for this discovery mechanism is only, on average, a 14% of
the plain discovery mechanism applied on a uniformly-distributed repository,
and a 56% on a Zipf-distributed one.

5.3 Statistical Analysis

A complete statistical analysis have been performed on test runs in order
to corroborate our expected results, and to further support the conclusions
obtained from figures shown in this section. A summary of this analysis is
presented in the following.

Main statistical descriptives are shown in Table 2] for each measured vari-
able in our experiments, with the exception made for T, because it has not
been comprehensively tested. The analysis of these values shows that Qome
returns 63.31% of the services on average if their properties are distributed
uniformly, though its high standard deviation is caused because of Qsome
performance depends a lot on the repository parameters. The higher mean
value of a Zipf-distributed repository shows that Qsm. does not filter so
much in that case. On the other hand, (),; performs better, meaning that it
filters on average more than Q.. Additionally, ()., also filters more when
service properties are uniformly distributed (it returns 0.82% of the original
repository), in contrast to the case of a Zipf distribution (10.85%), though it
could still be considered a good enough result.

Concerning execution time, values are very similar among the cases pre-
sented in Table 2] with Qo lasting about 0.21 seconds more than Q. In
this case, we can conclude with a high confidence that, on average, Qsome
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Table 3: Pearson correlations between evaluated parameters.

Uniform Zipt
R O U S R 0 U S

R, . 0000 0.524 0.560 0.561 0.000 0.511 0.241 0.415
R, -0.003 -0.313 -0.321 0.141 0.000 -0.202 -0.618 0.345
Tyome 0.661  0.620  0.019 0.295 0.670 0.616  0.019 0.291

Tar 0.692  0.642 0.002 0.229 0.700 0.630 0.006 0.231

execution has a penalty time of at most 2.04 seconds (u+ o). However, note
that this time includes the RDF serialization needed to use SPARQL with
our test repository, so if the repository used allowed to be directly accessed
in RDF, that penalty time could be significantly shorter.

Very narrow confidence intervals (C'1), computed using a 99% confidence
level, shows that, for every variable, mean values can be considered to be
robust enough, so they can be used to summarize our experimental results.
Thus, if our proposed filters were applied to real scenarios modeled like our
test collections, the performance could be predicted by our presented results.

Table[Blshows the two-tailed Pearson-coefficient values calculated between
the evaluated variables and the parameters of each test scenario, as described
in Sec. L.l Values written in bold face mark those p-values that give a cor-
relation with a 99% significance. Thus, in the first two rows, R, .. and R,
are correlated with O, U and S. However, U is more important (i.e. has a
higher correlation) for Qsome performance in a uniformly-distributed repos-
itory than for )., though it is the other way around in a Zipf-distributed
repository. Execution times for both queries (Tsome and Tyy;) depends on R,
O and S, according to the p-values shown in Table [3

5.4 Discussion

As a general conclusion from the performed tests, the more specific query
(Qan) is better suited to filter and reduce the size of the service repository, so
it clearly improve the subsequent discovery stage by reducing the search space
for matchmaking algorithms. Furthermore, it scales well in every situation,
providing even better precision in proportion when the service repository
contains a higher number of services.

However, in certain scenarios, where flexibility and soft matching are a
concern, the more generic query (Qsome) may be more suitable. The higher
time penalty must be taken into consideration, both in the filtering and
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the discovery stage, because of the less reduced search space, though it still
improves the performance of discovery and ranking processes. Thus, there
is a trade-off between precision or recall that should be evaluated depending
on the concrete scenario. Actually, the current trend in the literature and
real-world applications is to achieve better performance and usability, by
sacrificing precision, recall, or both[9], so our proposal provides a feasible
and efficient solution in this direction.

The main feature of using our proposed queries is that the time penalty
is very low, so a hybrid approach may be taken, where both queries are used
successively before discovery and ranking processes take part. Firstly, Q.
may be executed, and if some results are returned, they are directly injected
into the discovery and ranking process. However, if no results are returned
by Quu, the more generic Qsome query is executed and its results are used in
the subsequent discovery and ranking process. This approach is similar to
the Best-Matches-Only solution proposed in [I§], where if the most accurate
results are found (i.e. Quy returns results), they are used, but in other case
fairly appropriate results (i.e. results from Qgome) can be useful.

Finally, if the execution time of the filtering stage is analyzed, actual
query execution time is significantly lower than the WSML /RDF serialization
(approximately 1 millisecond on average), an it is not so affected by the
variation of the parameters defined in the experiment. Consequently, our
proposed filtering stage could be further optimized by serializing repositories
to RDF before performing that filtering.

6 Related Work

There are some proposals that use a Semantic Web query language to per-
form discovery and ranking of services, though they do not use them to filter
repositories. They choose SPARQL as their base language, though some ex-
tensions have to be added to fully support these tasks. Thus, Lamparter
et al. [21] provide an ontology to represent service offers and requests that
conforms the foundations for a discovery and selection process performed
using rules in SWRL[15] and SPARQL queries. These queries includes pred-
icates that have to be evaluated at run-time, so they include an extension
to SPARQL that is implemented using different proposed algorithms. Thus,
a query for a user request is provided, though this query depends on rules
that change the matchmaking policy, e.g. allowing matching degrees as in
[33]. Although this proposal effectively use extended SPARQL to perform
discovery, it cannot be applied to generic scenarios because different rules
have to be defined for each case.
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Another discovery approach that uses SPARQL to actually perform se-
mantic service discovery is proposed by Igbal et al. in [16]. In this case, the
authors embed semantic information about services using SAWSDL, which is
an extension to add semantics to WSDL descriptions [§]. Thus, they define
pre and post-conditions of services using SPARQL CONSTRUCT queries so that
depending on each service functionality, they add corresponding RDF tuples
representing that functionality to the knowledge base. Then, their discovery
algorithm use an ASK query to check whether a service fulfills a user request or
not, returning the results. In this case, authors use standard-only SPARQL
queries to perform discovery, though authors do not take non-functional prop-
erties into account.

Finally, there is another approach, more related to ranking, presented in
[29], where Siberski et al. propose an extension to SPARQL so that pref-
erences are described directly using the query language, without basing on
existing preferences and non-functional properties ontologies, as in other se-
mantic ranking approaches [13, 12 35]. They provide a PREFERRING clause
that states preferences among values of variables, similar to FILTER expres-
sions. However, this approach does not have the flexibility and reasoning
facilities that provides a solution based on an external ontology, and it uses
non-standard SPARQL extensions without providing an implementation.

A study of these approaches and an analysis of the suitability of different
query languages to perform discovery and ranking is presented in [10]. The
conclusions of that study are that the main limitations of current approaches
are, on the one hand, their lack of mechanisms to perform complex matchings
and reasoning tasks, and on the other hand, their high coupling between
description formalisms and algorithms used to evaluate the queries. The
generic queries showcased in Sec. 3.1 conform a slightly different approach,
because they are used at a previous stage of the discovery process, filtering
the candidates and reducing the search space.

Concerning the need for an improved discovery process which tackles scal-
ability issues, Agarwal et al. discuss a hybrid approach that use different dis-
covery mechanisms together, in order to improve discovery performance [2].
They also propose a simple filtering stage based on an efficient classification-
based discovery. However, this filter rely on a less expressive user request.
Our proposal may be also applied to the authors hybrid approach in order
to further improve discovery but using a more expressive model to describe
user requests [13].
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7 Conclusions

Although Semantic Web query languages are not widely used for SWS dis-
covery and selection, they can certainly play a role in these scenarios. As
discussed in this paper, some authors extend SPARQL query language to
directly support these stages, but our proposal sticks to the standard, pro-
viding two different queries that may be used before actual discovery process
in order to reduce the set of available services from the initial repository.
Consequently, the reduced search space further improves scalability and per-
formance in discovery and ranking stages.

In this work, comprehensive simulation tests have been run, analyzing the
actual reduction of the search space depending on several variables. The con-
clusions obtained are mainly that our proposal effectively reduce the search
space, while it conforms a generic solution, adaptable to any SWS framework
that a potential user may want to use. Particularly, an application to wsmo-
based services is discussed. Thus, a mixed approach is proposed, where both
queries may be executed until reasonable results are returned, reducing the
time consumption of matchmaking.

Our proposal of including a (possibly multiple) filtering stage before the
discovery and ranking processes has several benefits in addition to the already
discussed optimization of discovery and selection processes by reducing the
search space. These additional benefits are enumerated in the following:

e Proposed filters are generic, so they can be used no matter what kind of
user request and service descriptions are defined for each concrete sce-
nario. (QQq; query is more specific, but can be generated automatically
from a corresponding user request.

e Our proposal do not distinguish between types of properties, i.e. both
functional and non-functional properties can be used to filter the repos-
itory. In consequence, properties being used for both discovery and
ranking stages are considered.

e Filters can be applied to any SWS framework because they are based
only in domain concepts referred by service descriptions and user re-
quests. An application to the wsMO framework is presented in Sec.

B

e Our proposal is based on the current standard query language for the
Semantic Web, i.e. SPARQL. Nevertheless, our proposed queries do not
use any extension to the standard, so they are compatible with most
SPARQL implementations.
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