
A Top Down Approach for MAS Protocol Descriptions*

Joaquín Peña
Dept. Lenguajes y Sistemas

Informáticos
University of Seville

Avda. Reina Mercedes s/n
41012 Seville Spain

Rafael Corchuelo
Dept. Lenguajes y Sistemas

Informáticos
University of Seville

Avda. Reina Mercedes s/n
41012 Seville Spain

José L. Arjona
Dept. Lenguajes y Sistemas

1 nformáticos
University of Seville

Avda. Reina Mercedes s/n
41012 Seville Spain

joaquinp@lsi.us.es corchu@lsi.us.es arjona@lsi.us.es

ABSTRACT

When the protocol of a complex Multi-Agent System (MAS)
needs to be developed, the top-down approach emphasises to
start with abstract descriptions that should be refined
incrementally until we achieve the detail leve! necessary to
implement it. Unfortunately, there exist a semantic gap in
protocol description methodologies because most of them
first identify which tasks have to be performed, and then use
low leve! descriptions such as sequences of messages to detail
them. In this paper, we propase an approach to bridge this
gap. We model MAS protocols using severa! abstract views
of the tasks to be performed, and provide a systematic
method to simplify them. Tasks are represented by means of
interactions that may be refined into lower-level inter
actions with the techniques proposed in this paper (simpler
interactions are easier to describe and implement using mes
sage passing.) Unfortunately, deadlocks may appear due to
protocol design mistakes or due to the refinement process.
Thus, we also propose an algorithm to ensure that protocols
are deadlock free.

Keywords

Top-clown approach, agent protocol descriptions, interaction
refinements, and deadlock detection.

l. INTRODUCTION

Agent-Oriented Software Engineering (AOSE) is paving
the way for a new paradigm in the Software Engineering

field. This is the reason why a large amount of research
papers on this topic are appearing in the literature. One

of the main .research lines in AOSE arena is devoted to de
veloping methodologies for describing interaction protocols
(hereafter protocols) between agents.

*The work reported in this article was supported by the
Spanish Interministerial Commission on Science and Tech
nology under grant TIC2000-1106-C02-0l.

1.1 Motivation
When the protocol of a large MAS has to be developed,

it is desirable to start with an abstract description that
can be refined incrementally according to the top down ap
proach[15]. In our opinion, there exist two drawbacks in
most existing methodologies that difficult the applicabilíty
of this approach:

On the one hand, most of them, general or protocol
centric, agree on using abstract messages and sequence di
agrams to describe protocols (2, 8, ll, 18]. Although these
messages represent a high leve! view of a protocol, which
shall be refined later, the tasks that are performed are for
mulated as a set of messages. This representation implíes
that the abstraction leve! falls dramatically since a task re
quires severa! messages to be represented. For instance, an
information request between two agents must be represented
with two messages at least (one to ask, and another to re
ply). This introduces a semantic gap between tasks and
its interna! design since it is difficult to identify the tasks
represented in a sequence of messages. This representation
becomes an important problem regarding readabilíty and
manageability of large MAS.

On the other hand, abstractions of protocols (interactions)
that allow designers to encapsulate pieces of a protocol that
is executed by an arbitrary number of agents have been
proved adequate in this context (2, 3, 11, 12, 19]. Unfortu
nately, interactions are generally used to hide unnecessary
details about sorne views of the protocol. This improves
readability and promotes reusability of protocol patterns,
but they are not used for bridging the existing semantic gap
between tasks and its representation.

1.2 Contributions
We present a different approach to use interactions, which

is based on the ideas presented in [3, 19]. As we sketched
in Figure 1, our goal is to bridge the gap using interactions
to model the tasks to be performed, and Finite State Au
tomata (FSA) to model how to sequence them (see static
and dynamic interaction views in Figure 2, and Figure 3).
Afterwards, we refine them systematically into simpler ones
when it is possible (see Figure 1). This decreases the leve!
of abstraction of complex tasks so that the interactions we
obtain are simpler. Thus, they are described internally as
message sequences easily, e.g. using AUML [2], which is the
last step in our approach.

We have used an abstraction called multi-role interaction
(mRI), which was proposed in (14]. An mRI encapsulates a

set of messages between an arbitrary number of agent roles.
Furthermore, the refinement process we use is based on the
ideas presented in [5] since the interaction we use is simi
lar to such used in this work. The refinement process relies
on analysing the knowledge used by each role in an mRI
and using this information to transform an mRI into severa!
simpler mRis. An mRI is simpler when both the number of
participant roles and the computation made by it decreases.
The main advantages of refining mRis are the followings:
First, its interna! description is easier since the computa
tion to perform in the obtained tasks is simpler. Second,
it is easier to implement interactions with a low number
of participants [1, 6]. Finally, mRis are critica! deadlock
free regions and they are mutually exclusive. Thus, if the
number of participant roles increases, the concurrency grain
decreases, what is clearly not desirable(16].

The main drawback of such refinements is that they may
lead to deadlocks. In this paper, we also propose a tech
nique to detect if a refinement may introduce deadlocks (see
Figure 1); it also characterises them by means of regular
expressions that help finding the refinements that are not
adequate in a given context. It is based on analysing the
FSA that represents the protocol and s.ome previous work
on deadlock detection in the context of client/server interac
tions [4, 7, 17]. lt improves on other results in that it can be
automated because it does not require any knowledge about
the implied, intuitive semantics of the interactions as other
approaches.

This paper is organised as follows: in Section 2 we present
the related work; in Section 3 we present our ideas on pro
tocol modeling and we show the refinement techniques; in
Section 4 we present our approach to the automatic dead
lock detection process. Finally, in Section 5, we show our
main conclusions.

2. RELATED WORK

As we showed in the previous section, we think that most
approaches model protocols at low leve! of abstraction since
they require the designer to model complex cooperations as
message-based protocols. This issue has been identified in
the Gaia Methodology [19], and also in the work of Caire
et. al. [3], where the protocol description process starts
with a high leve! view based on describing tasks as com
plex communication primitives (hereafter interactions). We
think that the ideas presented in both papers are adequate
for this kind of systems where interactions are more impor
tant than in object-oriented programming.

On the one hand, in the Gaia methodology, protocols are
modeled using abstract textual templates. Each template
represents an interaction or task to be performed between
an arbitrary number of participants. Furthermore, interac
tions are decorated with the knowledge they process and
the permissions each role has, their purpose, their inputs
and outputs, and so on.

On the other hand, in [3], the authors propose a method
ology in which the first protocol view is a static view of the
interactions in a system. Each interaction is used by a set of
agent roles and they are decorated with the knowledge each
role uses/supplies. Later, the internals of these interactions
are described using AUML [2].

As the methodologies cited above, we also use interactions
to deal with the first stage of protocol modeling. Further
more, we also represent a static view of interactions and the

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.

Requi'ements
Ana)ysis

.

.

.

.

-:----:
; Prod

1
ucet

f
'

'

\\��-�.
"•,, ,,,• Produ�_.,."

.... ..

StaUc lnteracloo View

m
Oependencles Vlew

�
�

__ Dynamic lnleraction
-·Llae,_____ View

,······· ·····--..
,,,• Oesc:ribe "\,

l lnteractions \
: lnternally \
. .

Simpler lnteracüons
-Newstaticvlew

mt
• New dynamic view

�.t--f

regular expression

�

Figure 1: A workflow describing our approach.

knowledge that each role consumes and produces in each of
them. Unfortunately, both methodologies do not provide a
method for refining complex interactions into smaller inter
actions that are closer to the implementation leve!. In this
paper, we elaborate on such a method.

The need for interactions has also been identified in other
areas such as distributed systems [6, 13]. In this context
such interactions have been studied for long, and there ex
ist advanced techniques to refine them (synchrony loosening
refinements [6]). The technique that focus on deadlock de
tection of refined systems was presented in (6]. It is based
on designing a formal proof system (cooperating proa!) that
allows to prove a sufficient condition that ensures that a
system is deadlock free. Unfortunately, this technique is
quite difficult to apply in practice because it requires in
depth knowledge of the implied, intuitive meaning of the
interactions, and no automatic proof rules were designed for
showing the satisfaction of the sufficient condition.

Our proposal can detect if a refinement may lead to a
deadlock situation automatically, and also characterises the
set of traces that lead to it by means of regular expressions.
It is based on FSA analysis used by many researchers in
the context of client/server deadlock detection of interaction
models [4, 7, 17].

3. MODELING THE PROTOCOL

In this section we use an example to illustrate our ap
proach. The example we use is a debit-card system, which
can be viewed as one of the basic coordination patterns in
the agent e-commerce world. It involves three different agent
roles (hereafter roles): a point of sales role (PS) that inter
acts with the user, a customer account manager role(CA),
and a merchant account manager role (MA). When a cus
tomer uses his or her debit-card, the agent playing role
PS agrees with a CA agent and merchant account agent
on performing a sequence of tasks to transfer the money

\,

�

\

Figqre 2: Static interaction view of the example.

next sale (@ �
-

-
-0 -0

hite _p approv hire _p approv hite _p
transfer transfer transfi

4 6

a) Point oí Salts b) Cnstomer Account e) Merchant Account

Figure 3: Dynamic interaction view of the example.

from the customer account to the merchant account, which
shall also be charged the costs of the transaction. If the
customer account cannot afford the purchase because it has
not enough money, the customer account agent then pays

· on hire-purchase.
As we showed in Figure 1, our approach starts when the

tasks to be performed and their mapping onto roles have
been already obtained [3, 10, 18]. Then, we model each task
as an mRI as we show in the static interaction view (see
Figure 2). We model also the knowledge dependencies for
each mRI of our example with the information obtained in
the requirements analysis stage (see Figure 4a).

The tasks in our example are modeled as the following
mRis: approv is used by the CA role to inform the other
parties if it can afford a purchase; transf er is used to trans
fer money from the CA to the MA by means of the PS;
mRI hire_p is used to buy on hire-purchase; finally, there
is a two-party mRI called nexLsale, which encapsulates the
operations needed to read the sum to be transferred and the
customer data from his or her debit card.

Once the mRis are identified and mapped onto roles we
represent their possible sequences by means of FSAs (see
Figure 3). When an mRI is executed by more than one role
it must appear a transition in ali its participant roles. Each
of these transitions represents the part of the mRis that a
role performs. Whereby, to execute an mRI we must transit
from one state to another in ali the roles that participate
on it. Furthermore, with the algorithms presented in [14],
which we outline in section 4, we can automatically infer
a single FSA that represents the role model protocol as a
whole. This alternative representation can be used for better
readability.

Finally, each mRI have to be decorated with sorne addi
tional information: such as the dependencies between they
knowledge it process, a guard for each role, and so on. The
knowledge dependencies, as we show in the next section, can

a) Before ref"mement

Figure 4: Decoupling mRI transfer.

be analysed in order to refine mRis. Furthermore, the guard
of mRis allows each role to decide if it want to execute the
mRI or not, which has been proved adequate to <leal with
proactivity of agents [11, 14].

The model presented before takes advantage of complex
mRis, which provides a high leve! design. However, it should
be refined in an attempt to transform its mRis into a set of
simpler ones that are closer to message sequences descrip
tion. That is to say, describing them internally shall be
easier. This is the next step in our approach.

The refinements are based on analysing the dependen
cies between the knowledge that roles use from others in a
particular mRI. In order to identify which refinements are
applicable the designer has to build a dependency graph
(see Figure 4a) which shall be analysed with the algorithms
proposed in [5, 9].

For example, we can apply a refinement called decoupling

[6]. It can transform certain n-party mRis into an m -party
mRI (m < n) followed by an mRI with n-m+l participants.
We can illustrate it by means of mRI transfer. Figure 4a
shows a diagram in which we have depicted the knowledge
of its roles and their dependencies. As shown, both the MA
and CA need to update their balances according to sorne
information in the knowledge of the PS. The idea is thus to
decouple mRI transf er into two binary mRis so that the
CA updates its balance before the MA. Thus, as we can
see in Figure 4b mRI transf er1 shall be executed by PS
and CA, and transfer2 by PS and MA. We have applied
this refinement to the mRI hire_p as well and participant
elimination [6] to mRI approv (see Figure 5 for the new
sequences of execution). Others refinements can be found
in [6].

The resulting FSAs after applying ali refinements are pre
sented in Figure 5. Apparently, they works well but we
can discover that the refinements have introduced a dead
lock if we take a closer look. Consider a trace in which the
following mRis are executed: nexLsale, approv, transf er1,
and hire_p¡. This execution deadlocks beca use of an un
fortunate interleaving in which, after approving a sale and
charging the CA, this role is ready to interact with the PS
by means of transfer2; however, the MA is readied then to
execute both transf er1 and hire_p1. If hire_p¡ is executed,
it leads to a situation in which no role can continue because
PS is readying transf er2 and waits for the CA to ready it,
the CA is readying awrov and waits for the PS to ready it,
and the MA is waiting for any of them to ready transfer1 or
hire_p¡. This situation can be avoided if we use a guard for
transfer; and hire_p;, which ensures that when one of these
mRI is executed, the guard of the others shall be evaluated

a) Point of Sales

transfer1
4

hire _p ire ___p,

e) Merchant

Account

Figure 5: Sequences of mRis after refinement.

as false. Unfortunately, this is not possible in general.
These refinements allow us to execute several mRis con

currently since the knowledge they computed before is now
computed separately in different mRis. In addition, they de
crease the number of participants of mRls, which lead us to
easier implementations (the protocol to coordinate n parties
is more difficult than such for two parties) [1, 6]. Finally,
the complexity of the knowledge processed in each mRI
decreases thus easing their interna! design. For instance,
the mRI transfer has been broken into two simpler mRis:
transf er1 and transjer2. transf er1 computes the balance
of the CA and transfer2 computes the balance of the MA.
Thus, simpler computations are performed. Furthermore,
the original mRI had three participant roles, and the new
mRis have only two, whose coordination/negotiation proto
col is simpler to implement.

4. ENSURING DEADLOCK FREE PROTO
COLS

Our approach to detect deadlocks is based on building an
FSA and analysing its paths. Next, we present sorne results
we need, and then we show how to construct the FSA and
how to analyse it.

As we can see in Figure 5, the definition of the proto
col of each role is done by means of FSAs. They can be
characterised as follows:

DEFINITION 1 (FSA). A finite state automaton (FSA}
is a tuple of the form (S, E, ó, s0

, F), where S is a set of
states, E is a set of mRis (the vocabulary in FSA theory),
ó : S x E -> S is a transition function that represents an
mRI execution, s0 E S is an initial state, and F � S is a
set of final states.

Thus, let A; = (S;,E;,ó;,s?,F;) (i = 1,2,··· ,n) be the
set of FSAs that represents each role in a role model. Then,
we can build a new FSA C = (S, E, 8, so, F) that represents
the protocol as a whole, where

• S = S1 X··· X Sn

• E= U7=1 E;

• 8(a,{s1, ... ,s n }) {si, ... ,s�} iff
\/ i E [1..n] · (a \t E;/\s; = sD V (a E E;/\ó(a,s;) = sD

•so = {s�, ... ,s�}

• F={Fi, . . . ,Fn}

This algorithm has been presented in (14] and builds the
new FSA exploring all the feasible executions of mRis. Their
states are computed as the cartessian product of ali states.

Then, for each new state (composed of one state of each
role) we check if an mRI may be executed (all their roles
can do it from that state); if so, we add it to the result. The
FSA that we obtain in our example is shown in Figure 6.

4.1 Analysing the Resulting FSA
The final step consists in analysing the resulting FSA by

searching for deadlock states, i.e., states from which a final
state cannot be reached.

We use a transition relation called ---> 8 to calculate these
states. It is applied on tuples of the form (C, N, X), where C
denotes an FSA, N denotes the set of states to be analysed,
and X denotes the set of deadlock states found so far. We
formalise --> a by means of the following inference rule:

s EN /\ s \t X/\ P = pred(s, C)

(C,N,X) -->a (C,N\P,XUP)

Where the predicate pred is defined as follows:

DEFINITION 2 (PREDECESSORS). Let A be an FSA and
s E S a state. We denote its set of predecessors by pred(s, A)
and define it as Jollows:

pred(s,A) = {s' ES [:3a E E· ó(s',a) = s}

This transition relation allows us to explore the set of
states of an FSA starting at its final states and going back to
its predecessors until no new unexplored state is found. The
set of unexplored states at that step is the set of deadlock
states because there is no path in the FSA that links them
to a final state. Therefore, we can define a function deadlock
that maps an FSA into its set of deadlock states as follows:

deadlock(C) = Cs \ N if N � Cs/\

X� Cs /\ (C, CF, 0) -->k (C, N, X)

Here, -->k denotes the normalisation of -->a, i.e., its
repeated application to a given tuple until it can not be fur
ther applied to the result. If deadlock returns an empty set,
then the refinements we have applied do not introduce any
deadlocks. Otherwise, we need to characterise the execution
paths that may lead to them.

Consider that deadlock(C) = {b1, b2, ... , bk}, thus, we can
build a new set of FSAs B; = (Cs,CE,Co,C.o,{b;}) (i =
1, 2, ... , k). Notice that these FSAs have only a final state
that is a deadlock state in the original FSA. Thus, if we use
the algorithms presented in [7] for transforming an FSA into
its corresponding regular expression, we can obtain the set
of regular expressions that characterise the execution paths
that lead to deadlocks .

If we analyse the FSA in Figure 6, we can easily check that
its set of deadlock states is a singleton of the form { (3, 4, 7) }.
Thus, if we make this the only final state, we can obtain the
following regular expression that characterises the execution
paths that lead to deadlocks: (nexLsale [approv · transfi ·
transh [approv-hire_p1 -hire_p2)* ·approv·trans fi ·hire_p1.

Thus, when a set of refinements are applied we can use
the technique presented above to search for deadlocks, and
if they appear, we characterise it by the deadlock regular
expression. Then, we can use this characterization to apply
a different set of refinements and repeat this process until

Figure 6: Resulting FSA.

getting a deadlock free protocol. Finally, we obtain a set
of new simpler mRis that can be described internally and
implemented easier. In our example the deadlock appears
between mRI trans f er and hire

p
. It can be easily avoided

not refining one of them, applying another set of refinements,
or adding an appropriate guard.

5. CONCLUSIONS

The description of the protocols in a complex MAS may
be a difficult, tedious process due to the large number of
complex tasks that agents must perform. Thus, in order
to palliate this problem, we have proposed a methodology
that is based on an interdisciplinary technique that builds
on MAS and distributed systems ideas.

Our technique improves previous research in that we add
sorne protocol views between requirements analysis and the
description of a protocol by means of message sequences. In
these views mRis are used as first class modeling elements.
Furthermore, these mRis can usually be refined in order to
ease its interna! description as message sequences. Thus, we
provide a progressive method to proceed from requirements
analysis to message sequences descriptions. Furthermore,
we provide an automatic method to detect deadlocks.

6. REFERENCES

(1] R. Bagrodia. Synchronization of asynchronous
processes in CSP. Tmnsactions on Progmmming
Languages and Systems, 11(4):585-597, Oct. 1989.

[2] B. Bauer, J. Muller, and J. Odell. Agent UML: A
Formalism for Specifying Multiagent Interaction. In
Proc. of 22nd International Conference on Software
Engineering {ISCE), LNCS, p. 91-103, Berlin, 2001.
Springer-Verlag.

[3] G. Caire, F. Leal, P. Chainho et. al. Agent Oriented
Analysis Using MESSAGE/UML. In Frac. of
AOSE'Ol, p. 101-108, Montreal, 2001.

(4] J. C. Corbett. Evaluating Deadlock Detection
Methods for Concurrent Software. IEEE Tmnsactions
on Software Engineering, 22(3): 161-180, 1996.

(5] N. Francez and l. Forman. Synchrony Loosening
Transformations for Interacting Processes. In
J. Baeten and J. Klop, editors, Proc. of Concurr'91,
527 in LNCS, p. 27-30, Amsterdam, The Netherlands,
1991. Springer-Verlag.

(6] N. Francez and l. R. Forman. Intemcting Processes.
Addison-Wesley, 1996.

(7] J. E. Hopcroft and J. D. Ullman. Introduction to
A utomata Theory, Languages, and Computation.
Addison-Wesley, 1979.

(8] C. Iglesias, M. Garrijo, and J. Gonzalez. A Survey of
Agent-Oriented Methodologies. In J. Müller, M. P.
Singh, and A. S. Rao, editors, Proc. of the 5th
International W orkshop on Intelligent Agents V :
Agent Theories, Architectures, and Languages
{ATAL-98), volume 1555, p. 317-330. Springer-Verlag:
Heidelberg, Germany, 1999.

[9] S. Katz, l. Forman, and W. Evangelist. Language
Constructs for Distributed Systems. In IFIP TC2
W orking Conference on Progmmming Concepts and
Methods, Galilea, Israel, 1990.

(10] E. Kendall, U. Palanivelan, and S. Kalikivayi.
Capturing and Structuring Goals: Analysis Patterns.
In Proc. of the 3rd European Conference on Pattern
Languages of Progmmming and Computing, 1998.

[11] J. Koning, M.Huget, J. Wei, and X. Wang. Extended
Modeling Languages for Interaction Protocol Design.
In M. Wooldridge, P. Ciancarini, and G. Weiss,
editors, Proc. of 2nd Intemationa Workshop on
Agent-Oriented Software Engineering (AOSE'02),
LNCS, Montreal, Ganada, May, 2001. Springer-Verlag.

(12] H. J. Levesque, P. R. Cohen, and J. H. T. Nunez. On
Acting Together. In T. Dietterich and W. Swartout,
editors, Pmc. o/ the 8th National Conference on
Artificial Intelligence (AAAI-90). Bastan, MA, USA.,
p. 94-99. AAAI Press, 1990.

(13] G. Papadopoulos and F. Arbab. Coordination Models
and Languages. In Advances in Computers, volume 46.
Academic Press, 1998.

(14] J. Peña, R. Corchuelo, and J. L. Arjona. Towards
Interaction Protocol Operations for Large Multi-Agent
Systems. In J. Rash et al. editors, Pmc. of the Second
Intemational Workshop on Formal Approaches to
Agent-Based Systems, LNAI, page To be pubblished,
NASA-Goddard Space Flight Center, Greenbelt, MD,
USA, 2002. Springer-Verlag.

[15] R. Pressman. Software Engineering: a Pmctitioner's
Appmach. MacGraw Hill, New York, N.Y., 1986.

(16] M. Singhal. Deadlock detection in distributed systems.
Computer Magazine of the Computer Group News of
the IEEE, 22(11):37-48, 1989.

[17] M. Y. Vardi and P. Wolper. An Automata-Theoretic
Approach to Automatic Program Verification. In Pmc.
1st Annual IEEE Symp. on Logic in Computer
Science, LICS'86, Cambridge, MA, USA, 16-18 1986,
p. 332-344. IEEE Computer Society Press,
Washington, DC, 1986.

(18] M. Wood and S. A. DeLoach. An Overview of the
Multiagent Systems Engineering Methodology. In
Pmc. of the 1 st Intemational W orkshop on
Agent-Oriented Software Engineering, number 1957 in
LCNS, Limerick, Ireland, 2001. Springer-Verlag.

(19] M. Wooldridge, N. R. Jennings, and D. Kinny. The
GAIA Methodology for Agent-Oriented Analysis and
Design. Autonomous Agents and Multi-Agent Systems,
3(3):285-312, 2000.

