
Representing Runtime Variability in Business-Driven Development Systems∗

Ildefonso Montero, Joaquín Peña, Antonio Ruiz-Cortés
Departamento de Lenguajes y Sistemas Informáticos

Av. Reina Mercedes s/n, 41012 Seville (Spain)
University of Seville

{monteroperez, joaquinp, aruiz}@us.es

Abstract

Business-Driven Development(BDD) is a research field
that provides techniques and mechanisms for designing
software systems starting from the business processes of the
companies. Companies are in continuous evolution to adapt
to market changes, thus, current process engineers redesign
the processes every time that is needed using ad hoc tech-
niques. This situation motivates that these changes, called
runtime variability, must be managed. Some authors have
used Software Product Lines (SPL) ideas to manage it.

Current approaches for documenting runtime variability
in SPL and BDD, proposes different model representations.
Unfortunately, we have determined that the expressiveness
level in BDD is not adequate, and that SPL solutions needs
for adaptation to BDD context for describing under which
circumstances a business evolves.

In this paper, we present a model for representing run-
time variability in BDD systems. The main contributions
of this proposal are: (i) it presents the enough expressive-
ness level for representing runtime variability; and (ii) pro-
cess engineers can represent and understand under which
events a business evolves and how this evolution is man-
aged, which is not present in current approaches. We call
this approach Product Evolution Model (PEM).

1 Introduction

Business-Driven Development (BDD) is a research field
that provides techniques and mechanisms for designing
software systems starting from the business processes of the
companies. Nowadays, BDD systems supports most of the
activities of a company due to it improves their daily work

∗This work has been partially supported by the European Commission
(FEDER) and Spanish Government under CICYT project Web-Factories
(TIN2006-00472) and under a scholarship from the Education and Univer-
sities Spanish Government Secretariat given to the author Ildefonso Mon-
tero.

and their strategic management. Thus, Information Tech-
nology (IT) infrastructure must evolve to adapt companies
to the continuous evolution of markets. Currently this evo-
lution is supported by ad hoc techniques to maximize the
level or reuse from one version to another, redesign the pro-
cesses every time that is needed. It motivates that runtime
variability support in business processes is needed.

Software Product Lines (SPL) systematizes the reuse
across the set of similar products that a software company
provides. A. Schnieders et al. explores the idea of apply-
ing (SPL) techniques to BDD in an approach called Pro-
cess Family Engineering (PFE) [7]. Basically, PFE follows
the SPL philosophy for managing the variability of the busi-
ness process of an unique business, thus, managing only one
software system. That is to say, each product in PFE rep-
resents an evolution of the process (at runtime). However,
although PFE may be the solution to manage the evolution
of the business process of a company, proposed models, fea-
ture models, are not expressive enough for documenting this
evolution because they are devoted to design time.

In addition, runtime variability has been also analyzed in
the SPL field: J. Bosch et al. in feature models [4], and H.
Gomaa et al. in software components-based architectures
design [3][2]. Although these proposals presents valuable
solutions for other contexts, they need for integration and
extensions in the BDD context.

The main motivation of this paper is that analyzed ap-
proaches in BDD does not provide the expressiveness level
needed for representing runtime variability. In addition,
current approaches does not take into account that process
engineers must document, in their business process defini-
tions, a clear description about under which circumstances
some processes are in use and which do not at runtime; and
how these processes are performed in a business evolution
(a parallel collaboration between processes, a sequence,
etc).

Our approach integrates quoted approaches for model-
ing runtime variability in BDD systems oriented providing
a set of artifacts able to represent properly runtime evolu-

tions and trigger events that implies these changes into the
business process of a company. For that purpose, we pro-
vide an abstract formal description of business evolutions
and a proposal for representing it based on Business Process
Model Notation (BPMN) [1]. The main benefits of our ap-
proach are that it provides the enough expressiveness level
for representing runtime variability in BDD systems, and
that events or conditions that fires business evolutions can
be observed and analyzed by process engineers.

This paper is structured as follows: Section 2 presents
the background information needed to understand our ap-
proach; Section 3 presents our approach for modeling run-
time variability in BDD systems, called Product Evolution
Model; Section 4 presents the related work and motivation
of our work; and finally, in the last section, we draw the
main conclusions of our approach.

2 Preliminaries

2.1 Software Product Lines and Feature
Models

Software Product Lines (SPL) systematizes the reuse
across the set of similar products that a software company
produces. The main goal of SPL is obtaining a reduction
of the overall development costs and times for the products
derived from the product line. In SPL a product is com-
posed of a set of common features and a set of variable fea-
tures. Common features appear in all products and variable
features appear under demand of consumer’s products. Ob-
serving a certain product of an SPL, although it is described
as a set of fixed features, some features can be in use in a
certain moment and some not. This is called runtime vari-
ability.

Feature Models (FM) are one of the most used artifacts
for modeling variability, that is, specifying which features
are common and which are variable. A FM represents all
possible products in an SPL in terms of features. There ex-
ists several notations of FM, such as FODA [5], or J. Bosch
[4]. A FM establishes a parental relationship between each
feature, as shown in Figure 1, that can be: (i) Mandatory:
if a child feature node is defined as mandatory, it must be
included in every product that contains the parent; (ii) Op-
tional: if a child feature node is defined as optional, it can be
included or not when its father feature appears in a product;
(iii) Alternative: if the relationship between a set of children
nodes and their father is defined as alternative, only one of
the children features could be included in every father fea-
ture products; and (iv) Or: if the relationship between a
set of children nodes and their father is defined as or, one
or more of them could be included in every father feature
products. In addition to the parental relations between fea-
tures, a FM can also contain cross-tree constraints between

Services

Fast-Food Restaurant

Serve

Establishment

Cafeteria

Cook

Birthday´s party

Serve FastServe Normal

Delivery

: Core Features CF

: Variable Features VF

A

B

A

B

Mandatory
relation

Optional
relation

A

B1 B2

Alternative
relation

A B
Requires constraint

A B
Excludes constraint

A

B1 B2

Or
relation

Auto

Figure 1. Case Study: Fast Food Restaurant

couples of features. These are: (i) Requires: If a feature A
requires a feature B, the inclusion of A in a product implies
the inclusion of B in such product; and (ii) Excludes: if a
feature A excludes a feature B, both features can not be part
of the same product.

2.2 Process Family Engineering

Process Family Engineering (PFE) [7] explores the idea
of applying SPL philosophy for managing the evolution of
BDD systems. PFE uses FM for representing the set of pro-
cesses contained into a business, and BPMN for represent-
ing an specific process. In PFE, we obtain only one software
system that evolves at runtime, where the features are pro-
cesses. Every process evolution represents a product that
contains a subset of features, but the PFE system contains
all the features.

The main difference between SPL and PFE is that SPL
provides a set of different products that shares common fea-
tures, and PFE provides only one product, which represents
a business, that evolves at runtime, and each possible con-
figuration of this business is managed as a product that con-
tains a subset of features (processes) enabled at a certain
moment of the execution. Thus, given that FM are devoted
to design time, the main problem of PFE is that this ap-
proach uses FM for managing runtime properties.

3 Product Evolution Model

In this section, we present an abstract formal description
of Product Evolution Model and a proposal for representing
it by means of an extension of BPMN using stereotypes. We
also include a case study to illustrate our approach.

3.1 Rigorous Description

Let B be a business. Each business can be defined as a
set of processes (denoted with P). Thus, B can be defined
as follows:

B = {P1, P2, ..., Pk}; k > 0; 1 ≤ i ≤ n

Processes

Instant t

Instant t + 1

SVF t+1

Processes

SVF t

B

Business

B

Business

Formal Definition Process Evolution Model

Business B

...

t + 1

F (t, SVFt)

t + k;
k > 0...

Feature Model

Business B

Processes

... F (t, SVFt)

CF

VF

Legend

: Core Processes CF

: Variable Processes VF

Figure 2.a. Formal
Description

Figure 2.b. Graphical
Notation

CF +
SVF t

CF +
SVF t + 1

Figure 2. PEM approach defining a business
evolution by F∆ function in t and t + 1.

. . .
Serve in

Cafeteria and
Establishment

10:00 am
(t +1)

F
as

t-
fo

od
 r

es
ta

ur
an

t

Serve in
Establishment

F (t, ServeInCafeteria)
SVF t+1 : SVF t+2 : ServeInAuto

F (t + 1,)

Serve in
Auto and

Establishment
. . .

Cafeteria Service close at 10:00 am

11:20 am
(t +2) A client has arrived

to Auto-Service

Figure 3. Fast-food restaurant Product Evolu-
tion Model BPMN Compositions

Let CF be the set of common processes or features and
let VF be the set of variable features, thus B is defined for-
mally as a tuple containing all the CF and a subset of V F
denoted as SV F :

B = (CF, SV F ∈ V F)

As shown before, in PFE, each configuration of the set of
processes enabled at certain moment represents a product.
Thus, we can say that the CF of a B are always enabled
at runtime, but the set of processes in V F is not fixed at
runtime.

Thus, we can set up a product line that takes into account
this runtime variability. For formalizing these concepts we
should redefine each business B as:

B = (CF, SV F ∈ V F, F∆ :

: t, {Feature × ... × Feature} �→
�→ {Feature × ... × Feature})

where F∆ is a function that given a time instant t, trans-
forms the set of SV Ft into the new set of variable features
of the following time instant t + 1, that is to say SV Ft+1,
formally:

F∆(t, SV Ft) = SV Ft+1 ∈ V F

•SV F t �= SV F t+1

Figure 2.a sketches a graphical representation of F∆,
where it is represented the transformation of SV Ft into
SV Ft+1. In an instant t there exists an specific set of SV Ft

for business B that evolves in instant t + 1 to another dif-
ferent set SV Ft+1.

3.2 Graphical Notation

As shown previously, a business that evolves can be rep-
resented by B = (CF, SV F ∈ V F, F∆). where the evolu-
tion is defined by the F∆ function in t.

In PFE feature models (FM) are used to represent which
features are variable and which do not. From this, a the set
of common features (CF) and (V F) can be obtained [6].
Thus, CF and V F can be represented by means of a FM.

However, the feature model cannot establish the order
of apparition of business processes, represented as F∆, due
to feature models are not devoted for temporal conditions
or variables (t) [2]. For that purpose, we have to add a
new model with a graphical notation that represents F∆,
the Product Evolution Model, which is defined by means of
a BPMN state machine where each state represents a prod-
uct and each evolution between two or more states, is repre-
sented by means of a transition that is an application of F∆

function. Figure 2.b shows how an evolution of a business
is defined by means of F∆ function in t and t + 1 using
BPMN. Notice that it represents an specific graphical no-
tation for the formal description of our approach, but other
notations can be applied.

To show our approach we use a fast-food restaurant
case study. Figure 1 depicts a simplified set of processes
contained into a fast-food restaurant, where Serve Normal,
Serve Fast and Serve in Establishment are CF , and the rest
of processes are V F . In Figure 3, we present the PEM of
our case study. Each process contains a BPMN model that
represents how all processes are performed. It defines the
configuration of the business at runtime and shows that, in
every runtime instant t, there exists a different SV F se-
lected which represents an evolution of the system. In this
example, on a time instant t the restaurant open its cafeteria
service, thus, there exists in parallel two different processes:
Serve in Cafeteria and Serve in Establishment Normal/Fast
(CF). When the restaurant close its cafeteria service on
time instant t + 1, let us say 10:00 AM, F∆ function is ap-
plied and an evolution is done to another state composed
only by CF processes. After that, the restaurant opens its
Auto-Service, due to a client has arrived with his car, and a
new evolution is applied for t + 2 time instant.

Firefox

Plugin

Flash Java Website
Debugger

runtime

Feature

External Feature

or specialization

Figure 4. J. Bosch approach

Beeper

MicrowaveControl

<< optional >>

BeeperComponent
<< output component >>

IBeeper
<< interface >>

{feature = Beeper}

+ initialize()
+ beep()

......

Microwave
System

ControlSystem

...

...

<< kernel >>
<< control component >>

Feature model viewComponent model viewState machine view

Active

Passivating

Passive

Inactive

Waiting for
Acknowledgement

Passivate
[Processing
Transaction]

Reactivate

Passivate
[Waiting for
Neighbor

Response]

Transaction
Started

Transaction
Aborted

Passive Acknowledgement
from all Neighbors

Transaction
Ended *

Transaction
Ended **

* At least one neighbor active
** All neighbors passive

Activate

Figure 5. Gomaa approach

4 Related work and motivation

As shown in Section 2, FM are one of the most used ar-
tifacts for modeling variability. Unfortunately, as shown by
[2], FM are devoted to design variability, and not for run-
time variability. To the best of our knowledge, there exists
only two approaches for documenting runtime variability
in SPL field. On the one hand, J. Bosch et al. [4] intro-
duces an extension of FM for representing runtime vari-
ability. Bosch’s notation syntax is slightly different from
FODA’s or FORM’s notation. It introduces a new kind of
feature, called external feature, represented by dashed rect-
angles, for representing features that varies at runtime. Fig-
ure 4 depicts an example of a feature model in this notation
that represents Firefox plugin support. As can be observed,
time instants and conditions or constraints to enable/disable
Website Debugger plugin, as for example concrete website
domains, can not be represented with this approach.

On the other hand, H. Gomaa et al. [3][2] propose a
set of models for representing runtime variability based on
evolutionary reconfigurable software architectures. The dif-
ferent versions of an evolutionary system are considered a
software product line, where each version of the system is a
SPL member and the reconfiguration is defined by an state
machine that, for each component, represents the steps that
has to be performed to evolve from a normal operation state
to an inactive state. Once inactive, the component can be
removed and replaced with a different version. Figure 5 de-
picts trigger events in the state machine.

Given this state, the motivation of this paper is that there
not exists any approach that provides an appropriate model-

ing support for runtime variability for BDD systems. Bosch
approach represents a first step toward enabling runtime
variability support for feature models, but unfortunately it
it does not associate any additional information about when
or how some features can be in use at runtime and which do
not (it does not take into account F∆). Gomaa proposal is a
solution to manage the evolution of software systems based
on architectural reconfiguration patterns and SPL ideas, but
it is focused in the context of software components archi-
tectures, instead of BDD systems. In addition, FM does
not represent how enable/disable features at runtime (F∆ is
partially supported but it is not associated with any FM).
Process engineers must see processes that are added or re-
moved from their business design instead of software com-
ponents reconfigurations at a lower and concrete software
development levels. Finally Schnieders proposal, PFE, uses
FM for managing runtime evolution, which are devoted to
design time.

5 Conclusions

We propose a new approach for modeling runtime vari-
ability in BDD systems, called Product Evolution Model.
The main advantages over current solutions are that our pro-
posal provides to process engineers an enough expressive
set of models which are able to represent and understand:
(i) under which trigger events or business policies a busi-
ness evolves and (ii) how is managed this evolution.

References

[1] BPMI. Business process modeling notation BPMN version
1.0 - may 3, 2004. OMG.

[2] H. Gomaa. Feature dependent coordination and adaptation
of component-based software architectures. In WCAT ’07:
Proceedings of the 4th Workshop on Coordination and Adap-
tation Techniques for Software Entities, 2007.

[3] H. Gomaa and M. Hussein. Model-based software design and
adaptation. In ICSEW ’07: Proceedings of the 29th Interna-
tional Conference on Software Engineering Workshops, 2007.

[4] J. V. Gurp, J. Bosch, and M. Svahnberg. On the notion of vari-
ability in software product lines. In WICSA ’01: Proceedings
of the Working IEEE/IFIP Conference on Software Architec-
ture (WICSA’01), 2001.

[5] K. Kang, S. Cohen, J. hess, W. Novak, and S. Peterson.
Feature-oriented domain analysis FODA feasibility study.
CMU/SEI-90-TR-21. Technical report, Carnegie Mellon Uni-
versity. SEI, 1990.

[6] K. Pohl, G. Böckle, and F. van der Linden. Software Product
Line Engineering: Foundations, Principles and Techniques.
Springer, September 2005.

[7] A. Schnieders and F. Puhlmann. Variability mechanisms in
e-business process families. In Proceedings of BIS ’06: Busi-
ness Information Systems, 2006.

