
Enabling the Evolution of Service-Oriented Solutions Using an UML2
Profile and a Reference Petri Nets Execution Platform∗

Javier Fabra1 Joaquı́n Peña2 Antonio Ruiz-Cortés2 Joaquı́n Ezpeleta1

1Department of Computer Science and Systems Engineering, University of Zaragoza,
Marı́a de Luna 1, E-50018 Zaragoza (Spain)

2Department of Languages and Computer Systems, University of Seville,
Av. Reina Mercedes s/n, E-41012 Seville (Spain)

E-mail: jfabra@unizar.es,joaquinp@us.es,aruiz@us.es,ezpeleta@unizar.es

Abstract

The activities developed by a company (business pro-
cesses) have to change frequently to adapt to the environ-
ment. The implementation of business processes should
support these changes without any recoding. In this work,
we provide with an approach for modelling and executing
agile and adaptable business processes. Our approach is
based on UML 2 separating choreography (stable inter-
action patterns) and orchestration (implementation of the
evolving business process, also called workflows), allowing
the transformation and execution of the models by means of
a flexible SOA-based dynamic platform based on reference
Petri nets.

Keywords: SOC, SOA, Web processes, MDD, UML, Petri
nets, Choreography, Orchestration.

1. Introduction

One of the primary goals of SOC and SOA is easing the
integration of businesses by means of IT infrastructures. As
shown by Lee in the field of Economy [11], business pro-
cesses followed by businesses that interact in a supply chain
must change over time. Lee emphasises that in order to suc-
ceed in the business integration, processes needs to be agile,
capable to rapidly change to respond to unexpected situa-
tions, and adaptable, id est, able to change considering new
trends of markets. For instance, agility can be observed in
the changes needed in the business process of a dealer and
a logistic platform when a flow or earthquake happens. In
normal situations, the dealer executes a business process to
track packages in order to ensure a given level of service

∗This work has been partially supported by the European Commis-
sion (FEDER) and the Spanish Ministry of Science and Technology under
grants TIN2006-00472 and TIN2006-13301

quality (QoS). But when an earthquake or a flow happens,
the business process has to change to track such packages
with a cost higher than a given threshold, just in order to
minimise losses. In this scenario, the changes in the busi-
ness process should not be overcome by difficulties in the
changes required in the IT infrastructure.

For enabling this flexibility, the business process and the
interactions between IT infrastructures must be separated.
This separation allows to change business processes without
having to perform time and money costly changes in the IT
infrastructure [14]. Two terms are used to refer to each part
of this decomposition. On the one hand, the term orchestra-
tion describes the business process followed by each party
without detailing the interaction logics. On the other hand,
the term choreography describes the interactions which take
place between IT infrastructures of several parties without
detailing the internals of business processes. Therefore,
changes in the business process do not have to force changes
in the way IT infrastructures interact, and viceversa.

In this paper, we have systematically analysed current
results for performing this separation in SOC and SOA. As
a result of this study, we have concluded that the support for
this separation is deficient at design/modelling stages and
implementation/execution platforms. Thus, this fact hinders
one of the key success factors in business integration: the
need for agile and adaptable business processes [11, 13].

Fortunately, there exist a branch of research devoted to
overcome this problem, being Model-Driven Development
(MDD) one of the used approaches. MDD emphasises the
use of models as the main tool for designing and imple-
menting systems. Thus, MDD approaches provide models
in order to specify the system and transformations that help
to obtain, as much automatically as possible, a running sys-
tem.

In this paper, we propose a set of UML 2 models for sep-
arately modelling orchestration and choreography aspects

allowing the evolution of a business process independently
from the interaction logic. These models are based on an
agent-oriented software engineering methodology (AOSE)
called MaCMAS [16]. We also provide an implementa-
tion and execution platform based on reference Petri-nets
which also keeps this separation, allowing changes at run-
time [8]. The main advantage of this approach is that it
allows changes in the business process in a well-known no-
tation such as UML and a rapid deployment of such changes
in a SOA-based platform, enabling the modelling and exe-
cution of adaptable and agile business process.

The paper is organised as follows. Section 2 presents
the related work regarding modelling, implementation and
transformation between both UML 2 models and choreog-
raphy and orchestration implementations. Section 3 intro-
duces the UML 2 notation used for modelling orchestration
and choreography through a case study. Keeping this sep-
aration, the implementation and execution platform used,
DENEB, is shown in Section 4. Section 5 presents an
overview of the keypoints of the transformation between the
models and the implementation. Finally, Section 6 contains
some concluding remarks.

2. Related Work and Motivation

According to [2], an analysis framework with a set of
components has to be defined in order to perform a survey
in the software engineering field. Given the limitation of
space, summarising, the main research questions of this pa-
per are: (i) Are current MDD approaches able to separate
orchestration and choreography? and, (ii) Is this separation
performed in execution frameworks? In Table 1, we classify
the approaches in those developed for modelling and those
developed for implementation. In the table, − means that
the study does not deal with the row item; X means that the
study considers the row item but it does not give any ap-
proach; ∼ means that the study gives a brief overview and,
finally,

√
means that the study gives a valid approach for

the item.
Regarding MDD approaches, as shown in Table 1, there

are approaches based on UML which separate choreogra-
phy and orchestration [23, 21]. In [23] the impact of SOA
implementation projects is analysed in conjunction with a
modelling approach. However, as the authors state, the no-
tation proposed is immature and they do not provide a tech-
nique to deploy models into an implementation platform.
In addition, there are other approaches which do not per-
form the separation, but where business logics and interac-
tion aspects are identified [9, 12, 4]. In [9], authors propose
an UML profile and an MDD transformation. However,
they neither separate orchestration or choreography in mod-
els nor generate code for these aspects. Similar mappings
are followed in [21, 12]. However, in these approaches a

preliminary version of notation and transformations is pro-
vided where a complete separation between orchestration
and choreography is not achieved.

With respect to implementation details, there are many
proposals which fit into the separation between choreogra-
phy and orchestration aspects. In [4] and [19] authors pro-
pose and define a way to generate implementations separat-
ing choreographies and orchestrations. Unfortunately, these
implementations hard-code orchestration with choreogra-
phies, thus disabling run-time evolution of business pro-
cesses. The general rule is the transformation of models
into orchestration languages, such as BPEL [20], WSCI [1]
or BPML [22].

Regarding current standards, BPEL uses WSDL inter-
faces to describe the functionality it offers and also to in-
voke functionalities required from other Web services [18,
6]. As a consequence, the management of interactions pro-
vided by BPEL is based on one-shot interactions instead
of a long-lived conversational approach, causing business
and conversation logics to be highly coupled [8, 23]. Fur-
thermore, the pre-defined and inflexible nature of BPEL
does not cater for flexible and adaptive business collabo-
rations. Nevertheless, a natural evolution of the BPEL4WS
specification should replace current WSDL-based abstrac-
tions with new conversation models such as WCSI [1], WS-
CDLand OWL-S. The main problem of these initiatives is
that they have a declarative nature and cannot, by itself, be
executed, limiting dynamic aspects.

Thus, the main motivation of this work is that, by the best
of our knowledge, there is not a suitable approach in the
SOC field following MDD techniques, nor any execution
and implementation platform that performs a correct sepa-
ration between choreography and orchestration aspects.

3. An UML 2 Profile for Modelling Choreogra-
phy and Orchestration

Agent-Oriented Software Engineering (AOSE) is de-
voted to develop highly collaborative systems where as-
pects similar to the ones in the SOC field have been dealt
with. Models presented in this section are based on an
AOSE methodology called methodology for analysing com-
plex multiagent systems (MaCMAS) that is being integrated
in several research fields such as autonomic computing or
software product lines [16, 17].

MaCMAS uses two different diagrams for representing
each view of the process: a dynamic diagram representing
how interactions and business processes take place along
time based on UML State Machines; and a static view show-
ing the relationships between services in a static way by
means of extended UML 2 collaborations. Orchestration
is represented as an abstract description instantiated at run-
time or design time, with concrete services and a concrete

Prop/Research Questions [9] [23] [21] [12] [4] [19] [20] [1] [22] Our App.

Models for Chor.& Orch. ∼ √ √ ∼ ∼ X − − − √
Transf. UML2Impl.

√
X ∼ ∼ X X − − − ∼

Impl. separating Chor.& Orch. ∼ X X X
√ √ ∼ ∼ ∼ √

Table 1. Related work study.

Metamodel element Stereotype Uml Base Class Tags
Role << Role >> CollaborationRole multiplicity
EnvironmentalRole << EnvironmentalRole >> CollaborationRole –
mRI << mRI >> Collaboration pattern:String
mRI Postcondition – Postcondition –
mRI In – Collaboration Out: String
mRI Out – Collaboration In: String
Role State << RoleState >> State –
mRI Transition << RoleMRITransition >> Signal in Trans. –

Table 2. UML 2 profile for Choreography and Orchestration

choreography. Figure 1 depicts the role model of our case
study, a business collaboration. The Dealer sells products
which are sent to customers by the Logistic platform, allow-
ing the tracking during the delivery process. To statically
show the relationships between services we propose to use
extended MaCMAS role models. These models are built of
a set of roles, the portion(s) of a software artifact(s) which
is exposed as a service, collaborating by means of several
multi-Role Interactions (mRIs). In Figure 1 boxes represent
roles, and ellipses interactions; the top view represents the
orchestration (business process), while the bottom view rep-
resents the choreography. mRIs in the external package rep-
resent cross-organisation interactions, while the other mRIs
represent internal uses of services.

mRIs are used at the orchestration level in order to de-
scribe the business process without detailing the set of
needed messages. They are also used to represent concrete
interactions at the choreography level. Thus, mRIs at the
orchestration level also permit linking with an specific in-
teraction protocol at design time, or relegate this linking at
run-time. For example, in Figure 1, in the top model the
mRI TrackOrder abstractly represents the set of messages
needed to track an order, while in the bottom model mRIs
getOrders and trackOrder represent the concrete messages
that have to be exchanged. The tagged value Pattern rep-
resents a collaboration pattern, for example a request-reply
pattern which can be used to instantiate at run-time well-
known MEPs (Message Exchange Patterns) from a reposi-
tory. An arrow from a role to an mRI means that the role
initiates the mRI, while an arrow presenting an association
responds to the initiator.

Table 2 presents the profiles for roles and mRIs. As
shown, the role element is attributed by means of UML

tagged values. The multiplicity tag specifies the number
of concrete services that can play this role. The Environ-
mental Role is an stereotype that indicates that the role is
not a service, but a software component. The interactions
between these roles and services represent communication
acts with the legacy system. Regarding mRIs, Postcondition
represents the condition that must hold after the execution
of an mRI. In and Out elements represent the information
consumed and produced by an mRI.

In addition, the dynamic part, involving time, is repre-
sented by means of UML 2.0 State Machines. In Figure 1,
the dynamic view of the case study is shown on the right and
bottom of the figure. The right model represents the orches-
tration between the Dealer and the Logistic platform, while
the bottom model represents the choreography for tracking
orders. In both models each transition represent the execu-
tion of a mRI.

Finally, notice that the MaCMAS CASE Tool allows to
develop these models as an extension of the ArgoUML Case
tool. Therefore, the presented models can be drawn by
means of the presented profile. ArgoUML allows exporting
models in XMI format (a standardised XML file with the
description of the UML models), which is taken as input of
our transformation (see Section 5).

4. Implementation and Execution Platform for
Separating Orchestration and Choreogra-
phy

DENEB (platform for the Development and Execution
of iNteroperable dynamic wEB processes) is a dynamic
Web processes implementation and execution framework
based on the Nets-within-Nets paradigm and the Renew

Figure 1. Role model of our business collaboration case study.

tool [8]. This framework allows the correct separation be-
tween choreography and orchestration aspects and manages
all the communication-related aspects through a message
broker based on RLinda [7], an implementation of the Linda
coordination system [5]. The SOA-based architecture of
DENEB is composed of three main components, depicted
in Figure 2.

The message broker or enterprise server bus is the core
of DENEB. It provides the necessary infrastructure to de-
couple and support interactions among different compo-
nents and separates the logic of the message exchanges from
the concrete way a message is delivered or received. It
contains two main components: a message repository; and
the binding components (also called mediators), which are
responsible of sending and receiving messages among re-
mote or local peer components through the message repos-

itory [21]. These components allow processes to use dif-
ferent technologies and communication protocols indepen-
dently of the way they interact with the message repository.

As shown in Figure 2, the software components which
act as service engines are articulated around the message
broker. They can take a wide variety of forms depending
on the type of function they supply, such as business logic
or transformation services, for instance. SOC avoids any
knowledge of the programming model of the service en-
gine that plugs into the broker infrastructure, so the service
components interact with external entities by means of the
exchange of messages through the message broker using a
common and defined format. The binding components are
responsible of sending and receiving messages to and from
the concrete endpoint. The different functionalities that ex-
ists in the service engines allow the separation in two classes

Figure 2. High-level view of the architecture
of DENEB.

of service engines. On the one hand, the workflows engines,
which represent the business logics of the process and are
in charge of executing the orchestration processes. On the
other hand, the protocol engines, which represent the inter-
action logics and executes the choreographies. The use of
both, workflow and protocol engines, allows the correct and
independent separation of choreography and orchestration
aspects, whose models are described and directly executed
in terms of Nets-within-Nets in DENEB [10, 3]. In addition,
all models are exportable using an extended PNML descrip-
tion language (ISO/IEC 15909), which can be generated in
an automatic manner (see Section 5).

Figure 3 depicts the automatically generated orchestra-
tion workflow corresponding to the DeliveryService role de-
picted in Figure 1 and the trackOrder choreography, which
will be executed by the orchestration process in response
to the initial customer’s invocation (according to Figure 1).
For the sake of simplicity, only these two figures are shown
to demonstrate the transformation. Note that orchestra-
tion implementations are executed by the workflow engine,
whereas choreographies are created by orchestrations and
run by the conversation engine in the DENEB framework.
Both orchestration and choreography implementations are
executed on an instance of the DENEB platform.

DENEB provides with some mechanisms in order to
allow workflows to communicate with conversations, and
viceversa. Channels are a mechanism which allow two or
more nets to synchronise by means of the fire of a transi-
tion which contains a channel inscription [10]. Additionaly,
channels allow workflows and conversations to exchange
information. Those are the basics of the :absCond()
channels used in the workflow and conversation nets. Fi-
nally, conversations can interact with the message broker
by means of the use of channels :w() and :t(), which
correspond to the write and read operations of the RLinda
implementation, respectively.

Let us now describe the orchestration workflow which

corresponds to the delivery service. Transitions t1 and
t20 implement the starting and the ending of the execu-
tion of the orchestration, respectively. According to the
state machine depicted in Figure 1, the firing of transi-
tion t1 starts the parallel execution of two branches in
the case the order has not still been received (guard !re-
ceived). The left one corresponds to the sequential creation
and execution of the choreographies deliveryInfo,Receive
and CalculateServicePrice, while the right one represents
the creation and execution of the trackOrder choreography.
Let us concentrate on the trackOrder branch. Transition
t11 creates a new instance of the trackOrder choreogra-
phy, putting it into the conversation space of the DENEB
framework by means of the synchronised firing of channel
:participateConv, in Renew’s terminology [10]. This
step implements the participation of the orchestration pro-
cess in a choreography initiated by another process (by the
customer, in this case). Then, firing transition t12 the con-
versation engine starts the execution of the choreography
in a distributed manner. Transitions t13 and t16 allow
the orchestration workflow to receive and pass data from
and to the running choreography through abstract condi-
tions (channel :absCond). These data are processed by
the binding components which manage the access to inter-
nal or external resources in a proper way. The mechanism
to interact with the system binding components using an
:execute channel is implemented in transitions t14 and
t15. The choreography’s execution finishes firing transi-
tion t17, and a token is placed in the top place of the right
branch. The process can repeat until the order is received.
In that case, the guard of t11 disables the firing of transi-
tion t11 and the only possible evolution is to fire transition
t18. Finally, when the CalculateServicePrice choreogra-
phy finishes, both branches synchronise and the orchestra-
tion process ends.

Let us now concentrate on the trackOrder choreogra-
phy. Once loaded into the conversation engine, the track-
Order choreography starts by means of the synchronisation
of transition t30 through the DENEB’s system net. Transi-
tion t31 processes the invocation of a customer request for
the availability of track orders through the message broker
using the Linda-based operation take [5]. Then, the request
is passed to the orchestration workflow and the response of
its execution is obtained by means of the use of abstract
conditions (transitions t32 and t33, respectively). Once
the result has been obtained, a response is sent to the cus-
tomer trough the message broker using the write opera-
tion, firing transition t34. A similar interaction process is
repeated again (transitions t35-t38) to process the track-
ing of a specific order selected by the customer. Finally,
the trackOrder choreography finishes the execution of the
protocol by means of the firing of transition t39.

[]

[]

:absCond("GetResult",idExec,result)

[w,idChor]

[w,idChor]

[w,idChor,customer,result]

t30

t31

t32

t33

t34

t39

:begin()

idConv

idConv ..

..

..

:absCond(op,params,idExec)

:execute(op,params,idExec)

[idChor,op,params,idExec]

idChor

idChor

[idChor,idExec,result]

[idChor,idExec,result]

[idChor,idExec]

[idChor,idExec]

[idChor,op,params,idExec]

idChor

idChor

idChor

idChor

t1

t2

t4

t5

t7

t8

t10

t12

t13

t14

t15

t16

t17

t19

DeliveryService Orchestration
TrackOrder Choreography
(From the Delivery service’s
 point of view)

:end()t20

chor: new Choreo_DeliveryInfo;
:createChoreo(this,idConv,
 "DeliveryService","",chor);

Delivery Info

Receive

CalculateServicePrice

:endChoreo(this,idChor,ok)

:absCond("GetResult",idExec,result)

:endChoreo(this,idConv,ok)
:beginChoreo(this,id)

:getResults(idExec,result)

:begin(w,idChor)

[w,idChor,customer,result]

:end(w,idChor,"done")

[w,idChor]

TrackOrder

Send result

Get params

Create choreography

End choreography

chor: new Choreo_TrackOrder;
:participateChoreo(this,idChor,
 "DeliveryService","",chor);

t11

guard !received

guard received t18

:t([customer,"trackOrderFromCustomer",
 [op,params],idChor])

[w,idChor,customer,[op,params]]

[w,idChor,customer,["GetAvailableTracks",params]]

:absCond("GetAvailableTracks",params,idExec)

[w,idChor,customer,idExec]

[w,idChor,customer,idExec]

:w([customer,"availableTrackingOrders",
result,idChor])

:absCond("GetResult",idExec,result)

[w,idChor,customer,result]

t35

t36

t37

t38

[w,idChor,customer,result]

:t([customer,"trackOrderFromCustomer",
 [op,params],idChor])

[w,idChor,customer,[op,params]]

[w,idChor,customer,idExec]

[w,idChor,customer,idExec]

[w,idChor]

:absCond("GetOrderStatus",params,idExec)

[w,idChor,customer,["GetOrderStatus",params]]

:w([customer,"orderTrackingStatus",
result,idChor])

[w,idChor]

[w,idChor]

Start choreography

Get available tracking orders

Get an order status

End choreography

Figure 3. Delivery Service orchestration workflow and trackOrder choreography.

5. Overview of the Transformation

Although the transformation process is not the aim of
this paper, the main correlations between the concepts at the
modelling and the implementation levels are provided. The
transformation for regular Petri-nets has been performed in
the literature, but the transformation from the modifications
of UML to reference Petri-net and its direct execution have
not been provided yet.

Implementing abstract mRIs into DENEB workflows im-
plies, as was shown, the execution of a choreography pro-
cess initiated from an orchestration process (both, the cor-
responding skeleton in the orchestration part and the chore-
ography, are automatically generated). Depending whether
the role is the interaction initiator or not (this informa-
tion is extracted from the role model) the workflow creates
the choreography or participates in it by means of the use
of :createChoreo() or :participateChoreo()
synchronisation channels, respectively. These channels
synchronise through the DENEB’s system net. Therefore,
orchestration workflows and choreographies can execute in

an independent manner. The parameters in mRIs (input and
output) are implemented in DENEB through the :begin
and :end synchronisation channels which allow to pass in-
formation from the orchestration workflow to the choreog-
raphy and viceversa, respectively.

Further details about the correlation and transformation
process can be obtained in [15]. From the point of view
of implementation, transformations among MacMAS/UML
models and DENEB’s entities are performed using XSLT
code in order to transform the XMI of the UML model into
extended Petri-Nets Modelling Language (PNML), which
is also based on XML. The automatically generated PNML
code represents the DENEB’s implementation nets, which
can be loaded and executed in the platform at run-time.

6. Conclusions

Successful development and execution of flexible and
adaptable SOA systems need from best practices to solve
some important drawbacks that appear when dealing with

choreography and orchestration aspects. Although they are
two sides of the same coin, it is commonly accepted that
both of them need to be dealt in a separated, but coordi-
nated way along the full development and execution life
cycle. In this paper, we have shown how the integration
of a MDD approach, MaCMAS, with a flexible develop-
ment and execution framework for Web processes, DENEB,
exploits this separation at the design and execution stages.
The integrated approach allows a very flexible way of deal-
ing with business processes, facilitating their evolution in
highly dynamic scenarios. From this study, new challenges
have been opened, as for example trying to perform direct
transformations from models to implementation using well
known description standards (such as the Business Process
Modeling Notation – BPMN, for example) and rule-based
transformation processes (such as the ATLAS Transforma-
tion Language – ATL, for example).

References

[1] A. Arkin et al. Web Service Choreography Interface
(WSCI). Technical report, World Wide Web Consortium
(W3C), Aug. 2002.

[2] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and
M. Khalil. Lessons from applying the systematic litera-
ture review process within the software engineering domain.
Journal of Systems and Software, 80(4):571–583, 2007.

[3] L. Cabac, M. Duvigneau, D. Moldt, and H. Rölke. Mod-
eling dynamic architectures using nets-within-nets. In 26th
International Conference on Application and Theory of Petri
Nets – ICATPN 2005, pages 148–167, 2005.

[4] T. Cottenier, A. V. D. Berg, and T. Elrad. Modeling Aspect-
Oriented Compositions. In 7th International Workshop on
Aspect-Oriented Modeling, Oct 2005.

[5] D. Gelernter. Generative communication in Linda. ACM
Transactions on Programming Languages and Systems,
7(1):80–121, 1985.

[6] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weer-
awarana. The next step in web services. Communications of
the ACM, 46(10):29–34, 2003.

[7] J. Fabra, P. Alvarez, J. A. Bañares, and J. Ezpeleta. RLinda:
a Petri net based implementation of the Linda coordination
paradigm for Web services interactions. In 7th International
Conference on Electronic Commerce and Web Technologies
– EC-Web 2006, number 4082 in Lecture Notes in Computer
Science, pages 184–193. Springer Verlag, Sept 2006.

[8] J. Fabra, P. Álvarez, J. A. Bañares, and J. Ezpeleta. A frame-
work for the development and execution of horizontal proto-
cols in open BPM systems. In Fourth International Confer-
ence on Business Process Management – BPM’06, number
4102 in Lecture Notes in Computer Science, pages 209–224.
Springer Verlag, 2006.

[9] S. K. Johnson and A. W. Brown. A model-driven develop-
ment approach to creating service-oriented solutions. In 4th
International Conference on Service-Oriented Computing –
ICSOC 2006, pages 624–636, 2006.

[10] O. Kummer, F. Wienberg, M. Duvigneau, M. Köhler,
D. Moldt, and H. Rölke. Renew – the Reference Net Work-
shop. In E. Veerbeek, editor, Tool Demonstrations. 24th In-
ternational Conference on Application and Theory of Petri
Nets – ATPN 2003., pages 99–102, June 2003.

[11] H. Lee. The triple-a supply chain: Adaptability, agility,
and alignment. Harvard Business Review, 82(10):102–112,
2004.

[12] J. Mendling and M. Hafner. From Inter-Organizational
Workflows to Process Execution: Generating BPEL from
WS-CDL. In On The Move to Meaningful Internet Systems
and Ubiquitous Computing – OTM 2005, number 3762 in
Lecture Notes in Computer Science. Springer Verlag, Nov
2005.

[13] M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann.
Service-Oriented Computing Research Roadmap. Techni-
cal report, Technical report/vision paper on Service oriented
computing European Union Information Society Technolo-
gies (IST), 2006.

[14] C. Peltz. Web Service Orchestration and Choreography. A
look at WSCI and BPEL4WS. Web Services Journal, pages
1–5, jul 2003.

[15] J. Peña, J. Fabra, A. Ruiz-Cortés, and J. Ezpeleta. A Model-
Driven Development Approach for Specifying and Imple-
menting the Orchestration and Choreography of Service-
Oriented Solutions. Technical report, reference RR-0707,
Department of Computer Science and Systems Engineering
– I3A University of Zaragoza, July 2007.

[16] J. Peña, M. G. Hinchey, M. Resinas, R. Sterritt, and J. L.
Rash. Designing and managing evolving systems using a
mas-product-line approach. Journal of Science of Computer
Programming, 2006.

[17] J. Peña, M. G. Hinchey, and A. Ruiz-Corts. Multiagent sys-
tem product lines: Challenges and benefits. Communica-
tions of the ACM, 49(12), December 2006.

[18] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D.
Ferguson. Web services platform architecture, chapter Mod-
eling Business Processes: BPEL, pages 313–340. Prentice
Hall, 2005.

[19] N. C. Suazo and J. Aguirre. Aspect-oriented Web services
orchestration. In 2nd International Conference on Electrical
and Electronics Engineering, Sept 2005.

[20] T. Andrews et al. Business Process Execution Language for
Web Services (BPEL4WS). Technical report, BEA Systems,
IBM Corp., Microsoft Corp., SAP AG, and Siebel Systems,
May 2003.

[21] R. Ten-Hove and P. Walker. Java Business Integration (JBI)
1.0, final release. Technical report, BEA Systems & IBM &
Microsoft & SAP AG & Siebel Systems, May 2005.

[22] R. K. Thiagarajan, A. K. Srivastava, A. K. Pujari, and V. K.
Bulusu. BPML: A Process Modeling Language for Dynamic
Business Models. In Fourth IEEE International Workshop
on Advanced Issues of E-Commerce and Web-Based Infor-
mation Systems – WECWIS’02, page 239. IEEE Computer
Society, 2002.

[23] O. Zimmermann, P. Krogdahl, and C. Gee. Elements of
Service-Oriented Analysis and Design. Technical report,
IBM developerWorks, June 2004.

