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Abstract

In Chapter 1, the concepts of a Lie group and a matrix Lie group are introduced, and
we construct and study the group homomorphism SU(2) → SO(3). In Chapter 2 we
de�ne the notion of a matrix power series, and we do so in a general setting, which
allows to deduce properties of which the matrix case is a particular case. The idea of
a matrix exponential and matrix logarithm is also de�ned, and we give proofs of their
most important properties. To close the chapter, we give the general statement and
the proof of the di�erentiability of a matrix power series. In Chapter 3, we start with
the concepts of an abstract Lie algebra and the Lie algebra of a matrix Lie group, pro-
viding the reader with examples of the Lie algebras of the typical matrix Lie groups.
Then, we present the idea of a category and a functor, with lots of examples which
intend to hint at the value of category theory as a unifying language in mathematics.
We do this because in the following section, we prove that there exists a functor from
the category of matrix Lie groups into the category of real Lie algebras, which con-
denses the relation between these two families of mathematical objects. After de�ning
the concept of the complexi�cation of a real Lie algebra, we prove the main general
results for matrix Lie groups, and in particular, that matrix Lie groups are embedded
submanifolds of GL(=;C). In the beginning of Chapter 4, we show that representa-
tions and actions, of a group or a Lie algebra, are just two sides of the same coin. We
later explain how to understand the class of representations of a Lie group or a Lie
algebra as a category, and show that the representations of a matrix Lie group can
be related with those of its Lie algebra through a functor. After that, we proceed to
classify the �nite-dimensional irreducible representations of the Lie algebra of SU(2),
and from that, we determine which �nite-dimensional irreducible representations of
the Lie algebra of SO(3) come from representations of SO(3) itself. In the �nal Chap-
ter 5, we state the Lie group–Lie algebra correspondence, and we use it to show that
the category of the �nite-dimensional representations of any simply connected ma-
trix Lie group is isomorphic to the category of the �nite-dimensional representations
of its Lie algebra.



Preface

The idea of this end-of-degree project was suggested to me by my advisor on the
summer of 2020. Originally, my advisor proposed to study the theory of Lie groups
in order to later study its applications to mathematical physics, and in particular,
to quantum mechanics. The idea was to study the Lie groups book [Hall1] of Brian
C. Hall so as to later study the applications of the mathematical theory to physics,
through the study of the book [Hall2], of same author. Speci�cally, our intention was
to after study Chapter 17 of [Hall2], which address the mathematical physics behind
angular momentum in quantum mechanics. As it usually happens with these things,
I ended up being able to study only half of what was �rstly planned. While I was
learning through the material and taking time to solve all the exercises of [Hall1] of
the chapters I read, the mathematics part of the original project turned out to be big
enough on its own. Or at least, the mathematics themselves turned out to be more
than enough material for an EoDP with my study approach. When I study mathemat-
ics, I can’t help myself trying to achieve the most thorough understanding possible
of what I am learning. I usually �nd myself carefully reading and pondering each
piece of text, not being content with the result until I have convinced myself that I
know what is really happening underneath on each case. For better or for worse, this
system consumes much more time and produces more written text than other study
philosophies.

Since the original idea was to apply the learned mathematics to physics, a part
of the contents of this thesis are of physical interest. These matters are the homo-
morphism SU(2) → SO(3), given in Sect. 1.2, and the classi�cation of the �nite-
dimensional irreducible complex representations of SU(2) and of SO(3), given in
sects. 4.4 and 4.5, respectively.

The �nal text of this EoDP you are reading now is based on the very well-written
book by Brian C. Hall, [Hall1]. Following the book, the �ve chapters of this thesis
mimic the order and contents of the �rst �ve chapters of [Hall1]. Most of the text of
the thesis is taken directly from the book of Hall, and either no changes at all or only
some minor changes have been added to the text parts of the thesis which are taken
from it. Some of these minor changes have been introduced to adapt the text to the
scope of the thesis, and some others to add more detail to mathematical arguments.



preface 3

In comparison with the book of Hall, the novelty that this thesis proposes is the for-
mulation of the results in the language of category theory, whenever such results are
suitable for a categorical description. This decision was made because the category
theory that we had to introduce to achieve this was minimal: only the notions of a
category and a functor. This way, the momentary detour from Lie groups we make in
Sect. 3.4 to explain these two concepts does not interrupt the continuity of the rest
of the text. Just with the concepts of a category and a functor at hand, we are read-
ily able to categorically describe a lot of things that happen at the interplay between
Lie groups and Lie algebras. Nevertheless, it must be noticed that with the categor-
ical formulation we are not really producing new content di�erent from that which
was already in [Hall1], and that we include here. Instead, the new thing—at least in
this thesis—is the way in which we phrase already known results, and eventually, the
way in which we phrase its proofs. Here, the categorical approach allows to under-
stand mathematical phenomena from a more general point of view. Lastly, we shall
highlight that the terminology we have chosen in the de�nitions of the categorical
concepts is that of [Rieh].

In the following list, we specify the text parts of each section of the thesis that are
taken from [Hall1].

(1.1) The part of examples is taken from Sect. 1.2.
(1.2) The material from the beginning until the statement of Proposition 1.11 is taken

from Sect. 1.4.
(2.2) The statement and proof of Proposition 2.12 is taken from Sect. 2.1.
(2.3) is taken from Sect. 2.3, except lemmas 2.16 and 2.17.
(2.4) is taken from Sect. 2.4.
(3.=) is taken from Sect. 3.=, for = = 1, 2, 5, 6, 7, 8.
(3.3) is taken from Sect. 3.4, except Lemma 3.17.
(4.1) Text after Lemma 4.1 and before De�nition 4.3 is from Sect. 4.1.
(4.2) All text which is not phrased in categorical terms is taken from Sect. 4.1.
(4.3) is taken from Sect. 4.2.
(4.4) is taken from Sect. 4.6.
(4.5) I wrote the part of the three lemmas. The rest of the text is taken from Sect. 4.7.
(5.1) is taken from Sect. 5.1.
(5.3) is taken from Sect. 5.9.
(5.4) is taken from Sect. 5.10.

Whenever any other text has been taken from other book, the source is indicated
before the corresponding piece of text.
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1 Matrix Lie Groups

In this thesis, unless stated the contrary, K will always denote the �eld of real or
complex numbers.

1.1 De�nitions and Examples

A Lie group is, roughly speaking, a continuous group, in the sense that the group
elements are parameterized by real parameters. The �rst examples of Lie groups are
(R=, +) and the circumference ((1, ·), where (1 ⊂ C is the set of complex numbers of
modulus 1. The way of mathematically concretise what do we mean by “continuous”
in a Lie group is by introducing the notion of a di�erentiable manifold. So a Lie group
is a group that is at the same time either a curve, a surface, or a hypersurface. On the
contrary, there are the discrete groups, and amongst them we �nd, for example, the
�nite groups, but also in�nite groups such as (Z=, +).

In the same way that an equation like G2 + ~2 + I2 = 1 de�nes a surface in R3, an
equation like

det
(
0 1

2 3

)
= 03 − 12 = 1 (1.1)

de�nes a hypersurface in R4. At the same time, the set of 2 × 2 real matrices that
satisfy equation (1.1) has a group structure with matrix multiplication, and so, the set
of 2 × 2 real matrices with determinant one turns out to be a Lie group.1 This is a Lie
group made up of matrices, and it constitutes our �rst example of a matrix Lie group,2
a type of Lie group which �nd amongst the most studied ones. They are also the ones
that we will treat in this thesis.

Groups in general can be understood as the mathematical tool needed to study
the concept of symmetry. In this picture, the objective of group theory would be to
study the properties and types of symmetries that there can exist, and di�erent types

1We will rigorously prove this later on.
2In Spanish, grupo de Lie matricial.
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of groups would give rise to di�erent types of symmetries. In particular, two di�er-
ent general classes of symmetries can be distinguished: discrete and continuous ones.
Examples of the former would be the symmetries of regular polyhedra, or the kind of
symmetry of an in�nite hexagonal plane honeycomb pattern. Examples of the latter
would be the rotational symmetry of a sphere, or the translational invariance which
is sometimes postulated in physics in certain physical systems.

The study of Lie groups would then correspond to the study of the continuous
symmetries of things.

De�nition 1.1. A Lie group is a set� which is both a group and a manifold3 and
such that these two structures satisfy a compatibility condition: the group operation
�×� → � and the group inverse element map (·)−1 : � → � are both di�erentiable.4

We can reduce the two conditions above to a single one: it is not di�cult to show
that a group � which is also a manifold is a Lie group if and only if the map (G,~) ∈
� ×� ↦→ G−1~ ∈ � is di�erentiable.

De�nition 1.2. For K = R or C and given = ∈ N, we de�ne the general linear
group over K of degree =, denoted GL(=;K), as the set of = × = invertible matrices
with entries in K.

We will denote the set of = × = matrices with entries in K as "= (K).

Proposition 1.3. The general linear group is a Lie group.

Proof. We can identify "= (K) with K=2 in an obvious way, and K=2 has the stan-
dard real manifold structure, which is =2-dimensional if K = R and 2=2-dimensional
if K = C. Thus, since the determinant is a continuous function, GL(=;K) = det−1(K \
{0}) ⊂ "= (K) is an open set of "= (K), and therefore it inherits a manifold struc-
ture from "= (K), of the same dimension. On the other hand, matrix multiplication
is di�erentiable and also is the map � ∈ GL(=;K) ↦→ �−1 ∈ GL(=;K), since �−1

equals 1
det� times the adjugate matrix of �, and both are di�erentiable functions of

� ∈ GL(=;K). �

De�nition 1.4. A matrix Lie group is a closed subgroup of GL(=;C).

GL(=;R) is a matrix Lie group, for if �< ⊂ GL(=;R) and �< converges to some
invertible matrix �, its entries must be real.

There are two reasons behind De�nition 1.4. The principal one is that all inter-
esting groups which are made up of invertible matrices turn out to be closed in the

3We will be always considering �∞-di�erentiable real manifolds. That is, a topological manifold
(a locally euclidean, Hausdor� and second-countable topological space) with a�∞-di�erentiable atlas.

4By di�erentiable, from now on, we will always mean�∞-di�erentiability. We will occasionally
speak of a smooth function to refer to the same concept.
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complex general linear group (this does not mean that they are closed in "= (K)),
amongst of these “interesting matrix groups” there are the matrix groups we will be
considering in this thesis. The other reason comes from the closed-subgroup theo-
rem, which asserts that every closed subgroup of a Lie group � is also an embedded
submanifold of� and thus also a Lie group by its own. We will be proving the closed-
subgroup theorem for the case of GL(=;C). That is, we will prove that every matrix
Lie group is indeed a Lie group.

An example of a subgroup of GL(=;C) which is not closed is the subset of invert-
ible matrices with rational coe�cients. Another interesting example is the “irrational
line in a torus.” See Fig. 1.1 of [Hall1] and Exercise 10 of Chapter 1 of same book.

Mastering the subject of Lie groups involves not only learning the general theory
but also familiarizing oneself with examples. We now introduce some of the most
important examples of (matrix) Lie groups.

De�nition 1.5. The special linear group, denoted SL(=;K), is the group of =×=
invertible matrices with entries in K which have determinant one. It is a subgroup of
GL(=;C).

If �= is a sequence of matrices with determinant one and �= converges to �, then
� also has determinant one, because the determinant is a continuous function. Thus,
SL(=;R) and SL(=;C) are matrix Lie groups.

Recall that an = × = complex matrix � is said to be unitary if the column vectors
of � are orthonormal, that is, if

=∑
;=1

�; 9�;: = X 9: . (1.2)

We may rewrite (1.2) as
=∑
;=1
(�∗) 9; �;: = X 9: , (1.3)

where X 9: is the Kronecker delta, equal to 1 if 9 = : and equal to zero if 9 ≠ : . Here
�∗ is the adjoint of �, de�ned by

(�∗) 9: = �: 9 .

Equation (1.3) says that�∗� = � ; thus, we see that� is unitary if and only if�∗ = �−1.
In particular, every unitary matrix is invertible.

The adjoint operation on matrices satis�es (��)∗ = �∗�∗. From this, we can see
that if � and � are unitary, then

(��)∗(��) = �∗�∗�� = �−1�−1�� = � ,
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showing that �� is also unitary. Furthermore, since (��−1)∗ = � ∗ = � , we see that
(�−1)∗�∗ = � , which shows that (�−1)∗ = (�∗)−1. Thus, if � is unitary, we have

(�−1)∗�−1 = (�∗)−1�−1 = (��∗)−1 = � ,

showing that �−1 is again unitary.

Thus, the collection of unitary matrices is a subgroup of GL(=;C).

De�nition 1.6. The unitary group of degree =, denoted U(=), is the set of all
unitary = × = matrices. The special unitary group of degree =, denoted SU(=), is
de�ned to be U(=) ∩SL(=;C), the set of unitary =×= matrices with determinant one.

It is easy to check that both U(=) and SU(=) are closed subgroups of GL(=;C) and
thus matrix Lie groups.

Meanwhile, let 〈·, ·〉 denote the standard inner product on C= , given by

〈G,~〉 =
=∑
9=1

G 9~ 9 .

(Note that we put the conjugate on the �rst factor of the inner product.) For any
G,~ ∈ C= , we have

〈G,�~〉 =
=∑
9=1

G 9 (�~) 9 =
=∑
9=1

G 9

=∑
:=1

� 9:~:

=

=∑
:=1

=∑
9=1
(�∗): 9G 9~: =

=∑
:=1
(�∗G):~: = 〈�∗G,~〉 .

Thus,
〈�G,�~〉 = 〈�∗�G,~〉 ,

from which we can see that if� is unitary, then� preserves the inner product on C= ,
that is,

〈�G,�~〉 = 〈G,~〉

for all G and~. Conversely, if� preserves the inner product, we must have 〈�∗�G,~〉 =
〈G,~〉 for all G,~. It is not hard to see that this condition holds only if�∗� = � . Thus, an
equivalent characterization of unitarity is that � is unitary if and only if � preserves
the standard inner product on C= .

Finally, for any matrix �, we have that det�∗ = det�. Thus, if � is unitary, we
have

det(�∗�) = |det�|2 = det � = 1.

Hence, for all unitary matrices �, we have |det�| = 1.
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In a similar fashion, an = ×= real matrix � is said to be orthogonal if the column
vectors of� are orthonormal. As in the unitary case, we may give equivalent versions
of this condition. The only di�erence is that if� is real,�∗ is the same as the transpose
�tr of �, given by

(�tr) 9: = �: 9 .

Thus,� is orthogonal if and only if�tr = �−1, and this holds if and only if� preserves
the inner product in R= . Since det(�tr) = det�, if � is orthogonal, we have

det(�tr�) = det(�)2 = det � = 1,

so that det� = ±1. From the same argument as before, the product of orthogonal
matrices is orthogonal and the inverse of and orthogonal matrix is also orthogonal.

De�nition 1.7. The orthogonal group of degree =, denoted O(=), is the set of
all real orthogonal = × = matrices. The special unitary group of degree =, denoted
SO(=), is de�ned to be O(=) ∩SL(=;R), the set of real orthogonal =×= matrices with
determinant one.

It is easy to check that both O(=) and SO(=) are closed subgroups of GL(=;C)
and thus matrix Lie groups.

Geometrically, elements of SO(=) are rotations, while the elements of O(=) are
either rotations or combinations of rotations and re�ections.

As a �nal example, we observe that several important groups which are not de-
�ned as groups of matrices can be thought as such. The group R\{0} of non-zero real
numbers under multiplication is isomorphic to GL(1;R). Similarly, the group C \ {0}
of non-zero complex numbers under multiplication is isomorphic to GL(1;C) and the
group (1 of complex numbers with absolute value one is isomorphic to U(1).

The group R under addition is isomorphic to GL(1;R)+ (1 × 1 real matrices with
positive determinant) via the map G ↦→ [4G ]. The group R= (with vector addition) is
isomorphic to the group of diagonal real matrices with positive diagonal entries, via
the map

(G1, . . . , G=) ↦−→
©­­«
4G1 0

. . .

0 4G=

ª®®¬ .

1.2 Homomorphisms

De�nition 1.8. Let� and� be matrix Lie groups. A mapΦ : � → � is called a Lie
group homomorphism if (1) Φ is a group homomorphism and (2) Φ is continuous.
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If, in addition, Φ is bijective and the inverse map Φ−1 is continuous, then Φ is called a
Lie group isomorphism.

Given� and � arbitrary Lie groups, it is customary to call a map Φ between two
Lie groups a Lie group homomorphism ifΦ is a group homomorphism andΦ is smooth,
whereas in the previous de�nition we have only required that Φ be continuous. In
Sect. 3.7 we will show that every continuous homomorphism between matrix Lie
groups is automatically smooth, so that there is no con�ict in terminology.

Recall from elementary group theory that the inverse of a bijective group homo-
morphism is also a group homomorphism. Thus, if Φ is a Lie group isomorphism, then
so is Φ−1. Any two matrix Lie groups� and� between which there exists a Lie group
isomorphism are said to be isomorphic (as Lie groups), and in that case we write
� � � .

The simplest interesting example of a Lie group homomorphism is the determi-
nant, which is a homomorphism of GL(=;K) into GL(1;K) = K\{0}. Another simple
example is the map Φ : R→ SO(2) given by

Φ(\ ) =
(
cos\ − sin\
sin\ cos\

)
.

This map is clearly continuous, and a calculation (using standard trigonometric iden-
tities) shows that it is a homomorphism.

An important topic in the theory of matrix Lie groups and specially in the physics
applications is the relationship between SU(2) and SO(3), which are almost, but not
quite, isomorphic. Speci�cally, we now construct a Lie group homomorphism Φ :
SU(2) → SO(3) that is two-to-one and onto.5 To construct the homomorphism and
further study its properties, the next two results will be practical.

Proposition 1.9. SU(2) is homeomorphic to (3.

Proof. We show that every matrix � ∈ SU(2) is of the form

� =

(
U −V
V U

)
, (1.4)

where U, V ∈ C are such that |U |2 + |V |2 = 1.

On the one hand, observe that the columns of (1.4) are an orthonormal basis of
C2, so the matrix of (1.4) is in SU(2).

5 Any function 5 : - → . , where - and . are sets, induces an equivalence relationship in its
domain - by the rule: for G, G ′ ∈ - , we have G ∼5 G ′ if and only if 5 (G) = 5 (G ′). By de�nition, for
any integer = ≥ 1, a function 5 : - → . is then said to be =-to-one if all the equivalence classes from
-/∼5 have cardinal equal to =. That is, 5 is =-to-one if #5 −1 (~) = = for all ~ ∈ Im 5 ; exactly = elements
of - are mapped to each ~ ∈ Im 5 . A one-to-one function is the same as an injective function.
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Conversely, suppose

� =

(
U W

V X

)
∈ SU(2).

If we call , = span{(U, V)}, then C2 = , ⊕, ⊥, so , ⊥ is one-dimensional and
therefore, ⊥ = span{(−V, U)}. Since the columns of � are an orthonormal basis of
C2, we have (W, X) ∈, ⊥ and thus (W, X) = 2 (−V, U), for some complex number 2 , so

� =

(
U −2V
V 2U

)
.

Taking determinant, 1 = det� = 2 ( |U |2 + |V |2) = 2 ‖(U, V)‖2 = 2 .

We can de�ne a map

SU(2) −→ (3(
U −V
V U

)
↦−→ (01, 02, 11, 12),

where U = 01+802 and V = 11+812, with 0 9 , 1 9 ∈ R. This map is surjective and from the
fact that all matrices of SU(2) are of the form (1.4), it also follows that it is injective.

Moreover, it is continuous and so is the inverse (01, 02, 11, 12) ↦→
(
01 + 802 −11 + 812
11 + 812 01 − 802

)
.

Therefore SU(2) � (3. �

It deduces that SU(2) is path-connected, since (3 is path-connected (in general
SU(=) is always path-connected, see Proposition 1.13 from [Hall1]). Furthermore,
SU(2) is simply connected, since (3 is (see for example Theorem 59.3 in [Mun]). In
chapter 5, we will see that the topological property of simple-connectedness is a re-
markable one in the theory of Lie groups.

Lemma 1.10. The trace of a product of matrices is invariant under cyclic permuta-
tions. That is, if �1, . . . , �= ∈ "= (C), then

trace(�1�2 · · ·�=) = trace(�2�3 · · ·�=�1)
= trace(�3�4 · · ·�=�1�2)
...

= trace(�=�1�2 · · ·�=−1).

Proof. It is su�cient to prove that trace(��) = trace(��), and indeed

trace(��) =
=∑
9=1
(��) 9 9 =

=∑
9=1

=∑
:=1

0 9:1: 9 =

=∑
:=1

=∑
9=1
1: 90 9: =

=∑
:=1
(��):: = trace(��).

�
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We now build the homomorphism Φ : SU(2) → SO(3). Consider the space + of
all 2 × 2 complex matrices - which are Hermitian (i.e., - ∗ = - ) and have trace zero.
Elements of + are precisely the matrices of the form

- =

(
G1 G2 + 8G3

G2 − 8G3 −G1

)
, (1.5)

with G1, G2, G3 ∈ R. If we identify+ with R3 by means of the coordinates G1, G2 and G3
in (1.5), then the standard inner product on R3 can be computed as

〈-1, -2〉 =
1
2 trace(-1-2) .

That is to say,

1
2 trace

((
G1 G2 + 8G3

G2 − 8G3 −G1

) (
G′1 G′2 + 8G′3

G′2 − 8G′3 −G′1

))
= G1G

′
1 + G2G′2 + G3G′3

as one may easily check by direct calculation.

For each* ∈ SU(2), de�ne a linear map Φ* : + → + by

Φ* (- ) = *-* −1.

Then, by Lemma 1.10,*-* −1 still has trace zero and since* is unitary,

(*�* −1)∗ = (* −1)∗�* ∗ = *�* −1,

showing that*�* −1 is again in + .

It is easy to see that Φ*1*2 = Φ*1Φ*2 . Furthermore,

1
2 trace

( (
*-1*

−1) (
*-2*

−1) ) = 1
2 trace

(
*-1-2*

−1)
=
1
2 trace (-1-2) ,

by Lemma 1.10. Thus, each Φ* preserves the inner product 1
2 trace(-1-2) on+ . It fol-

lows that the map* ↦→ Φ* is a homomorphism of SU(2) into the group of orthogonal
linear transformations of + � R3, that is, into O(3).

We next show the continuity of * ↦→ Φ* . Let 5 : + → R3 be the linear isomor-
phism + � R3, explicitly written as

5 (- ) =
©­­«
-11

Re-12
Im-12

ª®®¬ ,
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and let
-1 =

(
1 0
0 −1

)
, -2 =

(
0 1
1 0

)
, -3 =

(
0 8

−8 0

)
, (1.6)

be the canonical basis of + . This way we have 5 (- 9 ) = 4 9 , where 4 9 are the canonical
basis vectors of R3. For each * ∈ SU(2), the transformation matrix of the linear
map Φ* with respect to the basis (1.6) is

(
5 (*-1*

−1) | 5 (*-2*
−1) | 5 (*-3*

−1)
)
.

Since the inverse matrix is a continuous operation, the entries of this matrix depend
continuously on * ∈ SU(2). That is, the map Φ : * ∈ SU(2) ↦→ Φ* ∈ O(3) is
continuous.

Since SU(2) is connected, Φ* must actually lie in SO(3) for all* ∈ SU(2).6 Thus,
Φ (i.e., the map* ↦→ Φ* ) is a Lie group homomorphism of SU(2) into SO(3).

Since (−� )- (−� )−1 = - , we see that Φ−� is the identity element of SO(3).

Proposition 1.11. The map * ↦→ Φ* is a two-to-one and onto map of SU(2) to
SO(3), with kernel equal to {� ,−� }.

We do not give here the proof of the proposition, for it is elementary and is found
in [Hall1], Proposition 1.19, and we will not use it further in this thesis in a critical
way.

Proposition 1.11 has an interesting application. Using quotient map theory we can
use it to prove that SO(3) is homeomorphic to RP3, the real 3-dimensional projective
space. Before giving the result, we give a brief overview of quotient map theory. For
more details regarding quotient maps, one may consult §22 from [Mun].

Recall that a quotientmap between topological spaces 5 : �→ � is a continuous
and surjective map such that the codomain � is equipped with the �nal topology with
respect to 5 . That is, the topology on � is the �nest one among those topologies of
� for which 5 becomes continuous. Equivalently, 5 is is a quotient map if it is (i)
surjective and (ii) strongly continuous; where (ii) means that � ⊂ � is open if and
only if 5 −1(�) ⊂ � is open; this last thing is the same as saying that � ⊂ � is closed if
and only if 5 −1(� ) ⊂ � is closed. Thus, a su�cient (although not necessary) condition
for a continuous map to be strongly continuous is to be an open or closed map.

If 5 : � → � is any continuous function between topological spaces, by the
universal property of the quotient topology there is an induced continuous map 5̂ :
�/∼5 −→ � (see footnote 5 on p. 10 for the de�nition of ∼5 ), which on this case is
also injective. Namely, 5̂ is the unique map which �ts on the following diagram while

6In more detail: if we compose det ◦Φ, we obtain a continuous function from the connected topo-
logical space SU(2) to the set of the possible determinant values of matrices of SO(3), that is, into
{1,−1}. Since every continuous function from a connected topological space into a discrete topologi-
cal space is constant and (det ◦Φ) (� ) = 1, we have that det ◦Φ is a map constantly equal to 1. That is,
ImΦ ⊂ SO(3).
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making it commutative
� �

�
∼5

5

5̂
.

It turns out that the function 5 is a quotient map if and only if 5̂ is a homeomorphism
(Corollary 22.3 [Mun]). This is an important characterization of quotient maps. We
could de�ne the concept of a quotient space of a topological space - to be a pair
(&, ?), where & is a topological space and ? : - → & is a quotient map. If ∼ is
any equivalence relationship on - , then ? : - → -/∼ is always a quotient map
and therefore (-/∼, ?) is a quotient space of - . With this terminology, the previous
statement “5 is a quotient map if and only if 5̂ is a homeomorphism” can be interpreted
as saying that quotient spaces of a topological space - are essentially the same thing
as spaces -/∼ with the quotient topology for some equivalence relation ∼ on - .

Lastly, recall the closed map lemma, which states that every continuous map 5

from a compact topological space� to a Hausdor� space � is also closed: let � ⊂ � be
closed. Since closed sets of a compact space inherit the compactness of the space, � is
also compact. Since continuity preserves compactness, 5 (� ) is also compact. Finally,
since every compact subspace of a Hausdor� space is also closed, 5 (� ) is closed.

Corollary 1.12. SO(3) is homeomorphic to RP3, the real projective space of dimen-
sion 3.

Proof. The map Φ : * ∈ SU(2) ↦→ Φ* ∈ SO(3) is a quotient map: by Proposition
1.11 it is surjective and it is strongly continuous, for it is continuous and also a closed
map by the closed map lemma, as SU(2) � (3 is compact and SO(3) ⊂ "= (R) � R=2

is Hausdor�, since topological subspaces of a Hausdor� space are also Hausdor�.

We recall from elementary group theory that the cosets of kerΦ in SU(2) are
precisely the equivalence classes of ∼Φ. We thus have SU(2)/kerΦ = SU(2)/∼Φ �

SO(3), where the “�” is both a group isomorphism, by the �rst isomorphism theo-
rem for groups; and a homeomorphism, by quotient map theory, Corollary 22.3 of
[Mun]. Since kerΦ = {� ,−� } by Proposition 1.11, the cosets of kerΦ in SU(2) are
of the form {�,−�}, with � ∈ SU(2). By the homeomorphism SU(2) � (3 given in
proof of Proposition 1.9, quotienting SU(2) by the equivalence relationship∼Φ (whose
equivalence classes are {�,−�}) amounts to identifying antipodes in (3. That is, there
is a homeomorphism RP3 � SU(2)/∼Φ � SO(3). �

The homeomorphism SO(3) � RP3 constructed in the previous proof can be
shown to be really a di�eomorphism, although we will not be using this fact further
on and we have not shown yet that SO(3) is a di�erentiable manifold.

An alternative proof of Corollary 1.12 is found in Proposition 1.17 of [Hall1].
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It follows that SO(3) is not simply connected, as the fundamental group of RP3

is the group of two elements. In order to prove that the fundamental group of RP3 is
indeed of order two, one needs to show that (3 → RP3 is a covering map (see §53
from [Mun] for the de�nition of a covering map) and then use Theorem 54.4 from
[Mun].



2 The Matrix Exponential

2.1 Normed and Banach algebras

The primary objective of this chapter is to de�ne and to study the properties of the
matrix exponential and the matrix logarithm. These two are particular instances of
matrix power series in "= (K). So to study them, we move to a more general setting,
which abstracts the structure of the space"= (K) which is at play when investigating
the properties of a matrix power series; namely, that of a Banach algebra.

De�nition 2.1. An algebra over K or a K-algebra is a pair (A, [·, ·]) where A
is a K-vector space and [·, ·] : A × A → A is a K-bilinear map, which is referred
to as the product of the algebra. If the product is implicitly understood, we will refer
to the algebra (A, [·, ·]) simply as A. Whenever the product is either associative or
commutative, we will refer to A as an associative or commutative algebra, respec-
tively. Lastly, if A has a multiplicative identity, that is, an element 1 ∈ A such that
[1, - ] = [-, 1] = - for every - ∈ A, we will say that A is a unital algebra.

One could also speak of an algebra as a vector space which is at the same a ring
(not necessarily commutative, associative or unital) and such the ring and vector space
structures satisfy a compatibility condition: scalar and ring multiplication are “asso-
ciative,” _(-. ) = (_- ). = - (_. ), for _ ∈ K and-,. ∈ A. Here we have represented
the bracket [-,. ] simply as -. . This notation is primarily preferred for associative
algebras since in this case it makes the associativity explicit (it is nicer to write -./
rather than (-. )/ or- (./ )) and we will be using it for these algebras. In any case, it
can be also used in non-associative algebras if one is careful with the corresponding
parentheses.

IfA is a non-zero unital K-algebra, in this case we can identify K with a subring
of A, namely, {_1A | _ ∈ K}, for _ ∈ K ↦→ _1A ∈ A is a ring homomorphism
from a �eld to a non-zero ring, and thus it is a ring embedding. So an equivalent
de�nition for a non-zero unital K-algebra is a ring extension K ⊂ A, where A is a
non-commutative, non-associative ring.

De�nition 2.2. A normed algebra over K or a normed K-algebra is an asso-
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ciative K-algebraA which is also a normed space and such that these two structures
satisfy a compatibility condition: ‖-. ‖ ≤ ‖- ‖ ‖. ‖ for every -,. ∈ A. That is, the
norm is submultiplicative. IfA is also a Banach space, we will say thatA is a Banach
algebra.

From now on and unless stated otherwise, normed algebras will always considered
to be non-zero.
Example 2.3. "= (K) with any matrix norm (i.e., a submultiplicative norm with re-
spect to the matrix product) is a Banach algebra. More generally, given a Banach space
B, the family of bounded operators in B, !(B), is known to be a Banach space with
the operator norm. This norm is also submultiplicative with respect to operator com-
position, and so !(B) is also a Banach algebra.

It follows from the norm submultiplicativeness and the next result that the product
in a normed algebra is continuous.
Proposition 2.4. For a bilinear map � : - × . → / , where -,., / are normed

spaces over K, the following are equivalent:

1. � is continuous.
2. � is continuous at (0, 0).
3. � is bounded as a bilinear map. That is, there exists � > 0 such that ‖�(G,~)‖ ≤
� ‖G ‖ ‖~‖ for every (G,~) ∈ - × . .

Proof. (1⇒ 2). It’s clear.

(2⇒ 3). Suppose that 3 is false. For each = ∈ N there exists (G=, ~=) ∈ - ×. such
that ‖�(G=, ~=)‖ > =2 ‖G=‖ ‖~=‖. Since clearly G= ≠ 0 and ~= ≠ 0, we can consider

G̃= :=
G=

= ‖G=‖
→ 0 and ~̃= :=

~=

= ‖~=‖
→ 0.

But bilinearity of � now implies that

‖�(G̃=, ~̃=)‖ > =2 ·
1
=
· 1
=
= 1 for each =

and thus 2 is false.

(3 ⇒ 1). Suppose 3 holds and let G= → G in - and ~= → ~ in . . There exists
" ≥ 0 such that ‖G=‖ ≤ " and ‖~‖ ≤ " . Then

‖�(G=, ~=) − �(G,~)‖ ≤ ‖�(G=, ~=) − �(G=, ~)‖ + ‖�(G=, ~) − �(G,~)‖
= ‖�(G=, ~= − ~)‖ + ‖�(G= − G,~)‖
≤ � ‖G=‖ ‖~= − ~‖ +� ‖G= − G ‖ ‖~‖
≤ �" (‖G= − G ‖ + ‖~= − ~‖) → 0,

and we are done. �
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Example 2.5. On this thesis, when dealing with complex matrices we will be work-
ing with an arbitrary matrix norm. We can do this because the norms in a �nite-
dimensional vector space are all equivalent. However, it is nice to have an example of
such a norm. In"= (K), the Frobenius inner product, for each�, � ∈ "= (K) is de�ned
as

〈�, �〉 = trace(�∗�).

The Frobenius inner product is indeed an inner product. In fact, it coincides with the
standard inner product in K=2 � "= (K),

〈�, �〉 = trace(�∗�) =
=∑

9,:=0
0 9:1 9: .

The induced norm, ‖�‖ =
√
trace(�∗�) = ∑=

9,:=0 |0 9: |2, is called the Frobenius norm
or the Hilbert-Schmidt norm. It is a matrix norm: If �, � ∈ "= (K), and if we denote
by �( 9) and � (:) the 9 th row and : th column of � and �, respectively, then

‖��‖2 =
=∑
9=1

=∑
:=1

�( 9)�
(:)

=

=∑
9=1

=∑
:=1
|〈�tr
( 9), �

(:)〉|2, where 〈·, ·〉 is the standard inner product in K=,

≤
=∑
9=1

=∑
:=1
‖�tr
( 9) ‖

2
E ‖� (:) ‖2E , where ‖·‖E is the euclidean norm in K=

(here we have used the Cauchy-Schwarz
inequality),

=

=∑
9=1
‖�tr
( 9) ‖

2
E

=∑
:=1
‖� (:) ‖2E

= ‖�‖2 ‖�‖2 .

De�nition 2.6. Let A be a unital normed K-algebra. A power series in A is a
series of the form

∞∑
==0

_= (- − 2)=,

where _=, 2 ∈ K and - ∈ A. For the case A = "= (K), we will speak of a matrix
power series.

Recall that in a Banach space B every absolutely convergent series is conver-
gent as well. Indeed, if {G=}=≥1 ⊂ B and the series

∑∞
==1 G= converges absolutely, it

means that for every Y > 0 there exists =0 such that Y >
∑∞
==< ‖G=‖ ≥

∑<′
==< ‖G=‖ =

‖(<′ − (<‖ whenever <′ ≥ < ≥ =0, where (: =
∑:
==1 G= . This way, the sequence

of partial sums {(:}:≥1 is a Cauchy sequence and thus, since B is Banach, lim
:→∞

(: =∑∞
==0 G= is convergent.
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Proposition 2.7. Every convergent power series in K induces a well-de�ned and
continuous power series in a unital Banach algebra. Speci�cally, letA be a unital Banach
algebra over K and let

5 (G) =
∞∑
==0

_= (G − 2)=, G ∈ K (2.1)

be a power series, with _=, 2 ∈ K and suppose that (2.1) has radius of convergence A > 0.
Then

5 (- ) =
∞∑
==0

_= (- − 2)=, - ∈ A (2.2)

is well-de�ned and is continuous for - ∈ A, ‖- − 2 ‖ < A .
Proof. Every power series over K is also absolutely convergent in its open disk of

convergence, so we have
∞∑
==0
|_= | |G − 2 |= < +∞ for every G ∈ K, |G − 2 | < A . In other

words,
∞∑
==0
|_= |~= < +∞ for ~ ∈ [0, A ). Taking ~ = ‖- − 2 ‖ makes the series (2.2)

absolutely convergent for ‖- − 2 ‖ < A and thus also convergent for these values of
- , since B is a Banach space.

Let’s see about the continuity. Without lost of generality, we can suppose 2 = 0,
for we can perform the change of variable . = - − 2 . We have thus a series 6(. ) =∑∞
==0 _=.

= which converges for . ∈ A if and only if 5 (- ) converges for - = . + 2 .
That is, 6(. ) is well-de�ned for every . ∈ A with ‖. ‖ < A . And therefore we can
restrict to proving continuity for 6.

In order to prove continuity for a power series in A, we now study how can we
bound the expression (- + . ): − -: in terms of ‖- ‖ and ‖. ‖.

Given a word F = (-1, . . . , -=) ∈ A= , we de�ne its product prodF = -1 · · ·-= ∈
A and given some . ∈ A, we de�ne the multiplicity of . inF as

m. F = #{ 9 ∈ {1, ..., =} | - 9 = . },

that is, m. F is the number of . ’s that there is inF .

Given -,. ∈ A, let

? (-,., =,<) =
∑

F∈{-,. }=+<
m- F==
m. F=<

prodF

be the sum of the di�erent permutations of -=.< , so that

(- + . ): =
:∑

<=0
? (-,., : −<,<).
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By the submultiplicativeness of ‖·‖,

‖? (-,., : −<,<)‖ =












∑

F∈{-,. }:
m- F=:−<
m. F=<

prodF












≤

∑
F∈{-,. }:
m- F=:−<
m. F=<

‖ prodF ‖

≤
∑

F∈{-,. }:
m- F=:−<
m. F=<

‖- ‖:−<‖. ‖<

=

(
:

<

)
‖- ‖:−<‖. ‖<;

so

‖(- + . ): − -: ‖ =





 :∑
<=1

? (-,., : −<,<)







≤
:∑

<=1
‖? (-,., : −<,<)‖

≤
:∑

<=1

(
:

<

)
‖- ‖:−<‖. ‖<

= (‖- ‖ + ‖. ‖): − ‖- ‖: .

Finally, to see the continuity of 5 (- ) =
∞∑
==0

_=-
= , if -,. ∈ A are such that ‖- ‖ +

‖. ‖ < A , then

‖ 5 (- + . ) − 5 (- )‖ ≤
∞∑
:=0
|_: |‖ (- + . ): − -: ‖

≤
∞∑
:=0
|_: | [(‖- ‖ + ‖. ‖): − ‖- ‖:]

= ℎ(‖- ‖ + ‖. ‖) − ℎ(‖- ‖)

where ℎ(G) = ∑∞
:=0 |_: |G: converges for |G | < A .

Hence 5 (- + . ) → 5 (- ) as ‖. ‖ → 0, that is, we have continuity. �
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2.2 The Exponential of a Matrix

De�nition 2.8. The matrix exponential is de�ned as

4- =

∞∑
<=0

-<

<! , - ∈ "= (C),

and is well-de�ned and continuous in all "= (C) thanks to Proposition 2.7, for the

radius of convergence of the complex power series
∞∑
<=0

I<

<! equals A = +∞.

Example 2.9. Let

- =

(
0 −1
1 0

)
.

We may compute that - 2 = −� , so that - 3 = −- and - 4 = � . This recursion in the
values of -< allows to evaluate

40- =

∞∑
<=0
(−1)<

(
02<

(2<)! − 02<+1

(2<+1)!
02<+1

(2<+1)!
02<

(2<)!

)
=

(
cos0 − sin0
sin0 cos0

)
We next state in Proposition 2.12 the properties of the matrix exponential; amongst

of them it �nds 4-4. = 4-+. for two matrices -,. that commute. For its proof, we
will need a result which allows us to multiply series “term by term,” so that we can
multiply out the series of 4- and 4. in order to obtain that of 4-+. .

De�nition 2.10. Given two series
∑∞
==0-= ,

∑∞
==0.= in some Banach algebra A,

with -=, .= ∈ A, we de�ne its Cauchy product as

∞∑
==0

-= ·
∞∑
==0

.= =

∞∑
==0

/=, (2.3)

where /= =
∑=
:=0-:.=−: .

Considering the case of complex numbers, in [Rud1] this de�nition is found to be
motivated as follows. If we take two power series

∑∞
==0 0=I

= and
∑∞
==0 1<I

= , multiply
them term by term, and collect terms containing the same power of I, we get

∞∑
==0

0=I
= ·

∞∑
==0

1=I
= =

(
00 + 01I + 02I2 + · · ·

) (
10 + 11I + 12I2 + · · ·

)
= 0010 + (0011 + 0110) I + (0012 + 0111 + 0210) I2 + · · ·
= 20 + 21I + 22I2 + · · · .

Setting I = 1, we would arrive (2.3) for the case of complex numbers.
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In general, given two series in a normed algebra that are convergent, its Cauchy
product may not converge to the product of the series. However, we can give a su�-
cient condition for this to happen.
Proposition 2.11 (Mertens’ Theorem for the Cauchy Product). If

∑∞
==0 G= =

- and
∑∞
==0~= = . are two convergent series in some normed algebra and at least one

of them converges absolutely, then their Cauchy product converges to -. .

Mertens’ theorem can be regarded as the in�nite series generalization of the or-
dinary distributive law of the product with respect to the sum.

We will give the same proof as that of Theorem 3.50 of [Rud1], although there’s a
di�erence between Rudin’s statement of Mertens’ theorem and ours: he states it for
complex numbers series while we state it here for an arbitrary normed algebra.
Proof. Call I= =

∑=
:=0 G:~=−: and

-= =

=∑
:=0

G: , .= =

=∑
:=0

~: , /= =

=∑
:=0

I: , W= = .= − . .

Then

/= = G0~0 + (G0~1 + G1~0) + · · · + (G0~= + G1~=−1 + · · · + G=~0)
= G0.= + G1.=−1 + · · · + G=.0
= G0 (. + W=) + G1 (. + W=−1) + · · · + G= (. + W0)
= -=. + G0W= + G1W=−1 + · · · + G=W0.

Put
d= = G0W= + G1W=−1 + · · · + G=W0.

We wish to show that /= → -. . Since -=. → -. , it su�ces to show that

lim
=→∞

d= = 0. (2.4)

Suppose
∑∞
==0 G= converges absolutely and put

j =

∞∑
==0
‖G=‖ .

Let Y > 0 be given. Since W= → 0, we can choose # such that ‖W=‖ ≤ Y for = ≥ # , in
which case

‖d=‖ ≤ ‖W0G= + · · · + W#G=−# ‖ + ‖W#+1G=−#−1 + · · · + W=G0‖
≤ ‖W0G= + · · · + W#G=−# ‖ + Yj .

Keeping # �xed, and letting = →∞, we get

lim sup
=→∞

‖d=‖ ≤ Yj,

since G: → 0 as : →∞. Since Y is arbitrary, (2.4) follows. �
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Proposition 2.12. Let-,. be arbitrary complex matrices. Then we have the follow-
ing:

1. 40 = � .
2. (4- )∗ = 4- ∗ .
3. 4- is invertible and (4- )−1 = 4−- .
4. 4 (U+V)- = 4U-4V- .
5. If -. = .- , then 4-+. = 4-4. .
6. If � is invertible, then 4�-�

−1
= �4-�−1.

Proof. Point 1 is obvious and point 2 follows from continuity of � ↦→ �∗, which
allows to take term-by-term adjoints of the series for 4- .

Points 3 and 4 are special cases of point 5. To verify point 5, we simply multiply
the two power series term by term, which is permitted by Proposition 2.11 because
both series converge absolutely. Multiplying out 4-4. and collecting terms where the
power of - plus the power of . equals<, we obtain

4-4. =

∞∑
<=0

<∑
:=0

-:

:!
.<−:

(< − :)! =
∞∑
<=0

1
<!

<∑
:=0

<!
:!(< − :)!-

:.<−: . (2.5)

Now, because (and only because) - and . commute,

(- + . )< =

<∑
:=0

<!
:!(< − :)!-

:.<−: ,

and, thus, (2.5) becomes

4-4. =

∞∑
<=0

1
<! (- + . )

< = 4-+. .

To prove point 6, simply note that

(�-�−1)< = �-<�−1

and, thus by continuity of matrix multiplication, the two sides of point 6 are equal
term by term. �

The previous proof is formally the same for a Banach algebra, but we have it here
for complex matrices since that is the main focus of the thesis.
Proposition 2.13. Let - be a = × = complex matrix. Then 4C- is a smooth curve in

"= (C) and
3

3C
4C- = -4C- = 4C-- .

In particular,
3

3C
4C-

����
C=0

= - .
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Proof. We will prove that

lim
Y→0





4 (C+Y)- − 4C-Y
− -4C-





 = 0.

We have 



4 (C+Y)- − 4C-Y
− -4C-





 = 1
|Y |




4 (C+Y)- − 4C- − Y-4C- 



≤ 1
|Y |



4C- 

 

4Y- − � − Y-


=

1
|Y |



4C- 

 




 ∞∑
==2

(Y- )=
=!







≤ 1
|Y |



4C- 

 ∞∑
==2

( |Y | ‖- ‖)=
=!

= |Y |


4C- 

 ‖- ‖2 ∞∑

==2

( |Y | ‖- ‖)=−2
=!

≤ |Y |


4C- 

 ‖- ‖2 ∞∑

==2

( |Y | ‖- ‖)=−2
(= − 2)!

= |Y |


4C- 

 ‖- ‖2 4 |Y | ‖- ‖ → 0 as Y → 0. �

2.3 The Matrix Logarithm

Lemma 2.14. The function

log I =
∞∑
<=1
(−1)<+1 (I − 1)

<

<

is de�ned and analytic in a circle of radius 1 about I = 1.

For all I with |I − 1| < 1,
4 log I = I.

For all D with |D | < log 2, we have |4D − 1| < 1 and

log 4D = D.

Proof. The usual logarithm for real, positive numbers satis�es

3

3G
log(1 − G) = −1

1 − G = −
(
1 + G + G2 + · · ·

)



2. the matrix exponential 25

for |G | < 1. Integrating term by term and noting that log 1 = 0 gives

log(1 − G) = −
(
G + G

2

2 +
G3

3 + · · ·
)
.

Taking I = 1 − G (so that G = 1 − I), we have

log I = −
(
(1 − I) + (1 − I)

2

2 + (1 − I)
3

3 + · · ·
)

=

∞∑
<=1
(−1)<+1 (I − 1)

<

<
. (2.6)

The series (2.6) has radius of convergence 1 and de�nes an holomorphic function
on the set {|I − 1| < 1}, which coincides with the usual logarithm for real I in the
interval (0, 2). Now exp(log I) = I for I ∈ (0, 2) and since both sides of this identity
are holomorphic in I, the identity continues to hold on the whole set {|I − 1| < 1}.

On the other hand, if |D | < log 2, then

|4D − 1| =
����D + D22! + · · · ���� ≤ |D | + |D |22! + · · · = 4

|D | − 1 < 1.

Thus, log(expD) makes sense for all such D. Since log(expD) = D for real D with
|D | < log 2, it follows by holomorphicity that log(expD) = D for all complex numbers
with |D | < log 2. �

De�nition 2.15. The matrix logarithm is de�ned as

log� =

∞∑
<=1
(−1)<+1 (� − � )

<

<
, � ∈ "= (C),

whenever the series converges.

By the previous lemma and Proposition 2.7, the matrix logarithm is well-de�ned
and is continuous for � ∈ "= (K), ‖� − � ‖ < 1, where ‖·‖ is any matrix norm.

Lemma 2.16. The set of diagonalizable matrices is dense in"= (C).

Proof. Let - ∈ "= (C). Every complex square matrix is triangularizable (see for ex-
ample [Axl], 5.27), so there exists� ∈ GL(=;C) such that- = �)�−1, where) = (C 9:)
is upper-triangular. Eigenvalues are preserved by matrix conjugation:

|- − _� | = |�)�−1 − _� | = |�() − _� )�−1 | = |�| |) − _� | |�−1 | = |) − _� |,

so the eigenvalues of - are thus the diagonal entries of) . Were they all di�erent and
we would know then that - was diagonalizable. But in general - can have repeated
eigenvalues.
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We want to �nd then a sequence)< of diagonalizable matrices such that)< → ) .
De�ne

3 =


1 if C11 = C22 = · · · = C==,

min
C,C ′∈{C11,C22,...,C==}

C≠C ′

|C − C ′| otherwise.

For< ≥ 1, let )< = (C (<)
9:
) be the = × = complex matrix de�ned by

C
(<)
9:

=


C 9: 9 ≠ :,

C 9 9 +
X 9

<
9 = :,

where X 9 = 3
@ 9+1 and @ 9 = #{; ∈ {1, 2, . . . , 9} : C;; = C 9 9 }, that is, @ 9 is the quantity of

C;; ’s with ; ≤ 9 and C;; = C 9 9 .

In other words, )< is a triangular matrix identical to ) except on its diagonal
entries. To them, a little quantity has been added accordingly so that now we can
assure that C (<)

9 9
= C
(<)
::

if and only if 9 = : . Since the C 9 9 ’s are the eigenvalues of)< , we
have that )< is diagonalizable.1 Since matrix conjugation preserves diagonalizability
(the matrix � = ���−1 is diagonalizable if and only if � is diagonalizable), �)<�−1
is diagonalizable and by construction lim< �)<�

−1 = �(lim<)<)�−1 = �)�−1 =

- . This proves that for any matrix - ∈ "= (C) there exists a sequence {-<}<≥1 of
diagonalizable matrices such that-< → - . In other words, the set of triangularizable
matrices is dense in "= (C). �

Lemma 2.17. Let ‖·‖ be any matrix norm in "= (K). Then for every - ∈ "= (K)
and every eigenvalue _ ∈ K of - , we have |_ | ≤ ‖- ‖.

Proof. Let E ∈ K= be an eigenvector of - ∈ "= (K) of eigenvalue _ ∈ K. Denot-
ing by (E |0| · · · |0) the = × = matrix whose �rst column is E and with the rest of its
entries equal to zero, we have �(E |0| · · · |0) = _(E |0| · · · |0), so that ‖�(E |0| · · · |0)‖ =
|_ | ‖ (E |0| · · · |0)‖. Since ‖·‖ is submultiplicative, it follows that

|_ | ‖ (E |0| · · · |0)‖ ≤ ‖�‖ ‖(E |0| · · · |0)‖ .

Since the matrix (E |0| · · · |0) is not the zero matrix (eigenvectors, by de�nition, are
non-zero), its norm is non-zero and we conclude |_ | ≤ ‖�‖. �

Theorem 2.18. The function

log� =

∞∑
<=1
(−1)<+1 (� − � )

<

<
(2.7)

1In more detail: since)< has = di�erent eigenvalues, it has = eigenvectors of a di�erent eigenvalue
each. Since eigenvectors of di�erent eigenvalues are always linearly independent (see for example
[Axl], 5.10), for)< there exists a set of= linearly independent eigenvectors, so this set must be then also
a generating system and thus a basis. That is,)< has a basis of eigenvectors, i. e.,)< is diagonalizable.
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is de�ned and continuous on the set of = × = complex matrices � with ‖� − � ‖ < 1,

For all � with ‖� − � ‖ < 1,
4 log� = �.

For all - with ‖- ‖ < log 2,


4- − �

 < 1 and

log 4- = - .

Proof. Convergence and continuity of the series (2.7) for ‖� − � ‖ < 1 follows from
Proposition 2.7 and Lemma 2.14.

Suppose now that � satis�es ‖� − � ‖ < 1. If � is diagonalizable with eigenvalues
I1, . . . , I= , then we can express � in the form ���−1 with � diagonal, in which case

(� − � )< = �
©­­«
(I1 − 1)< 0

. . .

0 (I= − 1)<

ª®®¬�−1.
Since ‖� − � ‖ < 1, each eigenvalue I 9 of � must satisfy |I 9 − 1| < 1 by Lemma 2.17 (_
is an eigenvalue for � if and only if _ − 1 is an eigenvalue for � − � ). Thus,

∞∑
<=1
(−1)<+1 (� − � )

<

<
= �

©­­«
log I1 0

. . .

0 log I=

ª®®¬�−1,
and by Lemma 2.14,

4 log� = �
©­­«
4 log I1 0

. . .

0 4 log I=

ª®®¬�−1 = �.
By continuity and density of diagonalizable matrices (Lemma 2.16), we get 4 log� = �

for all � with ‖� − � ‖ < 1.

Now, the same argument as in the complex case shows that if ‖- ‖ < log 2, then

4- − �

 < 1 and thus log 4- is de�ned. The proof that log 4- = - is then very similar
to the proof that 4 log� = �. �

In particular, since exp always gives back an invertible matrix, it deduces that if
� ∈ "= (C) is such that ‖� − � ‖ < 1, then � is invertible.

Proposition 2.19. There exists a constant 2 > 0 such that for all = × = matrices �
with ‖�‖ < 1

2 ,
‖log(� + �) − �‖ ≤ 2 ‖�‖2 .
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Proof. Note that

log(� + �) − � =

∞∑
<=2
(−1)<+1�

<

<
= �2

∞∑
<=2
(−1)<+1�

<−2

<

so that

‖log(� + �) − �‖ ≤ ‖�‖2
∞∑
<=2

( 1
2
)<−2
<

,

which is an estimate of the desired form. �

We may restate the proposition in a more concise way by saying that

log(� + �) = � +$
(
‖�‖2

)
,

where $
(
‖�‖2

)
denotes a quantity of order ‖�‖2 (i.e., a quantity that is bounded by

a constant times ‖�‖2 for all su�ciently small values of ‖�‖).

2.4 Further Properties of the Exponential

Theorem 2.20 (Lie Product Formula). For al -,. ∈ "= (C), we have

4-+. = lim
<→∞

(
4
-
< 4

.
<

)
.

Proof. If we multiply the power series for 4 -< and 4 .< term by term (we can do this
thanks to Mertens’ theorem, 2.11), all but three terms will involve 1/<2 or higher
powers of 1/<. Thus

4
-
< 4

.
< = � + -

<
+ .
<
+$

(
1
<2

)
.

Now, since 4 -< 4 .< → � as< → ∞, 4 -< 4 .< is in the domain of the logarithm for all
su�ciently large<. By Proposition 2.19,

log
(
4
-
< 4

.
<

)
= log

(
� + -

<
+ .
<
+$

(
1
<2

))
=
-

<
+ .
<
+$

(



-< + .< +$ (
1
<2

)



2)
=
-

<
+ .
<
+$

(
1
<2

)
,

since 



-< + .< +$ (
1
<2

)



2 = 1
<2





- + . +$ (
1
<

)



2
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≤ 1
<2

(
‖- ‖ + ‖. ‖ +





$ (
1
<

)



)2
≤ 1
<2

(
‖- ‖ + ‖. ‖ + �

<

)2
for some � > 0

≤ 1
<2 (‖- ‖ + ‖. ‖ +�)

2

= $

(
1
<2

)
.

Exponentiating the logarithm then gives

4
-
< 4

.
< = exp

(
-

<
+ .
<
+$

(
1
<2

))
and therefore (

4
-
< 4

.
<

)<
= exp

(
- + . +$

(
1
<

))
.

Thus, by continuity of the exponential, we conclude that

lim
<→∞

(
4
-
< 4

.
<

)
= exp(- + . ),

which is the Lie product formula. �

Theorem 2.21. For any - ∈ "= (C), we have

det(4- ) = 4 trace(- ) . (2.8)

Proof. If - is diagonalizable with eigenvalues _1, . . . , _= , then 4- is diagonalizable
with eigenvalues 4_1, . . . , 4_= (by Proposition 2.12, Point 6). Thus, since the determi-
nant and trace of a matrix equals respectively the product and sum of its eigenvalues,

det(4- ) = 4_1 · · · 4_= = 4_1+···+_= = 4 trace(- ) .

Since both sides of (2.8) are continuous functions of - , by Lemma 2.16 the identity
follows for all - ∈ "= (C). �

De�nition 2.22. A one-parameter subgroup of GL(=;C) is a group homomor-
phism � : (R, +) → GL(=;C) which is continuous.

Theorem 2.23 (One-parameter subgroups). If�(·) is a one-parameter subgroup
of GL(=;C), there exists a unique = × = complex matrix - such that

�(C) = 4C- .

To prove the theorem we need the following lemma.

Lemma 2.24. Fix some Y ∈ (0, log 2). Let �Y/2 be the ball of radius Y/2 around the
origin in "= (C), and let * = exp(�Y/2). Then every � ∈ * has a unique square root �
in* , given by � = exp( 12 log�).
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Proof. By construction, � is a square root of �, since �Y/2
exp
�
log
* are inverses of each

other, by Theorem 2.18. Also, � is in * , as for log� ∈ �Y/2, also 1
2 log� ∈ �Y/2, and

hence � = exp( 12 log�) ∈ * .

To establish uniqueness, suppose �̃ ∈ * satis�es �̃2 = �. Let . = log �̃; then
exp(. ) = �̃ and

exp(2. ) = �̃2 = � = exp(log�).

We have that . ∈ �Y/2 and, thus, 2. ∈ �Y , and also that log� ∈ �Y/2 ⊂ �Y . Since,
by Theorem 2.18, exp is injective on �Y and exp(2. ) = exp(log�), we must have
2. = log�. Thus �̃ = exp(. ) = exp( 12 log�) = � . �

Proof of Theorem 2.23. The uniqueness is immediate, since if there is such an- , then
- = 3

3C
�(C)

��
C=0. To prove existence, let * be as in Lemma 2.24, which is an open set

of GL(=;C). Indeed, exp always gives back an invertible matrix, so * ⊂ GL(=;C);
and secondly, since log maps * onto �Y/2, we have * = log−1(�Y/2) for log being
injective. By the continuity of log, the set* is open in the domain of log, {� ∈ "= (C) :
‖� − � ‖ < 1} ⊂ GL(=;C), which is an open set of GL(=;C), so* is open in GL(=;C).

Since � is a group homomorphism, �(0) = � . Since* is an open neighborhood of
� , the continuity of � guarantees that there exists C0 > 0 such that �(C) ∈ * for all C
with |C | ≤ C0. De�ne

- =
1
C0
log(�(C0)),

so that C0- = log(�(C0)). Then C0- ∈ �Y/2 and

4C0- = �(C0).

Now, �(C0/2) is again in * and �(C0/2)2 = �(C0). But by Lemma 2.24, �(C0) has a
unique square root in* ; namely, exp( 12 log�(C0)) = exp(C0-/2). Thus,

�(C0/2) = exp(C0-/2).

Applying this argument repeatedly, we conclude that

�(C0/2:) = exp(C0-/2:)

for all positive integers : . Then, since� is a group homomorphism, for any integer<
we have

�(<C0/2:) = �(C0/2:)< = exp(<C0-/2:).

It follows that �(C) = exp(C- ) for all real numbers C of the form C = <C0/2: , and the
set of such C ’s is dense in R. Since both exp(C- ) and �(C) are continuous, it follows
that �(C) = exp(C- ) for all real numbers C . �
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2.5 The Di�erentiability of a Matrix Power Series

As a conclusion to the chapter, we devote this section to the proof of the di�erentia-
bility of a matrix power series. The result is stated and proven in Theorem 2.28. We
are only interested in real di�erentiability, as this is what it is needed to study Lie
groups from the real manifolds perspective. Even though the results from this sec-
tion deal with one-variable or several-variables complex functions, the focus on real
di�erentiability will be made patent in their statements.

A matrix power series can be regarded as a special type of several complex vari-
ables power series. For that matter, in order to study the di�erentiability of the former,
one must be acquainted before with the di�erentiability of the latter. Lemma 2.25 gives
the di�erentiability situation for a several complex variables power series.

Right before stating the lemma, we introduce the multi-index notation for mul-
tivariate power series. This notation eases the reasonings with these series and is
therefore ubiquitous in texts from several complex variables theory. From now on, in
this section N = {0, 1, 2, . . . } will denote the set of natural numbers with zero. Let
U ∈ N= be a vector of non-negative integers. For I ∈ C= , the multi-index notation is

IU
def
= I

U1
1 I

U2
2 · · · I

U=
= , |IU |

def
= |I1 |U1 |I2 |U2 · · · |I= |U= , |U |

def
= U1 + U2 + · · · + U= .

Lastly, if (-,3) is some metric space and G ∈ - , for Y > 0 we denote by �- (G, Y) =
{~ ∈ - | 3 (G,~) < Y} the open ball of radius Y and center G .
Lemma 2.25. If the complex multivariate power series 5 (I) =

∑
U∈N= 2UI

U con-
verges absolutely when I = F ∈ C= , then the series converges absolutely for all I ∈∏=

9=1 �C(0, |F 9 |) = �C(0, |F1 |) × · · · × �C(0, |F= |) =: �F . Furthermore, in this case
and for each 9 , 5 is holomorphic with respect to to the variable I 9 in all �F . Therefore,
with the canonical identi�cation C � R2 we have �F ⊂ R2= and that 5 is in�nitely
di�erentiable in �F as a function of several real variables.

Before giving the proof of the lemma, we need two auxiliary results. They are the
Weierstraß "-test and the term-by-term di�erentiation theorem of a single complex
variable power series.
Proposition 2.26 (Weierstraß "-test). Suppose that 5: : - → B is a sequence

of functions, where - is a set and B is a Banach space, and that there is sequence of
non-negative numbers {":} satisfying the conditions

• ‖ 5: (G)‖ ≤ ": for all = ≥ 1 and all G ∈ - , and
•

∑∞
:=1": converges.

Then the series
∑∞
:=1 5: (G) converges absolutely and uniformly on - .
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(We won’t be using the uniformity of the series convergence.) A proof can be
found, for example, in [Rud1], Theorem 7.10. Although there it is proven for B = C,
the proof is formally identical for a general Banach space.

Lemma2.27 (Term-by-termpower series di�erentiation). Let 5 (I) = ∑
==0 0=I

=

be a univariate complex power series with radius of convergence ' > 0. Then 5 is di�er-
entiable in �C(0, ') and

5 ′(I) =
∞∑
==1

0==I
=−1 (2.9)

for every I ∈ �C(0, '). Furthermore, the power series (2.9) has same radius of convergence
'. Therefore 5 is in�nitely di�erentiable in �C(0, ').

For a proof, see for example [Rud2], Theorem 10.6. Since 5 ′ is also a power series,
the previous lemma applies to 5 ′ itself and we get that 5 ′′ also exists and is written
as a power series with same radius of convergence. This way, proceeding iteratively
we obtain that 5 (=) exists in all the domain of 5 , or in other words, that 5 is in�nitely
di�erentiable.

The absolute convergence part of the following proof is taken from [Boas], slide
#4.

Proof of Lemma 2.25. By hypothesis, there is a constant " such that |2UFU | ≤ " for
all U ∈ N= . If some F 9 is zero, then the statement is vacuously true. Suppose F 9 ≠ 0
for every 9 . Now, for each 9 , let A 9 ∈ (0, |F 9 |) and pick some _ ∈ (0, 1) such that, for
every 9 , it is A 9 ≤ _ |F 9 |. In that case, for I ∈ �C(0, A1) × · · · × �C(0, A=), and if we call
A = (A1, . . . , A=), we have

|2UIU | ≤ |2UAU | ≤ |2U_ |U |FU | ≤ "_ |U | .

Now ∑
U∈N=

_ |U | =
∞∑
U1=0
· · ·

∞∑
U==0

_U1 · · · _U= = 1
(1 − _)=

by Fubini–Tonelli theorem for series with general term of several indices.

Therefore
∑
U∈N= 2UI

U converges absolutely by the Weierstraß "-test. This ends
the proof of the �rst part of the lemma.

Let us now see about the di�erentiability of 5 in the domain �F . We shall see
that all partial derivatives m< 5

mI<
9

of all orders < ≥ 1 exist in �F . In that case, since a
function of one complex variable that is complex di�erentiable at some point is real
di�erentiable at that point too (when considering C � R2), we will obtain that 5 is
real di�erentiable in �F ⊂ R2= as a function of several real variables.

For the sake of notational clarity, let us suppose 9 = =. The proof for existence of
m< 5

mI<
9

for the other 9 ’s will be the same.
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Since 5 (I) =
∑
U∈N= 2UI

U is absolutely convergent in �F , it is unconditionally
convergent in � , and for that matter, there is no problem in reordering the terms in
the sum:

5 (I) =
∞∑

U==1

∑
U∈N=−1

2 (U,U=)I
(U,U=) =

∞∑
U1=1

( ∑
U∈N=−1

2 (U,U=)I
U1
1 · · · I

U=−1
=−1

)
IU== , (2.10)

where we have applied the Fubini-Tonelli theorem for series. Now, for each I ∈
�F , the series (2.10) has the form of a complex power series in I=; and furthermore,
there exists Y > 0 such that {(I1, . . . , I=−1)} × �C(I=, Y) ⊂ �F . That is, for �xed
(I1, . . . , I=−1) ∈ c (�F ), where c : I ∈ C= ↦→ (I1, . . . , I=−1), there is an open disk
of possible values of I= where (2.10) converges. Thus, by Lemma 2.27, 5 is in�nitely
complex di�erentiable with respect to I= . �

The following theorem corresponds to Proposition 2.16 of [Hall1]. On his book,
Hall states the result just for the matrix exponential, although from close inspection,
his proof seems to be applicable to an arbitrary matrix power series. In fact, Hall im-
plicitly admits the di�erentiability of the matrix logarithm in the proofs of the results
of Sect. 3.8 of his book (which correspond to our Sect. 3.8). For this reason, here we
state and prove the result in general.
Theorem 2.28. Every analytic function 5 : * ⊂ C→ C, where* is an open subset

of C, induces an in�nitely di�erentiable function2 5̃ : *̃ ⊂ "= (C) → "= (C) de�ned by
the rule:

If 2 ∈ * and Y > 0 are such that 5 (I) =
∞∑
<=0

0< (I − 2)< for I ∈ �C(2, Y) ⊂ * ,

then 5̃ (/ ) =
∞∑
<=0

0< (/ − 2� )< for / ∈ �"= (C) (2�, Y).

(2.11)

Where the set *̃ is the union of all such �"= (C) (2� ; Y), and thus it is open.
Proof. By Proposition 2.7, we know that the matrix power series given in (2.11) con-
verges and depends continuously on / ∈ �"= (C) (2�, Y).

We must ensure that the value for 5̃ of (2.11) is independent of the chosen power
series representation. That is, we must verify that if 2, 3 ∈ * and Y, X > 0 are such that

5 (I) =
∞∑
<=0

0< (I − 2)<, I ∈ �C(2, Y) ⊂ * ,

5 (I) =
∞∑
<=0

1< (I − 3)<, I ∈ �C(3, X) ⊂ * ,
(2.12)

2In the sense of real manifolds. Equivalently, since "= (C) � R2=2 , all partial derivatives of all
orders exist.
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then
∞∑
<=0

0< (/ − 2� )< =

∞∑
<=0

1< (/ − 3� )<

for all / ∈ �"= (C) (2�, Y) ∩ �"= (C) (3�, X) .
(2.13)

Let 2, 3 ∈ * and Y, X > 0 be ful�lling (2.12). Let � ∈ �"= (C) (2�, Y) ∩ �"= (C) (3�, X)
be a diagonalizable matrix and � ∈ GL(=;C) be such that � = ���−1, where � is
diagonal with diagonal equal to (31, . . . , 3=). These are the eigenvalues of �. Now, by
the Lemma 2.17, it follows that |3 9 − 2 | ≤ ‖� − 2� ‖ < Y, since _ ∈ C is an eigenvalue
of � if and only if _ − 2 is an eigenvalue of � − 2� . Thus

∑∞
<=0 0< (3 9 − 2)< converges

and therefore
∞∑
<=0

0< (� − 2� )< =

∞∑
<=0

0< (���−1 − 2� )<︸             ︷︷             ︸
(� [�−2� ]�−1)< = � (�−2� )<�−1

=

∞∑
<=0

0<� (� − 2� )<�−1

=

∞∑
<=0

0<�
©­­«
(31 − 2)<

. . .

(3= − 2)<

ª®®¬�−1
= �


∞∑
<=0

0<
©­­«
(31 − 2)<

. . .

(3= − 2)<

ª®®¬
 �
−1

= �
©­­«
∑∞
<=0 0< (31 − 2)<

. . . ∑∞
<=0 0< (3= − 2)<

ª®®¬�−1
= �

©­­«
5 (31)

. . .

5 (3=)

ª®®¬�−1.
By a totally analogous argument, we get

∞∑
<=0

1< (� − 3� )< = �
©­­«
5 (31)

. . .

5 (3=)

ª®®¬�−1;
and so, by continuity and Lemma 2.16, we get (2.13).

Let’s now see about the di�erentiability of 5̃ . Let 2 ∈ * and pick some Y > 0 such
that

5 (I) =
∞∑
<=0

0< (I − 2)<, I ∈ �C(2, Y) ⊂ * ,
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for certain coe�cients 0< ∈ C.

We must show that the function

5̃ (/ ) =
∞∑
<=0

0< (/ − 2� )<

is di�erentiable in / ∈ �"= (C) (2�, Y). Without loss of generality, we can assume 2 = 0,
for if we perform the change of variable, = /−2� , it su�ces to show di�erentiability
for

6(, ) = 5̃ (, + 2� ) =
∞∑
<=0

0<,
<, , ∈ �"= (C) (0, Y),

as that would imply di�erentiability for 5̃ (/ ) = 6(/ − 2� ) in �"= (C) (2�, Y).

For the sake of keeping the same notation, we write then

5̃ (/ ) =
∞∑
<=0

0</
<, / ∈ �"= (C) (0, Y).

Let 9, : ∈ {1, . . . , =} be �xed. We shall show that 5̃ 9: : �"= (C) (0, Y) → C given by
5̃ 9: (/ ) = ( 5̃ (/ )) 9: is di�erentiable. To this aim, we will apply Lemma 2.25. We must
write the matrix power series

5̃ 9: (/ ) =
∞∑
<=0

0< (/<) 9: , / ∈ �"= (C) (0, Y) (2.14)

as a several complex variables power series.

The series (2.14) converges absolutely:

∞∑
<=0
|0< | | (/<) 9: | ≤

∞∑
<=0
|0< | ‖/<‖∞ ≤

∞∑
<=0
|0< |� ‖/<‖ ≤ �

∞∑
<=0
|0< | ‖/ ‖< < +∞,

(2.15)
whenever / ∈ �"= (C),‖·‖ (0, Y), where ‖·‖∞ is the in�nity norm and where � > 0 is
such that ‖- ‖∞ ≤ � ‖- ‖ for all - ∈ "= (C) (recall that we always state our results in
terms of an arbitrary matrix norm ‖·‖).

It may seem that at �rst that (2.15) is the absolute convergence required to apply
Lemma 2.25, and it might surprise you that this isn’t true. What happens is that two
di�erent notions of absolute convergence have arisen, and the “absolute convergence”
notion of (2.15) is di�erent from the “absolute convergence” notion of Lemma 2.25.
These notions are, respectively, those of equations (2.16) and (2.17). We will untangle
this problem step-by-step.
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Observe �rst that the term (/<) 9: is a homogeneous polynomial of degree < in
the variables I11, I12, . . . , I== . That is, we can write it as

(/<) 9: =
∑

( 91,:1)≤···≤( 9<,:<)
2
( 9:)
91:1 ... 9<:<

I 91:1 · · · I 9<:< ,

where 2 ( 9:)
91:1 ... 9<:<

are non-negative integral coe�cients and if (01, 11), (02, 12) ∈ N2,
we write (01, 11) ≤ (02, 12) if either 01 < 02 or 01 = 02 and 11 ≤ 12. That is, ≤ is the
lexicographical order in N2. In other words: we are reading the matrix elements from
left to right and from up to down.

With these notations, the absolute convergence of (2.14) is written as
∞∑
<=0
|0< |

������ ∑
( 91,:1)≤···≤( 9<,:<)

2
( 9:)
91:1 ... 9<:<

I 91:1 · · · I 9<:<

������ < +∞ (2.16)

for / ∈ �"= (C) (0, Y). Problem is, from (2.16) it does not follow that
∞∑
<=0
|0< |

∑
( 91,:1)≤···≤( 9<,:<)

2
( 9:)
91:1 ... 9<:<

��I 91:1 · · · I 9<:< �� < +∞, (2.17)

which is the actual condition we would need to apply Lemma 2.25.

We will see how to workaround this matter. Let /0 ∈ �"= (C) (0, Y) be �xed. We
shall see that 5 is di�erentiable in /0.

De�ne the matrix /abs = ( |I0, 9: |) to be the matrix of absolute values of the entries
of /0. Then /abs ∈ �"= (C) (0, Y). Let 1 be the = × = matrix whose entries are all equal
to 1 and pick some X > 0 such that / ′ := /abs + X1 ∈ �"= (C) (0, Y) (such a X always
exists for �"= (C) (0, Y) is open). This way, it is the case that /0 ∈ �/ ′ , where

�/ ′ =

=∏
9,:=1

�C(0, | (/ ′) 9: |) =
=∏

9,:=1
�C(0, |I0, 9: | + X)

(this notation is taken from Lemma 2.25). Now, since ‖/ ′‖ < Y the series 5̃ 9: (/ ′)
of (2.14) is convergent, and thus, it converges absolutely in the sense of (2.16), just
as before. Moreover, because (and only because) the entries of / ′ are all positive, it
also converges absolutely in the sense of (2.17). Thus, by Lemma 2.25 the complex
multivariate series

∞∑
<=0

0<

∑
( 91,:1)≤···≤( 9<,:<)

2
( 9:)
91:1 ... 9<:<

I 91:1 · · · I 9<:<

converges in all �/ ′ and is in�nitely di�erentiable there. So 5 is in�nitely di�eren-
tiable in �/ ′ ∩ �"= (C) (0, Y), an open set which contains /0. �

In particular, the theorem applies for the matrix exponential and the matrix log-
arithm. Thus, the matrix exponential is everywhere �∞ and the matrix logarithm is
�∞ in �"= (C) (� , 1).



3 Lie Algebras

3.1 De�nitions and First Examples

We now introduce the “abstract” notion of a Lie algebra. In a coming section we will
associate to each matrix Lie group a Lie algebra. It is customary to use lower case
Gothic (Fraktur) characters such as g and h to refer to Lie algebras.

De�nition 3.1. A real or complex Lie algebra is a real or complex algebra
(g, [·, ·]) such that

• [·, ·] is anti-symmetric: [-,. ] = −[.,- ] for all -,. ∈ g.
• The Jacobi identity holds:

[-, [., / ]] + [., [/,- ]] + [/, [-,. ]] = 0

for all -,., / ∈ g.

The map [·, ·] is referred to as the Lie bracket or bracket operation on g. If
(A, [·, ·]) is a real or complex algebra, then its bilinear form [·, ·] is anti-symmetric
if and only if it is alternating, i. e., [-,- ] = 0 for every - ∈ A. It is clear that
anti-symmetry implies alternation. For the converse, if [·, ·] is alternating, then 0 =

[- + .,- + . ] = [-,- ] + [.,. ] + [-,. ] + [.,- ] = [-,. ] + [.,- ].

Note that the anti-symmetry condition for the Lie bracket implies that if g is a Lie
algebra, then g is commutative if and only if its Lie bracket is trivial, [-,. ] = 0 for all
-,. ∈ g. In general, the Lie bracket of a Lie algebra is not associative; nevertheless,
the Jacobi identity can be viewed as a substitute for associativity.

Example 3.2. Let g = R3 and let [·, ·] : R3 × R3 → R3 be given by

[G,~] = G × ~,

where G × ~ is the cross product (or vector product). Then g is a Lie algebra.
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Proof. Bilinearity and anti-symmetry are standard properties of the cross product. To
verify the Jacobi identity, it su�ces (by bilinearity) to verify it when G = 4 9 ,~ = 4: and
I = 4; , where 41, 42 and 43 are the standard basis elements for R3. If either 9 = : = ;

or 9, :, ; are all distinct, then each term in the Jacobi identity is zero. It remains to
consider the case in which two of 9, :, ; are equal and the third is di�erent: we must
verify the identity [

4 9 ,
[
4 9 , 4:

] ]
+

[
4 9 ,

[
4: , 4 9

] ]
+

[
4: ,

[
4 9 , 4 9

] ]
= 0. (3.1)

The �rst two terms in (3.1) are negatives of each other and the third is zero. �

Given an associative algebra A, we de�ne its commutator [·, ·] : A × A → A
as [-,. ] = -. − .- for -,. ∈ A. This way, - and . commute in A if and only if
[-,. ] = 0.

Proposition 3.3. Every associative algebra is also a Lie algebra with the commuta-
tor as the Lie bracket.

Proof. The bilinearity and anti-symmetry of the bracket are evident. To verify the
Jacobi identity, note that each double bracket generates four terms, for a total of 12
terms. It is left to the reader to verify that the product of -,. and / in each of the six
possible orderings occurs twice, once with a plus sign and once with a minus sign. �

If we look carefully at the proof of the Jacobi identity, we see that the two oc-
currences of, say, -./ occur with di�erent groupings, once as - (./ ) and once as
(-. )/ . Thus, associativity of the algebra A is essential. For any Lie algebra, the Ja-
cobi identity means that the bracket operation behaves as if it were -. −.- in some
associative algebra, even if it is not actually de�ned this way. As a curiosity, every Lie
algebra can be embedded in an associative algebra in such a way that the Lie bracket
becomes -. − .- , it is the universal enveloping algebra of a Lie algebra (cf. Sect. 9.3
of [Hall1] for more on this topic).

Of particular interest to us is the case in which A is the space "= (C) of = × =
complex matrices.

De�nition 3.4. A subalgebra of a real or complex Lie algebra g is a subspace h of
g such that [�1, �2] ∈ h for all �1, �2 ∈ h. If g is a complex Lie algebra and h is a real
subspace of g which is closed under brackets, then h is said to be a real subalgebra
of g.

A subalgebra of a Lie algebra is a Lie algebra by its own right, with the restriction
of the Lie bracket to the subalgebra in question.

Example 3.5. Let sl(=;C) be the space - ∈ "= (C) for which trace- = 0. Then
sl(=;C) is a Lie subalgebra of "= (C).
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Proof. For any - and . in "= (C), we have

trace(-. − .- ) = trace(-. ) − trace(.- ) = 0,

since trace is invariant under cyclic permutations (Lemma 1.10). �

De�nition 3.6. If g and h are Lie algebras, then a linear map q : g → h is
called a Lie algebra homomorphism if it preserves Lie brackets; that is,q ( [-,. ]) =
[q (- ), q (. )] for all -,. ∈ g. If, in addition, q is bijective, then q−1 is also a Lie alge-
bra homomorphism and q is then called a Lie algebra isomorphism. A Lie algebra
isomorphism of a Lie algebra with itself is called a Lie algebra automorphism.

Indeed, if q : g → h is a bijective Lie algebra homomorphism, then q−1 is linear
and a Lie algebra homomorphism: for every /,� ∈ h there exists unique -,. ∈ g

such that q (- ) = / , q (. ) = � and we have

q−1( [/,� ]) = q−1( [q (- ), q (. )]) = q−1(q ( [-,. ]))) = [-,. ] = [q−1(/ ), q−1(. )] .

De�nition 3.7. If g is a Lie algebra and - is an element of g, de�ne a linear map
ad- : g→ g by

ad- (. ) = [-,. ] .

The map - ↦→ ad- is the adjoint map or adjoint representation.

Although ad- (. ) is just [-,. ], the alternative “ad” notation can be useful. For
example, instead of writing

[-, [-, [-, [-,. ]]]],

we can now write
(ad- )4(. ).

This sort of notation will be essential in chapter 5. We can view ad (that is, the map
- ↦→ ad- ) as a linear map of g into End(g), the space of linear operators on g. The
Jacobi identity is interpretable in terms of the properties of ad- . In a real or complex
algebra (A, [·, ·]) a derivation is a linear map � : A → A that satis�es Leibniz’s
law:

� ( [-,. ]) = [� (- ), . ] + [-, � (. )] .

The concept of a derivation generalizes the product rule 3 (5 6)
3C

=
3 5

3C
6 + 5 36

3C
for real

di�erentiable functions. With this terminology, it turns out that the Jacobi identity is
equivalent to the assertion that ad- is a derivation in the Lie algebra:

ad- ( [., / ]) = [ad- (. ), / ] + [., ad- (/ )] .
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Proposition 3.8. If g is a Lie algebra, then

ad[-,. ] = ad- ad. − ad. ad- = [ad- , ad. ];

that is, ad : g→ End(g) is a Lie algebra homomorphism.

Proof. Observe that
ad[-,. ] (/ ) = [[-,. ], / ],

whereas
[ad- , ad. ] (/ ) = [-, [., / ]] − [., [-,/ ]] .

Thus, we want to show that

[[-,. ], / ] = [-, [., / ]] − [., [-,/ ]],

which is equivalent to the Jacobi identity. �

De�nition 3.9. If g1 and g2 are Lie algebras, the direct sum of g1 and g2 is the
vector space direct sum of g1 and g2, with the bracket given by

[(-1, -2) , (.1, .2)] = ( [-1, .1] , [-2, .2]) . (3.2)

If g is a Lie algebra and g1 and g2 are subalgebras, we say that g decomposes as the
Lie algebra direct sum of g1 and g2 if g is the direct sum of g1 and g2 as vector spaces
and [-1, -2] = 0 for all -1 ∈ g1 and -2 ∈ g2.

It is straightforward to verify that the bracket in (3.2) makes g1 ⊕ g2 into a Lie
algebra. If g decomposes as a Lie algebra direct sum of subalgebras g1 and g2, it is
easy to check that g is isomorphic as a Lie algebra to the “abstract” direct sum of g1
and g2. (This would not be the case without the assumption that every element of g1
commutes with every element of g2.)
De�nition 3.10. Let g be a �nite-dimensional real or complex Lie algebra, and let

-1, . . . , -# be a basis for g (as a vector space). Then the unique constants 2 9:; such
that [

- 9 , -:
]
=

#∑
;=1

2 9:;-;

are called the structure constants of g (with respect to the chosen basis).

Although we will not have much occasion to use them, structure constants do ap-
pear frequently in the physics literature. The structure constants satisfy the following
two conditions:

2 9:; + 2: 9; = 0,∑
=

(
2 9:=2=;< + 2:;=2=9< + 2; 9=2=:<

)
= 0

for all 9, :, ;,<. The �rst of these conditions comes from the anti-symmetry of the
bracket, and the second comes from the Jacobi identity.
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3.2 The Lie Algebra of a Matrix Lie Group

In this section, we associate to each matrix Lie group� a Lie algebrag. Many questions
involving a group can be studied by transferring them to the Lie algebra, where we
can use tools of linear algebra. We begin by de�ning g as a set, and then proceed to
give g the structure of a Lie algebra.

De�nition 3.11. Let� be a matrix Lie group. The Lie algebra of� , denoted g or
Lie� , is the set of all matrices - such that 4C- is in � for all real numbers C .

Equivalently,- is in g if and only if the entire one-parameter subgroup (De�nition
2.22) generated by- lies in� . Note that merely having 4- in� does not guarantee that
- is in g. Even though� is a subgroup of GL(=;C) (and not necessarily of GL(=;R)),
we do not require that 4C- be in � for all complex numbers C , but only for all real
numbers C . We will show in Sect. 3.7 that every matrix Lie group is an embedded
submanifold of GL(=;C). We will then show that g is the tangent space to� at the
identity.

We will now establish various basic properties of the Lie algebra g of a matrix Lie
group� . In particular, we will see that there is a bracket operation on g that makes g
into a Lie algebra in the sense of de�nition 3.1.

Theorem 3.12. Let � be a matrix Lie group with Lie algebra g. If - and . are
elements of g, the following results hold.

1. �-�−1 ∈ g for all � ∈ � .
2. B- ∈ g for all real numbers B .
3. - + . ∈ g.
4. -. − .- ∈ g.

It follows from this result and Proposition 3.3 that the Lie algebra of a matrix Lie
group is a real Lie algebra, with bracket given by [-,. ] = -. − .- .

Proof. For Point 1, we observe that, by Proposition 2.12,

4C (�-�
−1) = �4C-�−1 ∈ �

for all C , showing that�-�−1 is in g. For Point 2, we observe that 4C (B- ) = 4 (CB)- which
must be in � for all C ∈ R if - is in g. For Point 3 we use the Lie product formula,
which says that

4C (-+. ) = lim
<→∞
(4C-/<4C./<)< .

(Theorem 2.20.) Thus, (4C-/<4C./<)< is in� for all<. Since� is closed, the limit must
be again in � . This shows that - + . is in g.
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Finally, for Point 4, we use the product rule1 and Proposition 2.13 to compute

3

3C

(
4C-.4−C-

)����
C=0

= (-. )40 +
(
40.

)
(−- )

= -. − .- .

Now, by Point 1, 4C-.4−C- is in g for all C . Furthermore, by Points 2 and 3, g is a real
subspace of "= (C), from which it follows that g is a (topologically) closed subset of
"= (C). Thus,

-. − .- = lim
ℎ→0

4ℎ-.4−ℎ- − .
ℎ

belongs to g. �

Note that even if the elements of� have complex entries, the Lie algebra g of� is
not necessarily a complex vector space, since Point 2 holds, in general, only for B ∈ R.
Nevertheless it may happen in certain cases that g is a complex vector space.

De�nition 3.13. A matrix Lie group � is said to be complex if its Lie algebra g

is a complex subspace of "= (C), that is, if 8- ∈ g for all - ∈ g.

Examples of complex groups are GL(=;C) and SL(=;C), as the calculations in
Sect. 3.3 will show.

Proposition 3.14. If � is commutative then g is commutative.

We will see in Sect. that if � is path-connected and g is commutative, � must be
commutative.

Proof. For any two matrices -,. ∈ "= (C), the commutator of - and . may be
computed as

[-,. ] = 3

3C

(
3

3B
4C-4B.4−C-

����
B=0

)����
C=0

. (3.3)

If � is commutative and - and . belong to g, then 4C- commutes with 4B. and the
expression in parentheses on the right hand side of (3.3) is independent of C , so that
[-,. ] = 0. �

1If �, � : � ⊂ R→ "= (C) are di�erentiable matrix-valued functions, where � is an open interval,
the product rule for matrices is 3

3C
(�(C)�(C)) = 3�(C)

3C
�(C) +�(C)3�(C)

3C
. Indeed,

3

3C
(�(C)�(C)) = lim

ℎ→0

�(C + ℎ)�(C + ℎ) −�(C)�(C)
ℎ

= lim
ℎ→0

�(C + ℎ)�(C + ℎ) −�(C)�(C + ℎ) +�(C)�(C + ℎ) −�(C)�(C)
ℎ

= lim
ℎ→0

(
�(C + ℎ) −�(C)

ℎ
�(C + ℎ)

)
+ lim
ℎ→0

(
�(C)�(C + ℎ) − �(C)

ℎ

)
=
3�(C)
3C

�(C) +�(C)3�(C)
3C

.



3. lie algebras 43

3.3 Examples

Physicists are accustomed to using the map C ↦→ 48C- rather than C ↦→ 4C- . Thus, the
physicists’ expressions for the Lie algebras of matrix Lie groups will di�er by a factor
of 8 from the expressions we now derive.

Note that if� and � are matrix Lie groups, then� ∩� is also a matrix Lie group
and, by logic, we have Lie(� ∩ � ) = Lie� ∩ Lie� .

Proposition 3.15. The Lie algebra of GL(=;C) is the space"= (C) of all = × = ma-
trices with complex entries. Similarly, the Lie algebra of GL(=;R) is equal to"= (R). The
Lie algebra of SL(=;C) consists of all = × = complex matrices with trace zero, and the
Lie algebra of SL(=;R) consists of all = × = real matrices with trace zero.

We denote the Lie algebras of these groups as gl(=;C), gl(=;R), sl(=;C), and sl(=;R),
respectively.

Proof. If - ∈ "= (C), then 4C- is invertible, so that - belongs to the Lie algebra of
GL(=;C). If - ∈ "= (R), then 4C- is invertible and real, so - is in the Lie algebra of
GL(=;R). Conversely, if 4C- is real for all real C , then - = 3 (4C- )/3C |C=0 must also be
real. If - ∈ "= (C) has trace zero, then by Theorem 2.21, det(4C- ) = 1, showing that
- is in the Lie algebra of SL(=;C). Conversely, if det(4C- ) = 4C trace(- ) = 1 for all real
C , then

trace(- ) = 3

3C
4C trace(- )

����
C=0

= 0.

Finally, the Lie algebra of SL(=;R) = SL(=;C) ∩ GL(=;R) equals sl(=;C) ∩ gl(=;R),
the set of = × = real matrices with trace zero. �

Proposition 3.16. The Lie algebra of U(=) consists of all complex matrices satisfy-
ing - ∗ = −- (that is, - is anti-Hermitian) and the Lie algebra of SU(=) consists of all
complex matrices satisfying - ∗ = −- and trace(- ) = 0. The Lie algebra of the orthog-
onal group O(=) consists of all real matrices - satisfying - tr = −- and the Lie algebra
of SO(=) is the same as that of O(=).

The Lie algebras of U(=) and SU(=) are denoted u(=) and su(=), respectively. The
Lie algebra of SO(=) (which is the same as that of O(=)) is denoted so(=).

Proof. A matrix* is unitary if and only if* ∗ = * −1. Thus, 4C- is unitary if and only
if (

4C-
)∗

=

(
4C-

)−1
= 4−C- . (3.4)

By Point 2 of Proposition 2.12,
(
4C-

)∗
= 4C-

∗ , and so (3.4) becomes

4C-
∗
= 4−C- . (3.5)
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The condition (3.5) holds for all real C if and only if - ∗ = −- (for the implication to
the right, apply 3

3C
(·) |C=0 to (3.5)). Thus, the Lie algebra of U(=) consists precisely of

matrices - such that - ∗ = −- . The Lie algebra of SU(=) = U(=) ∩ SL(=;C) equals
u(=) ∩sl(=;C), the family of anti-Hermitian matrices with trace zero. The Lie algebra
of O(=) = U(=) ∩ GL(=;R) equals u(=) ∩ gl(=;R), the family of real anti-symmetric
matrices. Observe that a matrix - ∈ Lie(O(=)) has trace zero, for - is real and so
- tr = −- implies that the diagonal elements must be zero. Finally, the Lie algebra of
SO(=) = O(=) ∩ SL(=;R) equals Lie(O(=)) ∩ sl(=;R) = Lie(O(=)), the set of real
anti-symmetric matrices (which therefore must have trace zero). �

Lemma 3.17. A linear function between Lie algebras preserves Lie brackets if and
only if it preserves them over a generating set. Speci�cally, let g and h be real or complex
Lie algebras, let {4 9 } 9∈� ⊂ g be such that span({4 9 } 9∈� ) = g and suppose that q : g→ h

is linear. Then q is a Lie algebra homomorphism if and only if

q ( [4 9 , 4:]) = [q (4 9 ), q (4:)], for all 9, : ∈ � . (3.6)

Furthermore, if q is additionally a vector space isomorphism, then q is a Lie algebra
isomorphism if and only if (3.6) holds.
Proof. We begin by proving the �rst part of the lemma.

(⇒) It is clear.

(⇐) Let D, E ∈ g. There exists a �nite set � ⊂ � and scalars 0 9 , 1 9 , for 9 ∈ � , such
that

D =
∑
9∈�

0 94 9 , E =
∑
9∈�
1 94 9 .

By bilinearity of the bracket and linearity of q , we have

q ( [D, E]) = q ©­«

∑
9∈�

0 94 9 ,
∑
:∈�

1:4:

ª®¬
= q

©­«
∑
9,:∈�

0 91: [4 9 , 4:]
ª®¬

=
∑
9,:∈�

0 91:q ( [4 9 , 4:])

=
∑
9,:∈�

0 91: [q (4 9 ), q (4:)]

=


∑
9∈�

0 9q (4 9 ),
∑
:∈�

1:q (4:)


=

q
(∑
9∈�

0 94 9

)
, q

©­«
∑
:∈�

1:4:
ª®¬

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= [q (D), q (E)] .

For the second part of the lemma, the implication (⇒) is clear again so we prove
(⇐). If q is a vector space isomorphism and (3.6) holds, then we have already proven
that q is also a Lie algebra homomorphism. But then, by de�nition, q is also a Lie
algebra isomorphism. �

Example 3.18. From Proposition 3.16 it follows that the following elements form a
basis for the Lie algebra su(2):

�1 =
1
2

(
8 0
0 −8

)
, �2 =

1
2

(
0 8

8 0

)
, �3 =

1
2

(
0 −1
1 0

)
.

These elements satisfy the commutation relations [�1, �2] = �3, [�2, �3] = �1, and
[�3, �1] = �2. In the same manner, from Proposition 3.16 it follows that the following
elements form a basis for the Lie algebra so(3):

�1 =
©­­«
0 0 0
0 0 −1
0 1 0

ª®®¬ , �2 =
©­­«
0 0 1
0 0 0
−1 0 0

ª®®¬ , �3 =
©­­«
0 −1 0
1 0 0
0 0 0

ª®®¬ .
These elements satisfy the commutation relations [�1, �2] = �3, [�2, �3] = �1, and
[�3, �1] = �2.

Note that the listed relations completely determine all commutation relations among,
say, �1, �2, and �3, since by the anti-symmetry of the bracket, we must have [�1, �1] =
0, [�2, �1] = −�3, and so on. Since �1, �2, and �3 satisfy the same commutation rela-
tions as �1, �2, and �3, by Lemma 3.17 the two Lie algebras are isomorphic.

3.4 Categories and Functors

The text of this section is taken from sections 1.1 and 1.3 of [Rieh]. We have added
minor notational and terminological changes and selected only the parts relevant for
this thesis.

A general strategy in Mathematics when one is dealing with a di�cult object—
such as, say, a Lie group—is to associate each instance of this object with a new “sim-
pler” object, easier to study. Usually, the “simpler” object is cleverly chosen so as to
retain some kind of information of the di�cult object, in a way that through the study
of the former one can obtain information of the latter.

In our case, the “simpler” object that we associate each Lie group with is its Lie
algebra. After all, vector spaces are easier to study than groups.
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The precise mathematical description of the association map� ↦→ Lie� , as Corol-
lary 3.31 asserts, is that of a functor. But before seeing that, we need to de�ne the
concept of a functor, of course. That is what we will do in this section.

A functor is a certain kind of map between categories.
De�nition 3.19. A category consists of

• a class of objects -,., /, . . .
• a class of morphisms 5 , 6, ℎ, . . .

so that:

• Each morphism has speci�ed domain and codomain objects; the notation 5 :
- → . signi�es that 5 is a morphism with domain - and codomain . .

• Each object has a designated identity morphism 1- : - → - .
• For any pair of morphisms 5 , 6 with the codomain of 5 equal to the domain of
6, there exists a speci�ed composite morphism2 65 whose domain is equal to
the domain of 5 and whose codomain is equal to the codomain of 6, i. e.:

5 : - → ., 6 : . → / { 65 : - → / .

This data is subject to the following two axioms:

• For any 5 : - → . , the composites 1. 5 and 5 1- are both equal to 5 .
• For any composable triple of morphisms 5 , 6, ℎ, the compositesℎ(65 ) and (ℎ6) 5

are equal and henceforth denoted by ℎ65 .

5 : - → ., 6 : . → /, ℎ : / →, { ℎ65 : - →, .

That is, the composition law is associative and unital with the identity morphisms
serving as two-sided identities.

It is traditional to name a category after its objects; typically, the preferred choice
of accompanying structure-preserving morphisms is clear. Let’s see it with examples.

Example 3.20. Many familiar varieties of mathematical objects assemble into a cat-
egory.

(i) The category of sets, denoted Set, has the class of all sets as its class of objects
and has the functions between sets as its morphisms.

(ii) Top has topological spaces as its objects and continuous functions as its mor-
phisms.

(iii) Group has groups as objects and group homomorphisms as morphisms. The
categories Ring of associative and unital rings and ring homomorphisms and
Field of �elds and �elds homomorphisms are de�ned similarly.

2The composite may be written less concisely as 6 ◦ 5 when this adds typographical clarity.
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(iv) LieGrp has Lie groups as objects and Lie group homomorphisms as morphisms.
MtxLieGrp has matrix Lie groups as objects and Lie group homomorphisms be-
tween them as morphisms.

(v) If K is any �eld, VectK is the category of K-vector spaces and K-vector space
homomorphisms. We also denote FinVectK the category of �nite-dimensional
K-vector spaces and K-vector space homomorphisms between them.

(vi) If K = R or C, LieAlgK is the category of Lie K-algebras and Lie K-algebra
homomorphisms. We also denote FinLieAlgK the category of �nite-dimensional
Lie K-algebras and Lie K-algebra homomorphisms between them.

(vii) Man has di�erentiable manifolds as objects and di�erentiable functions as mor-
phisms.

(viii) Categories Set∗, Top∗, and Man∗ have sets (respectively, topological spaces and
manifolds) with a speci�ed basepoint as objects and base-point preserving (con-
tinuous, di�erentiable) functions as morphisms. That is, objects are pairs (-, G),
where - is a set (resp., a topological space or a manifold) and G ∈ - ; and mor-
phisms which have domain (-, G) and codomain (.,~) are (continuous or dif-
ferentiable) functions 5 : - → . such that 5 (G) = ~. The category Set∗ (resp.,
Top∗, Man∗) is called the category of pointed sets (resp., of pointed topological
spaces and pointed manifolds).3

(ix) Meas has measurable spaces as objects and measurable functions as morphisms.
(x) Poset has partially-ordered sets as objects and order-preserving functions as

morphisms.

The previous examples are all instances of so-called “concrete” categories. In these
categories, each object of the category has an underlying set and morphisms are really
functions between these sets.

However, “abstract” categories are also prevalent:

Example 3.21.

(i) A group � de�nes a category with a single object. The group elements are its
morphisms, each group element representing a distinct endomorphism of the
single object, with composition given by multiplication. The identity element
4 ∈ � acts as the identity morphism for the unique object in this category. More
generally, this construction also works when � is a monoid.

(ii) For a unital ring ', Mat' is the category whose objects are positive integers and
in which the set of morphisms from = to < is the set of < × = matrices with
values in '. Composition is by matrix multiplication

=
�→<, <

�→ : { =
�·�−→ :

with identity matrices serving as the identity morphisms.
3In Spanish, “pointed set” is conjunto punteado.
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(iii) A poset (%, ≤) may be regarded as a category. The elements of % are the ob-
jects of the category and there exists a unique morphism G → ~ if and only
if G ≤ ~. Transitivity of the relation “≤” implies that the required composite
morphisms exist. Re�exivity implies that identity morphisms exist. More gen-
erally, this same construction can be carried out if ≤ is a preorder on % ; that is,
a binary relation in % which is both re�exive and transitive (if ≤ is additionally
antisymmetric then it is known as a partial order).

The previous examples illustrate the idea that morphisms in a category are not
always functions. For that reason, morphisms are also called arrows or maps, par-
ticularly in the contexts of examples 3.21 and 3.20, respectively.

Nonetheless, in the rest of this thesis the only categories we will ever consider are
just a few “concrete” categories: those of examples 3.20 (iv) and (v).

A subcategory D of a category C is de�ned by restricting to a subclass of ob-
jects and a subclass of morphisms subject to the requirements that the subcategory
D contains the domain and codomain of any morphism in D, the identity morphism
of any object in D, and the composite of any composable pair of morphisms in D. For
example, there is a subcategory CRing ⊂ Ring of commutative unital rings.

A category provides a context in which to answer the question “When is one
thing the same as the other thing?” Almost universally in mathematics, one regards
two objects of the same category to be “the same” when they are isomorphic, in a
precise categorical sense that we now introduce
De�nition 3.22. An isomorphism in a category is a morphism 5 : - → . for

which there exists a morphism 6 : . → - so that 65 = 1- and 5 6 = 1. . The objects
- and . are isomorphic whenever there exists an isomorphism between - and . ,
in which case one writes - � . .

An endomorphism, i. e., a morphism whose domain equals its codomain, that is
an isomorphism is called an automorphism.
Example 3.23.

(i) The isomorphisms in Set are precisely the bijections.
(ii) The isomorphisms in Group, Ring, Field, or VectK are the bijective homomor-

phisms.
(iii) The isomorphisms in the category Top are the homeomorphisms, and the

isomorphisms in Man are the di�eomorphisms.

In mathematics, after introducing a new object, the next thing which is usually
introduced is the kind of map which allows to relate two instances of the same object.
They are the structure-preserving maps of a speci�c mathematical structure. In ab-
stract algebra, they are the homomorphisms, which relate two instances of the same
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algebraic structure, such as ring, group or module homomorphisms. In category the-
ory, the map which relates two categories is a functor.

De�nition 3.24. A functor4 � : C→ D, between categories C and D, consists of
the following data:

• An object �2 ∈ D, for each object 2 ∈ C.
• A morphism � 5 : �2 → �2′ ∈ D, for each morphism 5 : 2 → 2′ ∈ C, so that the

domain and codomain of � 5 are, respectively, equal to � applied to the domain
or codomain of 5 .

The assignments are required to satisfy the following two functoriality axioms:

• For any composable pair 5 , 6 in C, �6 ◦ � 5 = � (6 ◦ 5 ).
• For each object 2 in C, � (12) = 1�2 .

Put concisely, a functor consists of a mapping on objects and a mapping on morphisms
that preserves all of the structure of a category, namely domains and codomains, com-
position, and identities.

The previous de�nition is actually the de�nition for a covariant functor. In con-
trast, a contravariant functor � : C → D between categories C and D is a thing
which satis�es De�nition 3.24 except the �rst functoriality axiom. Instead, and by
de�nition, a contravariant functor reverses compositions, so for any composable pair
5 , 6 in C, we have � (6 ◦ 5 ) = � 5 ◦ �6.

Example 3.25.

(i) There is a covariant endofunctor5 % : Set→ Set that sends a set � to its power
set %� = {�′ ⊂ �} and a function 5 : � → � to the direct-image function
5∗ : %�→ %� that sends �′ ⊂ � to 5 (�′) ⊂ �.

(ii) There is a contravariant functor %̃ : Set → Set that sends a set � to its power
set %� and a function 5 : �→ � to the inverse-image function 5 −1 : %� → %�

that sends �′ ⊂ � to 5 −1(�′) ⊂ �.
(iii) Each of the categories listed in Example 3.20 has a forgetful functor,6 a general

term that is used for any functor that forgets structure, whose codomain is the
category of sets. For example,* : Group→ Set sends a group to its underlying
set and a group homomorphism to its underlying function. The functor * :
Top → Set sends a topological space to its set of points. These mappings are
functorial because in each instance a morphism in the domain category has an
underlying function. Other instance of a forgetful functor may be* : LieGrp→
Man, which sends a Lie group to its underlying manifold, forgetting the group

4In Spanish, the word is funtor.
5An endofunctor is a functor whose domain is equal to its codomain.
6In Spanish, the term is funtor olvidadizo.
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structure in the process. We also could de�ne the analogous forgetful functor
* : LieGrp→ Group.

(iv) There is a functor (−)∗ : VectK → VectK that carries a vector space to its dual
vector space+ ∗ = Hom(+ ,K). This functor is contravariant, with a linear map
q : + → , sent to the linear map q∗ : , ∗ → + ∗ that pre-composes a linear
functional, l→ K with q to obtain a linear functional +

q
→,

l→ K.
(v) In algebraic topology, the fundamental group de�nes a covariant functor

c1 : Top∗ → Group; a continuous function 5 : (-, G) → (.,~) between pointed
spaces induces a group homomorphism 5∗ : c1(-, G) → c1(.,~) and this as-
signment is functorial: it satis�es the functoriality axioms from De�nition 3.24.

(vi) The chain rule expresses the functoriality of the derivative. Let Euclid∗ denote
the category whose objects are pointed �nite-dimensional Euclidean spaces
(R=, 0)—or, better, open subsets thereof—and whose morphisms are pointed dif-
ferentiable functions. The total derivative of 5 : R= → R< , evaluated at the
designated basepoint 0 ∈ R= , gives rise to a the Jacobian matrix de�ning the
directional derivatives of 5 at the point 0. If 5 is given by component functions
51, . . . , 5< : R= → R, the (8, 9)-entry of this matrix is m

mG 9
58 (0). This de�nes the

action on morphisms of a covariant functor � : Euclid∗ → MatR; on objects, �
assigns a pointed Euclidean space its dimension. Given 6 : R< → R: carrying
the designated basepoint 5 (0) ∈ R< to 65 (0) ∈ R: , the functoriality of � as-
serts that the product of the Jacobian of 5 at 0 with the Jacobian of 6 at 5 (0)
equals the Jacobian of65 at 0. This is the chain rule from multivariable calculus.

(vii) A more sophisticated version of the previous Example 3.25 (vi) comes from dif-
ferential geometry. For each di�erentiable map 5 : " → # between manifolds
" and # , we have the derivative 3 50 : )0" → )5 (0)# at a point 0 ∈ " be-
tween the tangent spaces of " at 0 and of # at 5 (0). This de�nes the action
on morphisms of a covariant functor 3 : Man∗ → FinVectR, which goes from
the category of pointed di�erentiable manifolds into the category of real �nite
dimensional vector spaces; on objects, 3 assigns the pointed manifold (",0)
its tangent space at 0. Functoriality here is then precisely the chain rule in dif-
ferential geometry, 3 (6 ◦ 5 )0 = 365 (0) ◦ 3 50 . If instead of �xing our attention
to particular points on the manifolds, we consider the di�erential de�ned be-
tween the tangent bundles 3 5 : )" → )# , we get a covariant endofunctor
) : Man→ Man. It sends the manifold" to its tangent bundle)" and it sends
the di�erentiable function 5 : " → # to the di�erentiable function 3 5 .

(viii) A groupoid is a category in which every morphism is an isomorphism. By
Example 3.21 (i), we can regard every group � as a category with one single
object, whose morphisms corresponds to the group elements. In this category,
every morphism is invertible, i.e., every morphism is an isomorphism. For that
reason, we can proceed backwards and de�ne a group to be a groupoid with a
one single object. This begs the question: what is a functor between groups? If
� and � are groups (i.e., groupoids with one single object) and 5 : � → � is a
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functor, then 5 (66′) = 5 (6) 5 (6′) for every two morphisms 6,6′ ∈ � . That is, 5
corresponds to a group homomorphism.

The following result is arguably the �rst lemma in category theory.
Lemma 3.26. Functors preserve isomorphisms.

Proof. Consider a covariant functor � : C→ D and an isomorphism 5 : G → ~ in C
with inverse 6 : ~ → G . Applying the two functoriality axioms:

� (6)� (5 ) = � (65 ) = � (1G ) = 1�G .

Thus, �6 : �~ → �G is a left inverse to � 5 : �G → �~. Exchanging the roles of
5 and 6 shows that �6 is also a right inverse. The proof when � is contravariant is
analogous. �

Corollary 3.27. Functors preserve isomorphic objects: if � : C→ D is a functor and
G � ~ in C, then �G � �~ in D.

Examples of applications of Corollary 3.27 are:

(i) Any two path-connected homeomorphic topological spaces must have isomor-
phic fundamental groups (by Example 3.25 (v)).

(ii) Any two di�eomorphic manifolds must have same dimension, for their tangent
spaces must be isomorphic (by Example 3.25 (vii)); as well as di�eomorphic
tangent bundles.

Another remarkable property of functors is that they transform commutative dia-
grams into commutative diagrams, as a commutative diagram is just a graphical rep-
resentation of an equality between compositions of morphisms and functors preserves
composition of morphisms.

Converse of Lemma 3.26 is false. If D is a category with one single object G and
one single morphism—namely, 1G—then there is a functor � from any category C into
D which sends every object of C to G and every morphism of C to 1G . If C has a
morphism 5 which is not an isomorphism, then � would send the non-isomorphism
5 to the isomorphism 1G . This can also provide a counterexample to the converse of
Corollary 3.27.
De�nition 3.28. A functor � : C→ D is said to re�ect isomorphisms if when-

ever 5 is a morphism of C such that � 5 is an isomorphism in D then 5 is an isomor-
phism. The functor � is said to create isomorphisms if whenever G and~ are objects
in C such that �G � �~ then G � ~. Lastly, the functor � is said to re�ect and create
isomorphisms if it both re�ects isomorphisms and creates isomorphisms.

In other words, � re�ects isomorphisms if for all morphisms 5 of C, 5 is an iso-
morphism if and only if � 5 is an isomorphism; and � creates isomorphisms if for all
objects G and ~ of C, G � ~ if and only if �G � �~.
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A functor that creates isomorphisms is one that is “injective on objects up to iso-
morphism.” Functors that re�ect isomorphisms are sometimes also called conserva-
tive functors in the literature.

3.5 The Lie Functor

The following theorem tells us that a Lie group homomorphism between two Lie
groups gives rise in a natural way to a map between the corresponding Lie algebras.

Theorem 3.29. Let � and � be matrix Lie groups, with Lie algebras g and h, re-
spectively. Suppose that Φ : � → � is a Lie group homomorphism. Then there exists a
unique real-linear map q : g→ h such that

Φ(4- ) = 4q (- ) (3.7)

for all - ∈ g. Equivalently, such that the diagram

g h

� �

q

Φ

exp exp

commutes. The map q has the following additional properties:

1. q (�-�−1) = Φ(�)q (- )Φ(�)−1, for all - ∈ g, � ∈ � .
2. q ( [-,. ]) = [q (- ), q (. )], for all -,. ∈ g.
3. q (- ) = 3

3C
Φ(4C- ) |C=0, for all - ∈ g.

In practice, given a Lie group homomorphism Φ, the way one goes about com-
puting q is by using Property 3. In the language of manifolds, Property 3 says that
q is the derivative (or di�erential) of Φ at the identity. By point 2, q : g → h is a
Lie algebra homomorphism. Thus, every Lie group homomorphism gives rise to a Lie
algebra homomorphism. In Chapter 5, we will investigate the reverse question: If q is
a homomorphism between the Lie algebras of two Lie groups, is there an associated
Lie group homomorphism Φ?

Proof. The proof is similar to the proof of Theorem 3.12. Since Φ is a continuous
group homomorphism, Φ(4C- ) will be a one-parameter subgroup of� , for each- ∈ g.
Thus, by Theorem 2.23, there is a unique matrix / such that

Φ(4C- ) = 4C/ (3.8)

for all C ∈ R. We de�ne q (- ) = / and check that q has the required properties. First,
by putting C = 1 in (3.8), we see that Φ(4- ) = 4q (- ) for all - ∈ g. Next, if Φ(4C- ) = 4C/
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for all C , then Φ(4CB- ) = 4CB/ , showing that q (B- ) = Bq (- ). Using the Lie product
formula (Theorem 2.20) and the continuity of Φ, we then compute that

4Cq (-+. ) = Φ
(
4C (-+. )

)
= Φ

(
lim
<→∞

(
4C-/<4C./<

)<)
= lim
<→∞

Φ
((
4C-/<4C./<

)<)
= lim
<→∞

(
Φ

(
4C-/<

)
Φ

(
4C./<

))<
= lim
<→∞

(
4Cq (- )/<4Cq (. )/<

)<
= 4C (q (- )+q (. )) .

Di�erentiating this result at C = 0 shows that q (- + . ) = q (- ) + q (. ).

We have thus obtained a real-linear map q satisfying (3.7). If there were another
real-linear map q′ with this property, we would have

4Cq (- ) = Φ(4C- ) = 4Cq ′(- )

for all C ∈ R. Di�erentiating this result at C = 0 shows that q (- ) = q′(- ).

We now verify the remaining claimed properties of q . For any � ∈ � , we have

4Cq (�-�
−1) = 4q (C�-�

−1)

= q (4C�-�−1)
= Φ(�4C-�−1)
= Φ(�)Φ(4C- )Φ(�−1)
= Φ(�)4Cq (- )Φ(�)−1.

Di�erentiating the identity 4Cq (�-�−1) = Φ(�)4Cq (- )Φ(�)−1 at C = 0 gives Point 1.

Meanwhile, for any - and . in g, we have, as in the proof of Theorem 3.12,

q ( [-,. ]) = q
(
3

3C
4C-.4−C-

����
C=0

)
=
3

3C
q

(
4C-.4−C-

)����
C=0
,

where we have used the fact that a derivative commutes with a linear transformation.7
Thus,

q ( [-,. ]) = 3

3C
Φ(4C- )q (. )Φ(4−C- )

����
C=0

7That is to say, if 5 : * ⊂ R= → R< is di�erentiable at G0 ∈ * , where* is open, andk : R< → R:
is a linear function, then, by the chain rule � (k 5 ) (G0) = �k (5 (G0))�5 (G0) = k�5 (G0), for linear
functions are di�erentiable and coincide with its own di�erential. If = = 1 then the previous identity
says that 3

3G
k (5 (G))

��
G=G0

= k

(
3
3G
5 (G)

��
G=G0

)
.
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=
3

3C
4Cq (- )q (. )4−Cq (- )

����
C=0

= [q (- ), q (. )],

establishing Point 2. Finally, since Φ(4C- ) = 4q (C- ) = 4Cq (- ) , we can compute q (- ) as
in Point 3. �

Example 3.30. let Φ : SU(2) → SO(3) be the homomorphism in Proposition 1.11.
Then the associated Lie algebra homomorphism q : su(2) → so(3) satis�es

q (� 9 ) = � 9 , 9 = 1, 2, 3,

where {�1, �2, �3} and {�1, �2, �3} are the bases of su(2) and so(3), respectively, given
in Example 3.18.

Since q maps a basis for su(2) to a basis for so(3), by Lemma 3.17 we see that q
is a Lie algebra isomorphism, even though Φ is not a Lie group isomorphism (since
kerΦ = {� ,−� }).
Proof. If - is in su(2) and . is in the space + in, then

3

3C
Φ(4C- ).

����
C=0

=
3

3C
4C-.4−C-

����
C=0

= [-,. ] .

Thus, q (- ) is the linear map of + � R3 to itself given by . ↦→ [-,. ]. If, say, - = �1,
then direct computation shows that[

�1,

(
G1 G2 + 8G3

G2 − 8G3 −G1

)]
=

(
G′1 G′2 + 8G′3

G′2 − 8G′3 −G′1

)
,

where (G′1, G′2, G′3) = (0,−G3, G2). Since

©­­«
0
−G3
G2

ª®®¬ =
©­­«
0 0 0
0 0 −1
0 1 0

ª®®¬
©­­«
G1
G2
G3

ª®®¬ , (3.9)

we conclude that q (�1) is the 3 × 3 matrix appearing on the right-hand side of (3.9),
which is precisely �1. The computation of q (�2) and q (�3) is similar and is left to the
reader. �

Corollary 3.31. There is a covariant functor, called the Lie functor,

Lie : MtxLieGrp→ FinLieAlgR

from the category of matrix Lie groups and Lie group homomorphisms to the category of
�nite-dimensional real Lie algebras and Lie algebra homomorphisms. The functor sends
each matrix Lie group� to its Lie algebra g, and it sends each Lie group homomorphism
Φ : � → � between matrix Lie groups to the induced Lie algebra homomorphism
q : g→ h from Theorem 3.29.
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Proof. The only thing we need to check is the functoriality axioms. Firstly, since
id� (4- ) = 4- = 4 idg (- ) , it is clear that Lie(id� ) = idg for each matrix Lie group � . Let
Φ : � →  , Ψ : � → � be Lie group homomorphisms between the matrix Lie groups
�,�,  . Write Λ = Φ ◦ Ψ and denote q,k, _ the Lie algebra homomorphisms induced
by Φ,Ψ,Λ, respectively. For any - ∈ g,

Λ(4C- ) = Φ(Ψ(4C- )) = Φ(4Ck (- )) = 4Cq (k (- )) .

Hence, _(- ) = q (k (- )). The functor is thus covariant. �

Corollary 3.32. Any two isomorphic matrix Lie groups have isomorphic Lie alge-
bras.

Proof. Application of Lemma 3.26. �

Example 3.18 gives a counterexample for the converse: su(2) and so(3) are iso-
morphic although SU(2) and SO(3) are not, as SU(2) is simply connected and SO(3)
is not (see respectively the comments following proof of Proposition 1.9 and the last
paragraph after the proof of Corollary 1.12). In other words, the Lie functor doesn’t
create isomorphisms. This functor neither re�ects isomorphisms: In Example 3.30,
even though LieΦ = q : su(2) → so(3) is an isomorphism, Φ : SU(2) → SO(3) is
not, for kerΦ = {� ,−� }.

However, in Sect. 5.2 we will see that we can restrict the Lie functor to a subcate-
gory of MtxLieGrp so that the restricted functor will re�ect and create isomorphisms.
Namely, the the subcategory of simply connected matrix Lie groups.

Proposition 3.33. If Φ : � → � is a Lie group homomorphism and LieΦ = q :
g → h is the associated Lie algebra homomorphism, then the kernel of Φ is a closed,
normal subgroup of � and the Lie algebra of the kernel is given by

Lie(kerΦ) = ker(LieΦ) .

Proof. Since Φ is continuous, kerΦ is closed, so it is a matrix Lie group. If - ∈ kerq ,
then

Φ(4C- ) = 4Cq (- ) = � ,
for all C ∈ R, showing that - is in the Lie algebra of kerΦ. In the other direction, if
4C- lies in kerΦ for all C ∈ R, then

4Cq (- ) = Φ(4C- ) = �

for all C . Di�erentiating this relation with respect to C at C = 0 gives that q (- ) = 0,
showing that - ∈ kerq . �

De�nition 3.34 (TheAdjointmap). Let� be a matrix Lie group, with Lie algebra
g. Then for each � ∈ � , de�ne a linear map Ad� : g→ g by the formula

Ad� (- ) = �-�−1.
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Proposition 3.35. Let� be a matrix Lie group, with Lie algebra g. Let GL(g) denote
the group of all invertible linear transformations of g. Then the map� ↦→ Ad� is a homo-
morphism of � into GL(g). Furthermore, for each � ∈ � , Ad� satis�es Ad� ( [-,. ]) =
[Ad� (- ),Ad� (. )] for all -,. ∈ g.

Proof. Easy. Note that Point of Theorem 3.12 guarantees that Ad� (- ) is actually in
g for all - ∈ g. �

That is, the map � ↦→ Ad� is really a homomorphism of � into the group of Lie
algebra automorphisms of g. By GL(g) we denote the vector space automorphisms of
g, which do not necessarily preserve the bracket of g.

Since g is a real vector space with some dimension : , GL(g) is essentially the same
as GL(: ;R)). Thus, we will regard GL(g) as a matrix Lie group.8 The map Ad : � →
GL(g) is continuous. Let {-1, . . . , -:} be a basis of g and let 5 : g→ R: be the linear
isomorphism given by 5 (-8) = 48 , where 48 is the 8-th vector of the canonical basis of
R: . Then, for each � ∈ � the matrix of Ad� : g→ g with respect to this basis is

(5 (Ad� (-1)) | · · · | 5 (Ad� (-1))) =
(
5 (�-1�

−1) | · · · | 5 (�-:�−1)
)
.

This matrix depends continuously on �, for it is component-wise continuous in �.
Thus, Ad is a Lie group homomorphism.

The Lie functor sends Ad : � → GL(g) to the Lie algebra homomorphism

ad : g→ gl(g)
- ↦→ ad- ,

with the property that
4ad- = Ad4- .

Equivalently, the diagram
g gl(g)

� GL(g)

ad

Ad

exp exp

commutes. Here, gl(g) = Lie(GL(g)) is the space of all linear maps from g to itself,
with bracket equal to the commutator of operators.9

8Choosing a basis in g allows to identify GL(g) with GL(: ;R). The set GL(g) can be endowed
with a canonical di�erentiable structure that makes any such bijection GL(g) → GL(: ;R) become
a di�eomorphism. See comments before De�nition 4.2 regarding the di�erential structure in GL(+ ),
with + any �nite-dimensional vector space.

9Similarly as before, the space gl(g) can be endowed with a canonical di�erentiable structure that
makes any linear isomorphism GL(g) � GL(: ;R) become a di�eomorphism. As before, see comments
before De�nition 4.2 as well.
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Proposition 3.36. Let � be a matrix Lie group, let g be its Lie algebra, and let
Ad : � → GL(g) be as in Proposition 3.35. Let ad = LieAd : g → gl(g) be the
associated Lie algebra map. Then for all -,. ∈ g

ad- (. ) = [-,. ] . (3.10)

The proposition shows that our usage of the notation ad- in this section is con-
sistent with that in De�nition 3.7.

Proof. By Point 3 of Theorem 3.29, ad can be computed as follows:

ad- =
3

3C
Ad4C-

����
C=0

.

If + is a �nite-dimensional real vector space of dimension =, the space End(+ ) of
linear endomorphisms in + can be identi�ed with R=2 . The application map

app : End(+ ) ×+ → +

(�, E) ↦→ �E

is continuous and thus, if � : (−Y, 0) ∪ (0, Y) → End+ is such that limC→0�(C) exists,
we have

app
(
lim
C→0

�(C), E
)
= lim
C→0

app(�(C), E).

Hence,

ad- (. ) =
3

3C
Ad4C-

����
C=0
(. )

=
3

3C
Ad4C- (. )

����
C=0

=
3

3C
4C-.4−C-

����
C=0

= [-,. ],

as claimed. �

We have proved, as a consequence of Theorem 3.29 and Proposition 3.36, the fol-
lowing result.

Proposition 3.37. For any - in "= (C), let ad- : "= (C) → "= (C) be given by
ad- . = [-,. ]. Then for any . in"= (C), we have

4-.4−- = Ad4- (. ) = 403- (. ),

where
403- (. ) = . + [-,. ] + 1

2 [-, [-,. ]] + · · · .
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3.6 The Complexi�cation of a Real Lie Algebra

In studying the representations of a matrix Lie group � (as we will do in later chap-
ters), it is often useful to pass to the Lie algebra g of � , which is, in general, only a
real Lie algebra. It is often useful to pass to an associated complex Lie algebra, called
the complexi�cation10 of g.
De�nition 3.38. If+ is a �nite-dimensional real vector space, then the complex-

i�cation of + , denoted +C, is the space of formal linear combinations

E1 + 8E2,

with E1, E2 ∈ + . This becomes a real vector space in the obvious way and becomes a
complex vector space if we de�ne

8 (E1 + 8E2) = −E2 + 8E1.

We could more pedantically de�ne+C to be the space of ordered pairs (E1, E2) with
E1, E2 ∈ + , but this is notationally cumbersome. It is straightforward to verify that the
above de�nition really makes +C into a complex vector space. We will regard + as a
real subspace of +C in the obvious way.
Proposition 3.39. Let g be a �nite-dimensional real Lie algebra and gC its complex-

i�cation. Then the bracket operation on g has a unique extension to gC that makes gC
into a complex Lie algebra. The complex Lie algebra gC is called the complexi�cation
of the real Lie algebra g.

Proof. The uniqueness of the extension is obvious, since if the bracket operation on
gC is to be bilinear, then it must be given by

[-1 + 8-2, .1 + 8.2] = ( [-1, .1] − [-2, .2]) + 8 ( [-1, .2] + [-2, .1]) . (3.11)

To show existence, we must now check that (3.11) is really bilinear and antisymmet-
ric and that it satis�es the Jacobi identity. It is clear that (3.11) is real bilinear, and
antisymmetric. The antisymmetry means that if (3.11) is complex linear in the �rst
factor, it is complex linear in the second factor. Thus, we need only show that

[8 (-1 + 8-2) , .1 + 8.2] = 8 [-1 + 8-2, .1 + 8.2] . (3.12)

The left-hand side of (3.12) is

[−-2 + 8-1, .1 + 8.2] = (− [-2, .1] − [-1, .2]) + 8 ( [-1, .1] − [-2, .2]) ,

whereas the right-hand side of (3.12) is

8 {([-1, .1] − [-2, .2]) + 8 ( [-2, .1] + [-1, .2])}
= (− [-2, .1] − [-1, .2]) + 8 ( [-1, .1] − [-2, .2])

10In Spanish, compleji�cación.
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and, indeed, these expressions are equal. It remains to check the Jacobi identity. Of
course, the Jacobi identity holds if -,. , and / are in g. Furthermore, for all -,., / ∈
gC, the expression

[-, [., / ]] + [., [/,- ]] + [/, [-,. ]]
is complex-linear in - with . and / �xed. Thus, the Jacobi identity continues to hold
if - is in gC and . and / are in g. The same argument then shows that the Jacobi
identity holds when - and . are in gC and / is in g. Applying this argument one
more time establishes the Jacobi identity for gC in general. �

Proposition 3.40. Suppose that g ⊂ "= (C) is a real Lie algebra and that for all
nonzero - in g, the element 8- is not in g. Then the “abstract” complexi�cation gC of g
from Proposition 3.39 is isomorphic to the complex Lie subalgebra of "= (C) of matrices
that can be expressed in the form - + 8. with - and . in g.

Proof. The complex subspace of"= (C) of matrices of the form- +8. , with-,. ∈ g,
is indeed a subalgebra of"= (C) since expression (3.11) is also valid when-1, -2, .1, .2 ∈
g ⊂ "= (C).

Consider now the map from gC into"= (C) sending the formal linear combination
- + 8. to the linear combination - + 8. of matrices. This map is easily seen to be a
complex Lie algebra homomorphism. If g satis�es the assumption in the statement
of the proposition, this map is also injective and thus an isomorphism of gC with
g + 8g ⊂ "= (C). �

Using the proposition, we easily obtain the following list of isomorphisms:

gl(=;R)C � gl(=;C),
u(=)C � gl(=;C),

su(=)C � sl(=;C),
sl(=;R)C � sl(=;C),

so(=)C � so(=;C).

Let us now verify two examples, those of the complexi�cations of u(=) and su(=). For
the �rst one, if - ∗ = −- , then (8- )∗ = 8- . Thus, - and - ∗ cannot be both in u(=)
unless - is zero. Furthermore, every - in "= (C) can be expressed as - = -1 + 8-2,
where -1 = (- − - ∗)/2 and -2 = (- + - ∗)/(28) are both in u(=). This shows that
u(=)C � gl(=;C). The analogous argument also shows that every matrix of sl(=;C)
can be written in the form-1+8-2, with-1, -2 ∈ su(=). Conversely, if-1, -2 ∈ su(=),
then-1 + 8-2 has trace zero and is thus in sl(=;C). This shows that su(=)C � sl(=;C).

Although both su(2)C and sl(2;R)C are isomorphic to sl(2;C), the Lie algebra
su(2) is not isomorphic to sl(2;R). This is because sl(2;R) has two-dimensional sub-
algebras, whereas su(2) has not. Certainly, the matrices

- =

(
0 1
0 0

)
, � =

(
1 0
0 −1

)
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are both in sl(2;R), and they generate a two-dimensional subalgebra, as [�,- ] = 2- .
On the other hand, if we consider the basis {�1, �2, �3} of su(2) given in Example
3.18, then the linear isomorphism k : su(2) → R3 given by k (� 9 ) = 4 9 , where 4 9
is the 9-th vector from the canonical basis of R3, is also a Lie algebra isomorphism
su(2) � (R3,×) by Lemma 3.17. Here (R3,×) is the Lie algebra of Example 3.2. And
indeed in (R3,×) there are not two-dimensional subalgebras, since by the right-hand
rule any two linearly independent vectors of R3 must have a perpendicular cross
product, this way being the whole R3 the Lie subalgebra that they two generate.

Proposition 3.41 (Universal property of the complexi�cation of a Lie alge-
bra). Let g be a real Lie algebra, gC it complexi�cation, and h an arbitrary complex
Lie algebra. Then every real Lie algebra homomorphism of g into h extends uniquely to
a complex Lie algebra homomorphism of gC into h.

g h

gC

Proof. The unique extension is given by c (-+8. ) = c (- )+8c (. ) for all-,. ∈ g. It is
easy to check that this map is, indeed, a homomorphism of complex Lie algebras. �

3.7 The Exponential Map

De�nition 3.42. If� is a matrix Lie group with Lie algebra g, then the exponen-
tial map for � is the map

exp : g→ �.

That is to say, the exponential map for� is the matrix exponential restricted to the
Lie algebra g of � . It can be shown that every matrix in GL(=;C) is the exponential
of some = × = matrix. Nevertheless, if � ⊂ GL(=;C) is a closed subgroup, there may
exist � in � such that there is no - in the Lie algebra g of � with exp- = �.

Example 3.43. There does not exist a matrix - ∈ sl(2;C) with

4- =

(
−1 1
0 −1

)
, (3.13)

even though the matrix on the right-hand side of (3.13) is in SL(2;C).

Proof. If - ∈ sl(2;C) has distinct eigenvalues, then - is diagonalizable and 4- will
also be diagonalizable (by Point 6 of Proposition 2.12), unlike matrix on the right-hand
side of (3.13). If - ∈ sl(2;C) has a repeated eigenvalue, this eigenvalue must be 0 or
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the trace of - would not be zero. Thus, there is a nonzero vector E with -E = 0, from
which it follows that

4-E =

( ∞∑
<=0

1
<!-

<

)
E =

∞∑
<=0

1
<!-

<E = E + 0 + 0 + · · · = E,

where we have used the continuity of the application map, as in proof of Proposition
3.36. We conclude that 4- has 1 as eigenvalue, unlike the matrix on the right-hand
side of (3.13). �

We see, then, that the exponential map for a matrix Lie group � does not neces-
sarily map g onto� . Furthermore, the exponential map may not be injective on g, as
may be seen, for example, from the case g = su(2): the matrices(

2:c8 0
0 −2:c8

)
are in su(2) and exp sends them all to the 2 × 2 identity matrix. Nevertheless, the
exponential map provides a crucial mechanism for passing information between the
group and the Lie algebra. Indeed, we will see that the exponential map is locally
bijective (Corollary 3.47), a result that will be essential later.

Theorem 3.44. For 0 < Y < log 2, let *Y = �"= (C) (0, Y) = {- ∈ "= (C) : ‖- ‖ < Y}
and let +Y = exp(*Y). Suppose � ⊂ GL(=;C) is a matrix Lie group with Lie algebra g.
Then there exists Y ∈ (0, log 2) such that for all � ∈ +Y , � is in � if and only if log� is
in g.

The condition Y < log 2 guarantees (Theorem 2.18) that for all - ∈ *Y , log(4- ) is
de�ned and equal to - . Note that if log� is in g, then � = 4 log� is in � . Thus, the
content of the theorem is that for some Y, having � in +Y ∩� implies that log� must
be in g.

We begin with a lemma.

Lemma 3.45. Suppose �< are elements of � and that �< → � . Let .< = log�< ,
which is de�ned for su�ciently large<. Suppose that .< is nonzero for all< and that
.</‖.<‖ → . ∈ "= (C). Then . is in g.

Proof. Since �< → � , we have ‖.<‖ → 0. Thus, we can �nd integers :< such that
:< ‖.<‖ → C .11 Then, by the continuity of the exponential, we have

4:<.< = exp
[
(:< ‖.<‖)

.<

‖.<‖

]
→ 4C. .

11For real G , denote by bGc = max{: ∈ Z : : ≤ G} the �oor function of G and by {G} = G − bGc the
mantissa of G , which is always 0 ≤ {G} < 1. Then, if G< are non-zero real numbers with G< → 0, we
have G<

⌊
C
G<

⌋
= G<

(
C
G<
−

{
C
G<

})
= C − G<

{
C
G<

}
→ C and :< =

⌊
C
G<

⌋
are the desired integers.
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However,
4:<.< = (4.< ):< = (�<):< ∈ �

and � is closed, and we conclude that 4C. ∈ � . This shows that . ∈ g. �

Proof of Theorem 3.44. Let us think of "= (C) as C=2 � R2=2 and let � denote the
orthogonal complement of g with respect to the usual inner product onR2=2 . Consider
the map Φ : "= (C) → "= (C) given by

Φ(/ ) = 4-4. ,

where / = - + . with - ∈ g and . ∈ � . By Theorem 2.28, the exponential is
continuously di�erentiable, and thus the map Φ is also continuously di�erentiable.
We may compute then that

3

3C
Φ(C-, 0)

����
C=0

= -,

3

3C
Φ(0, C. )

����
C=0

= . .

This calculation shows that the derivative of Φ at the point 0 ∈ R2=2 is the identity.
(Recall that the derivative at a point of a function from R2=2 to itself is a linear map of
R2=2 to itself.) Since the derivative of Φ at the origin is invertible, the inverse function
theorem says that Φ has a continuous local inverse, de�ned in a neighborhood of � .

We need to prove that for some Y, if� ∈ +Y ∩� , then log� ∈ g. If this were not the
case, we could �nd a sequence �< in � such that �< → � as< → ∞ and such that
for all<, log�< ∉ g.12 Using the local inverse of the map Φ, we can write �< (for all
su�ciently large<) as

�< = 4-<4.< , -< ∈ g, .< ∈ �,

with -< and .< tending to zero as < tends to in�nity. We must have .< ≠ 0, since
otherwise we would have log�< = -< ∈ g. Since 4-< and �< are in � , we see that

�< := 4−-<�< = 4.<

is in � .

Since the unit sphere in � is compact, we can choose a subsequence of the .<’s
(still called .<) so that .</‖.<‖ converges to some . ∈ � , with ‖. ‖ = 1. Then, by
the lemma, . ∈ g. This is a contradiction, because � is the orthogonal complement
of g. Thus, there must be some Y such that log� ∈ g for all � in +Y ∩� . �

12 Indeed, for each< ≥ 1
log 2 and setting Y = 1

<
, we could take some�< ∈ +1/<∩� with log�< ≠ g.

For any 0 < Y < log 2, the maps *Y
exp
�
log

+Y are inverse homeomorphisms of each other, and +Y is

open, since log is continuous and injective and we thus have+Y = log−1 (*Y), where*Y is open. Hence,
since {*1/<}<≥1/log 2 is a local basis at 0, we conclude that {+1/<}<≥1/log 2 is a local basis at � . Thus, by
construction, �< → � .
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3.8 Consequences of Theorem 3.44

In this section, we derive several consequences of the main result of the last section,
Theorem 3.44.

Corollary 3.46 (Closed-subgroup theorem for matrix Lie groups). Let � be
a matrix Lie group with Lie algebra g and let : be the dimension of g as a real vector
space. Then� is a smooth embedded submanifold of"= (C) of dimension : and hence a
Lie group.

It follows from the corollary that� is locally path connected: every point in� has
a neighborhood * that is homeomorphic to a ball in R: and hence path connected.
Thus, the connected components of � coincide with its path connected components
(see, for example, Theorem 25.5 of [Mun]) and, in particular, � is connected if and
only if it is path connected.

Proof. Let Y be such that Theorem 3.44 holds. Then for any �0 ∈ � , consider the
neighborhood �0+Y of �0 in "= (C). Note that � ∈ �0+Y if and only if �−10 � ∈ +Y .
De�ne a local coordinate system on �0+Y by writing each � ∈ �0+Y as � = �04

- , for
- ∈ *Y ⊂ "= (C). More precisely: the maps

�0+Y ↔ *Y

� ↦→ log(�−10 �)
�04

- ←� -

are inverse di�eomorphisms of each other, by Theorem 2.28. For � ∈ �0+Y , it follows
from Theorem 3.44 that � ∈ � if and only if - = log(�−10 �) ∈ g. Thus, in this local
coordinate system de�ned near �0, the group � looks like the subspace g of "= (C).
Since we can �nd such local coordinates near any point �0 in � , we conclude that �
is an embedded submanifold of "= (C).

Now, the operation of matrix multiplication is clearly smooth. Furthermore, the
map � ↦→ �−1 is also smooth in GL(=;C) (Proposition 1.3). The restrictions of these
maps to � are then also smooth, showing that � is a Lie group. �

It follows that the exponential map of a matrix Lie group is smooth.

Corollary 3.47. If � is a matrix Lie group with Lie algebra g, there exists an open
neighborhood* of 0 in g and an open neighborhood+ of � in� such that the exponential
map takes* di�eomorphically onto+ . Furthermore, the inverse of this map is the matrix
logarithm restricted to + .

Proof. Let Y be such that Theorem 3.44 holds and set* = *Y∩g and+ = +Y∩� . Theo-
rem 3.44 implies that exp takes* onto+ . Observe that+Y is open, for the reason given
in footnote 12 of page 62, so + is open in � . Furthermore, exp is a di�eomorphism
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of * onto + , since by Theorem 2.28 it is di�erentiable and there is a di�erentiable
inverse map, namely, the restriction of the matrix logarithm to + . �

In other words, log and exp are local di�eomorphisms, respectively, at � ∈ � and
at 0 ∈ g between the group and the Lie algebra.

Corollary 3.48. Suppose � ⊂ GL(=;C) is a matrix Lie group with Lie algebra g.
Then a matrix - is in g if and only if there exists a smooth curve W in "= (C) with
W (C) ∈ � for all C and such that W (0) = � and 3W

3C

��
C=0 = - . Thus, g is the tangent space

at the identity to � .

Proof. If - is in g, then we may take W (C) = 4C- and then W (0) = � and 3W

3C

��
C=0 =

- . In the other direction, suppose W (C) is a smooth curve in � with W (0) = � . For
all su�ciently small C , we can write W (C) = 4X (C) , where X (C) = log(W (C)) is in �
and X (0) = 0. Since exp is in�nitely di�erentiable, Proposition 2.13 tells us that the
di�erential of exp at the zero matrix equals the identity, and thus, by the chain rule,
we have

W ′(0) = � exp(X (0))X′(0) = X′(0).

Since X (C) belongs to g for all su�ciently small C , we conclude (as in the proof of
Theorem 3.12) that X′(0) = W ′(0) belongs to g. �

It follows that if � is matrix Lie group, then 4C- is in � for all C ∈ (−Y, Y) if and
only if 4C- is in � for all real C .

Corollary 3.49. If � is a connected matrix Lie group, every element � of � can be
written in the form

� = 4-14-2 · · · 4-< (3.14)

for some -1, -2, . . . , -< ∈ g.

Even if � is connected, it is in general not possible to write every � ∈ � as a
single exponential, � = exp- , with - ∈ g. (See Example 3.43.) We begin with a
simple analytic lemma.

Lemma 3.50. Suppose � : [0, 1] → GL(=;C) is a continuous map. Then for all
Y > 0 there exists X > 0 such that if B, C ∈ [0, 1] satisfy |0 − 1 | < X , then

�(B)�(C)−1 − �

 < Y.

Proof. We note that

�(B)�(C)−1 − �

 = 

(�(B) −�(C))�(C)−1


≤ ‖�(B) −�(C)‖



�(C)−1

 . (3.15)

Since [0, 1] is compact and the map C ↦→


�(C)−1

 is continuous, there is a constant

� such that


�(C)−1

 ≤ � for all C ∈ [0, 1]. Furthermore, since [0, 1] is compact,
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Theorem 4.19 in [Rud1] in tells us that the map � is actually uniformly continuous
on [0, 1]. Thus, for any Y > 0, there exists X > 0 such that when |B − C | < X , we have
‖�(B) −�(C)‖ < Y/� . Thus, in light of (3.15), we have the desired X . �

Proof of Corollary 3.49. Let + be a neighborhood of � in � such that + is contained
in the image of the exponential map of � (such a + exists due to Corollary 3.47). For
any � ∈ � , choose a continuous path � : [0, 1] → � with �(0) = � and �(1) = �. By
Lemma 3.50, we can �nd some X > 0 such that if |B − C | < X , then �(B)�(C)−1 ∈ + .
Now divide [0, 1] into< pieces of equal length, where 1/< < X . Then for 9 = 1, . . . ,<,
we see that �(( 9 − 1)/<)−1�( 9/<) belongs to + , so that

�(( 9 − 1)/<)−1�( 9/<) = 4- 9

for some elements -1, . . . , -< of g. Thus,
� = �(0)−1�(1)
= �(0)−1�(1/<)�(1/<)−1�(2/<) · · ·�((< − 1)/<)−1�(1)
= 4-14-2 · · · 4-< ,

as claimed. �

Given a category C and objects G,~ of C, it is traditional to write

C(G,~) or Hom(G,~)
for the class of morphisms from G to ~.
De�nition 3.51. Let C and D be categories. A functor � : C → D is said to be

faithful13 if for each two objects G,~ ∈ C, the induced map C(G,~) �→ D(�G, �~)
is injective. If O is a subclass of the class of objects of C, the functor � is said to be
faithful for morphisms departing O if for each two objects G of O and ~ of C the
map C(G,~) �→ D(�G, �~) is injective.
Corollary 3.52. The Lie functor is faithful for morphisms departing connected ma-

trix Lie groups.

Proof. Let� and � be matrix Lie groups with Lie algebras g and h, respectively, and
assume that � is connected. Suppose Φ1 and Φ2 are Lie group homomorphisms of �
into � and let q1 and q2 be the associated Lie algebra homomorphisms of g into h.
We assume q1 = q2 and show that then Φ1 = Φ2.

Since� is connected, Corollary 3.49 tells us that every element of� can be written
as 4-14-2 · · · 4-< , with - 9 ∈ g. Thus,

Φ1(4-1 · · · 4-< ) = Φ1(4-1) · · ·Φ1(4-< )
= 4q1 (-1) · · · 4q1 (-<)

= 4q2 (-1) · · · 4q2 (-<)

= Φ2(4-1 · · · 4-< ),
13In Spanish, the word is funtor �el.
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as claimed. �

Corollary 3.53. Every continuous homomorphism between two matrix Lie groups
is smooth.

Proof. Let * and + be open neighborhoods, respectively, of 0 in g and of � in �
such that *

exp
�
log

+ are inverse di�eomorphisms of each other. If 6 ∈ � , then 6+ is

open, for the right-multiplication map in a Lie group is a homeomorphism (the inverse
of the continuous map ℎ ↦→ 6ℎ is the continuous map ℎ ↦→ 6−1ℎ). Observe that
ℎ ∈ 6+ ⇔ 6−1ℎ ∈ + and consider the coordinate map

5 : 6+ → *

ℎ ↦→ log(6−1ℎ)

from the open neighborhood 6+ of � and the open set * of the vector space g. It is
indeed a coordinate map, for it is a di�eomorphism: its inverse is 5 −1 : - ∈ * ↦→
64- ∈ 6+ and both 5 and 5 −1 are smooth, since exp and log are and so is right-
multiplication in a Lie group.

Let Φ : � → �′ be a Lie group homomorphisms between matrix Lie groups� and
�′. Then Φ, read with coordinates given by 5 , is

Φ(5 −1(- )) = Φ(64- ) = Φ(6)Φ(4- ) = Φ(6)4q (- ),

which is a smooth function of - ∈ * , since right-multiplication and the exponential
map of a Lie group are both smooth. So we have that Φ◦ 5 −1 is smooth in* . Since 5 is
also smooth, the composition (Φ ◦ 5 −1) ◦ 5 = Φ|6+ is smooth as well. This shows that
for each 6 ∈ � , the map Φ is smooth in an open neighborhood of 6; or, equivalently,
that Φ is smooth in the whole � . �

Corollary 3.54. If � is a connected matrix Lie group and the Lie algebra g of � is
commutative, then � is commutative.

This result is a partial converse to Proposition 3.14.

Proof. Since g is commutative, any two elements of� , when written as in Corollary
3.49, will commute. �



4 Basic Representation Theory

4.1 Representations and Actions

If" is a manifold,- is a set and 5 : " → - is a bijection, the function 5 induces both
a topology and a di�erentiable structure in- in a natural way, so that 5 is a di�eomor-
phism. Furthermore, this di�erentiable structure is independent of di�eomorphisms
in " in the following sense:

Lemma 4.1. If Ψ : " → " is a di�eomorphism, then the induced di�erentiable
structures on - by 5 and by 5 ◦ Ψ are the same.

Proof. Let -1 and -2 be the manifold with underlying set equal to - and with topol-
ogy and di�erentiable structure equal to that induced by 5 and 5 ◦Ψ, respectively. The
two topologies on - are the same one: since both 5 : " → -1 and 5 ◦ Ψ : " → -2
are homeomorphisms, we have

* ⊂ -1 is open⇔ 5 −1(* ) ⊂ " is open,
⇔ Ψ−1(5 −1(* )) ⊂ " is open,
⇔ (5 ◦ Ψ) (Ψ−1(5 −1(* )))︸                       ︷︷                       ︸

*

⊂ -2 is open.

Similarly, the two di�erentiable structures in - are the same one. Let* ⊂ - be open
in -1 (equivalently, in -2) and � ⊂ R= be open. Let *1 and *2 be the manifold with
underlying set equal to* and with di�erential structure equal to the restriction to*
of that of -1 and -2, respectively. Then, since both 5 : " → -1 and 5 ◦ Ψ : " → -2
are di�eomorphisms, we have

i : *1 → � is a di�eomorphism⇔ i ◦ 5 : 5 −1(* ) → � is a di�eom.
⇔ i ◦ 5 ◦ Ψ : Ψ−1(5 −1(* )) → � is a di�eom.
⇔ i ◦ 5 ◦ Ψ ◦ (5 ◦ Ψ)−1︸                     ︷︷                     ︸

i

: *2 → � is a di�eom.

(4.1)
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The situation is depicted in the following commutative diagram:

*2 Ψ−1((5 −1(* )) 5 −1(* ) *1

�

(5 ◦Ψ)−1 Ψ 5

Equivalence (4.1) means that coordinate maps of -1 are the same ones as those of -2.
That is, -1 = -2 have same di�erential structure. �

If + is a �nite-dimensional real or complex space, let GL(+ ) denote the group
of invertible linear transformations of + . If we choose a basis for + , we can identify
GL(+ )with GL(=;R) or GL(=;C). Any such identi�cation gives rise to a di�erentiable
structure on GL(+ ), and from Lemma 4.1 it follows that the di�erential structure is
independent of the choice of basis. With this discussion in mind, we think of GL(+ )
as a matrix Lie group. Similarly, we let gl(+ ) = End(+ ) denote the space of all linear
operators from + to itself, which forms a Lie algebra under the bracket [-,. ] =

-. − .- . Choosing a basis in + allows to identify the space gl(+ ) with gl(=;R) or
gl(=;C), and as before, this identi�cation induces a di�erentiable structure on gl(+ )
which is seen to be independent of the choice of basis by Lemma 4.1.

De�nition 4.2. Let � be a matrix Lie group. A complex representation of � is
a Lie group homomorphism

Π : � → GL(+ ),

where + is a �nite-dimensional complex vector space (with dim(+ ) ≥ 1). A real
representation of� is a Lie group homomorphism Π of� into GL(+ ), where+ is a
�nite-dimensional real vector space.

If g is a real or complex Lie algebra, then a complex representation of g is a Lie
algebra homomorphism c of g into gl(+ ), where + is a �nite-dimensional complex
vector space. If g is a real Lie algebra, then a real representation of g is a Lie algebra
homomorphism c of g into gl(+ ).

If Π or c is an injective homomorphism, the representation is called faithful.
If in any of the previous cases the involved vector space + is �nite-dimensional,

the representation is called �nite-dimensional.

All representations of Lie groups and Lie algebras that we shall consider will be
�nite-dimensional. After all, matrices are the main object of interest in this thesis.

Whenever one wants to insist on the implicated vector space, a representation of
a Lie group or Lie algebra is sometimes also de�ned as a pair (+ ,Π), where + and
Π are like in De�nition 4.2. The analogous notation (+ , c) for a representation of a
Lie algebra may be used as well. Also, if it is the �eld of scalars of the vector space
what one wants to highlight, one speaks of a K-representation of a Lie group or Lie
algebra in a vector space + , where K is the �eld of scalars of + .
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A representation can be understood as a linear action of a group or Lie algebra on a
vector space (since, say, to every 6 ∈ � , there associated an operator Π(6), which acts
on the space + ). If the homomorphism Π : � → GL(+ ) is �xed, we will occasionally
use the notation

6 · E (4.2)

in place of Π(6)E . We will often use terminology such as “Let Π be a representation
of � acting on the space + .”

If a representation Π is a faithful representation of a matrix Lie group � , then
{Π(�) | � ∈ �} is a group of matrices that is isomorphic to the original group � .
Thus, Π allows us to represent � as a group of matrices. This is the motivation for
the term “representation.” (Of course, we still call Π a representation even if it is not
faithful.) Despite the origin of the term, the goal of representation theory is not simply
to represent a group as a group of matrices. After all, the groups we study in this thesis
are already matrix Lie groups! Rather, the goal is to determine (up to isomorphism)
all the ways a �xed group can act as a group of matrices.

Linear actions of groups on vector spaces arise naturally in many branches of both
mathematics and physics. A typical example would be a linear di�erential equation
in three-dimensional space which has rotational symmetry, such as the equation that
describe the energy states of a hydrogen atom in quantum mechanics. Since the equa-
tion is rotationally invariant, the space of solutions is invariant under rotations and
thus constitutes a representation of the rotation group SO(3). The representation the-
ory of SO(3) (or of its Lie algebra) is very helpful in narrowing down what the space
of solutions can be. See, for example, Chapter 18 in [Hall2].

There is a precise way to understand what do we mean by an “action” of a group
when considering representations of the group.

De�nition 4.3. Let � be a group and let - be a set. A group action of � on the
set - is a map

• : � × - → -

(6, G) ↦→ 6 • G

that satis�es the group action axioms:

Identity: 4 • G = G ,
Compatibility: 6 • (ℎ • G) = (6ℎ) • G

for all G ∈ - and 6, ℎ ∈ � . If - is a vector space, then the group action is linear if

6 • (D + E) = 6 • D + 6 • E
6(_E) = _(6 • E)
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for all 6 ∈ � , D, E ∈ - and every scalar _. That is, if for each 6 ∈ � , the map E ↦→ 6 • E

is linear.
If � is a Lie group and - is a manifold, a group action of � on - is called a Lie

group action if the action • : � × - → - is smooth.

It is customary to say things like “the group � acts on the set - ” to refer to an
action�×- → - . The compatibility axiom makes possible to use the notation6G for a
group action, instead of6 •G . This is because compatibility enables writing expressions
like 6ℎG , which can be interpreted unambiguously (where 6, ℎ ∈ � and G ∈ - ), and
so, the compatibility axiom can be regarded as an “associative law” of the action.

A group action is the way in which symmetry on a object is mathematically dis-
closed, it is the way to explicit the symmetry of the object. There is this idea that
mathematical groups encode all the possible ways in which things can be symmet-
ric; and in this picture, the group actions are deemed to be the way to express the
symmetry of a particular object through this group coding. For that reason, there are
some mathematicians that argue that group actions are the raison d’étre of groups
themselves.

Given an action of � on a set - , it follows from the action axioms that, for each
6 ∈ � , the map G ↦→ 6 • G is a bijection, since its inverse is G ↦→ 6−1 • G . Furthermore,
if Sym- is the symmetric group of - (that is, the group of bijections - → - ), then
every group action • : � × - → - induces a map

Π• : � → Sym-

6 ↦→ Π•(6) = (G ↦→ 6 • G)

which is seen to be a group homomorphism, by the compatibility axiom. A permuta-
tion representation of a group� on a set- is de�ned to be a group homomorphism
� → Sym- . The previous observation is then stated as “every group action on a set
induces a permutation representation of the group on the same set.” If - = + is a
vector space and the action is linear, then the induced permutation representation is
really � → GL(+ ) ⊂ Sym+ , and this is a representation of � on the vector space
- . If � is Lie group, the space + is a �nite-dimensional K-space, with K = R or C,1
and the linear action is a Lie group linear action, then the induced homomorphism
� → GL(+ ) is smooth and thus a Lie group K-representation: let {E1, . . . , E=} be a
basis in + and let 5 : + → K= be the linear isomorphism given by 5 (E 9 ) = 4 9 , where
4 9 is the 9-th vector from the canonical basis of K= . Then, for each 6 ∈ � , the matrix
of the linear automorphism E ↦→ 6 • E of + with respect to our basis is

(5 (6 • 41) | · · · | 5 (6 • 4=)) . (4.3)
1We can endow any real or complex �nite-dimensional+ with a canonical di�erentiable structure

by means of choosing a a basis on + and after identifying + � K= (where K is the �eld of scalars of
+ ). By Lemma 4.1, the di�erential structure is independent of the choice of basis.
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Since 5 is smooth and so is the group action, each entry of this matrix depends
smoothly on 6 and thus the induced homomorphism � → GL(+ ) is smooth.

Conversely, every permutation representation of a group on some set induces a
group action on the same set. If Π : � → Sym- is a permutation representation of�
on - , then the map

•Π : � × - → -

(6, G) ↦→ 6 • Π G = Π(6)G

is shown to be a group action of� on- . If- = + is a vector space and the permutation
representation is actually a representation Π : � → GL(+ ), then the induced group
action on+ is linear. If, in addition,� is a Lie group, the space+ is �nite-dimensional
real or complex and Π : � → GL(+ ) is a Lie group representation, then it follows
from the fact that the application map is di�erentiable (see proof of Proposition 3.49)
that the induced linear action •Π is smooth and thus a Lie group linear action.

Proposition 4.4. Let � be a group and - be a set. There is a one-to-one correspon-
dence

{Group actions of � on - } ↔ {Permutation representations of � on - }
• ↦→ Π•

•Π ←� Π
(4.4)

Furthermore, if - = + is a vector space, then the maps of (4.4) induce a one-to-one
correspondence

{Linear group actions of � on + } ↔ {Representations of � on + }, (4.5)

and if � is a Lie group and + is a is �nite-dimensional K-vector space, where K = R or
C, then the maps of (4.4) induce a one-to-one correspondence

{Lie group K-linear actions of � on + } ↔ {Lie group K-representations of � on + }.
(4.6)

Proof. The previous discussion shows that the maps that go from left to right and
the maps that go from right to left in (4.4), (4.5) and (4.6) are well-de�ned.

The only thing left to be proved is that these maps are bijective, and for that it
su�ces to show bijectivity in (4.4). It must be shown that if ∗ : � ×- → - is a group
action then •Π∗ = ∗, and that if Σ : � → Sym- is a permutation representation, then
Π•Σ = Σ. Since this is only a matter of untangling the de�nitions of each induced map,
the proof can be left safely to the reader. �

Group actions and group permutation representations are just two sides of the
same coin, and it makes no di�erence to work with one of the �rst type or of the
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second type. Only context can say when it is more appropriate to either write things
with the “action notation” or with the representation one. When some action or rep-
resentation is �xed, mathematicians tend to change without further notice between
the action and the representation at their own convenience, because this is allowed
by Proposition 4.4.
Corollary 4.5. Every linear group action of amatrix Lie group on a �nite-dimensional

real or complex vector space that is continuous is also smooth, and thus a Lie group action.

Proof. Let� be a matrix Lie group,+ be a �nite-dimensional real or complex vector
space and suppose that • : � ×+ → + is a continuous linear action of � on + . Then,
expressing the matrix of Π•(6) in some basis of + like we did in (4.3), we get that
the associated representation Π• : � → GL(+ ) is a continuous group homomorphism
between matrix Lie groups. Thus, by Proposition 3.53, we have that Π• is smooth. This
means thatΠ• is on the right-hand side of (4.6), and by the one-to-one correspondence,
this implies that the action • was on the left-hand side of (4.6) the whole time. �

There also a way to understand representations of a Lie algebra as Lie algebra
actions on a vector space.
De�nition 4.6. Let g be a Lie algebra over the �eld K = R or C and let + be a

vector space over the same �eld K. A Lie algebra action of g on the vector space +
is a map

• : g ×+ → +

(-, E) ↦→ - • E

that satis�es the Lie algebra action axioms:

Linearity: - • (D + E) = - • D + - • E, - • (_E) = _(- • E)
Compatibility of the bracket: [-,. ] • E = - • (. • E) − . • (- • E)

for every D, E ∈ + , -,. ∈ g and _ ∈ K.
We will say that the Lie algebra action is complex (resp., real) if + is a complex

(resp., real) vector space. Additionally, we allow the case in which the Lie algebra is
real and the vector space + is complex. The axiom of linearity must be then ful�lled
for all complex scalars _ and we will speak of a Lie algebra action of a real Lie
algebra on a complex vector space.

If g is a Lie algebra and+ is a vector space, then every Lie algebra action • : g×+ →
+ of g on + induces a Lie algebra representation

c• : g→ gl(+ )
- ↦→ c•(- ) = (E ↦→ - • E)

The property of bracket preservation by the map c• is precisely the compatibility
axiom.
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Conversely, if we start with a Lie algebra representation c : g → gl(+ ) of g on
the vector space + , then the representation induces a Lie algebra action

•c : g ×+ → +

(-, E) ↦→ - • c E = c (- )E .

Similarly as before with the case of groups actions and group representations, we
have the following correspondence.
Proposition 4.7. Let g be a complex or real Lie algebra and let + be a complex or

real vector space, but complex if g is complex. There is a one-to-one correspondence

{Lie algebra actions of g on + } ↔ {Lie algebra representations of g in + }
• ↦→ c•

•c ←� c

Proof. By the previous discussion, the map from left to right and the map from right
to left is well-de�ned.

Analogously as with the case of groups, the only thing that must be proven is that
if ∗ : g ×+ → + is a Lie algebra action, then •c∗ = ∗, and that if f : g→ gl(+ ) is a Lie
algebra representation, then c•f = f . �

4.2 Properties of Representations

De�nition 4.8. Let Π be a �nite-dimensional real or complex representation of
a matrix Lie group � , acting on a space + . A subspace , of + is called invariant
if Π(�)F ∈ , for all F ∈ , and all � ∈ � . An invariant subspace , is called
nontrivial if , ≠ {0} and , ≠ + . A representation with no nontrivial invariant
subspaces is called irreducible.

The terms invariant, nontrivial, and irreducible are de�ned analogously for
representations of Lie algebras.

Even if g is a Lie algebra, we will consider mainly complex representations of g.
It should be emphasized that if we are speaking about complex representations of a
real Lie algebra g acting on a complex space + , an invariant subspace, is required
to be a complex subspace of + .
De�nition 4.9. Let� be a matrix Lie group, let Π be a representation of� acting

on the space + , and let Σ be a representation of � acting on the space , . A linear
map q : + →, is called an intertwining map of representations2 if

q (Π(�)E) = Σ(�)q (E)
2In Spanish, one might say aplicación entrelazadora de representaciones.
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for all � ∈ � and all E ∈ + . Equivalently, the following diagram commutes for all
� ∈ � :

+ ,

+ ,

q

q

Π(�) Σ(�)

The analogous property de�nes an intertwining maps of representations of a Lie al-
gebra.

Ifq is an intertwining map of representations and, in addition,q is invertible, then
q is said to be an isomorphism of representations. If there exists an isomorphism
between + and, , then the representations are said to be isomorphic.

Whenever the representation maps are needed to be made explicit, the notation
q : (+ ,Π) → (,, Σ) will be used for an intertwining map q between representations
(+ ,Π) and (,, Σ) of � . It is not di�cult to check that the inverse function of an
isomorphism of representations is also an intertwining map.

If we use the action notation, the de�ning property of an intertwining map may
be written as

q (� · E) = � · q (E)

for all � ∈ � and E ∈ + . That is to say, q should commute with the action of � . A
typical problem in representation theory is to determine, up to isomorphism, all of
the irreducible representations of a particular group or Lie algebra. In Sect. 4.4 we
will determine all the �nite-dimensional complex irreducible representations of the
Lie algebra sl(2;C).

If K = R or C, given a matrix Lie group � we can de�ne RepK(�) the category
of representations of� in vector spaces over K, whose objects are pairs (+ ,Π) which
are representations of � in vector spaces over the �eld K and whose morphisms are
intertwining maps of representations of � between these representations, (+ ,Π) →
(,, Σ). Analogously, given a real or complex Lie algebra g, we can de�ne RepC(g)
the category of complex representations of g. Similarly, if g is a real Lie algebra, we
can de�ne RepR(g) the category of real representations of g. If we restrict to �nite-
dimensional representations, we will write FinRepK(�) ⊂ RepK(�) for the subcate-
gory of �nite-dimensional K-representations of � . And FinRepK(g) ⊂ RepK(g) for
the subcategory of �nite-dimensional K-representations of g (where K = R or C if g
is real and K = C if g is complex).

The previous categories are well de�ned, since the identity map is an intertwining
map and since the composition of intertwining maps gives an intertwining maps. For
example, for the case of groups, if (+ ,Π), (,, Σ) and (* , Γ) are representations of
the matrix Lie group � and q : (+ ,Π) → (,, Σ) and k : (,, Σ) → (* , Γ) are
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intertwining maps, then, for all � ∈ � , we have that each square subdiagram of

+ , *

+ , *

q

q

Π(�) Σ(�)

k

Γ(�)

k

commutes, and from that, commutativity of the whole diagram follows. That is,k ◦q :
(+ ,Π) → (* , Γ) is an intertwining map.

After identifying GL(+ ) with GL(=;R) or GL(=;C), Theorem 3.29 has the follow-
ing consequence.

Proposition 4.10. Let � be a matrix Lie group with Lie algebra g and let Π be a
(�nite-dimensional real or complex) representation of � , acting on the space + . Then
there is a unique representation c of g acting on the same space such that

Π(4- ) = 4c (- )

for all - ∈ g. The representation c can be computed as

c (- ) = 3

3C
Π(4C- )

����
C=0

and satis�es
c

(
�-�−1

)
= Π(�)c (- )Π(�)−1

for all - ∈ g and all � ∈ � .

The induced representation is precisely c = LieΠ. Given a matrix Lie group �
with Lie algebra g, we may ask whether every representation c of g comes from a
representation Π of � . As it turns out, this is not true in general, but it is true if � is
simply connected. See Sect. 4.5 for examples of this phenomenon and Sect. 5.2 for the
general result.

Proposition 4.11. Any intertwining map q : (+ ,Π) → (,, Σ) between representa-
tions (+ ,Π) and (,, Σ) of amatrix Lie group� is also an intertwiningmapq : (+ , c) →
(,,f) between the induced representations (+ , c) and (,,f) of the Lie algebra g (where
c = LieΠ and f = Lie Σ).

Proof. For all � ∈ � , we have q ◦ Π(�) = Σ(�) ◦ q , and in particular, q ◦ Π(4C- ) =
Σ(4C- ) ◦ q for all - ∈ g. In that case, by the product rule for linear operators (see
footnote 1 in page 42), we have

3

3C
[q ◦ Π(4C- )]

����
C=0

=
3

3C
[Σ(4C- ) ◦ q]

����
C=0

q ◦
(
3

3C
Π(4C- )

����
C=0

)
=

(
3

3C
Σ(4C- )

����
C=0

)
◦ q
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q ◦ c (- ) = f (- ) ◦ q,

as claimed. �

Proposition 4.12. Let K = R or C. There is a covariant functor

FinRepK(�) → FinRepK(g)

from the category of �nite-dimensionalK-representations of a matrix Lie group� to the
category of �nite-dimensional K-representations of its Lie algebra g. This functor sends
each K-representation (+ ,Π) of � to the representation (+ , c) of g, where c = LieΠ,
and sends each intertwining map of representations q : (+ ,Π) → (,, Σ) of � to the
intertwining map q : (+ , c) → (,,f) itself, now between the induced representations
(+ , c) and (,,f) of the Lie algebra g of � (where c = LieΠ and f = Lie Σ).

Furthermore, this functor is faithful.

Proof. Functoriality axioms follow at once from the fact that, set-theoretically speak-
ing, the intertwining map q : (+ ,Π) → (,, Σ), as a function, is the same as the
intertwining map q : (+ , c) → (,,f), so that if k : (,, Σ) → (* , Γ) is another in-
tertwining map of representations of � , then, as linear maps between vector spaces,
q : + →, ,k :, → * andk ◦ q : + → * are always the same functions.

The functor is thus faithful by construction. �

By construction, this functor is faithful (recall De�nition 3.51) and it re�ects iso-
morphisms (recall De�nition 3.28). If in addition� is connected, the functor gets an-
other interesting property, namely, that of fullness.

De�nition 4.13. Let C and D be categories. A functor � : C → D is said to
be full3 if for each two objects G,~ ∈ C, the induced map C(G,~) �→ D(�G, �~) is
surjective. A functor which is full and faithful is said to be fully faithful.4 Similarly
as in De�nition 3.51, if O is a subclass of the class of objects of C, the functor � is
said to be full for morphisms departing O (resp., fully faithful for morphisms
departing O) if for each two objects G of O and ~ of C the map C(G,~) �→ D(�G, �~)
is surjective (resp., bijective).

If C and D are categories, we say that D is a full subcategory of C if D is a
subcategory of C and the inclusion functor D → C is full. That is, D contains all
possible morphisms between its objects. A faithful functor that is also injective on
objects is called an embedding and identi�es the domain category as a subcategory
of the codomain. A fully faithful functor that is also injective on objects is called an
full embedding of the domain category into the codomain category.

3In Spanish, the word is funtor pleno.
4In Spanish, funtor plenamente �el.
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The next lemma gives a remarkable property of fully faithful functors, a property
that we will further use in Chapter 5. There, on Sect. 5.2, we will show that the Lie
functor restricted to the full subcategory of simply connected matrix Lie group is fully
faithful.

Recall De�nition 3.28 for the concept of a functor that re�ects and creates isomor-
phisms.

Lemma 4.14. Fully faithful functors re�ect and create isomorphisms.

Proof. Let � : C → D be a fully faithful functor between categories C and D. Let
�rst see that � re�ects isomorphisms. Suppose 5 : G → ~ is a morphism in C such
that � 5 is an isomorphism. We now show that 5 is an isomorphism. There exists
6′ ∈ D(�~, �G) such that

� 5 ◦ 6′ = 1�~
6′ ◦ � 5 = 1�G .

(4.7)

Since � is full, there exists ℎ ∈ C(~, G) such that �6 = 6′. Equations (4.7) mean that

� (5 ◦ 6) = � 5 ◦ �6 = 1�~ = � (1~)
� (6 ◦ 5 ) = �ℎ ◦ � 5 = 1�G = � (1G ),

(4.8)

but since � is faithful, this implies that 5 6 = 1~ and 65 = 1G . That is, 5 is an isomor-
phism.

Next we show that � create isomorphisms. Suppose G and ~ are objects in C such
that �G and �~ are isomorphic. Let’s see that then G and ~ are isomorphic as well.
There exist 5 ′ ∈ D(�G, �~) and 6′ ∈ D(�~, �G) such that

5 ′6′ = 1�~
6′5 ′ = 1�G .

(4.9)

Since � is full, we can pick morphisms 5 ∈ D(G,~) and 6 ∈ D(G,~) such that � 5 = 5 ′

and �6 = 6′. For that reason, equations (4.9) now read as does equations (4.8). In
consequence, since � is faithful, we have that 5 6 = 1~ and 65 = 1G . That is, G � ~. �

Proposition 4.15. If � is a connected matrix Lie group, then the functor

FinRepK(�) → FinRepK(g)

of Proposition 4.12 is a full embedding.

This proposition says that the study of representations of a connected matrix Lie
group is a particular case of the study of representations of its Lie algebra.

Proof. By construction, the functor is faithful. It is also injective on objects: If (+ ,Π)
and (,, Σ) are representations of � such that (+ , LieΠ) = (,, Lie Σ), then + = ,

and so, by Proposition 3.52, also Π = Σ (if� is connected). To show fullness, let (+ ,Π)
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and (,, Σ) be representations of � and write (+ , c) and (,,f) for the correspond-
ing induced representations of the Lie algebra g of � . Let q : (+ , c) → (,,f) be
an intertwining map or representations. We must show that there exists some inter-
twining map (+ ,Π) → (,, Σ) whose image under the functor of Proposition 4.12 is
q . Due to the manner in which the functor is de�ned, the only possibility for such
an intertwining map (+ ,Π) → (,, Σ) is q itself. For that matter, we shall prove that
q ◦ Π(�) = Σ(�) ◦ q for all � ∈ � .

Let � be in � . Corollary 3.49 says that there exist -1, . . . , -< ∈ g such that � =

4-1 · · · 4-< , so we have

q ◦ Π(�) = q ◦ Π(4-1 · · · 4-< )
= qΠ(4-1) · · ·Π(4-< )
= q4c (-1) · · · 4c (-<) .

For any, - ∈ g, we know that qc (- ) = f (- )q . This identity implies that qc (- ): =

f (- ):q for each : , and hence that q4c (- ) = 4f (- )q , since, by continuity of the product
of linear operators, we have

q4c (- ) = q
∞∑
:=0

c (- ):
:!

=

∞∑
:=0

qc (- ):
:!

=

∞∑
:=0

f (- ):q
:!

=

( ∞∑
:=0

f (- ):
:!

)
q

= 4f (- )q.

Thus, swapping each q4c (- 9 ) = 4f (- 9 )q one by one,

qΠ(�) = q4c (-1) · · · 4c (-<)

= 4f (-1) · · · 4f (-<)q
= Σ(4-1) · · · Σ(4-< )q
= Σ(4-1 · · · 4-< )q
= Σ(�)q,

as we wanted to show. �

Proposition 4.16.

1. Let� be a connected matrix Lie group with Lie algebra g. Let Π be a representation
of � and c be the associated representation of g. Then c irreducible implies Π
irreducible, and the converse also holds if � is connected.
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2. Let � be a matrix Lie group, let Π1 and Π2 be representations of � , and let c1
and c2 be the associated Lie algebra representations. Then Π1 and Π2 isomorphic
implies c1 and c2 isomorphic, and the converse also holds if � is connected.

Proof. For Point 1, suppose �rst that c is irreducible. We want to show that Π is
irreducible. So, let, be a subspace of + that is invariant under Π(�) for all � ∈ � .
We want to show that, is either {0} or+ . In particular,, is invariant under Π(4C- )
for all - ∈ g and, hence, under

c (- ) = 3

3C
Π(4C- )

����
C=0

.

Indeed, as in proof of Proposition 3.36, for E ∈, we have

c (- )E = 3

3C
Π(4C- )

����
C=0
E

=
3

3C
Π(4C- )E︸   ︷︷   ︸
∈,

�������
C=0

.

and the previous expression is in, , since we are taking a limit inside the topologically
closed space, .

Since c is irreducible and, is invariant under each c (- ),, must be either {0}
or + . This shows that Π is irreducible.

In the other direction, suppose that� is connected and assume thatΠ is irreducible
and that, is an invariant subspace for c . Let � ∈ � . Corollary 3.49 tells us that �
can be written as � = 4-1 · · · 4-< for some -1, . . . , -< in g. Since, is invariant under
c (- 9 ) it will also be invariant under exp(c (- 9 )) = � + c (- 9 ) + c (- 9 )2/2 + · · · , by the
continuity of the application map (see proof of Proposition 3.49) and due to the fact
that, is topologically closed. Hence,, will be also invariant under

Π(�) = Π(4-1 · · · 4-< ) = Π(4-1) · · ·Π(4-< )
= 4c (-1) · · · 4c (-<)

Thus, since Π is irreducible,, is {0} or+ , and we conclude that c is irreducible. This
establishes Point 1 of the proposition.

For Point 2, the �rst part follows from Corollary 3.27 and Proposition 4.12, so we
have that in general Π1 � Π2 implies c1 � c2. If, in addition, � is connected, the
functor of Proposition 4.12 is fully faithful (by Proposition 4.15) and thus it creates
isomorphisms, by Lemma 4.14. That is, we have that c1 � c2 implies Π1 � Π2 for �
connected. �

Proposition 4.17. Let g be a real Lie algebra and gC its complexi�cation. Then every
�nite-dimensional complex representation c of g has a unique extension to a complex-
linear representation of gC, also denoted c . Furthermore, c is irreducible as a represen-
tation of gC if and only if it is irreducible as a representation of g.
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Of course, the extension of c is given by c (- +8. ) = c (- ) +8c (. ) for all-,. ∈ g.

Proof. The existence and uniqueness of the extension follows from the universal
property of the complexi�cation of a Lie algebra (Proposition 3.41). The claim about
irreducibility holds because a complex subspace, of + is invariant under c (- ) for
all - ∈ g if and only if it is invariant under c (- + 8. ) = c (- ) + 8c (. ) for all -,. ∈ g.
Thus, the representation of g and its extension to gC have precisely the same invariant
subspaces. �

4.3 Examples of Representations

A matrix Lie group� is, by de�nition, a subset of some GL(=;C). The inclusion map of
� into GL(=;C) (i.e., the map Π(�) = �) is a representation of� , called the standard
representation of � . If � happens to be contained in GL(=;R) ⊂ GL(=;C), then
we can also think of the standard representation as a real representation. Thus, for
example, the standard representation of SO(3) is the one in which SO(3) acts in the
usual way on R3 and the standard representation of SU(2) is the one in which SU(2)
acts on C2 in the usual way. Similarly, if g ⊂ "= (C) is a Lie algebra of matrices, the
map c (- ) = - is called the standard representation of g.

Consider the one-dimensional vector space C. For any matrix Lie group� , we can
de�ne the trivial representation, Π : � → GL(1;C), by the formula

Π(�) = �

for all� ∈ � . Of course, this is an irreducible representation, since C has no nontrivial
subspaces, let alone nontrivial invariant subspaces. If g is a Lie algebra, we can also
de�ne the trivial representation of g, c : g→ gl(1;C), by

c (- ) = 0

for all - ∈ g. This is an irreducible representation. Observe that both the Lie functor
and the functor of Proposition 4.12 send the trivial representation of � , on the �rst
case as a morphism and the second one as an object, to the trivial representation of
Lie� .

Recall the adjoint map of a group or Lie algebra, described in de�nitions 3.34 and
3.7.

De�nition 4.18. If� is a matrix Lie group with Lie algebra g, the adjoint repre-
sentation of� is the map Ad : � → GL(g) given by� ↦→ Ad�. Similarly, the adjoint
representation of a �nite-dimensional Lie algebra g is the map ad : g→ gl(g) given
by - ↦→ ad- .
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If � is a matrix Lie group with Lie algebra g, then by Proposition 3.36, the Lie
algebra representation associated to the adjoint representation of � is the adjoint
representation of g.
Example 4.19. Let+< denote the space of homogeneous polynomials of degree< in
two complex variables. For each* ∈ SU(2), de�ne a linear transformation Π< (* ) on
the space +< by the formula

[Π< (* ) 5 ] (I) = 5
(
* −1I

)
, 5 ∈ +< . (4.10)

Then Π< is a representation of SU(2).

Elements of +< have the form

5 (I1, I2) = 00I<1 + 01I<−11 I2 + 02I<−21 I22 + · · · + 0<I<2 (4.11)

with I1, I2 ∈ C and the 0 9 ’s arbitrary complex constants, from which we see that
dim+< =< + 1. Explicitly, if 5 is as in (4.11), then

[Π< (* ) 5 ] (I1, I2) =
<∑
:=0

0:
(
* −111 I1 +* −112 I2

)<−: (
* −121 I1 +* −122 I2

):
.

By expanding out the right-hand side of this formula, we see that Π< (* ) 5 is again a
homogeneous polynomial of degree<. Thus, Π< (* ) actually maps +< into +< .

To see that Π< is actually a representation, compute that

Π< (*1) [Π< (*2) 5 ] (I) = [Π< (*2) 5 ]
(
* −11 I

)
= 5

(
* −12 * −11 I

)
= Π< (*1*2) 5 (I).

The inverse on the right-hand side of (4.10) is necessary in order to make Π< a rep-
resentation. We will see in Proposition 4.20 that each Π< is irreducible and we will
see in Sect. 4.4 that every �nite-dimensional irreducible representation of SU(2) is
isomorphic to one (and only one) of the Π<’s. (Of course, no two of the Π<’s are
isomorphic, since they do not even have the same dimension.)

The associated representation c< of su(2) can be computed as

(c< (- ) 5 ) (I) =
3

3C
5 (4−C-I)

����
C=0

Now, let I (C) = (I1(C), I2(C)) be the curve in C2 de�ned as I (C) = 4−C-I. By the chain
rule, we have

c< (- ) 5 =
m5

mI1

3I1
3C

����
C=0
+ m5

mI2

3I2
3C

����
C=0

Since 3I
3C

���
C=0

= −-I, we obtain

c< (- ) 5 = − m5
mI1
(-11I1 + -12I2) −

m5

mI2
(-21I1 + -22I2) . (4.12)
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We may then take the unique complex-linear extension of c to sl(2;C) � su(2)C, as in
Proposition 3.41. This extension is given by the same formula, but with - ∈ sl(2;C).

If -,. , and � are the following basis elements for sl(2;C):

� =

(
1 0
0 −1

)
, - =

(
0 1
0 0

)
, . =

(
0 0
1 0

)
, (4.13)

then applying formula (4.12) gives

c< (� ) = −I1
m

mI1
+ I2

m

mI2

c< (- ) = −I2
m

mI1

c< (. ) = −I1
m

mI2
.

Applying these operators to a basis elements I<−:1 I:2 for +< gives

c< (� )
(
I<−:1 I:2

)
= (−< + 2:)I<−:1 I:2 , 0 ≤ : ≤ <,

c< (- )
(
I<−:1 I:2

)
= −(< − :)I<−:−11 I:+12 , 0 ≤ : < <,

c< (. )
(
I<−:1 I:2

)
= −:I<−:+11 I:−12 0 < : ≤ <, (4.14)

and c< (- ) (I<2 ) = c< (. ) (I<1 ) = 0. Thus, I<−:1 I:2 is an eigenvector for c< (� ) with
eigenvalue −< + 2: , while c< (- ) and c< (. ) have the e�ect of shifting the exponent
: of I2 up or down by one. Note that since c< (- ) increases the value of: , this operator
increases the eigenvalue of c< (� ) by 2, whereas c< (. ) decreases the eigenvalue of
c< (� ) by 2.
Proposition 4.20. For each< ≥ 0, the representation c< is irreducible.

Proof. It su�ces to show that every nonzero invariant subspace of+< is equal to+< .
So, let, be such a space and letF be a nonzero element of, . ThenF can be written
in the form

F = 00I
<
1 + 01I<−11 I2 + 02I<−21 I22 + · · · + 0<I<2

with at least one of the 0: ’s being nonzero. Let :0 be the smallest value of : for which
0: ≠ 0 and consider

c< (- )<−:0F.

Since each application of c< (- ) raises the power of I2 by 1, c< (- )<−:0 will kill
all the terms in F except 0:0I

<−:0
1 I

:0
2 term. On the other hand, since c< (I<−:1 I:2) is

zero only if : = <, we see that c< (- )<−:0F is a nonzero multiple of I<2 . since ,
is assumed invariant,, must contain this multiple of I<2 and so also I<2 itself. Now,
for 0 ≤ : ≤ <, it follows from (4.14) that c< (. ):I<2 is a nonzero multiple of I:1I<−:2 .
Therefore,, must also contain I:1I<−:2 for all 0 ≤ : ≤ <. Since these elements form
a basis for +< , we see that, = +< , as desired. �
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4.4 Representations of sl(2;C)

In this section, we will compute (up to isomorphism) all the �nite-dimensional ir-
reducible complex representations of the Lie algebra sl(2;C). This computation is
important for several reasons. First, sl(2;C) is the complexi�cation of su(2), which in
turn is isomorphic to so(3), and the representations of so(3) are of physical signi�-
cance. Indeed, the computation we will perform in the proof of Theorem 4.21 is found
in every standard textbook on quantum mechanics, under the title “angular momen-
tum.” Second, the representation theory of su(2) is an illuminating example of how
one uses commutation relations to determine the representations of a Lie algebra.

We use the basis (4.13) of sl(2;C), which have commutation relations

[�,- ] = 2-
[�,. ] = −2.
[-,. ] = �.

If + is a �nite-dimensional complex vector space and �, �, and � are operators on +
satisfying [�, �] = 2�, [�,�] = −2� , and [�,�] = �, then by Lemma 3.17, the unique
linear map c : sl(2;C) → gl(+ ) satisfying

c (� ) = �, c (- ) = �, c (. ) = �

will be a representation of sl(2;C).
Theorem 4.21. For each integer< ≥ 0, there is an irreducible complex representa-

tion of sl(2;C) with dimension < + 1. Any two irreducible complex representations of
sl(2;C) with the same dimension are isomorphic. If c is an irreducible complex repre-
sentation of sl(2;C) with dimension< +1, then c is isomorphic to the representation c<
described in Example 4.19.

Our goal is to show that any �nite-dimensional irreducible representation of sl(2;C)
“looks like” one of the representations c< coming from Example 4.19. In that exam-
ple, the space+< is spanned by eigenvectors for c< (� ) and the operators c< (- ) and
c< (. ) act by shifting the eigenvalues up or down in increments of 2. We now intro-
duce a simple but crucial lemma that allows us to develop a similar structure in an
arbitrary irreducible representation of sl(2;C).
Lemma 4.22. Let c : sl(2;C) → gl(+ ) be a representation of sl(2;C) acting on a

complex vector space+ and letD be an eigenvector of c (� ) with eigenvalue U ∈ C. Then
we have

c (� )c (- )D = (U + 2)c (- )D
Thus, either c (- )D = 0 or c (- )D is an eigenvector for c (� ) with eigenvalue U + 2.
Similarly,

c (� )c (. )D = (U − 2)c (. )D
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so that either c (. )D = 0 or c (. )D is an eigenvector for c (� ) with eigenvalue U − 2.

Proof. We know that [c (� ), c (- )] = c ( [�,- ]) = 2c (- ). Thus

c (� )c (- )D = c (- )c (� )D + 2c (- )D
= c (- ) (UD) + 2c (- )D
= (U + 2)c (- )D.

The argument with c (- ) replaced by c (. ) is similar. �

Proof of Theorem 4.21. Let c be an irreducible representation of sl(2;C) acting on a
�nite-dimensional complex vector space + . Our strategy is to diagonalize the opera-
tor c (� ). Since we area working over C, the operator c (� ) must have at least one
eigenvector. Let D be an eigenvector for c (� ) with eigenvalue U . Applying Lemma
4.22 repeatedly, we see that

c (� )c (- ):D = (U + 2:)c (- ):D.

Since an operator on a �nite-dimensional space can have only �nitely many eigen-
values, the c (- ):D’s cannot all be nonzero. Thus, there is some # ≥ 0 such that

c (- )#D ≠ 0

but
c (- )#+1D = 0.

If we set D0 = c (- )#D and _ = U + 2# , then,

c (� )D0 = _D0, (4.15)
c (- )D0 = 0. (4.16)

Let us de�ne
D: = c (. ):D0

for : ≥ 0. By Lemma 4.22, we have

c (� )D: = (_ − 2:)D: .

Now, it is easily veri�ed by induction that

c (- )D: = : [_ − (: − 1)]D:−1, : ≥ 1. (4.17)

Furthermore, since c (� ) can have only �nitely many eigenvalues, the D: ’s cannot
all be nonzero. There must, therefore, be a non-negative integer < such that, for all
: ≤ <,

D: = c (. ):D0 ≠ 0



4. basic representation theory 85

but
D<+1 = c (. )<+1D0 = 0.

If D<+1 = 0, then c (- )D<+1 = 0 and so, by (4.17),

0 = c (- )D<+1 = (< + 1) (_ −<)D< .

Since D< and< + 1 are nonzero, we must have _ −< = 0. Thus, _ must coincide with
the non-negative integer<.

Thus, for every irreducible representation (c,+ ), there exists an integer < ≥ 0
and nonzero vectors D0, . . . , D< such that

c (� )D: = (< − 2:)D:

c (. )D: =
{
D:+1 if : < <

0 if : =<

c (- )D: =
{
: (< − (: − 1))D:−1 if : > 0

0 if : = 0.

(4.18)

The vectors must be linearly independent, since they are eigenvectors of c (� ) with
distinct eigenvalues (see, for example, 5.10 of [Axl]). Moreover, the (<+1)-dimensional
span of D0, . . . , D< is explicitly invariant under c (� ), c (- ), and c (. ) and, hence, un-
der c (/ ) for all / ∈ sl(2;C). Since c is irreducible, this space must be all of + .

We have shown that every irreducible representation of sl(2;C) is of the form
(4.18). Conversely, if we de�ne c (� ), c (- ), and c (. ) by (4.18) (where the D: ’s are
basis elements for some (<+1)-dimensional vector space), it is not hard to check that
operators de�ned as in (4.18) really do satisfy the sl(2;C) commutation relations.
Furthermore, we may prove irreducibility of this representation in the same way as
in the proof of Proposition 4.20. In any case, Proposition 4.20 already showed that
sl(2;C) has an (< + 1)-dimensional irreducible representation, namely, c< .

The preceding analysis shows that every irreducible representation of dimension
< + 1 must have the form in (4.18), which shows that any two such representations
are isomorphic. In particular, the (< + 1)-dimensional representation c< described in
Example 4.19 must be isomorphic to (4.18).

This completes the proof of Theorem 4.21. �

In particular, Theorem 4.21 says that every irreducible complex representation of
sl(2;C) comes from a representation of su(2). By Proposition 4.17, this supposes the
classi�cation of the �nite-dimensional complex representations of su(2).
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4.5 Group Versus Lie Algebra Representations

We know from Chapter 3 (Theorem 3.29) that every Lie group homomorphism gives
rise to a Lie algebra homomorphism. In particular, every representation of a matrix
Lie group gives rise to a representation of the associated Lie algebra. In Chapter 5,
we will give a partial converse to this result: If � is a simply connected matrix Lie
group with Lie algebra g, then every representation of g comes from a representation
of � . (See Theorem 5.1.) Thus, for a simply connected matrix Lie group � , the Lie
functor induces a one-to-one correspondence between the representations of � and
the representations of g. The precise statement of this result is given in Corollary 5.3.

It is instructive to see how this general theory works out in the case of SU(2)
(which is simply connected) and SO(3) (which is not). For every irreducible com-
plex representation c of su(2), the complex-linear extension of c to sl(2;C) must be
isomorphic (Theorem 4.21) to one of the representations c< described in Example
4.19. Since those representations are constructed from representations of the group
SU(2), we can see directly (without appealing to Theorem 5.1) that every irreducible
complex representation of su(2) comes from a representation of SU(2). (Where we
are using the fact that a representation of a real Lie algebra is irreducible if and only
if the complex-linear extended representation to its complexi�cation is irreducible,
Proposition 4.17.) Since SU(2) � (3 is connected, by Point 1 of Proposition 4.16, this
classi�es all �nite-dimensional complex irreducible representations of SU(2).

Now, by Example 3.18, there is a Lie algebra isomorphism q : su(2) → so(3) such
that q (� 9 ) = � 9 , 9 = 1, 2, 3, where {�1, �2, �3} and {�1, �2, �3} are the bases listed in
the example. Thus, the irreducible complex representations of so(3) are precisely of
the form f< = c< ◦ q−1. We wish to determine, for a particular <, whether or not
there is a representation Σ< of the group SO(3) such that Σ< (4- ) = 4f< (- ) for all
- ∈ so(3). Since SO(3) � RP3 is connected, by Point 1 of Proposition 4.16, all such
Σ< are all the �nite-dimensional irreducible complex representations of SO(3). This
supposes the classi�cation of such representations of SO(3).

Proposition 4.23. Let f< = c< ◦ q−1 be an irreducible complex representation of
the Lie algebra so(3) (< ≥ 0). If < is even, there is a representation Σ< of the group
SO(3) such that Σ< (4- ) = 4f< (- ) for all - ∈ so(3) (that is, such that Lie Σ< = f<). If
< is odd, there is no such representation of SO(3).

Note that the condition that< be even is equivalent to the condition that dim+< =

< + 1 be odd. Thus, it is the odd-dimensional representations of the Lie algebra so(3)
which come from group representations. In the physics literature, the representations
of su(2) � so(3) are labeled by the parameter ℓ = </2. In terms of this notation, a
representation of so(3) comes from a representation of SO(3) if and only if ℓ is an
integer. The representations with ℓ an integer are called “integer spin”; the others are
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called “half-integer spin.”

In order to prove Proposition 4.23, we will need Lemma 4.27, which is just a mix-
ture of lemmas 4.24 and 4.25.

Recall the review of quotient topology after Proposition 1.11. If 5 : � → � is a
function between sets � and �, the �bers of 5 are the sets 5 −1(1) ⊂ �, where 1 ∈ �.

Lemma 4.24 (Universal property of quotient spaces). Let - be a topological
space and let (- ′, ?) be a quotient space of - . That is, - ′ is a topological space and
? : - → - ′ is a quotient map (i.e., a surjective and strongly continuous map). Every
continuous map 5 : - → . which preserves the �bers of ? (that is, 5 sends each �ber
of ? to a unique point in . ) factors through ? by a unique continuous map 5̂ : - ′→ . ,
5̂ ◦ ? = 5 . That is, there exists a unique continuous map 5̂ that makes the following
diagram commute:

- .

- ′

5

?

5̂

For a proof, see Theorem 22.2 of [Mun]. The condition “5 preserves �bers of ?”
is the same as condition “5 respects relation ∼? ,” which means that G1 ∼? G2 implies
5 (G1) = 5 (G2). Lemma 4.24 is just the universal property of the quotient topology
in disguise. On the statement, if we replace - ′ by -/∼, where ∼ is some equivalence
relation on - , and ? : - → - ′ by the natural projection - → -/∼, we end up with
the u.p. of quotient topology. In this dictionary, ∼ would correspond to ∼? .

Lemma 4.25 (Universal property of group epimorphisms). LetΦ : � → �′ be
a group epimorphism between groups� and�′. Any group homomorphism Ψ : � → �

which kills kerΦ (that is, such that Ψ sends kerΦ to 4 ∈ � ) factors through Φ by a
unique group homomorphism Ψ̂ : �′ → � , Ψ̂ ◦ Φ = Φ. That is, there exists a unique
group homomorphism Ψ̂ that makes the following diagram commute:

� �

�′

Ψ

Φ
Ψ̂

Observe that the condition that Ψ kills kerΦ is equivalent to the condition that
Ψ preserves �bers of Φ. By elementary group theory, the cosets of kerΦ in � are
precisely the equivalence classes of ∼Φ (see footnote 5 on p. 10 for the de�nition of
∼Φ), which in turn coincide with the �bers of Φ. Succinctly, Φ(G) = Φ(~) if and only
if G ∈ ~ kerΦ. Indeed, suppose Ψ were to kill kerΦ. Then if G,~ ∈ � were in the same
�ber, we would have Φ(G) = Φ(~), so G ∈ ~ kerΦ and then G = ~I for some I ∈ kerΦ.
Hence, Ψ(G) = Ψ(~I) = Ψ(~)Ψ(I) = Ψ(~). That is, the whole �ber of G is mapped
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by Ψ to a same point. Conversely, if we now suppose that Ψ preserves �bers of Φ,
in particular it would preserve Φ−1(4� ) = kerΦ, so that Ψ(kerΦ) would be then a
singleton, namely, {4� }. That is, Ψ kills kerΦ.

Proof. Uniqueness is immediate, for if such an Ψ̂ existed, it would satisfy

Ψ(G) = Ψ̂(Φ(G)), G ∈ �. (4.19)

That is the images of Ψ̂ at all point of �′ are determined by Φ and Ψ, since Φ is
surjective.

For existence, we de�ne Ψ̂ as in (4.19). That is, for each G′ ∈ �′ and because Φ

is surjective, we can pick some G ∈ Φ−1(G′) and de�ne Ψ̂(G′) = Ψ(G). This map is
well-de�ned, for the �bers of Φ are preserved by Ψ, and by construction, it ful�lls
Ψ̂ ◦ Φ = Ψ. Furthermore, it is a group homomorphism: If G′ and ~′ be in �′ and let
G ∈ Φ−1(G′) and ~ ∈ Φ−1(~′), then

Ψ̂(G′~′) = Ψ̂(Φ(G)Φ(~)) = Ψ̂(Φ(G~)) = Ψ(G~)
= Ψ(G)Ψ(~) = Ψ̂(Φ(G))Ψ̂(Φ(~)) = Ψ̂(G′)Ψ̂(~′).

�

De�nition 4.26. A topological group is a set� which is both a group and a topo-
logical space and such that these two structures satisfy a compatibility condition: the
group operation � ×� → � and the group inverse element map (·)−1 : � → � are
both continuous.

A topological grouphomomorphism is a group homomorphism between topo-
logical groups that is also continuous.

Every Lie group is a topological group. Every Lie group homomorphism is a topo-
logical group homomorphism. In other words, there is a forgetful functor LieGrp →
TopGrp from the category of Lie groups to the category of topological groups.

Lemma 4.27 (Universal property of topological quotient groups). Let � be
a group and let (�′, ?) be a topological quotient group of � . That is, �′ is a topological
group and ? : � → �′ is a group homomorphism and a quotient map. Any topological
group homomorphism Ψ : � → � which kills kerΦ factors through Φ by a unique
topological group homomorphism Ψ̂ : �′→ � , Ψ̂ ◦Φ = Φ. That is, there exists a unique
topological group homomorphism Ψ̂ that makes the following diagram commute:

� �

�′

Ψ

Φ
Ψ̂

Proof. The proof is just the conjunction of lemmas 4.24 and 4.25. �
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Proof of Proposition 4.23. We will be using notation of Example 3.18, so q : su(2) →
so(3) will be a Lie algebra homomorphism such that q (� 9 ) = � 9 , 9 = 1, 2, 3, where
{�1, �2, �3} and {�1, �2, �3} are the bases listed in the example. Like we did in Example
2.9, we may compute that

42c�1 =
©­­«
1 0 0
0 cos 2c − sin 2c
0 sin 2c cos 2c

ª®®¬ = � . (4.20)

Meanwhile, f< (�1) = c<
(
q−1 (�1)

)
= c< (�1), with �1 = 8�/2, where, as usual,

� is the diagonal matrix with diagonal entries (1,−1). We know that there is a basis
D0, D1, . . . , D< for+< such that D: is an eigenvector for c< (� ) with eigenvalue< − 2 9 .
This means that D 9 is an also eigenvector for f< (�1) = 8c< (� )/2, with eigenvalue
8 (< − 2 9)/2. For that reason, in the basis {D 9 }, we have

f< (�1) =
©­­­­«
8
2<

8
2 (< − 2)

. . .
8
2 (−<)

ª®®®®¬
. (4.21)

Suppose �rst that< were odd and that there exists a representation Σ< of SO(3)
with Lie Σ< = f< . Then < − 2 9 would be an odd integer and, thus, 42cf< (�1) would
have eigenvalues 42c8 (<−2 9)/2 = −1 in the basis {D 9 }, showing that 42cf< (�1) = −� . We
have achieved a contradiction, since by (4.20),

� = Σ< (� ) = Σ< (42c�1) = 42cf< (�1) = −� .

Therefore, if < is odd, it cannot exist a representation Σ< of SO(3) that yields the
(< + 1)-dimensional representation f< of so(3), Lie Σ< = f< .

Suppose now that < were even and let’s look for a representation Σ< of SO(3)
with Σ< = Lief< . Recall from Example 3.30 that the Lie algebra isomorphism q

comes from the surjective group homomorphism Φ in Proposition 1.11, where kerΦ =

{� ,−� }. Let Π< be the representation of SU(2) in Example 4.19. Now, 42c�1 = −� , and,
thus,

Π< (−� ) = Π< (42c�1) = 4c< (2c�1) .

By (4.21) and for c< (�1) = f< (�1), the matrix 4c< (2c�1) is diagonal in the basis {D 9 }, so
since< is even, its eigenvalues are 42c8 (<−2 9)/2 = 1, showing that Π(−� ) = 4c< (2c�1) =
� . This means that Π< kills kerΦ. The map Φ is a quotient map (this was reasoned
in proof of Corollary 1.12). Thus, by Lemma 4.27, there exists a continuous group
homomorphism Σ< : SO(3) → GL(+<) such that Π< = Σ< ◦ Φ. Equivalently, such



90 lie groups, lie algebras and representation theory

that the following diagram commutes:

SU(2) GL(+<)

SO(3)

Π<

Σ<
Φ

(Recall that continuity implies �∞-di�erentiability for group homomorphisms be-
tween matrix Lie groups, Corollary 3.53.)

By functoriality, c< = Lie Σ< ◦ q , so that Lie Σ< = c< ◦ q−1 = f< , showing that
Σ< is the desired representation of SO(3). �



5 The Lie Group–Lie Algebra
Correspondence

5.1 The “Hard” Questions

Consider three elementary results from the preceding chapters of this thesis: (1) Every
matrix Lie group � has a Lie algebra g. (2) A continuous group homomorphism Φ

between matrix Lie groups � and � gives rise to a Lie algebra homomorphism q :
g → h. (3) If � and � are matrix Lie groups and � is a subgroup of � , then the Lie
algebra h of � is a subalgebra of the Lie algebra g of � . Observe that (1) and (2) are
condensed in the assertion “there exists a functor MtxLieGrp → LieAlgR.” Each of
these results goes in the “easy” direction, from a group notion to an associated Lie
algebra notion: in the direction of the Lie functor. In this chapter, we attempt to go in
the “hard” direction, from the Lie algebra to the Lie group: in the opposite direction
of the Lie functor. We will address three questions relating to the preceding three
theorems.

• Question 1: Is every �nite-dimensional, real Lie algebra the Lie algebra of some
matrix Lie group? In other words, is the Lie functor essentially surjective?

• Question 2: Let � and � be matrix Lie groups with Lie algebras g and h, re-
spectively, and let q : g→ h be a Lie algebra homomorphism. Does there exist
a Lie group homomorphism Φ : � → � such that LieΦ = q? In other words, is
the Lie functor full?

• Question 3: If� is a matrix Lie group with Lie algebra g and h is a subalgebra
of g, is there a matrix Lie group � ⊂ � whose Lie algebra is h?

The answer to Question 1 is yes; see Sect. 5.4. The answer to Question 2 is, in gen-
eral, no, but yes if � is simply connected; see Sect. 5.2. The answer to Question 3 is
no, in general, but is yes if we allow � to be a “connected Lie subgroup” that is not
necessarily closed; see Sect. 5.3.

Throughout this chapter, we will be stating the theorems that answers the ques-
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tions while skipping their proofs. The interested reader will be redirected to the cor-
responding proofs in [Hall1]. Instead, we will focus on the consequences of the the-
orems and its corollaries. Our point of view will be categorical, and it is the style in
which we will be formulating the theorems and the rest of results.

The tool that is needed for proving these profound results is the Baker–Campbell–
Hausdor� formula, also known as the BCH formula, for short. This formula expresses
log(4-4. ), where- and . are su�ciently small =×= matrices, in Lie-algebraic terms,
that is, in terms of iterated commutators involving - and . . The formula implies that
all information about the product operation on a matrix Lie group, at least near the
identity, is encoded in the Lie algebra. In its series form the formula may be stated the
following way: there is a neighborhood of the zero matrix in gl(=;C) such that for all
matrices - and . in this neighborhood,

log(4-4. ) = - + . + 1
2 [-,. ] +

1
12 [-, [-,. ]] −

1
12 [., [-,. ]] + · · · ,

where the “· · · ” refers to additional terms involving iterated brackets of - and . .

To see a precise statement of the formula and its proof, see sections 5.3, 5.4 and
5.5 of [Hall1].

5.2 Group Versus Lie Algebra Homomorphisms

The Lie functor assigns, to each Lie group homomorphism Φ : � → � between
matrix Lie groups, the induced Lie algebra homomorphism q : g → h between their
Lie algebras. We now state a partial converse of this result, and study its consequences
in categorical terms. Recall De�nition 4.13 for the concept of a fully faithful functor
for morphisms departing a subclass of objects of the domain category.

Theorem 5.1. The Lie functor is fully faithful for morphisms departing simply con-
nected matrix Lie groups.

Since simply connected topological spaces are in particular connected spaces,
Corollary 3.52 tells us that the Lie functor is faithful for morphisms departing simply
connected matrix Lie groups. That makes half of Theorem 5.1. The fullness part is
exactly what Theorem 5.6 of [Hall1] states: if g and h are the Lie algebras of some
matrix Lie groups � and � , where � is simply connected, and q : g → h is a Lie
algebra homomorphism, then there exists a Lie group homomorphism Φ : � → �

with LieΦ = q . This last result is a profound one and we redirect to Hall’s book
for the proof. The proof idea is the following: at �rst, one starts with the Lie alge-
bra homomorphism q : g → h and uses the BCH formula to construct a local ho-
momorphism from � into � . Then one extends the local homomorphism to a global
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homomorphism—i.e., to an ordinary Lie group homomorphism—and exploits the sim-
ple connectedness of� to prove that the global homomorphism is well-de�ned. Lastly,
one checks that the Lie functor sends this global homomorphism� → � to the orig-
inal Lie algebra homomorphism q .

Theorem 5.1 has lots of applications. In particular, it implies that the restriction1 of
the Lie functor to the full subcategory of simply connected matrix Lie groups, denoted
MtxLieGrpsimpl, is a fully faithful functor,

Lie : MtxLieGrpsimpl → FinLieAlgR. (5.1)

We deduce two results, the �rst of which is a partial converse of Corollary 3.32.

Corollary 5.2. If � and � and simply connected Lie groups with isomorphic Lie
algebras, then � � � .

Proof. Since the functor (5.1) is fully faithful, it creates isomorphisms by Lemma
4.14. �

Let C and D be categories. We say that C and D are isomorphic, and we write
C � D, if there exists a pair of covariant functors � : C → D and � : D → C such
that �� = 1C and �� = 1D, where 1C and 1D are the identity functors on C and D,
respectively. In that case, � and � will be called isomorphisms of categories. It is
not di�cult to check that a functor is an isomorphism of categories if and only if it is
fully faithful and both injective and surjective on objects.

Corollary 5.3. Let K = R or C. If � is simply connected, then the functor

FinRepK(�) → FinRepK(g) (5.2)

of Proposition 4.12 is an isomorphism of categories.

Proof. Since simply connected implies connected, by Proposition 4.15, the functor
(5.2) is a full embedding. It is left to show surjectivity on objects. Let c : g→ gl(+ ) be
a representation of the Lie algebra g on some �nite-dimensional vector space + . The
map c is a Lie algebra homomorphism and, hence, since � is simply connected, by
Theorem 5.1, we have that there exists a Lie group homomorphism Π : � → GL(+ )
such that LieΠ = c . That is, the functor (5.2) sends the representation (+ ,Π) of � to
the representation (+ , c) of g. �

This corollary says that to study the �nite-dimensional real (resp., complex) rep-
resentations of a simply connected matrix Lie group is the same as to study the �nite-
dimensional real (resp., complex) representations of its Lie algebra.

1In general, the restriction of a functor � : C→ D to any subcategory E ⊂ C is a functor as well,
� |E : E→ D.
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5.3 Subgroups and Subalgebras

In this section, we address Question 3 from Sect. 5.1: If � is a matrix Lie group with
Lie algebra g and h is a subalgebra of g, does there exist a matrix Lie group � ⊂ �
whose Lie algebra is �?

The answer to Question 3, as stated, is no. Suppose, for example, that� = GL(2;C)
and

h =

{ (
8C 0
0 8C0

)���� C ∈ R}
, (5.3)

where 0 is irrational. If there is going to be a matrix Lie group � with Lie algebra h,
then � would have to contain the closure of the group

�0 =

{ (
48C 0
0 48C0

)���� C ∈ R}
, (5.4)

which is (Exercise 10 in Chapter 1 of [Hall1]) the group

�1 =

{ (
48\ 0
0 48q

)����\, q ∈ R}
.

But the Lie algebra of � would have to contain the Lie algebra of �1, which is two
dimensional!2

Fortunately, all is not lost. We can still get a group � for each subalgebra h if
we weaken the condition that � be a matrix Lie group. In the above example, the
subgroup we want is �0, despite the fact that �0 is not closed.

De�nition 5.4. If � is any subgroup of GL(=;C), the Lie algebra h of � is the
set of all matrices - such that

4C- ∈ �

for all real C .

It is possible to prove that for any subgroup � of GL(=;C), the Lie algebra h of �
is actually a Lie algebra, that is, a real vector space—possibly zero-dimensional—and
closed under brackets. (See Proposition 1 and Corollary 7 in Chapter 2 of [Ross].) This
result is not, however, directly relevant this section.

De�nition 5.5. If � is a matrix Lie group with Lie algebra g, then � ⊂ � is a
connected Lie subgroup of � if the following conditions are satis�ed:

2The two dimensionality can be seen using the fact that, since �1 is a matrix Lie group, Corollary
3.47 says that there is a neighborhood of the identity in �1 which is mapped by log to a neighborhood
of zero in h1 = Lie�1. Thus, there exists a neighborhood of zero in h1 in which all matrices are of the

form
(
8\ 0
0 8q

)
, with (\, q) ∈ * ⊂ R2, where* is some open neighborhood of (0, 0).
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1. � is a subgroup of � .
2. The Lie algebra h of � is a Lie subalgebra of g.
3. Every element of� can be written in the form 4-14-2 · · · 4-< , with-1, -2, . . . , -< ∈

h.

Note that any group � as in the de�nition is path connected, since each element
of � can be connected to the identity in � by a path of the form

C ↦→ 4 (1−C)-14 (1−C)-2 · · · 4 (1−C)-< .

Theorem 5.6. Let � be a matrix Lie group with Lie algebra g and let h be a Lie
subalgebra of g. Then there exists a unique connected Lie subgroup � of � with Lie
algebra h. Namely, � = {4-14-2 · · · 4-< | -1, -2, . . . , -< ∈ h}.

Observe that, in any case, � = {4-14-2 · · · 4-< | -1, -2, . . . , -< ∈ h} is always
a subgroup of � ⊂ GL(=;C). For that reason, the only thing that must be proven
in Theorem 5.6 is that the Lie algebra of � is h. For a proof, see Theorem 5.20 of
[Hall1]; this proof uses the BCH formula. From the theorem we deduce that if h is the
subalgebra of gl(2;C) in (5.3), then the connected Lie subgroup � is the group �0 in
(5.3), which is not closed.

If a connected Lie subgroup � of GL(=;C) is not closed, the topology � inherits
from GL(=;C) may be pathological, e.g., not locally connected. Nevertheless, we can
give � a new topology that is much nicer.
Theorem 5.7. Let � be a connected Lie subgroup of GL(=;C) with Lie algebra h.

Then � can be given the structure of a smooth manifold in such a way that the group
operations on � are smooth and the inclusion map of � into GL(=;C) is smooth.

Thus, every connected Lie subgroup of GL(=;C) can be made into a Lie group. In
the case of the group �0 in (5.3), the new topology on �0 is obtained by identifying
�0 with R by means of the parameter C in the de�nition of �0.

For a proof of Theorem 5.7, see Theorem 5.23 of [Hall1]. The proof of Hall’s book
is not a completely detailed one, but using the smooth manifold chart lemma (Lemma
1.35 of [Lee]) one can give the details left in the proof.

5.4 Lie’s Third Theorem

Lie’s third theorem (in its modern, global form) says that for every �nite-dimensional,
real Lie algebra g, there exists a Lie group � with Lie algebra g. We will take this �
to be a connected Lie subgroup of GL(=;C).
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Theorem5.8. If g is any �nite-dimensional, real Lie algebra, there exists a connected
Lie subgroup � of GL(=;C) whose Lie algebra is isomorphic to g.

Our proof assumes Ado’s theorem, which asserts that every �nite-dimensional
real or complex Lie algebra is isomorphic to an algebra of matrices. (See, for example,
Theorem 3.17.17 in [Var].)

Proof. By Ado’s theorem, we may identify g with a real subalgebra of gl(=;C). Then,
by Theorem 5.6, there is a connected Lie subgroup of GL(=;C) with Lie algebra g. �

It is actually possible to choose the subgroup � in Theorem 5.8 to be closed. In-
deed, according to Theorem 9 on p. 105 of [Got], if a connected Lie group � can be
embedded into some GL(=;C) as a connected Lie subgroup, then� can be embedded
into some other GL(=′;C) as a closed subgroup. Assuming this result, we may reach
the following corollary.

Corollary 5.9. The Lie functor is essentially surjective.
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