
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221631754

Towards Visualisation and Analysis of Runtime Variability in Execution Time

of Business Information Systems based on Product Lines.

Conference Paper · January 2008

Source: DBLP

CITATIONS

3
READS

476

3 authors, including:

Some of the authors of this publication are also working on these related projects:

APOLO: Technologies for Service Oriented Systems Highly Reliable and Regulated by User Contracts. View project

COPAS- View project

Joaquin Peña

Universidad de Sevilla

45 PUBLICATIONS 412 CITATIONS

SEE PROFILE

Antonio Ruiz-Cortés

Universidad de Sevilla

313 PUBLICATIONS 7,011 CITATIONS

SEE PROFILE

All content following this page was uploaded by Antonio Ruiz-Cortés on 20 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221631754_Towards_Visualisation_and_Analysis_of_Runtime_Variability_in_Execution_Time_of_Business_Information_Systems_based_on_Product_Lines?enrichId=rgreq-b32597aa406d8cd7601b0ce0b7eee688-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYzMTc1NDtBUzo5OTA2MzIxNTE2NTQ0NUAxNDAwNjI5OTE5NTE1&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221631754_Towards_Visualisation_and_Analysis_of_Runtime_Variability_in_Execution_Time_of_Business_Information_Systems_based_on_Product_Lines?enrichId=rgreq-b32597aa406d8cd7601b0ce0b7eee688-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYzMTc1NDtBUzo5OTA2MzIxNTE2NTQ0NUAxNDAwNjI5OTE5NTE1&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/APOLO-Technologies-for-Service-Oriented-Systems-Highly-Reliable-and-Regulated-by-User-Contracts?enrichId=rgreq-b32597aa406d8cd7601b0ce0b7eee688-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYzMTc1NDtBUzo5OTA2MzIxNTE2NTQ0NUAxNDAwNjI5OTE5NTE1&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/COPAS?enrichId=rgreq-b32597aa406d8cd7601b0ce0b7eee688-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYzMTc1NDtBUzo5OTA2MzIxNTE2NTQ0NUAxNDAwNjI5OTE5NTE1&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b32597aa406d8cd7601b0ce0b7eee688-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYzMTc1NDtBUzo5OTA2MzIxNTE2NTQ0NUAxNDAwNjI5OTE5NTE1&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joaquin-Pena-6?enrichId=rgreq-b32597aa406d8cd7601b0ce0b7eee688-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYzMTc1NDtBUzo5OTA2MzIxNTE2NTQ0NUAxNDAwNjI5OTE5NTE1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joaquin-Pena-6?enrichId=rgreq-b32597aa406d8cd7601b0ce0b7eee688-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYzMTc1NDtBUzo5OTA2MzIxNTE2NTQ0NUAxNDAwNjI5OTE5NTE1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad-de-Sevilla?enrichId=rgreq-b32597aa406d8cd7601b0ce0b7eee688-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYzMTc1NDtBUzo5OTA2MzIxNTE2NTQ0NUAxNDAwNjI5OTE5NTE1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joaquin-Pena-6?enrichId=rgreq-b32597aa406d8cd7601b0ce0b7eee688-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYzMTc1NDtBUzo5OTA2MzIxNTE2NTQ0NUAxNDAwNjI5OTE5NTE1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonio-Ruiz-Cortes?enrichId=rgreq-b32597aa406d8cd7601b0ce0b7eee688-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYzMTc1NDtBUzo5OTA2MzIxNTE2NTQ0NUAxNDAwNjI5OTE5NTE1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonio-Ruiz-Cortes?enrichId=rgreq-b32597aa406d8cd7601b0ce0b7eee688-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYzMTc1NDtBUzo5OTA2MzIxNTE2NTQ0NUAxNDAwNjI5OTE5NTE1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad-de-Sevilla?enrichId=rgreq-b32597aa406d8cd7601b0ce0b7eee688-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYzMTc1NDtBUzo5OTA2MzIxNTE2NTQ0NUAxNDAwNjI5OTE5NTE1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonio-Ruiz-Cortes?enrichId=rgreq-b32597aa406d8cd7601b0ce0b7eee688-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYzMTc1NDtBUzo5OTA2MzIxNTE2NTQ0NUAxNDAwNjI5OTE5NTE1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonio-Ruiz-Cortes?enrichId=rgreq-b32597aa406d8cd7601b0ce0b7eee688-XXX&enrichSource=Y292ZXJQYWdlOzIyMTYzMTc1NDtBUzo5OTA2MzIxNTE2NTQ0NUAxNDAwNjI5OTE5NTE1&el=1_x_10&_esc=publicationCoverPdf

Towards Visualisation and Analysis of Runtime Variability in Execution Time of
Business Information Systems based on Product Lines∗

Ildefonso Montero, Joaquín Peña, Antonio Ruiz-Cortés
Departamento de Lenguajes y Sistemas Informáticos

Av. Reina Mercedes s/n, 41012 Seville (Spain)
University of Seville

{monteroperez, joaquinp, aruiz}@us.es

Abstract

There is a set of techniques that build Business Infor-
mation Systems (BIS) deploying business processes of the
company directly on a process engine. Business processes
of companies are continuously changing in order to adapt
to changes in the environment. This kind of variability ap-
pears at runtime, when a business subprocess is enabled or
disabled. To the best of our knowledge, there exists only
one approach able to represent properly runtime variability
of BIS using Software Product Lines (SPL), namely, Product
Evolution Model (PEM). This approach manages the vari-
ability by means of a SPL where each product represents
a possible evolution of the system. However, although this
approach is quite valuable, it does not provide process en-
gineers with the proper support for improving the processes
by visualising and analysing execution-time (non-design)
properties taking advantage of the benefits provided by the
use of SPL.

In this paper, we present our first steps towards solv-
ing this problem. The contribution of this paper is twofold:
on the one hand, we provide a visualisation dashboard for
execution-traces based on the use of UML 2.0 timing di-
agrams, that uses the PEM approach; on the other hand,
we provide a conceptual framework that shows a roadmap
of the future research needed for analysing execution-time
properties of this kind of systems. Thus, due the use of SPL,
our approach opens the possibility for evaluating specific
conditions and properties of a business process that current
approaches do not cover.

∗This work has been partially supported by the European Commission
(FEDER) and Spanish Government under CICYT project Web-Factories
(TIN2006-00472) and under a scholarship from the Education and Univer-
sities Spanish Government Secretariat given to the author Ildefonso Mon-
tero.

1 Introduction

The development of Business Information Systems (BIS)
is focused on providing techniques and mechanisms for de-
signing software systems based on the business processes
of the companies. One of the implementation approaches is
based on deploying business processes, defined graphically,
on process engines that execute the specification.

Variability in average-size business processes is high
enough for motivating the use of tailored mechanisms to
be managed. For that purpose, there exists only one ap-
proach devoted to managing business processes variability
using Software Product Lines (SPL)[11]. In this approach,
A. Schnieders et al. explore the idea of applying Software
Product Lines (SPL) for managing runtime variability of
a unique BIS in an approach called Process Family Engi-
neering (PFE) [11]. In PFE, each product represents an
evolution of the system (at runtime). In this context, the
term product is defined as a set of features that are en-
abled/running at a certain moment, and the term evolution
is defined as a transition from one product to another. See
Section 2 for a detailed definition of these concepts.

However, although PFE may be the solution to manag-
ing the evolution of the business process of a company, the
proposed models, namely feature models (equivalence be-
tween feature and business process is defined in Section 2),
are not expressive enough for documenting this evolution.
The main problem is that these kind of models are devoted
to model static variability, and not runtime variability [9].
See Section 3.2 for details on this problem.

The Product Evolution Model (PEM) [8], which is
shown in Section 6, complements PFE for properly repre-
senting runtime variability in BIS. For that purpose, it in-
tegrates PFE with several proposals for modeling runtime
variability in SPL, namely [5][6][7] (see Section 6 for a dis-
cussion of these approaches). This approach is oriented to
provide a set of artifacts able to represent properly runtime

variability at design time and trigger events that drives these
changes. PEMs are defined in two layers: (i) an abstract for-
mal description of business evolutions, presented in Section
3.1 and (ii) a proposal for representing it based on a state-
based notation where each state represents a product and
each evolution between two or more states is represented by
means of an inclusion or exclusion of features, presented in
Section 3.2. PEM uses the Business Process Model Nota-
tion (BPMN) [3] for representing this, but the proposal is
open to other notations. The main benefits of this approach
are that it provides sufficient expressiveness for represent-
ing runtime variability in BIS, and events or conditions that
fire business evolutions can also be represented.

Although this approach presents a valuable solution for
representing runtime variability in BIS at design time, pro-
cess engineers need to visualise and analyse properties of
the business at execution-time, for example: how long each
product is active or which is the percentage of benefits ob-
tained in each product at a certain moment. This kind of
evaluation is studied in the Business Process Mining field
[4][13][10]. However there not exists any approach in this
field that manages variability using SPLs.

The main motivation of this paper is that, to the best of
our knowledge, there does not exist any approach, that takes
advantage of the extra information than a SPL approach
provides. This extra information allows process engineers
to visualise the execution of the process showing how the
business evolves between several configurations. See Sec-
tion 6 for a discussion on the approaches that inspires us and
their deficiencies for the BIS field. This kind of visualisa-
tion is valuable since it allows process engineers to focus on
higher level properties of the business, such as which prod-
uct is more profitable, than those proposed in the Business
Process Mining field.

The contribution of this paper is twofold: on the one
hand, we provide a visualisation dashboard of execution
traces based on the use UML 2.0 timing diagrams and its
integration with current approaches, detailed on Section 4.
On the other hand, we have studied the problems related
with the analysis of execution traces properties providing a
conceptual framework that shows a future research, which
is shown in Section 5. Thus, our ideas open the possibility
to reason about products, evolutions, triggers, etc., which,
to the best of our knowledge, is not present in current ap-
proaches based on SPL, neither in the process mining field.

2 Adaptation of the SPL terminology to the
context of the paper

In this paper, we use concepts of the SPL field with a
slightly different meaning. These changes in the meaning
occur because we applied these concepts to assets that are
processes and not executable software pieces. In the follow-

ing paragraph, we clarify the meaning of these concepts in
our context:

Features and Business Processes: the Product Evolution
Model (PEM) approach [8] establishes an equivalence
between business processes and features as follows:
(i) a feature represents a subprocess (part of a com-
plete process that starts and ends), and (ii) child fea-
tures nodes of a feature model, also considered vari-
ants in [9], corresponds with concrete processes (pro-
cesses that do not present abstract or complex activi-
ties). In this paper, we also use a direct correlation be-
tween a feature and a business subprocess. Hereafter,
we use the term feature to refer to both terms.

Predictable Evolutions and Products: Businesses evolve
to adapt to environmental changes. This is done by
including or excluding features or modifying existing
ones. As shown previously, we use a SPL to manage
these changes. Thus, we define a product as the set
of features (subprocesses) that are enabled/running at
a certain moment. In addition, we define the term evo-
lution to denote the changes or transitions from one
product to another. Note that we only take into ac-
count the evolutions that can be predicted at design
time, called predictable evolutions (hereafter, evolu-
tions for shortening).

Design-time, runtime and execution-time: It is called
design-time as an interval of time in which we build
the business process model and represent its variabil-
ity, including runtime variability. Runtime is defined
as an interval of time which starts when the business
processes modeled are deployed on process engines.
Thus, this term can be also named as deployment time
or configuration time. Finally, execution-time is de-
fined as the interval of time which starts when the busi-
ness processes deployed are executed in the process
engine. Thus, runtime variability is modeled at design-
time, by means of PEM, and visualised and analysed at
runtime. This analysis is based on the observation of
runtime properties at execution-time. This observation
is performed analysing the traces produced by the sys-
tem.

Predictable and Unpredictable Triggers: Triggers act as
stimulus of an evolution from a product to another. An
Unpredictable Trigger is defined as something hap-
pening in the environment that fires an evolution that
cannot be predicted at design time. A Predictable Trig-
ger is defined as a condition that can be defined at de-
sign time that fires an evolution. See Section 4 for an
example of predictable and unpredictable triggers.

Features

Instant t

Instant t + 1

SVF t+1

Features

SVF t

B

Business

B

Business

Formal Definition Product Evolution Model

Business B

...

t + 1

t + k;
k > 0...

Feature Model

Business B

Features

...

CF

VF

Legend

: Core Features CF

: Variable Features VF

Figure 1.a. Rigorous
Description

Figure 1.b.
Graphical Notation

CF +
SVF t

CF +
SVF t + 1

 : Selected Features SVF

F (t, SVFt) = SVFt+1 ∊∊∊∊ VF
F (t, SVFt)• SVFt ≠ SVFt+1

Figure 1. Product Evolution Model approach
defining an evolution of a business by the F∆

function in t and t + 1.

Services

Fast-Food Restaurant

Serve

Establishment

Cafeteria

Cook

Birthday´s party

Serve Fast
Serve

Normal
Delivery

: Core Features CF

: Variable Features VF

Auto

Figure 2. Case Study: Fast Food Restaurant

3 Representing Runtime Variability of BIS
using the Product Evolution Model Ap-
proach

Product Evolution Model (PEM) is focused on providing
a sufficiently expressive design-time model for representing
runtime business properties. PEM provides in [8] an ab-
stract rigorous description and a proposal for representing
it by means of an extension of BPMN using stereotypes,
including a case study. We show that description in the fol-
lowing sections.

3.1 PEM Rigorous Description

Let B be a business. Each business can be defined as a
set of processes (denoted with P). Thus, B can be defined
as follows:

B = {P1, P2, ..., Pk}; k > 0

Let CF be the set of common features, and let VF be the
set of variable features, thus B is defined formally as a tuple
containing all the CF and a subset of V F denoted as SV F :

B = (CF, SV F ∈ V F)

As shown before, in PFE, each set of features enabled at
a certain moment represents a product. Thus, we can say
that the CF of a B are always enabled at runtime, but the
set of features in V F is not fixed at runtime.

Thus, we can set up a product line that takes into account
this runtime variability. For formalizing these concepts we
should redefine each business B as:

B = (CF, SV F ∈ V F, F∆ :

: t, {Feature× ...× Feature} 7→
7→ {Feature× ...× Feature})

where F∆ is a function that given an instant t transforms
the set of SV Ft into the new set of variable features of the
following time instant t+1, that is to say SV Ft+1, formally:

F∆(t, SV Ft) = SV Ft+1 ∈ V F

•SV F t 6= SV F t+1

Figure 1.a sketches a graphical representation of F∆,
where it is represented the transformation of SV Ft into
SV Ft+1. In an instant t there exists a specific set of SV Ft

for business B that evolves in instant t + 1 to a different set
SV Ft+1.

3.2 PEM Graphical Notation

As shown previously, a business that evolves can be rep-
resented by B = (CF, SV F ∈ V F, F∆), where the evolu-
tion is defined by the F∆ function in t.

In PFE, feature models are used to represent which fea-
tures are variable and which are not. From this, the set of
common (CF) and variable (V F) features can be obtained
[1]. Thus, CF and V F can be represented by means of a
feature model.

However, the feature model cannot establish the order of
activation of features at runtime. This order is represented
using F∆, but as feature models are not devoted for rep-
resenting runtime variability [5], they cannot be used for
representing the variable t needed in the F∆ function. For
solving this problem, the Product Evolution Model (PEM)
approach proposes a graphical notation that covers t and
F∆. This model is defined by means of a BPMN state ma-
chine where each state represents a product and each evolu-
tion between two or more states, is represented by means of
a transition that is an application of the F∆ function. In Fig-
ure 1.b, we show an evolution of a business from time t to

. . .
Serve in

Cafeteria and
Establishment

10:00 am
(t +1)

F
as

t-f
oo

d
re

st
au

ra
nt

Serve in
Establishment

F (t, ServeInCafeteria)
SVF t+1 : SVF t+2 : ServeInAuto

F (t + 1,)

Serve in
Auto and

Establishment

Cafeteria Service closes at 10:00 am

11:45 am
(t + 4)

A client has arrived
to Auto-Service

Serve in
Auto and

Establishment
and Cook

F (t + 2, ServeInAuto)
SVF t+3 : Cook

F (t + 3, ServeInAuto + Cook)

Client wants
a burger

11:30 am
(t + 3)

11:26 am
(t + 3)

Client pay his burger and goes out

SVF t+4 :

Serve in
Establishment . . .

Serve in

Auto

Serve in
Establishment

Core

Cook

Serve in Auto and Establishment and Cook

Serve in
Cafeteria

Serve in

Establishment

Core

Serve in Cafeteria and Establishment

Serve in
Auto

Serve in

Establishment

Core

Serve in Auto and Establishment

Figure 3. Fast-food restaurant Product Evolution Model BPMN Compositions

time t+1 by means of applying the F∆ using a PEM model.
As shown in the figure, there exists two different products.
The first product is composed by the set of features CF and
SV Ft. F∆ in t fires an evolution at t + 1 which implies the
creation of the second product. This product is also com-
posed by CF , since it never changes, and SV Ft+1 which is
different than previous SV Ft.

In order to illustrate PEM and the rest of the paper, we
use a case study of a fast-food restaurant. Figure 2 de-
picts a simplified set of features pertaining to a fast-food
restaurant: Serve Normal: which is defined as the normal
activities for serving products in the restaurant, Serve Fast:
which is defined as the activities needed for serving prod-
ucts in the restaurant when there exists a higher demand,
and Serve in Establishment: which is defined as the activi-
ties for serving products performed only into the establish-
ment. These features are CF and the rest are V F . In Figure
3 we present the PEM of this case study. Each state contains
a BPMN state chart that represents how all the features are
performed. It defines the evolution of the business at run-
time showing that in every runtime instant t there exists a
different SV F selected. For example, on a time instant t the
restaurant opens its cafeteria service. In this moment, there
exists two different processes running in parallel: Serve in
Cafeteria and CF (Serve in Establishment Normal/Fast).

When the restaurant closes its cafeteria service on time in-
stant t + 1,e.g. 10:00 am, the F∆ function is applied and
an evolution is performed to another state, that represent a
different product, composed only by CF . After that, the
restaurant opens its Auto-Service, because a client has ar-
rived with his car at t + 2. When this client orders a burger,
the Cook subprocess is enabled, what happens in time in-
stant t + 3. When the burger is served, the system evolves
to time instant t + 4.

4 Visualisation of Runtime Variability in BIS

Process engineers need support for improving the pro-
cesses by means of visualising and analysing the execution-
time traces of business evolutions. For that purpose we pro-
vide a single view that illustrates all the transition from one
product to another in certain moment. We use UML Timing
Diagrams to represent this information. Timing diagrams
are one of the new artifacts added to UML 2.0 which are
used when the goal of the diagram is to reason about time.
We call this view the Business Dashboard.

UML provides two different representations of timing di-
agrams: (i) State or (ii) General value. Both representations
contain events and constraints that represent stimuli for an
evolution. In Figure 6, we have included an example of each

Rigorous Description
of PEM

UML 2.0 Timing
Diagrams

Product State
FΔ Transition / Stimulus
Trigger X Predictable Trigger {X}

Unpredictable Trigger X

Figure 4. Rigorous Description of PEM and
Timing Diagram Correspondence

. . . A

t + K

B
F (t, SVF t)

X

. . .

B

A

Ti
m

eL
in

e

t t + k

X or { X }

td Business State Timeline

B
us

in
es

s

. . .

. . .

T
im

eL
in

e

t t + k

X or { X }

td Business Value Timeline

. . .

A B.

P
ro

d
u

c
t

E
vo

lu
ti

o
n

 M
o

d
el

U
M

L
 2

.0
 T

im
in

g
 D

ia
g

ra
m

s

Figure 5. Obtaining Timing diagrams from
Product Evolution Model

view. As shown in figure, the representation called State fo-
cuses on showing every evolution, while the representation
called General value, focuses on each product instead of
an implicit representation of an evolution. Given the char-
acteristics of each view, the second representation, General
value, is more adequate for software product lines where the
number of products is high, while the first, State, is more
adequate for software product lines where the number of
products is low since evolutions are shown graphically.

Using the rigorous description defined previously in Sec-
tion 3.1, we provide the correspondence between the infor-
mation managed in PEM and timing diagrams. Figures 5
and 4 show the equivalence between a PEM and a timing
diagram. As shown, each product modeled, using PEM,
obtained from the application of the F∆ function is equiva-
lent to a state in a timing diagram. Notice that each F∆ is
performed in a time instant t + k; k ≥ 0 when a trigger X
holds. Notice that in timing diagrams, X denotes an unpre-
dictable trigger, and {X} a predictable trigger. See Figures
4 and 5 for an example of both kind of triggers. In PEM
there is no difference between unpredictable and predictable
triggers, since unpredictable only appears at execution-time
and PEM is a design-time model.

State 3

State 2

State 1

Ti
m

eL
in

e

8:00 am 9:00 am 10:00 am 11:00 am 12:00 am 13:00 am

{ Cafeteria Service closes
at 10:00 am}

A client has arrived
to Auto-Service

td Fast-Food Restaurant State Timeline

State 1: Serve in Auto and Establishment
State 2: Serve in Cafeteria and Establishment
State 3: Serve in Establishment
State 4: Serve in Cafeteria and Establishment and Cook

Ti
m

eL
in

e

8:00 am 9:00 am 10:00 am 11:00 am 12:00 am

{ Cafeteria Service closes
at 10:00 am}

A client has arrived
to Auto-Service

td Fast-Food Restaurant Value Timeline

State 2 State 3

State 4

Client wants
a burger

Client pays his
burger and goes
out

State 1: Serve in Auto and Establishment
State 2: Serve in Cafeteria and Establishment
State 3: Serve in Establishment
State 4: Serve in Cafeteria and Establishment and Cook

State 3

Client wants
a burger

Client pays his
burger and goes out

State 1

State 4

Figure 6. Visualising fast-food restaurant
evolutions by means of UML 2.0 Timing di-
agrams

Figure 6 shows the timing diagrams of an execution trace
of our case study. Each product is denoted by a state num-
ber. As shown in Figures 3 and 6, there are four evolu-
tions: (i) from product denoted by State 2 to another de-
noted by State 3 (F∆ in t), which represents the predictable
trigger: Cafeteria Service closes at 10:00 am. This implies
an exclusion of Serve in Cafeteria feature from our prod-
uct; (ii) from State 3 to State 1 products (F∆ in t + 1) that
is performed when a client arrives to Auto-Service. This
unpredictable trigger fires the second evolution that implies
that feature Serve in Auto must be added or enabled in the
new product; (iii) from State 1 to State 4 products (F∆ in
t+2) when a client wants a burger, that implies that feature
Cook must be added in the new product; and finally (iv)
from State 4 to State 3 (F∆ in t + 3) when client pays his
burger and goes out.

In order to validate our approach, we have developed
an automated transformation from a PEM execution trace
to a timing diagram, concretely to State representation, us-
ing gnuplot1, a command-driven interactive function and
data plotting software. In Appendix we present an screen-
shot of the timing diagram of our case-study obtained using
this transformation.

1http://www.gnuplot.info/

5 Roadmap for Research on Analysis

As shown previously, once runtime variability is visu-
alised by means of timing diagrams, process engineers need
to evaluate execution-time properties of the business. There
are many basic analysis questions that can be performed, for
example:

• Find constraints and events that fire a subprocess and
calculate its relative frequency, i.e: How many times
does a client arrive in Auto-Service?

• Calculate relative frequency of the activation of a sub-
process, i.e: How many times is Serve in Cafeteria sub-
process executed?

• Analyse processes bottlenecks, i.e: Which is the activ-
ity with the lowest level of performance?

These kinds of questions are usually supported by current
software tools for business process management and by the
Process Mining approach [4][13][10]. They are focused
only on analysing single/isolated subprocesses. However,
given that PEM and PFE are based on SPL, there are other
analysis questions that may be supported providing higher
level views for analysing the features, as for example:

• Analyse for each product: cost, risk and benefits.i.e:
Which is the percentage of benefits of product "State
1"?

• Compare the performance of a certain feature when
running in different products (dependencies with other
features, events and/or constraints may affect the per-
formance). i.e: earning rate of product defined by state
1 is less than earning rate of product defined by state
2 on Fridays when it is executed in parallel with the
Serve in Auto-Service feature.

For arranging this research problem we propose two ar-
tifacts: (i) a metamodel for arranging and determining the
needed information for supporting the analysis questions
presented previously, which includes business process man-
agement support for current analysis questions, and (ii) a
conceptual framework for future research on analysis which
specifies how future research lines are related and may be
conducted.

5.1 Analysis Metamodel

In this section we show the metamodel for arranging
and determining needed information for supporting analysis
questions presented previously. Figure 7 shows the meta-
model that contains the following elements:

• Business Process Management package: it provides
business process definition and represents the support
for basic analysis questions provided by current tools
for business process management.

• Analysis Metamodel package:

– Business Configurations: states in timing dia-
gram are considered business configurations rep-
resented by the Business Configuration meta-
class. Each configuration contains a set of busi-
ness processes which are modeled by means of
the Business Process metaclass. It can be spe-
cialized to the Core Business Process or Vari-
able Business Process metaclasses, previously
denoted as CF and V F in the PEM definition.

– Predictable and Unpredictable Triggers: these
elements drive the evolutions of business config-
uration. They are modeled by the Predictable,
and Unpredictable metaclasses.

– Financial Information: Each business configu-
ration has an associated cost, represented by the
Financial Information metaclass, where we may
add additional information about it; i.e: "Serve
in Establishment process has an associated hu-
man resources cost of two employees" state-
ment can be modeled by an association between
the Business Process and Financial Information
metaclasses instances, which attributes of second
metaclass type, value and unit are initialised to
"human resource", "2", and "employees" values
respectively.

• Dependency Metamodel package: Business pro-
cesses has associated a set of dependencies between
them which are modeled by means of the Dependency
metaclass. As shown in figure 7, the metaclasses in
the Dependency package are based on Botterweck et
al.’s metamodel for supporting feature configurations
by interactive visualisation [2].

5.2 Conceptual Framework for Research
on Analysis

For materializing these analysis operations we propose a
conceptual framework for research on analysis based on fil-
tering and analysing evolutions to perform queries using the
information on the metamodel presented previously. Figure
8 shows it using a stereotyped association, «uses», between
the framework and our analysis metamodel. The framework
also takes into account a representation for a Product Evo-
lution Model and timing diagrams.

We have divided the elements included in the framework
into those that can be implemented using our current results,

Dependency

MutualExclusion MutualProblematic

*

1
+ dependencies

DirectedDependency

Requires InfluencesRecommends

BusinessProcess

+target 0..1

+ source 0..1

*
*

UndirectedDependency

+ relatedBusinessProceses
*

*

Triggers

Predictable Unpredictable

FinancialInformation
- type: Type
- value: Real
- unit: Unit
- percentage: Boolean

+ cost

*

*

<< enumeration >>

Type

<< enumeration >>

Unit

CoreBusinessProcess

VariableBusinessProcess
Dependency Metamodel from [2]

<< includes >>

Business Process
Management

Analysis Metamodel

Analysis Questions supported:
Analysis Questions supported:

- Analyze for each business configuration: cost, risk, benefits
- Analyze business process benefits associated
 to another artifact

- Relative frequency of the apparition of each configuration
- Find constraints and events which implies business evolutions

...

Business Configuration
guided by

Artifacts

Product

Feature

CF

VF

Figure 7. Proposed metamodel for analysing runtime variability in BIS (partially based on [2] meta-
model)

labeled as ’implementation’, and those that require for some
research effort, labeled as ’research’:

• For visualising variability:

– Artifact Factory (Implementation): Process en-
gineers need to visualise evolutions. Evolutions
are represented by means of Timing Diagram
components. The component called Artifact Fac-
tory allows process engineers to generate timing
diagrams from a business process modeled by
means of Product Evolution Model using the in-
formation shown in the metamodel presented in
Figure 7. PEM is represented by BPMN Product
Evolution Model component. Notice that for ob-
taining PEM we need the core features which are
obtained using FAMA [1]

• For analysing variability:

– Filter (Research): Process engineers can be in-
terested in performing analysis questions about
only one part of the timing diagram. For that pur-
pose, the Filter component must provide query
operations on BPMN Product Evolution Model
and Timing Diagrams. The definition of these
operations could be based on formalisms, such
as Constraint Satisfaction Problem (CSP), Tem-
poral Logic, Petri nets, etc. This is one of the
possible future research lines, as shown in Figure
8

– Analyser (Research): As shown previously, pro-
cess engineers need to perform analysis ques-
tions in order to improve their company. For
that purpose the Analyser component should per-
form all possible analysis questions or operations
from artifacts represented by Timing Diagram
and BPMN Product Evolution Model compo-
nents (the information shown in the metamodel).
These operations can be grouped as basic oper-
ations, i.e:obtain business process dependencies
and complex operations obtained by means of ba-
sic operations combinations, i.e: obtain financial
information about all possible business processes
dependencies. This represents another future re-
search line.

6 Related Work

The Business Process Mining field, or Process Mining
for short, is focused on extracting information about pro-
cesses using execution traces [4][13][10]. For that purpose,
these approaches provides some visualisation artifacts and
frameworks for the automated analysis. Although this field
is the most realted with the topic of this paper, there not ex-
ist any approach that support BISs based on product lines.
Thus, these approaches cannot address the analysis ques-
tions provided by our approach and cannot represent the in-
formation on evolutions provided by our approach.

As shown in Section 3.2, feature models (FM) are one

Analysis

Analyzer

TimingDiagram

ITimingDiagram

ArtifactFactory

BPMNProductEvolutionModel

IProductEvolutionModel

IArtifactFactoryIVisualization

IAnalyzer

Filter
IFilter Financial Analyzer

Feature Model
Analyzer

Framework FAMA

Future research items Existing itemsCurrent research items

Visualization

Visualization and Analysis Framework

Analysis
Metamodel

<< uses >>

Figure 8. Runtime Variability Visualisation and Analysis Framework

of the most used artifacts for modeling variability. Unfortu-
nately, as shown in Section 3.2, FM are devoted to design
variability, and not to runtime variability [5]. There exists
three approaches, to the best of our knowledge, that describe
how to represent runtime variability in SPL.

First, J. Bosch et al. [7] introduce an extension of FM for
representing runtime variability. Bosch’s notation is slightly
different from FODA’s or FORM’s notation. They introduce
a new kind of feature for representing features that vary at
runtime, called external feature, represented by means of a
dashed rectangle. Figure 9 depicts an example of a feature
model using this notation that represents the plugin support
provided by the Firefox web browser. It represents that there
exists one feature called Website Debugger, that can be en-
abled/disabled at runtime. As can be observed, the trigger
events or conditions that fire this variability can not be rep-
resented with this approach, i.e: plugin Website Debugger
is enabled at runtime only in websites with domain US.ES.

Sinnema et al. [12] propose a framework for modeling
variability in SPL, called COVAMOF 2, which proposes
a language for describing variation points named COVA-
MOF Variability View Language (CVVL) that takes into
account enabling/disabling time. It is similar to the pre-
vious approach for representing runtime variability using in
CVVL the tag bindingtime. The CVVL code for Firefox
web browser example is the following:

<variationpoint id=Plugin>
...
<variants>

...

2www.covamof.com

<variant id=Website Debugger>
...
<bindingtime>runtime</bindingtime>

</variant>
</variants>
...

</variationpoint>

H. Gomaa et al. [6][5] propose a set of models for rep-
resenting runtime variability based on evolutionary recon-
figurable software architectures. The different versions of
an evolutionary system are considered a software product
line, where each version of the system is a product and the
reconfiguration is defined by a state machine that, for each
component, represents the steps that have to be performed
to evolve from a normal operation state to an inactive state.
Once inactive, the component can be removed and replaced
with a different version. Figure 10 depicts trigger events
in the state machine. It represents how an optional feature
named Beeper from a Microwave System feature model is
enabled or disabled at runtime.

For runtime variability management in BIS, the focus of
this paper, we have discussed in Sections 1 and the follow-
ing proposals: Process Family Engineering (PFE) [11] and
Product Evolution Model (PEM) [8] as a complement of
PFE for properly representing a design model of runtime
variability in BIS. However, none of these approaches pro-
vide any visualisation or analysis artifact for execution-time
traces.

Given this state of art, to the best of our knowledge, there
does not exist any approach for visualising and analysing
runtime variability in execution-time of BIS using SPL
techniques. This situation motivates us to propose a future

Beeper

MicrowaveControl

<< optional >>

BeeperComponent
<< output component >>

IBeeper
<< interface >>

{feature = Beeper}

+ initialize()
+ beep()

......

Microwave
System

ControlSystem

...

...

<< kernel >>
<< control component >>

Feature model viewComponent model viewState machine view

Active

Passivating

Passive

Inactive

Waiting for
Acknowledgement

Passivate
[Processing
Transaction]

Reactivate

Passivate
[Waiting for
Neighbor

Response]

Transaction
Started

Transaction
Aborted

Passive Acknowledgement
from all Neighbors

Transaction
Ended *

Transaction
Ended **

* At least one neighbor active
** All neighbors passive

Activate

Figure 10. Gomaa approach (Figure taken from [6])

Firefox

Plugin

Flash Java Website
Debugger

runtime

Feature

External Feature

or specialization

Figure 9. J. Bosch approach

research roadmap agenda and an approach for visualisation.

7 Conclusions and Future Research
Roadmap

The main motivation of this paper is to provide to process
engineers a first step toward an automatised visualisation
and analysis of runtime variability in BIS based on SPL.
For that purpose, we have explored the feasibility of using
PEM for visualising and analysing runtime variability. As
a result of our work we have proposed: (i) integration be-
tween PEM and a visualisation model based on UML 2.0
timing diagrams; (ii) a metamodel for arranging the infor-
mation needed for analysing runtime variability in BIS; and
(iii) a roadmap for research on analysing that can be used as

Figure 11. UML 2.0 Timing diagram obtained
by gnuplot

a research agenda for this topic.
We think that this field is quite interesting and future re-

search should be conducted. Thus the main research lines
that could be derived from our framework are the following:

• Visualisation: to perform alternative techniques to
those proposed in this paper such as 3D representation,
circle graphs, etc.

• Analysis: to explore possible basic and complex op-
erations, obtained by means of basic operations com-
binations, for runtime business evolution execution-
traces in order to perform queries, filters and analy-
sis. As proposed in Section 5.2, the definition of these
operations may be done using several formalism, such

as a Constraint Satisfaction Problem (CSP), Temporal
Logic, Petri nets, etc.

In addition, due to our work is highly related to the Process
Mining field, a survey of the techniques used in this field
may help to clarify the first steps to be performed in the
context of the future research lines identified

8 Acknowledgments

The authors would like to thank the reviewers of the
Second International Workshop on Variability Modelling of
Software-intensive Systems for their useful comments. We
would like also to thank Patrick Heymans and David Bena-
vides, whose comments and suggestions improved the pre-
sentation substantially.

References

[1] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés.
FAMA: Tooling a framework for the automated analysis of
feature models. In Proceeding of the First International
Workshop on Variability Modelling of Software-intensive
Systems (VAMOS), 2007.

[2] G. Botterweck, D. Nestor, C. Cawley, and S. Thiel. Towards
supporting feature configuration by interactive visualization.
In VISPLE’07: Proceedings of the 1st International Work-
shop on Visualization in Software Product Line Engineering
- collated with SPLC 2007.

[3] BPMI. Business process modeling notation BPMN version
1.0 - may 3, 2004. OMG.

[4] A. K. A. de Medeiros, C. Pedrinaci, W. M. P. van der
Aalst, J. Domingue, M. Song, A. Rozinat, B. Norton, and
L. Cabral. An outlook on semantic business process mining
and monitoring. In R. Meersman, Z. Tari, and P. Herrero,
editors, OTM Workshops (2), volume 4806 of Lecture Notes
in Computer Science, pages 1244–1255. Springer, 2007.

[5] H. Gomaa. Feature dependent coordination and adapta-
tion of component-based software architectures. In WCAT
’07: Proceedings of the 4th Workshop on Coordination and
Adaptation Techniques for Software Entities, 2007.

[6] H. Gomaa and M. Hussein. Model-based software design
and adaptation. In ICSEW ’07: Proceedings of the 29th
International Conference on Software Engineering Work-
shops, 2007.

[7] J. V. Gurp, J. Bosch, and M. Svahnberg. On the notion of
variability in software product lines. In WICSA ’01: Pro-
ceedings of the Working IEEE/IFIP Conference on Software
Architecture (WICSA’01), 2001.

[8] I. Montero, J. Peña, and A. Ruiz-Cortés. Representing Run-
time Variability in Business-Driven Development systems.
In Proceedings of the Seventh International Conference on
Composition-Based Software Systems (ICCBSS08), 2008.

[9] K. Pohl, G. Böckle, and F. van der Linden. Software Product
Line Engineering: Foundations, Principles and Techniques.
Springer, September 2005.

[10] A. Rozinat, A. A. de Medeiros, C. Günther, A. Weijters, and
W. van der Aalst. The need for a process mining evaluation
framework in research and practice. In Proceedings of the
Third International Workshop on Business Process Intelli-
gence. (pp. 73-78). Brisbane, Australia: Queensland Uni-
versity of Technology.(2007).

[11] A. Schnieders and F. Puhlmann. Variability mechanisms
in e-business process families. In Proceedings of BIS ’06:
Business Information Systems, 2006.

[12] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. CO-
VAMOF: A Framework for Modeling Variability in Soft-
ware Product Families. In Proceedings of the Third Software
Product Line Conference (SPLC04), San Diego, CA, 2004.

[13] W. M. P. van der Aalst, H. A. Reijers, A. J. M. M. Wei-
jters, B. F. van Dongen, A. K. A. de Medeiros, M. Song, and
H. M. W. Verbeek. Business process mining: An industrial
application. Inf. Syst., 32(5):713–732, 2007.

9 Appendix: gnuplot Experiment

In order to provide an experiment of automated transi-
tion from PEM to timing diagrams for visualising runtime
business evolution execution-trace, we have deployed our
case study PEM modeled by BPMN to a business process
execution engine and it has been translated to WS-BPEL.
We have developed two basic web services for represent-
ing choreography interaction between business process ac-
tors and we have executed it obtaining a runtime execution
trace that has been stored in a file denoted as "fast-food-
restaurant.dat". The following gnuplot script takes this file
as input for plotting the timing diagram shown in Figure 11.

1 #**
2 # fast-food-restaurant.dem
3 # Author:
4 # Ildefonso Montero Pérez - monteroperez@us.es
5 # Dpto. Lenguajes y Sistemas Informáticos
6 # Av. Reina Mercedes s/n, 41012 Seville (Spain)
7 # University of Seville
8 # Description:
9 # A gnuplot script to represent an UML 2.0
10 # timing diagram of Fast-food restaurant
11 # Product Evolution Model
12 #**
13 set title "Fast-food Restaurant Business
14 Evolution\n(18/06/07)"
15 set style data steps
16 set xlabel "Date"
17 set timefmt "%d/%m/%y\t%H%M"
18 set xdata time
19 set xrange ["18/06/07\t0800":"18/06/07\t1259"]
20 set ylabel "States"
21 set format x "%d/%m\n%H%M"
22 set grid
23 set key left
24 plot ’fast-food-restaurant.dat’ using 1:3 t ’ ’, \
25 ’fast-food-restaurant.dat’ using 1:3 t
26 ’ Time-Evolution’ with points
27 pause -1 "Hit return to continue"
28 reset

View publication statsView publication stats

https://www.researchgate.net/publication/221631754

