
Towards Modeling, Specifying and Deploying Policies in Autonomous and
Autonomic Systems Using an AOSE Methodology

Joaquin Peña
University of Seville

Spain
joaquinp@us.es

Michael G. Hinchey
NASA Goddard Space Flight Center

USA
Michael.G.Hinchey@nasa.gov

Roy Sterritt
University of Ulster

Northern Ireland
r.sterritt@ulster.ac.uk

Abstract

Autonomic Computing (AC), self-management based on
high level guidance from humans, is increasingly gain-
ing momentum as the way forward in designing reliable
systems that hide complexity and conquer IT management
costs. Effectively, AC may be viewed as Policy-Based Self-
Management. We look at ways to achieve this, and in par-
ticular focus on Agent-Oriented Software Engineering. We
propose utilizing an AOSE methodology for specifying au-
tonomic and autonomous properties of the system indepen-
dently, and later, by means of composition of these speci-
fications, to construct a specification for the policy and its
subsequent deployment.

1 Introduction and Motivation

Autonomic Systems (encompassing both Autonomic
Computing and Autonomic Communications) is an emerg-
ing field [1] for the development of large-scale, self-
managing, complex distributed computer-based systems.

As in all emerging fields, there are many fruitful areas
for concern, that are worthwhile targets for research and de-
velopment. Many issues are yet to be addressed, such as,
for example, how should autonomic managers, which to-
gether with the component being managed make up an au-
tonomic element, be defined such that it can exist in a col-
laborative autonomic environment, and ultimately provide
self-management of the system.

The long term strategic vision of AC highlighted an over-
arching self-managing vision where the system would have
such a level of “self” capability that a senior (human) man-
ager in an organization could specify business policies—
such as profit margin on a specific product range, or system
quality of service for a band of customers—and the com-
puting systems would do the rest themselves.

It has been argued that for this vision to become a reality,

we would require AI completeness, Software Engineering
completeness, and so on [2]. What is clear in this vision is
the importance of some form of policy that is then translated
to all levels in the system in order to achieve self-direction
and self-management.

In introducing the concept of Autonomic Computing,
IBM’s Paul Horn likened the needs of large scale systems
management to that of the human Autonomic Nervous Sys-
tem (ANS). The ANS, through self-regulation, is able to
effectively monitor, control and regulate the human body
without the need for conscious thought [7]. This self-
regulation and separation of concerns provides human be-
ings with the ability to concentrate on high level objec-
tives without having to micro-manage the specific details
involved. The vision and metaphor of Autonomic Com-
puting is to apply the same principles of self-regulation
and complexity-hiding to the design of computer-based
systems, in the hope that one day computer systems can
achieve the same level of self-regulation as the human ANS
[7],[25]. In his talk, Horn highlighted that the Autonomic
Computing system must “find and generate rules for how
best to interact with neighboring systems” [7].

We propose to use a methodology called MaCMAS
(Methodology Fragment for Analyzing Complex Multi-
Agent Systems) which provides the models and techniques
for adding policies at runtime. We propose to create isolated
definitions of the features that we want to use in policies us-
ing MaCMAS models. Later, when we specify a policy, we
deploy these models over the running system using MaC-
MAS model composition.

In addition, to illustrate our approach, we use an exam-
ple from the NASA ANTS concept mission (described in
Section 5). This mission involves the use of a swarm of
pico-class spacecraft to explore and collect data from the
asteroid belt, and exhibits both autonomous and autonomic
properties.

2 Policy-Based Management

Policies have been described as a set of considerations
designed to guide decisions of courses of action [14], and
Policy-Based management (PBM) may be viewed as an ad-
ministrative approach to systems management that a priori
establishes rules for dealing with situations that are likely to
occur.

From this perspective, PBM works by controlling ac-
cess to and setting priorities for the use of ICT resources1,
for instance, where a (human) manager may simply specify
the business objectives and the system will achieve these
in terms of the needed ICT [13]. For example: (1) “The
customer database must be backed up nightly between 1
a.m. and 4 a.m.”; (2) “Platinum customers are to receive
no worse than 1-second average response time on all pur-
chase transactions.”; (3) “Only management and the HR
senior staff can access personnel records.”; and (4) “The
number of connections requested by the Web application
server cannot exceed the number of connections supported
by the associated database.” [9]. These examples highlight
the wide range and multiple levels of policies, the first con-
cerned with system protection through backup, the second
with system optimization to achieve and maintain a level
of quality-of-service for key customers; while the third and
fourth are concerned with system configuration and protec-
tion.

Policy-Based Management has been the subject of exten-
sive research in its own right. The Internet Engineering Task
Force (IETF) has investigated Policy-Based Networking as
a means for managing IP-based multi-service networks with
quality-of-service guarantees. More recently, PBM has be-
come extremely popular within the telecommunications in-
dustry, for next generation networking, with many ven-
dors announcing plans and introducing PBM-based prod-
ucts. This is driven by the fact that policy has been recog-
nized as a solution for managing complexity, and for guid-
ing the behavior of a network or distributed system through
high-level user-oriented abstractions [15]. A PBM tool may
also reduce the complexity of product and system manage-
ment by providing a uniform cross-product policy definition
and management infrastructure [4].

With one definition of Autonomic Computing being
Self-Management based on high level guidance from hu-
mans [11] and considering IBM’s high-level set of self-
properties (self-CHOP: configuration, healing, optimization
and protection) against the types of typical policies men-
tioned previously (optimization, configuration and protec-
tion), the importance and relevance of polices for achieving
autonomicity becomes clear [26].

1Whatis.com, Online computer and internet dictionary and encyclope-
dia, 2005.

3 Using AOSE for policy modelling

The field of Agent-Oriented Software Engineering
(AOSE) has arisen to address methodological aspects and
other issues related to the development of complex multi-
agent systems. AOSE is a new software engineering
paradigm that augurs much promise in enabling the success-
ful development of more complex systems than is achiev-
able with current Object-Oriented approaches which use
agents and organizations of agents as their main abstrac-
tions [8].

The organizational metaphor has been proven to be one
of the most appropriate tools for engineering Multi-Agent
Systems (hereafter, MAS). The metaphor is used by many
researchers to guide the analysis and design of MASs,
e.g., [18, 20, 28].

A MAS organization can be observed from two different
point of view [28]:

Acquaintance point of view: shows the organization as
the set of interaction relationships between the roles
played by agents.

Structural point of view: shows agents as artifacts that
belong to sub-organizations, groups, teams. In this
view agents are also structured into hierarchical struc-
tures showing the social structure of the system.

Both views are intimately related, but they show the or-
ganization from radically different viewpoints. Since any
structural organization must include interactions between
their agents in order to function, it is safe to say that the
acquaintance organization is always contained in the struc-
tural organization. Therefore, if we first determine the
acquaintance organization, and we define the constraints
required for the structural organization, a natural map is
formed between the acquaintance organization and the cor-
responding structural organization. This is the process of
assigning roles to agents [28]. Thus, we can conclude that
any acquaintance organization can be modeled orthogonally
to its structural organization [10].

We use this separation to specify policies at the acquain-
tance organization level, and deploy them over the structural
organizational of the running system. The scope of poli-
cies usually implies features of several acquaintance sub-
organizations. In such cases, we must first compose the ac-
quaintance sub-organizations, this process being guided by
the policy specification, to deploy it later.

4 Overview of MaCMAS/UML

MaCMAS is the AOSE methodology that we use to spec-
ify and deploy policies [21]. It is specially tailored to model

System Analyst

 Build Intial Acq . Org. ()
Layer Completion ()

 Reuse ()
Traceability maintenance ()

 Analysis

Role Plan
Role Model

Plan
Resources

Dependecies
Model

Role Model Ontology

Static Acquaintance
Organization Models

Traceability
Model

Complexity
Domain

Guidelines

Decomp.
Guidelines

Comp.
Guidelines

Reuse
Guidelines

Dynamic Acquaintance
Organization Models

Parameterized
Role Model

Open Systems
Guidelines

Relating
Role Models

Top-down vs.
Bottom-up
Guidelines

Figure 1. Acquaintance analysis discipline

complex acquaintance organizations [24]. Its main advan-
tages can be observed from three aspects: in the modeling
aspect, the main advantage consists in providing an interac-
tion abstraction to enable the modeling of unpredictable be-
haviors, and providing a notation which, to the best of our
knowledge, is the unique UML 2.0-based approach dedi-
cated to modeling the acquaintance organization abstractly;
in the techniques aspect, we provide semi-automatic tech-
niques for decomposing and composing models basing on
goal-oriented requirements and on dependencies, which is
unique in the field; and in the software process aspect,
we provide a software process that covers top-down and
bottom-up development approaches providing criteria for
deciding between them. To the best of our knowledge, our
approach is the first to address such criteria.

We use this approach for several reasons. First, it pro-
vides UML-based models which are the de-facto standard
in modeling, and which will decrease the learning-curve for
engineers. Second, it allows modeling at different levels of
abstraction, which allows us to specify policies at whichever
level of abstraction we need. Third, it provides techniques
to compose acquaintance models, which is needed for poli-
cies that imply several system-goals and for deploying an
acquaintance model that specifies a policy over a structural
organization; that is to say, composition of roles.

In Figure 1, we summarize the main Software Process
Engineering Metamodel (SPEM) work definitions and mod-
els of the methodology. In the following, we detail the most
important features for our purposes in this paper.

The MaCMAS/UML modeling process is focused on in-
teractions/acquaintance organization since they are the main
source of complexity. In order to represent interactions
abstractly we use multi-Role Interactions (mRI) [22, 23].

mRIs are first class modeling elements in our models and
are used as the minimum building block for modeling. Their
use is crucial for performing an incremental layered mod-
eling approach since mRIs can be described internally by
means of finer-grain mRIs, or several of them can be ab-
stracted by a coarser-grain one.

An mRI is an institutionalized pattern of interaction that
abstractly represents the fulfillment of a system goal with-
out detailing how this is achieved. Thus, using mRI as the
minimum modeling element we do not have to take into ac-
count all of the details required to fulfill a complex system
goal nor the messages that are exchanged at stages where
these details have not been identified clearly, are not known,
or are not even necessary. This allows us to have abstract
models where intelligent behavior is carried out by means
of neural networks, fuzzy logic, etc., (as, for example, is
required in ANTS, cf. Section 5), without the necessity of
dealing with all the details. In addition, the direct correla-
tion between system goals and mRIs allows us to establish
a clear traceability between goal-oriented requirement doc-
uments and analysis models. This is also important for our
goal in this paper, since policies usually verse about sys-
tem goals. Having this kind of model helps in simplifying
the way in which policies are specified, and deployed in the
system at runtime.

mRIs are represented with UML 2.0 collaborations [19,
p. 132] as are all the models we use. We use three views
of the acquaintance organization: two for representing the
static and dynamic aspects of the organization, and a third
for representing the relation between models in different ab-
straction layers. We use the following models:

a) Static Acquaintance Organization View: This shows
the static interaction relationships between roles in the
system and the knowledge processed by them. It com-
prises the following UML models:

Role Models: shows an acquaintance sub-
organization as a set of roles collaborating
by means of several mRIs. As mRIs allow
abstract representation of interactions, we can
use these models at whatever level of abstraction
we desire. We use role models to represent
autonomous and autonomic properties of the
system at the level of abstraction we need.

Ontology: shows the ontology shared by roles in a
role model. It is used to add semantics to the
knowledge owned and exchanged by roles. We
do not show it in this paper, but, as we show later,
they are also important for deploying policies.

b) Behavior of Acquaintance Organization View: The
behavioral aspect of an organization shows the se-
quencing of mRIs in a particular role model. It is
represented by two equivalent models:

Plan of a role: separately represents the plan of each
role in a role model showing how the mRIs of the
role sequence. It is represented using UML 2.0
ProtocolStateMachines [19, p. 422]. It is used to
focus on a certain role, while ignoring others.

Plan of a role model: represents the order of mRIs in
a role model with a centralized description. It is
represented using UML 2.0 StateMachines [19,
p. 446]. It is used to facilitate easy understanding
of the whole behavior of a sub-organization.

c) Traceability view: This model shows how models in
different abstraction layers relate. It shows how mRIs
are abstracted, composed or decomposed by means of
classification, aggregation, generalization or redefini-
tion. Notice that we usually show only the relations be-
tween interactions because they are the focus of mod-
eling, but all the elements that compose an mRI can
also be related. Finally, since an mRI presents a di-
rect correlation with system goals, traceability models
clearly show how a certain requirement system goal is
refined and materialized.

5 ANTS Case Study and some of its models

In this section, we briefly introduce ANTS, a NASA
concept mission, that illustrates properties of several po-
tential exploration missions. We show two models of an
autonomous and autonomic property of the system.

5.1 ANTS Mission Overview

The Autonomous Nano-Technology Swarm (ANTS)
mission [3, 27] is a concept mission that involves the use
of swarms of autonomous pico-class (approximately 1kg)
spacecraft that will search the asteroid belt for asteroids that
have specific characteristics. The mission is envisioned to
consist of approximately 1,000 spacecraft launched from
a factory ship. As shown in Figure 2, the swarm is envi-
sioned to consist of several types of spacecraft. Many of
these spacecraft (called specialists) will have a specialized
single instrument for collecting particular types of data. To
examine an asteroid, several spacecraft will have to form a
sub-swarm, under the control of a ruler, and collaborate to
collect data from asteroids of interest, based on the proper-
ties of that asteroid. This will be achieved using an insect
analogy of hierarchical social behavior with some space-
craft directing others.

5.2 Autonomic Properties of ANTS

The ANTS system may be viewed as an Autonomic Sys-
tem as it meets four key requirements: self-configuration,

Figure 2. ANTS encounter with an asteroid

self-healing, self-optimization and self-protection, as illus-
trated in [27]. Here we focus on self-configuration proper-
ties as these are illustrated in our case study.

ANTS is self-protecting: The self protecting behavior of
the team will be interrelated with the self-protecting behav-
ior of the individual members. The anticipated sources of
threats to ANTS individuals (and consequently to the team
itself) will be collisions and solar storms.

Collision avoidance through maneuvering will be limited
because ANTS individuals will have limited ability to adjust
their orbits and trajectories, due to thrust for maneuvering
powered by solar sails. Individuals will have the capability
of coordinating their orbits and trajectories with other in-
dividuals to avoid collisions with them. Given the chaotic
environment of the asteroid belt and the highly dynamic tra-
jectories of the objects in it, occasional near approaches of
interloping asteroidal bodies (even small ones) to the ANTS
team may present threats of collisions with its individuals.
Collision-avoidance maneuvering for this type of spacecraft
presents a great challenge and is currently under consid-
eration. The main self-protection mechanism for collision
avoidance is achieved through the process of planning. The
plans involve constraints that will result in acceptable risks
of collisions between individuals when they carry out their
observational goals. In this way, ANTS exhibits a kind of
self-protection behavior against collisions.

Another possible ANTS self-protection mechanism
could protect against the effects of solar storms, which
is the basis of the case study we use later in this paper.
Charged particles from solar storms could subject individ-
uals to degradation of sensors and electronic components.
The increased solar wind from solar storms could also af-
fect the orbits and trajectories of the ANTS individuals
and thereby could jeopardize the mission. Specific mecha-
nisms to protect ANTS spacecraft against the effects of so-
lar storms have not yet been determined. A potential mech-

RM Protect from
solar storms

RM orbit &
measure

MoveInform
Orbit

Adjust
Orbit

Prospecting
Asteroid Belt

Explore
and

Discover
ApproachOrbit

Search
new

asteroid

Inform
asteroid

Evaluate

Avoid
Crashing

Avoid run
out of power

Avoid loss
of

connection

Recover
from loss of
connection

Protect
from solar

storms

Measure
(image)

Measure (distance)
Measure (form)

Measure (GForces)

Decide If
Abort

Measure
(X-ray)

Measure
(form)

Measure
(GForce)

Measure
(image)

Measure
(GForce)

Measure
(image)

Send
Earth

Self-
Protection

AUTONOMIC
PROPERTIES

AUTONOMOUS
PROPERTIES

A
b

st
ra

ct
io

n

L
ay

e
r

1
A

b
s

tr
ac

ti
o

n

L
ay

er
 2

A
b

st
ra

ct
io

n

L
ay

er
 4

A
b

st
ra

ct
io

n

L
ay

er
 3

Measure
solar

storms

Switch
off sub-
sytems

Use sail
as a

shield

MeasureEscape
Orbit

Inform
Measures

...

...

...
...

...

... ...

Figure 3. Traceability model of ANTS

anism might, for example, provide spacecrafts with a solar
storm sensing capability through on-board, direct observa-
tion of the solar disk. When the spacecraft recognize that
a solar storm threat exists, they would invoke their goal of
protecting themselves from the harmful effects of a solar
storm. Part of the protective response might be to orient
solar panels and sails to minimize the impact of the solar
wind. An additional response might be to power down un-
necessary subsystems to minimize disruptions and damage
from charged particles.

5.3 Example of Models of Autonomous
and Autonomic Properties of ANTS

After applying MaCMAS to the ANTS system, we ob-
tain the traceability diagram of Figure 3. This diagram
summarizes the mRIs in the system structured by layers of
abstraction. In this diagram, the top layer is the most ab-
stract. As each node represents a system-goal also, we can
see here the division of tasks necessarily undertaken to de-
velop the system. As each mRI is inside a role model, we
can also see which roles we have determined to carry out
by observing the role models. In the model shown, we have
depicted several sub-regions. Horizontal subdivisions de-
pict layers of abstraction, while the vertical line denotes the
distinction between the parts of the system that represent
autonomic and the parts of the system that represent au-
tonomous behaviors. In addition to mRIs, MaCMAS also
uses UML packages to represent role models that contain
several mRIs. In Figure 3 we identify two of these pack-
ages, which group the mRIs used in the example that fol-

lows.

To foster reuse, to model an autonomous or an autonomic
property in a sufficiently generic and generalized way, and
to enable a policy to be deployed at runtime, properties
must be independent of the concrete agents over which they
will be deployed. As we have shown, the features required
to have an appropriate description correlates with the fea-
tures of an acquaintance sub-organization. As we have also
shown, to represent this kind of organization, MaCMAS
proposes two kind of models—one for showing the rela-
tionships between roles, that is, role models, and another
to show how these relationships evolve over time, that is to
say, plan models.

For example, showing the autonomous process of orbit-
ing an asteroid to take a measurement requires at least two
models–its role model and its plan model. Figure 4b shows
the role model for this case. We show here the models from
the third layer of abstraction of Figure 3. In this model there
are two kinds of elements: roles, which are represented us-
ing interface-like icons, and mRIs, which are represented as
collaboration-like icons. In this model, roles show which
is their general goal and their particular goals when partici-
pating in a certain interaction with other roles or with some
part of the environment (represented using interfaces with
the <<environment>> stereotype). Roles also represent
the knowledge they manage (middle compartment) and the
services they offer (bottom compartment). For example, the
goal of the Orbiter role is “maintain the orbit and measure
[the asteroid]”, while its goal when participating in the Re-
port Orbit interaction is to get a model of the orbit it must
follow. In addition to roles, mRIs also show us some im-

A) Plan Model

Orbiting
After

Measure

[Dist(relativePos,Astero-
idRelativePos)<dist]

Measure

[Orbiter.MeasureFi-
nished(astModel)]

EscapeOrbit

[not (Orbiter.AmIInsideOrbit(Orbi-
ter.relativePos,Orbiter.orbitM)]

AdjustOrbit

InformOrbit

Inform
Measures

[Orbiter.MeasureFi-
nished(astModel)]

EscapeOrbit

Asteroid

Orbiter

1..n

<<Environment>>
Asteroid

relativePos: Pos
pData:Data

Measure
Goal: Measure Asteroid
Pattern: Environmental Int.

In:
 Orbiter.aste-
 roidRelativePos

Out:
 pMeassu-
 rer.astModel

1..n

OrbitModeller

astData:AteroidData
orbitM: OrbitModel

CalculateOrbit(AsteroidData)::
OrbitModel

Role Goal: Calculate orbits
mRI Goals: send orbit models

Report Orbit
Goal: Report Orbit

Pattern: Collaboration
In:
 OrbitMo-

deller.orbitM

Out:
Orbiter.orbitM

Postcondition :
Orbiter .astModel <> empty

Instantiation Rule:
(Orbiter.allInstances -> forAll (c |
SWARM.pMeasureMeasurers .includes(c))

Guard:
Dist(relativePos,Asteroid
RelativePos)<dist

 Measurer

Orbiter

Orbiter

orbitM: OrbitModel
relativePos: Pos
asteroidRelativePos: Pos
astData: AstData
astModel: AstModel

AdjustOrbit(relativePos,orbitM)
PProcessData(m:Measure)::Model
PMeasureX(input)::pMeasure
AmIInsideOrbit(Pos,OrbitModel)::Bool
MeasureFinished(AstModel)::Bool

Role Goal: Maintain Orbit and
Measure
mRI Measure Goal: GetModel
mRI Orbits Goal: Get the Orbit Model

Receiver

listOfModels:Model
listOfSenders:Sender

Role Goal: Know Model
mRI Goals: get Model

Orbiter
Report Measures

Goal: Distribute results

Pattern: Collaboration
In:
 Orbiter.astModel

Out:
Receiver.astModel

Receiver

1..n

1..nAdjustOrbit

Goal: Distribute results

Pattern: self-procedure
In:
 Orbiter.orbitM

Out:
Receiver.astModel

Orbiter

EscapeOrbit

Goal: Escape an Orbit

Pattern: self-procedure
In:
 Orbiter.orbitM

Out: Orbiter

Postcondition :
not (Orbiter.AmIInsideOrbit (Orbi-
ter.relativePos ,Orbiter .orbitM)

guard:
not (Orbiter .AmIInsideOrbit(Orbi -
ter.relativePos ,Orbiter.orbitM)

guard:
Orbiter .MeasureFi -
nished (astModel)

B) Role Model

Figure 4. Orbiting and measuring an asteroid autonomous property

portant information. They must also show the system-goal
they achieve when executed, the kind of coordination that
is carried out when executed, the knowledge used as input
to achieve the goal, and the knowledge produced. For ex-
ample, the goal of the mRI Report Orbit is to “Report the
Orbit”. It is done by taking as input the knowledge of the
OrbitModeler regarding the orbit and producing as output
the model for the orbit (orbitM) in the Orbiter role.

Continuing with the example, in Figure 4a, we show the
plan model of this role model where the order of execution
of all its mRIs is shown. As can be seen, the Orbiter, while
it is in orbit, is adjusting its orbit and measuring and report-
ing measures. And when it has completed constructing a
model of the asteroid, it escapes the orbit using its knowl-
edge of the orbit model (orbitM).

Autonomic properties can be also modeled in this way.
As role models can be used at any level of abstraction, we
can use them for specifying autonomic properties that con-
cern a single agent, or even a group of agents when deal-
ing with autonomic properties at the swarm level. Thus, as
shown in the traceability model, we have a role model at ab-
straction layer 2 that shows the swarm autonomic behavior,
while at layer 4, we show autonomic properties at the level
of individual spacecraft.

Here we illustrate a model at abstraction layer 4 for a
self-protection autonomic property: protecting from solar

storms. The role model for this property is shown in Fig-
ure 5b, and, as can be seen, as it is a property at the indi-
vidual level, a single role is shown (SelfProtectSpaceCraft).
Its plan model is shown in Figure 5a. As all the spacecraft
can be affected by solar storms, this role is applied to all the
spacecraft in the swarm, thus adding this autonomic prop-
erty to all of them.

6 Adding policies to the system

As shown previously, for building and structural organi-
zation, used at runtime, we have to compose role models.
Since the MaCMAS methodology proposes several meth-
ods for composition, we can use them to modify the policies
taken into account in the system at runtime or at design-
time.

The process for that follows the following steps:

1. Specify the policy using a sub-set of the natural lan-
guage;

2. Analyze it to find out which role models or inter-
actions, and consequently which autonomic and au-
tonomous properties, are involved in it;

3. Compose these role models, both static and dynamic
aspects;

A) Plan Model

B) Role Model

Measure
risk of solar

storms
Protecting

[SelProtecSC.stormIntensity
> RiskForSystemsFactor]

SailAsShield

[SelProtecSC.stormIntensity
> RiskForSystemsFactor]

offSubSys
MeasureStorms

Space

<<Environment>>
Space

stormVector: Vector3
stormIntensity:Real

SelfProtecSC

StormVector: Vector3
stormIntensity : Real
asteroidRelativePos: Pos
stormType: StormTypes

Role Goal: Self-protection
mRI Measure Storms Goal:
Protect from solar storm
mRI offSubSys Goal: Protect
from solar storm
mRI SailAsShieldGoal: Protect
from solar storm

SelfProtecSC

SelfProtecSC

SelfProtecSC

Guard:
SelProtecSC.stormIntensit
y > RiskForSystemsFactor

offSubSys
Goal: Power off subsystems
Pattern: self-procedure

In: Out:
 SelfProtecSC.stormIntensity

SailAsShield
Goal: Use sail as shield
Pattern: self-procedure

In: Out:
SelfProtecSC.stormVector

 SelfProtecSC.stormIntensity

MeasureStorms
Goal: Measure Storm Risk
Pattern: Sense Environment

In:
Space.stormVector

 Space.stormIntensity

Out:
 SelfProtecSC.stormIntensity

SelfProtecSC.stormVector

Guard:
SelProtecSC.stormIntensit
y > RiskForSystemsFactor

Figure 5. Self-protection from solar storms
autonomic property model

4. Deploy the changes in the system using role model
composition. That is to say, the running system has a
set of role models mapped over its structural organiza-
tion; thus, adding a new policy consists of composing
the current role models with the one that describes the
new policy.

We have to take into account that when composing sev-
eral role models, we can find

emergent roles : roles that appear in the composition yet
they do not belong to any of the initial role models;

emergent mRIs : those that are not present in any of the
initial role models;

composed roles : the roles in the resultant models that rep-
resent several initial roles as a single element;

composed mRIs : mRIs in the resultant model that repre-
sents several initial mRIs as a single element;

unchanged roles : those that are left unchanged and im-
ported directly from the initial role models;

unchanged mRIs : those left unchanged and imported di-
rectly.

Once relationships between elements have been estab-
lished by analyzing the policy, we must complete the com-
posite role model. Importing an mRI or a role requires only
adding it to the composite role model. The following shows
how to compose plans and role models.

6.1 Composing roles

When several roles are merged in a composite role
model, their elements must be also merged:

1. Goal of the role: The new goal of the role is a new
goal that abstracts all the role goals of the role to be
composed. This information can be found in require-
ments hierarchical goal diagrams or we can add it as
the and (conjunction) of the goals to be composed. In
addition, the role goal for each mRI can be obtained
from the goal of the initial roles for that mRI.

2. Cardinality of the role: It is the same as in the initial
role for the corresponding mRI.

3. Initiator(s) role(s): If mRI composition is not per-
formed, as in our case, this feature does not change.

4. Interface of a role: All elements in the interfaces of
roles to be merged must be added to the composite
interface. Notice that there may be common services
and knowledge in these interfaces. When this happens,
they must be included only once in the composite in-
terface, or renamed, depending on the composition of
their ontologies, as we show below.

5. Guard of a role/mRI: The new guards are the and
(conjunction) of the corresponding guards in initial
role models if roles composed participate in the same
mRI. Otherwise, guards remain unchanged.

6. Ontologies of an mRI: The new ontology must cover
all the terms described in all the ontologies of roles
to be composed (cf. [5, 16, 17]). This procedure also
shows how to deal with repeated knowledge in the in-
terface of roles to be composed. That is to say, if as
a result of ontology composition, a knowledge entity
that is repeated in several roles is shown as the same
element in the composed ontology, we can include it
once; if it results in different elements in the composed
ontology, we must rename them.

6.2 Composing plans

The composition of plans consists of setting the order of
execution of mRIs in the composite model, using the role
model plan or role plans. We provide several algorithms to
assist this task: extraction of a role plan from the role model

plan and vice versa, and aggregation of several role plans;
see [22] for further details of these algorithms.

Thanks to these algorithms, we can keep both plan views
consistent automatically. Depending on the number of roles
that have to be merged we can base the composition of the
plan of the composite role model on the plan of roles or on
the plan of the role model.

Several types of plan composition can be used for role
plans and for role model plans:

Sequential: The plan is executed atomically in sequence
with others. The final state of each state machine is su-
perposed with the initial state of the state machine that
represents the plan that must be executed, except the
initial plan that maintains the initial state unchanged
and the final plan that maintains the final state un-
changed.

Parallel: The plan of each model is executed in parallel.
It can be documented by using concurrent orthogonal
regions of state machines (cf. [19, p. 435]).

Interleaving: To interleave several plans, we must build a
new state machine where all mRIs in all plans are taken
into account. Notice that we must usually preserve the
order of execution of each plan to be composed. We
can use algorithms to check behavior inheritance to en-
sure that this constraint is preserved, since to ensure
this property, the composed plan must inherit from all
the initial plans [12].

The composition of role model plans has to be performed
following one of the plan composition techniques described
previously. Later, we are interested in the plan of one of the
composed roles, as it is needed to assign the new plan to
the composed roles; we can extract it using the algorithms
mentioned previously.

We can also perform a composition of role plans follow-
ing one of the techniques to compose plans described previ-
ously. Later, if we are interested in the plan of the composite
role model, for example for testing, we can obtain it using
the algorithms mentioned previously.

7 Example of applying a new policy to the
ANTS case study

We use the following fictitious scenario to document our
example: It has been discovered that several spacecraft have
collided with an asteroid as a result of self-protection from
a solar storm. As a result, it has been decided to avoid pro-
tection from solar storms while orbiting, sending the fol-
lowing policy to the system, which is shown graphically in
Figure 8.

Analyzing
risk of solar

storms
Protecting

SailAsShield

[SelProtecSC.stormIntensity
> RiskForSystemsFactor]

offSubSys
MeasureStorms

Orbiting
After

Measure

[Dist(relativePos,Astero-
idRelativePos)<dist]

Measure

[Orbiter.MeasureFi-
nished(astModel)]

EscapeOrbit

[not (Orbiter.AmIInsideOrbit(Orbi-
ter.relativePos,Orbiter.orbitM)]

AdjustOrbit

ReportOrbit

Report
Measures

[Orbiter.MeasureFi-
nished(astModel)]

EscapeOrbit

Analyzing
risk of solar

storms

[SelProtecSC.stormIntensity
> RiskForSystemsFactor]

EscapeOrbit

Figure 7. Composed plan

Figure 8. Policy for protecting from solar
storms when orbiting

If a spacecraft is orbiting and measuring an asteroid
and it determines that there exists risk of a solar storm, the
spacecraft must first escape the orbit and later power down
subsystems and use its sail as a shield.

Notice that we have limited the policy to two role models
to simplify the example, but in the real world we must also
take into account the rest of the autonomic properties and
associated role models involved in orbiting an asteroid.

The first part of the policy shows the context where it is
applied, determining the role models that should be taken
into account. Notice that although the second element de-
notes an interaction, in the traceability diagram we can find
out easily the role model it belongs to, namely Protect from
Solar Storms. The second part shows a modification of the
plans where a new order for the interaction is specified.

Space

<<Environment>>
Space

stormVector: Vector3
stormIntensity:Real

SelfProtecSC

SelfProtecSC

SelfProtecSC
Guard :
SelProtecSC.stormIntensit
y > RiskForSystemsFactor

offSubSys
Goal: Power off subsystems
Pattern: self-procedure

In: Out:
 SelfProtecSC.stormIntensity

SailAsShield
Goal: Use sail as shield
Pattern: self-procedure

In: Out:
SelfProtecSC.stormVector

 SelfProtecSC.stormIntensity

MeasureStorms
Goal: Measure Storm Risk
Pattern: Sense Environment

In:
Space.stormVector

 Space.stormIntensity

Out:

SelfProtecSC.stormIntensity
SelfProtecSC.stormVector

Guard:
SelProtecSC.stormIntensit
y > RiskForSystemsFactor

Asteroid

Orbiter

1..n

<<Environment>>
Asteroid

relativePos: Pos
pData:Data

Measure
Goal: Measure Asteroid
Pattern: Environmental Int.

In:
 Orbiter.aste-
 roidRelativePos

Out:
 pMeassu-
 rer.astModel

1..n

OrbitModeller

astData:AteroidData
orbitM: OrbitModel

CalculateOrbit(AsteroidData)::
OrbitModel

Role Goal: Calculate orbits
mRI Goals: send orbit models

Report Orbit
Goal: Report Orbit

Pattern: Collaboration
In:
 OrbitMo-

deller.orbitM

Out:
Orbiter.orbitM

Postcondition :
Orbiter .astModel <> empty

Instantiation Rule:
(Orbiter .allInstances -> forAll (c |
SWARM.pMeasureMeasurers .includes(c))

Guard:
Dist(relativePos,Asteroid
RelativePos)<dist

 Measurer

Orbiter

SelfProtectingOrbiter

orbitM: OrbitModel
relativePos: Pos
asteroidRelativePos: Pos
astData: AstData
astModel: AstModel

StormVector: Vector3
stormIntensity : Real
stormType: StormTypes

AdjustOrbit(relativePos,orbitM)
PProcessData(m:Measure)::Model
PMeasureX(input)::pMeasure
AmIInsideOrbit(Pos,OrbitModel)::Bool
MeasureFinished(AstModel)::Bool

Role Goal: Maintain Orbit and
Measure and self protection
mRI Measure Goal: GetModel
mRI Orbits Goal: Get the Orbit Model

mRI Measure Storms Goal: Protect
from solar storm
mRI offSubSys Goal: Protect from
solar storm
mRI SailAsShieldGoal: Protect from
solar storm

Receiver

listOfModels:Model
listOfSenders:Sender

Role Goal: Know Model
mRI Goals: get Model

Orbiter
Report Measures

Goal: Distribute results

Pattern: Collaboration
In:
 Orbiter.astModel

Out:
Receiver.astModel

Receiver

1..n

AdjustOrbit

Goal: Distribute results

Pattern: self-procedure
In:
 Orbiter.orbitM

Out:
Receiver.astModel

Orbiter

EscapeOrbit

Goal: Escape an Orbit

Pattern: self-procedure
In:
 Orbiter.orbitM

Out:

Orbiter

Postcondition :
not (Orbiter.AmIInsideOrbit (Orbi-
ter.relativePos ,Orbiter .orbitM)

guard:
not (Orbiter .AmIInsideOrbit (Orbi-
ter.relativePos,Orbiter.orbitM)

guard:
Orbiter .MeasureFi -
nished(astModel) or
(SelProtecSC.stormIntensity >
RiskForSystemsFactor)

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

Figure 6. Composed Role Model

If a spacecraft is orbiting and measuring an
 Role Model

asteroid and it measures that there exists risk of a solar storm,
 Interaction

the spacecraft must first escape the orbit and later
 Interaction

power down subsystems and use its sail as a shield
 Interaction Interaction

As a result, we must compose both models and their
plans following the constraints imposed by the policy. The
composition of both role models is shown in Figure 6. As
we can see, the roles Orbiter and SelfProtectSC have been
composed into a single role called SelfProtectingOrbiter
following the prescription showm in Section 6.1. We can
observe that the rest of roles have been left unchanged and
that all mRIs have been also added without changes.

In addition, as the self protection must be taken into ac-
count during the whole process of orbiting and measuring,
and not in a concrete state, we must perform a parallel com-
position, as it is shown in Figure 7. Notice also, that the
policy tells us the order of mRIs we must follow for self-
protection, adding the Escape Orbit mRI before protection,
which results in the new state machine shown.

8 Conclusions

We have presented an AOSE-based approach for mod-
eling autonomous and autonomic properties of the system.
The approach supports models at different levels of abstrac-
tion. We also presented a technique for composing these
models in order to obtain a particular structural organiza-
tion. We used this technique to compose those models in-
volved in a new policy and to deploy the resultant model
onto the running system.

The main advantage is that, as models are developed at
different levels of abstraction, we can specify policies for
autonomous and autonomic systems at different levels of
abstraction. As these models allow for the abstraction of
“intelligent behaviors” since the procedures carried out in-
side an interaction can be described internally by means of
neural networks, fuzzy logic, etc., this allows us to spec-
ify policies over these kinds of implementations. Finally,
although this approach has not been implemented yet, it
seems quite promising and we plan to integrate it into our
R2D2C [6], which has been successfully used to specify
policies for autonomic systems using constrained natural
language [26]. Future work will include the use of ontolo-
gies and traceability diagrams, that illustrate constraints on
the subset of natural language that we can use.

References

[1] IEEE Task Force on Autonomous and Autonomic
Systems, (TFAAS), June 2005. Available at
http://www.computer.org/tab.

[2] O. Babaoglu, A. Couch, G. Ganger, P. Stone, M. Yousif, and
J. Kephart. Panel: Grand challenges of autonomic computing.
In 2nd IEEE International Conference on Autonomic Comput-
ing (ICAC’05), Seattle, WA, 13-16 June 2005.

[3] S. A. Curtis, W. F. Truszkowski, M. L. Rilee, and P. E. Clark.
ANTS for the human exploration and development of space.
In Proc. IEEE Aerospace Conference, Big Sky, Montana,
USA, 9–16 March 2003.

[4] A. Ganek. “autonomic computing: implementing the vision”.
Keynote presentation at the Autonomic Computing Work-
shop, AMS’03, seattle, June 2003.

[5] J. Heflin and J. Hendler. Dynamic ontologies on the web. In
AAAI/IAAI, pages 443–449, 2000.

[6] M. G. Hinchey, J. L. Rash, and C. A. Rouff. Requirements to
design to code: Towards a fully formal approach to automatic
code generation. Technical Report TM-2005-212774, NASA
Goddard Space Flight Center, Greenbelt, MD, USA, 2004.

[7] P. Horn. Autonomic computing: IBM perspec-
tive on the state of information technology. In
AGENDA’01, Scottsdale, AR, 2001, (available at
http://www.research.ibm.com/autonomic/).

[8] N. Jennings. An agent-based approach for building complex
software systems. Communications of the ACM, 44(4):35–41,
2001.

[9] D. Kaminsky. An introduction to policy for autonomic com-
puting. IBM white paper, March 2005.

[10] E. A. Kendall. Role modeling for agent system analysis, de-
sign, and implementation. IEEE Concurrency, 8(2):34–41,
Apr./June 2000.

[11] J. O. Kephart and W. E. Walsh. An artificial intelligence
perspective on autonomic computing policies. In POLICY,
pages 3–12. IEEE Computer Society, 2004.

[12] B. Liskov and J. M. Wing. Specifications and their use in
defining subtypes. In Proceedings of the eighth annual con-
ference on Object-oriented programming systems, languages,
and applications, pages 16–28. ACM Press, 1993.

[13] L. Lymberopoulos, E. Lupu, and M. Sloman. An adaptive
policy-based framework for network services management. J.
Network Syst. Manage., 11(3), 2003.

[14] M. Masullo and S. Calo. Policy management: An architec-
ture and approach. In IEEE First International Workshop on
Systems Management, Los Angeles, CA, April 14-16, 1993.

[15] A. Meissner, S. Musunoori, and L. Wolf. MGMS/GML -
towards a new policy specification framework for multicast
group integrity. In SAINT, pages 233–242. IEEE Computer
Society, 2004.

[16] P. Mitra and G. Wiederhold. An ontology-composition alge-
bra. In S. Staab and R. Studer, editors, Handbook on Ontolo-
gies, International Handbooks on Information Systems, pages
93–116. Springer-Verlag, 2004.

[17] P. Mitra, G. Wiederhold, and J. Jannink. Semi-automatic
integration of knowledge sources. In Proc. of the 2nd Int.
Conf. On Information FUSION’99, 1999.

[18] J. Odell, H. Parunak, and M. Fleischer. The role of roles in
designing effective agent organisations. In A. Garcia and C. L.
F. Z. A. O. J. Castro, editors, Software Engineering for Large-
Scale Multi-Agent Systems, number 2603 in LNCS, pages 27–
28, Berlin, 2003. Springer–Verlag.

[19] O. M. G. (OMG). Unified modeling language: Superstruc-
ture. version 2.0. Final adopted specification ptc/03–08–02,
OMG, August 2003. www.omg.org.

[20] H. V. D. Parunak and J. Odell. Representing social structures
in UML. In J. P. Müller, E. Andre, S. Sen, and C. Frasson, edi-
tors, Proceedings of the Fifth International Conference on Au-
tonomous Agents, pages 100–101, Montreal, Canada, 2001.
ACM Press.

[21] J. Peña. On Improving The Modelling Of Complex Acquain-
tance Organisations Of Agents. A Method Fragment For The
Analysis Phase. PhD thesis, University of Seville, 2005.

[22] J. Peña, R. Corchuelo, and J. L. Arjona. Towards Interac-
tion Protocol Operations for Large Multi-agent Systems. In
Proceedings of the Second International Workshop on Formal
Approaches to Agent-Based Systems (FAABS 2002), volume
2699 of LNAI, pages 79–91, NASA-Goddard Space Flight
Center, Greenbelt, MD, USA, 2002. Springer–Verlag.

[23] J. Peña, R. Corchuelo, and J. L. Arjona. A top down ap-
proach for mas protocol descriptions. In ACM Symposium
on Applied Computing SAC’03, pages 45–49, Melbourne,
Florida, USA, 2003. ACM Press.

[24] J. Peña, R. Levy, and R. Corchuelo. Towards clarifying the
importance of interactions in agent-oriented software engi-
neering. International Iberoamerican Journal of AI, (25):19–
28, 2005.

[25] R. Sterritt. Towards autonomic computing: Effective event
management. In 27th Annual IEEE/NASA Software Engineer-
ing Workshop (SEW), IEEE Computer Society Press, pages
40–47, Maryland, USA, December 3-5 2002.

[26] R. Sterritt, M. Hinchey, J. Rash, W. Truszkowski, C. Rouff,
and D. Gracanin. ”Towards formal specification and gen-
eration of autonomic policies”. In First IFIP Workshop on
Trusted and Autonomic Ubiquitous and Embedded Systems
(TAUES 2005). LNCS 3823, Dec 2005.

[27] R. Sterritt, C. A. Rouff, J. L. Rash, W. F. Truszkowski, and
M. G. Hinchey. Self-* properties in NASA missions. In
4th International Workshop on System/Software Architectures
(IWSSA’05) in Proc. 2005 International Conference on Soft-
ware Engineering Research and Practice (SERP’05), pages
66–72, Las Vegas, Nevada, USA, June 27 2005. CSREA
Press.

[28] F. Zambonelli, N. Jennings, and M. Wooldridge. Developing
multiagent systems: the GAIA methodology. ACM Transac-
tions on Software Engineering and Methodology, 12(3):317–
370, July 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

