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Supervisors:
Dr. Rafael Blanquero Bravo, Universidad de Sevilla
Dr. Emilio Carrizosa Priego, Universidad de Sevilla

   

June 24, 2014





Contents

1 Introduction 3
1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Stoichiometric Matrix and the Action Mass Law . . . . 3
1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Fitting Concentrations 9
2.1 Weibull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Logistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Mixture of models . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 RBF Gaussians . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 MINLP Formulation 20
3.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Differential Method . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Integral Method . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Continuous Relaxation and Projection over the Integers 30

5 Combinatorial Method 33

6 Examples 39
6.1 Data Set 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 Data Set 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

A Data Sets 56
A.1 Data Set 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
A.2 Data Set 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2



Chapter 1

Introduction

1.1 Problem Definition

A material balance for N chemical species taking place in L chemical
reactions comprising a chemical reaction network can be written for certain
classes of chemical reactors such as batch, fed-batch (semibatch) and con-
tinuous flow stirred tank reactor (CSTRs) ([19], [1], [10], [12], [18]). These
balances are often written to reflect the pragmatic assumptions that the (ho-
mogeneous phase) reactor is operating isothermally, is well mixed, and that
the overall density of the reaction mixture is not significantly changed by
the occurrence of the chemical reactions within the reactor. The material
balance expression for each species may be written in a very abstract form
as (1.1):

(1.1)
dyi
dt

= fi(y1, . . . , yN , t, θ), i = 1, . . . , N

where yi is the molar concentration of specie Ei at time t, and θ is a multidi-
mensional parameter. Equation (1.1) is a set of coupled ordinary differential
equations (ODEs) that describe the dynamic behaviour of the reactive species
due to chemical reactions, as represented by the N reaction fluxes fi.

1.1.1 Stoichiometric Matrix and the Action Mass Law

In this work we focus on a particular form of (1.1) studying the so called
action mass law. In this model, the flux terms fi in (1.1) are directly linked to
the stoichiometries of the L reactions taking place and the kinetic rate terms
of these reactions. To be more precise, we consider the N ×L stoichiometric
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matrix A containing the stoichiometric coefficients for each of the N species
in the L reactions:

AN×L =

 a11 · · · aL1
...

. . .
...

a1N · · · aLN


Here, ali is the stoichiometric coefficient of the chemical species Ei in the

l−th reaction. By convention, ali < 0 for a species that undergoes net con-
sumption in a reaction (reactives), ali > 0 for a species that undergoes net
production (products), and ali = 0 for a species that is either not involved in
the l−th reaction or has no net change in it.

In the action mass law, reactives and products play very different roles.
For this reason, it is convenient to express the stoichiometric matrix A as
the difference of two matrices, P, corresponding to the products, and R,
corresponding to the reactives,

AN×L = PN×L −RN×L =

 λ11 − ν11 · · · λL1 − νL1
...

. . .
...

λ1N − ν1N · · · λLN − νLN

 ,

where ali = λli − νli , i = 1, . . . , N, l = 1, . . . , L and,

PN×L =

 λ11 · · · λL1
...

. . .
...

λ1N · · · λLN

 ; RN×L =

 ν11 · · · νL1
...

. . .
...

ν1N · · · νLN



Example 1.1.1 Let us consider a hypothetical chemical reaction network
comprising four reactive species E1, . . . , E4 (N = 4) involved in two elemen-
tary reactions (L = 2)

(1.2)
E1 + E2 −→ E3 + E4

E3 −→ E4
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The stoichiometric matrix A for this network is

A4×2 =


−1 0
−1 0

1 −1
1 1

 ,

and the matrices P and R corresponding to the products and reactives res-
pectively are

P4×2 =


0 0
0 0
1 0
1 1

 ; R4×2 =


1 0
1 0
0 1
0 0


The component balances may now be conveniently expressed in terms of

A and the L individual reaction rates in matrix-vector form:

(1.3)
dy

dt
= Aδ(y, t, θ),

where δ is the L× 1 dimensional vector of reaction rates, θ is a set of param-
eters, and y is the N × 1 dimensional vector of species concentrations y1,. . . ,
yN at time t.

The L reactions involved in δ are, in general, nonlinear functions of the
concentrations, y, and linear functions of what is named the rate coefficients,
k. If elementary reactions are assumed, then the form of the L rate terms in δ
is determined uniquely by the reactives in each of the L elementary equations.

The law of mass action kinetics states (see [19]) that the rate of an ele-
mentary reaction may be assumed to be directly proportional to the collision
frequency of the reactives, and hence the product of the reactive concentra-
tions; i.e. for a general reaction l with N species y1, . . . , yN and associated
stoichiometric coefficients νl1, . . . ν

l
N (reactives) and λl1, . . . λ

l
N (products),

N∑
i=1

νliyi
kl−→

N∑
i=1

λliyi,
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the corresponding reaction rate δ is given by

δl = kl

N∏
i=1

y
νli
i , for l = 1, . . . , L.

For the reaction network in (1.2), we can add the values of the rate
coefficients in k:

(1.4)
E1 + E2

k1−→ E3 + E4

E3
k2−→ E4

The rate vector δ is in (1.5).

(1.5) δ =

(
k1y1y2
k2y3

)

Hence, the N ODEs, for known initial conditions, yi(0) of the concentra-
tions yi(t), i = 1, . . . N can be used to describe the temporal evolution of the
species concentrations:

dy

dt
= Aδ(y, t,k) =


−k1y1y2
−k1y1y2

k1y1y2 − k2y3
k1y1y2 + k2y3


Note that any given row of A does not uniquely correspond to an ele-

mentary reaction, nor does any A correspond to a unique set of elementary
reactions. For instance, the following reaction network has the same A as
the network described by Equations (1.4):

E1 + E2
k1−→ E3 + E4(1.6a)

E1 + E3
k2−→ E1 + E4(1.6b)
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1.2 Objective

Once we know which are the most important issues in our problem, let us
see the goal. The objective of this problem is the following: given a set of
empirical concentrations measured in some time instants, find the stoichio-
metric coefficients of the matrix A and the vector of rate coefficients k that
best fits to the empirical concentrations. In other words, we want to find the
best set of parameters, A,k, such that the concentrations, y, obtained from
(1.3) give the best fit with respect to the empirical concentrations.

1.3 Methodology

Let us make a summary of the most important steps in the problem resolu-
tion. In chapters 2-5 a more detailed explanation is given.

The first step is to build a function that fits the empirical concentrations
in order to obtain also an approximation to the derivative of the empirical
values. Let us recall that in this problem it is very important to know the
concentrations but also the derivatives, since we have an ODE, (1.3), to be
solved. For this purpose, different models are presented in Chapter 2.

Once the empirical data are smoothed to a given fitting function, the
following step is to formulate the fitting problem, keeping in mind all the
chemical constraints and giving a mathematical formula to express them. It
is important to note that, as will be seen later, we have to solve a Mixed
Integer Non Linear Problem (MINLP), where each component of the stoi-
chiometric matrix A can only take integer values, and the components of the
vector k are non negative real numbers.

A mixed integer nonlinear program (MINLP), [4], is a problem of the
following form:



min
x,y

f0(x, y)

s.t. fj(x, y) ≤ 0, j = 1, . . . J

x ∈ Zn+
y ∈ Rm

+

(1.7)
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where n is the number of integer-constrained variables, m is the number of
continuous variables, J is the number of constraints, and finally,
fj : Zn+ × Rm

+ → R, j = 1, . . . , J are arbitrary functions mapping.

In the next step, for a fixed stoichiometric matrix, A, we begin a two-
phase method in which the coefficient rate, k will try to be determined. These
phases, called the differential method and the integral method, consider the
problems (1.8) and (1.9), respectively, where ediff and eint are two different
error measures detailed in Chapter 3 and K is the set of constraints that the
rate reaction vector k must obey:

(1.8)

{
min
k

ediff (y, t,A,k)

s.t. k ∈ K

(1.9)

{
min
k

eint(y, t,A,k)

s.t. k ∈ K

Due to the difficulty of the MINLP, we propose to address first its con-
tinuous relaxation, and thus non integer values are obtained. Anyway, the
continuous relaxation is multimodal, and the local search used, solved with
the nonlinear package Minos, [16], is embedded in a multistart procedure.

When the continuous relaxation problem is solved, now we search the in-
teger matrix that best approximates to the continuous one, not just rounding
the values (infeasible matrices can appear) but solving a new optimization
problem. In this case, the solver CPLEX, [8], is used. Since it uses a branch
and bound strategy, it gives the global optimum of the problem. Chapter 4
gives more information for this issue.

We have said that the optimization in the differential and integral me-
thods is performed for a fixed matrix A. However, the components of this
matrix are also variables in our problem. The method used to find them is
a combinatorial method based in the Variable Neighbourhood Search, VNS
([15]). More details about this can be seen in Chapter 5

Finally, Chapter 6 shows the results obtained with the methodology pro-
posed for the data that appear in Appendix A.
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Chapter 2

Fitting Concentrations

The goal of this chapter is to compare the behaviour of different models to
fit empirical concentrations. Therefore, the problem we want to solve is

min
α∈A

N0∑
n=1

(Ŷin − g(α, tn))2,

where Ŷin are the empirical concentrations of the specie Ei in the time step
tn, g(α, t) is the fitting function, α ∈ A are the parameters of the function g
and A is the parameter space.

These curves will be used later to obtain the derivative values needed to
evaluate the objective function in the differential method. Let us see the
model functions.

2.1 Weibull

We propose a model based on the Weibull distribution (see [3]), the scaled
density of which is given by

g(t, α) = α3α1

(
1

αα1
2

)
(t+ 1)α1−1e

−
(
t+1
α2

)α1
,

where α1 > 0 is the shape parameter, α2 > 0 is the scale parameter and
α3 > 0 is a new extra parameter that is used for adapting the data to the
function. Note that α3 is not part of the probability density function.
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Also, notice that we consider the translated probability function in order
to avoid the problems of division by zero that we can find.

The parameters α1 and α2 are related to the mean µ and variance σ2 of
the Weibull distribution through the following relations:

µ =
1

α2

Γ

(
1 +

1

α1

)
(2.1)

σ2 =
1

α2
2

(
Γ

(
1 +

2

α1

)
− Γ2

(
1 +

1

α1

))1/2

,(2.2)

where Γ denotes the Gamma function, given by

Γ(z) =

∫ ∞
0

e−ττ z−1dτ

This is a convex function on the interval 0 < z < +∞.

According to (2.1), for a fixed α1, both the mean and the variance of the
Weibull distribution decrease with increasing α2, with a quadratic decrease
in the latter case. On the other hand, for a fixed α2, the mean, µ is a convex-
concave function of α1 with a vertical asymptote at α1 = 0 and a horizontal
asymptote given by the line µ = 1. When α2 is fixed, the variance is a convex
function of α1 with both axes serving as asymptotes.

2.2 Logistic

Another model proposed is based on the logistic distribution. Its scaled
density function is

g(α, t) = α3
e
− (t−α2)

α1

α1

(
1 + e

− (t−α2)
α1

)2 ,

where α1 > 0 is the scale parameter, α2 ∈ R is the localization parameter
and α3 > 0 is a new parameter used to adapt the function to the data.
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2.3 Mixture of models

In order to make a best fitting of empirical concentrations, a mixture of
Weibull and Logistic density functions is proposed. They are a convex com-
bination of density functions of their respective distributions.

The expression of the Weibull mixture ([3]) is:

g(α, t) = α1

[
α2

(
α4

1

αα4
3

(t+ 1)α4−1e
−
(
t+1
α3

)α4)
+ (1− α2)

(
α6

1

αα6
5

(t+ 1)α6−1e
−
(
t+1
α5

)α6)]
,

with α1 > 0 the parameter used to adapt the data to the function, α2 ∈ [0, 1]
the parameter of the convex combination, α3, α5 > 0 scale parameters of each
of the Weibull, and α4, α6 > 0 the shape parameters.

On the other hand, the expression of the Logistic mixture is:

g(α, t) = α3

α6

 e
− (t−α2)

α1

α1

(
1 + e

− (t−α2)
α1

)2

+ (1− α6)

 e
− (t−α5)

α4

α4

(
1 + e

− (t−α5)
α4

)2


 ,

where α1, α4 > 0 are scale parameters, α2, α5 ∈ R are localization parame-
ters, α3 > 0 is the parameter used to adapt the data and α6 ∈ [0, 1] is the
parameter of the convex combination.

2.4 Splines

Another fitting model that has been used is the cubic splines ([11], [20], [9]).
They are function of an independent variable, t in our case such that at any
point its value is given by a third-degree polynomial in t.

Observe that the polynomial at one point, tn is not necessarily the same
as the polynomial at another point, tm. The places where the polynomial
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changes from one form to another are termed knots, nodes or breakpoints,
sq, q = 1, . . . , Q, where Q is the number of knots. Hence, in each interval,
[sq, sq+1], q = 1, . . . , Q− 1 a cubic polynomial with the expression in (2.3) is
used:

(2.3) gq(αq, t) = αq0 + αq1t+ αq2t
2 + αq3t

3,

where αq is the vector of the polynomial coefficients.

The most important property of the spline function is that it is a conti-
nuous function, and one or more of its derivatives may also be continuous.

In our examples, the number of the knots are adjusted adaptively de-
pending on the number of time steps we have.

2.5 RBF Gaussians

The idea behind RBF interpolation ([17]) is very simple: imagine that every
known point tn influences its surroundings the same way, according to some
assumed functional form φ(r), the radial basis function, that is a function
only for a radial distance r = |t−tn| from the point. Let us try to approximate
the interpolating function everywhere by a linear combination of the φ’s,
centered at all the known points,

g(t) =

N0∑
n=1

ρnφ(|t− tn|),

where the ρn’s are some unknown set of weights. The weights are determined
by requiring that the interpolation be exact at all the known data points.
That is equivalent to solving a set of N0 linear equations in N0 unknowns for
the ρn’s:

gj =

N0∑
n=1

ρnφ(|tj − tn|),

For our experiments, the last model proposed for fitting the empirical
concentrations is the Radial Basis Function (RBF) with a gaussian base, i.e,
taking φ(|t− tn|) = e−α(t−tn)

2
. Its expression is

g(t, α) =

N0∑
n=1

ρne
−α|t−tn|2 ,
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where ρn are the weights considered in the linear combination, and α is a
parameter tuned by using a variant of cross-validation known as leave-one-
out cross validation ([14], [2]). In this algorithm an optimal value of α is
selected by minimizing the least square error for a fit to the data based on
an interpolant for which one of the centers was left out.

It is important to notice that there is not a model that is always the
best, that is to say, the data approximation will depend on these data. Some
examples of this remark can be seen in Figures 2.1 - 2.8.

Figure 2.1: Empirical Concentrations and Weibull fitting of the data in [6].
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Figure 2.2: Empirical Concentrations and Weibull fitting of the data in [5].

Figure 2.3: Empirical Concentrations and Logistic fitting of the data in [6].
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Figure 2.4: Empirical Concentrations and Logistic fitting of the data in [5].

Figure 2.5: Empirical Concentrations and Mixture of 2 Weibull fitting of the
data in [6].
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Figure 2.6: Empirical Concentrations and Mixture of 2 Weibull fitting of the
data in [5].

Figure 2.7: Empirical Concentrations and Mixture of 2 Logistic fitting of the
data in [6].
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Figure 2.8: Empirical Concentrations and Mixture of 2 Logistic fitting of the
data in [5].

Figure 2.9: Empirical Concentrations and Spline fitting of the data in [6].
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Figure 2.10: Empirical Concentrations and Spline fitting of the data in [5].

Figure 2.11: Empirical Concentrations and RBF-Gaussians fitting of the data
in [6].
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Figure 2.12: Empirical Concentrations and RBF-Gaussians fitting of the data
in [5].
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Chapter 3

MINLP Formulation

In this chapter we make a detailed description of the formulation of the pro-
blem we want to solve. The main objective of this problem is to obtain the
chemical reaction model for the concentration dynamics of a set of species
that best explains the observed concentrations at the observation instants.

Then, taking as input the species concentrations at some observation ins-
tants, we try to identify the integer entries of the stoichiometric matrix, A,
(1.1.1) and the rate constants, k.

It is unlikely that a perfect match can be obtained, and therefore one
needs to gauge the goodness of fit of the solution found. The empirical con-
centration, ŷin, of specie Ei is known in a set of N0 time instants. Such
ŷin should be close (ideally identical) to the theoretical concentration yin =
yi(tn), obtained by solving the Cauchy problem expressed by the ODE (1.3)
with the initial condition y(0) = y0.

As goodness of fit, the following measure is proposed

(3.1)
N∑
i=1

N0∑
n=1

win (ŷin − yin)2 ,

where coefficients win are weights reflecting the importance given by the user
to errors at each species and time steps.

20



It is important to note that finding parameters A and k by optimizing a
goodness of fit measure like (3.1) is a hard challenge, since we face a mixed
integer nonlinear programm (MINLP) in which some decision variables take
values in integer numbers (the coefficients of A) and some take real values
(the rates k).

3.1 Objective Function

Let us see how to formulate the objective function of the problem depending
on whether the differential or integral method is used.

3.1.1 Differential Method

The idea of this method is to avoid solving numerically the equation (1.3) as
part of the optimization of the goodness of fit function (3.1).

First, a fitting method is used to obtain, from the empirical values ŷin to
the full range of positive numbers, ŷi(t), t ≥ 0. The procedures tested are
described in Chapter 2.

In the differential method, the concentrations are assumed to be given,
that is to say, the function ŷi(t) obtained by the fitting methods are assumed
to give an accurate fit to the concentrations functions. In other words,

(3.2) ŷi(t) ≈ yi(t), ∀t,∀i = 1, . . . , N

As a rough approximation, we assume from (3.2) that the derivatives of
the concentrations y are also accurately approximated by the derivatives of
the approximations, ŷ, i.e.,

(3.3)
d

dt
ŷi(tn) ≈ d

dt
yi(tn), ∀i = 1, . . . , N, ∀n = 1, . . . , N0.

Then, the objective function, ediff (y, t,A,k) in (1.8), is used as a surro-
gate of the goodness of fit criterion (3.1), in which the law of mass action
(1.3) is assumed:

(3.4) ediff (y, t,A,k) =
N∑
i=1

N0∑
n=1

win

(
d

dt
ŷin −

L∑
l=1

((
λli − νli

)
kl

N∏
j=1

y
νlj
jn

))2
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Hence, for a fix stoichiometric matrix, A, we try to find the rate reactions
values, k, that minimize (3.4).

This method is very fast in terms of computational cost but the results
are not very sharp. This is due to the fact that we are assuming that the fit-
ting of the derivative empirical concentration are the same as the derivative
of the fitting of the data.

3.1.2 Integral Method

The success of the differential method described in Section 3.1.1 strongly de-
pends on the accuracy of the approximation of the derivative concentrations
y by the derivative of the approximations, ŷ, (3.3).

When this assumption is not true, then the differential method may not
yield an accurate solution, but it can be used as an initial solution in a further
(more expensive in terms of computational cost) phase, taking as objective
function, eint(y, t,A,k) in (1.9), the natural goodness of fit (3.1).

The only difference with the differential method is the following: each
time the objective function is evaluated, the ODE (1.3), with the initial so-
lution y(0) = y0 must be numerically solved.

3.2 Constraints

Let us explain the different constraints that appear in the optimization pro-
blem either with the objective function in (3.2), in the differential method,
or (3.1), in the integral method.

We can assume that there are K different chemical elements involved in
species, named Hk, k = 1, . . . , K. Then, the formula of specie Ei is

Ei = (H1)h1i . . . (HK)hKi , i = 1, . . . , N

Since atoms are conserved in chemical reactions, we have

N∑
i=1

hkiν
l
i =

N∑
i=1

hkiλ
l
i, k = 1, . . . , K, l = 1, . . . , L
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The matrix (H)ki = hki is called the element matrix. The above equations
can be written in a shorter way,

(3.5) HA = 0

From the mass conservation in the l-th chemical reaction, we can easily
deduce the second constraint

N∑
i=1

Miλ
l
i =

N∑
i=1

Miν
l
i , l = 1, . . . , L

It can also be expressed in a matrix form as

(3.6) ATM = 0,

where M is the column vector of the molecular masses of species.

The third and fourth constraints below force that, for a given reaction
l = 1, . . . , L, the number of molecules of products and reactives, respectively,
is bounded:

(3.7) 1 ≤
N∑
i=1

λli ≤ Cλ
max, l = 1, . . . , L

(3.8) 1 ≤
N∑
i=1

νli ≤ Cν
max, l = 1, . . . , L

The following constraints imply that the stoichiometric coefficients of the
products and reactives, respectively must be bounded:

(3.9) 0 ≤ λli ≤ λmax, i = 1, . . . , N, l = 1, . . . , L

(3.10) 0 ≤ νli ≤ νmax, i = 1, . . . , N, l = 1, . . . , L

Finally, the constraint

(3.11) kl ≥ 0, l = 1, . . . , L,
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forces the rate k to be non-negative, and

(3.12) λli, ν
l
i ∈ Z, i = 1, . . . , N, l = 1, . . . , L

forces the stoichiometric matrix to take integer values.

Constraints (3.5)-(3.12) are nice, since they are linear, but they ignore
relevant information, namely,

• The minimum number of species, including reactives and products must
be not smaller that a given value Nmin.

• If a species Ei appears in a reaction as a reactive, it cannot appear in
the same reaction as a product.

• All reactions are simplified, in the sense that for a fixed reaction l, there
exists a species i such that

λli
gcd(λli, ν

l
i , i = 1, . . . N)

/∈ N,

or,
νli

gcd(λli, ν
l
i , i = 1, . . . N)

/∈ N,

where gcd denotes the great common divisor.

• All species must appear in at least one reaction.

In order to accommodate such constraint, the problem formulation must
be enriched by adding new variables and constraints. Indeed, new binary
variables are define:

zνilm =

{
1, if νli = m
0, otherwise

, m = 1, . . . , νmax

and,

(3.13) zλilm =

{
1, if λli = m
0, otherwise

, m = 1, . . . , λmax
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With these new variables we can rewrite products:

(3.14) λli =
λmax∑
m=1

mzλilm, l = 1, . . . , L, i = 1, . . . , N

and, analogously, the reactives

(3.15) νli =
νmax∑
m=1

mzνilm, l = 1, . . . , L, i = 1, . . . , N

With these variables, the condition expressing that the minimum number
of species must be not smaller than a given parameter Nmin is expressed as

(3.16)
N∑
i=1

(
νmax∑
m=1

zνilm +
λmax∑
m=1

zλilm

)
≥ Nmin, l = 1, . . . , L

Furthermore, expressing that the same species cannot appear as a reactive
and as a product in the same reaction is expressed as

(3.17)
νmax∑
m=1

zνilm +
λmax∑
m=1

zλilm ≤ 1, i = 1, . . . , N, l = 1, . . . , L

Expressing that reactions are already simplified is written as

(3.18)
N∑
i=1

(
zλil1 + zνil1

)
≥ 1, l = 1, . . . , L

Finally, expressing that each species appears in at least one reaction is easily
shown to be written as

(3.19)
L∑
l=1

(
νmax∑
m=1

zνilm +
λmax∑
m=1

zλilm

)
≥ 1, i = 1, . . . , N

Summarizing, the optimization problems needed to be solved are (3.20)
in the differential method and (3.21) in the integral method.
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(3.20)

min
kl,λ

l
i,ν

l
i ,z

λ
ilm,z

ν
ilm

N∑
i=1

N0∑
n=1

win

(
d

dt
ŷin −

L∑
l=1

((
λli − νli

)
kl

N∏
j=1

y
νlj
jn

))2

s.t. H(P−R) = 0

(P−R)TM = 0

1 ≤
N∑
i=1

λli ≤ Cλ
max, l = 1, . . . , L

1 ≤
N∑
i=1

νli ≤ Cν
max, l = 1, . . . , L

λli =
λmax∑
m=1

mzλilm, l = 1, . . . , L, i = 1, . . . , N

νli =
νmax∑
m=1

mzνilm, l = 1, . . . , L, i = 1, . . . , N

N∑
i=1

(
νmax∑
m=1

zνilm +
λmax∑
m=1

zλilm

)
≥ Nmin, l = 1, . . . , L

νmax∑
m=1

zνilm +
λmax∑
m=1

zλilm ≤ 1, i = 1, . . . , N, l = 1, . . . , L

N∑
i=1

(
zλil1 + zνil1

)
≥ 1, l = 1, . . . , L

L∑
l=1

(
νmax∑
m=1

zνilm +
λmax∑
m=1

zλilm

)
≥ 1, i = 1, . . . , N

0 ≤ λli ≤ λmax, i = 1, . . . , N, l = 1, . . . , L

0 ≤ νli ≤ νmax, i = 1, . . . , N, l = 1, . . . , L

kl ≥ 0, l = 1, . . . , L

λli, ν
l
i ∈ Z, i = 1, . . . , N, l = 1, . . . , L

zνilm ∈ {0, 1}, i = 1, . . . , N, m = 1, . . . , νmax, l = 1, . . . , L

zλilm ∈ {0, 1}, i = 1, . . . , N, m = 1, . . . , λmax, l = 1, . . . , L



(3.21)

min
kl,λ

l
i,ν

l
i ,z

λ
ilm,z

ν
ilm

N∑
i=1

N0∑
n=1

win (ŷin − yin)2

s.t. H(P−R) = 0

(P−R)TM = 0

1 ≤
N∑
i=1

λli ≤ Cλ
max, l = 1, . . . , L

1 ≤
N∑
i=1

νli ≤ Cν
max, l = 1, . . . , L

λli =
λmax∑
m=1

mzλilm, l = 1, . . . , L, i = 1, . . . , N

νli =
νmax∑
m=1

mzνilm, l = 1, . . . , L, i = 1, . . . , N

N∑
i=1

(
νmax∑
m=1

zνilm +
λmax∑
m=1

zλilm

)
≥ Nmin, l = 1, . . . , L

νmax∑
m=1

zνilm +
λmax∑
m=1

zλilm ≤ 1, i = 1, . . . , N, l = 1, . . . , L

N∑
i=1

(
zλil1 + zνil1

)
≥ 1, l = 1, . . . , L

L∑
l=1

(
νmax∑
m=1

zνilm +
λmax∑
m=1

zλilm

)
≥ 1, i = 1, . . . , N

0 ≤ λli ≤ λmax, i = 1, . . . , N, l = 1, . . . , L

0 ≤ νli ≤ νmax, i = 1, . . . , N, l = 1, . . . , L

kl ≥ 0, l = 1, . . . , L

λli, ν
l
i ∈ Z, i = 1, . . . , N, l = 1, . . . , L

zνilm ∈ {0, 1}, i = 1, . . . , N, m = 1, . . . , νmax, l = 1, . . . , L

zλilm ∈ {0, 1}, i = 1, . . . , N, m = 1, . . . , λmax, l = 1, . . . , L



Observe that equations (3.14) and (3.15) allow us to express (3.20) and
(3.21) in a simplest form, where the variables are zλilm, z

ν
ilm, kl. It can be seen

in (3.22) and (3.23), respectively.

(3.22)

min
kl,z

λ
ilm,z

ν
ilm

N∑
i=1

N0∑
n=1

win

 d

dt
ŷin −

L∑
l=1

(λmax∑
m=1

mzλilm −
νmax∑
m=1

mzνilm

)
kl

N∏
j=1

y

(
νmax∑
m=1

mzνjlm

)
jn

2

s.t.
N∑
i=1

(
hki

νmax∑
m=1

mzνilm

)
=

N∑
i=1

(
hki

λmax∑
m=1

mzλilm

)
, k = 1, . . . , K, l = 1, . . . , L

N∑
i=1

(
Mi

λmax∑
m=1

mzλilm

)
=

N∑
i=1

(
Mi

νmax∑
m=1

mzνilm

)
, l = 1, . . . , L

1 ≤
N∑
i=1

λmax∑
m=1

mzλilm ≤ Cλ
max, l = 1, . . . , L

1 ≤
N∑
i=1

νmax∑
m=1

mzνilm ≤ Cν
max, l = 1, . . . , L

N∑
i=1

(
νmax∑
m=1

zνilm +
λmax∑
m=1

zλilm

)
≥ Nmin, l = 1, . . . , L

νmax∑
m=1

zνilm +
λmax∑
m=1

zλilm ≤ 1, i = 1, . . . , N, l = 1, . . . , L

N∑
i=1

(
zλil1 + zνil1

)
≥ 1, l = 1, . . . , L

L∑
l=1

(
νmax∑
m=1

zνilm +
λmax∑
m=1

zλilm

)
≥ 1, i = 1, . . . , N

kl ≥ 0, l = 1, . . . , L

zνilm ∈ {0, 1}, i = 1, . . . , N, m = 1, . . . , νmax, l = 1, . . . , L

zλilm ∈ {0, 1}, i = 1, . . . , N, m = 1, . . . , λmax, l = 1, . . . , L
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(3.23)

min
kl,z

λ
ilm,z

ν
ilm

N∑
i=1

N0∑
n=1

win (ŷin − yin)2

s.t.
N∑
i=1

(
hki

νmax∑
m=1

mzνilm

)
=

N∑
i=1

(
hki

λmax∑
m=1

mzλilm

)
, k = 1, . . . , K, l = 1, . . . , L

N∑
i=1

(
Mi

λmax∑
m=1

mzλilm

)
=

N∑
i=1

(
Mi

νmax∑
m=1

mzνilm

)
, l = 1, . . . , L

1 ≤
N∑
i=1

λmax∑
m=1

mzλilm ≤ Cλ
max, l = 1, . . . , L

1 ≤
N∑
i=1

νmax∑
m=1

mzνilm ≤ Cν
max, l = 1, . . . , L

N∑
i=1

(
νmax∑
m=1

zνilm +
λmax∑
m=1

zλilm

)
≥ Nmin, l = 1, . . . , L

νmax∑
m=1

zνilm +
λmax∑
m=1

zλilm ≤ 1, i = 1, . . . , N, l = 1, . . . , L

N∑
i=1

(
zλil1 + zνil1

)
≥ 1, l = 1, . . . , L

L∑
l=1

(
νmax∑
m=1

zνilm +
λmax∑
m=1

zλilm

)
≥ 1, i = 1, . . . , N

kl ≥ 0, l = 1, . . . , L

zνilm ∈ {0, 1}, i = 1, . . . , N, m = 1, . . . , νmax, l = 1, . . . , L

zλilm ∈ {0, 1}, i = 1, . . . , N, m = 1, . . . , λmax, l = 1, . . . , L
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Chapter 4

Continuous Relaxation and
Projection over the Integers

The first step in the search of the optimal stoichiometric matrix and reaction
rates of the problem (3.20) is to obtain reasonably good starting values of
matrix A. This process has different phases to properly handle the fact that
some of the variables take integer values.

The first phase is to find an approximation to A in real numbers. That is
simply done by omitting the integrity constraints; in other words, handling
a purely continuous nonlinear optimization problem in which the λ variables
are in the interval [0, λmax], ν variables in [0, νmax] and z in [0, 1]. This pro-
blem will be called the continuous relaxation of (3.20).

It has been observed that the problem is highly multimodal, and thus
standard local search solvers, as the one used in our numerical experiments,
MINOS [16], may get trapped at local optima. Therefore a multistart tech-
nique is performed: several runs of the same problem are made but changing
the starting point randomly selected.

For each run r, a pair (Ar,kr) is obtained. Since Ar is a continuous
matrix (it is unlikely its components were integer numbers) a second phase,
projection over the integers, is made. This projection cannot be made by
simply rounding the values, because infeasible matrices will appear due to
the many constraints in the problem. The method used to find the feasible
matrix that best fits the continuous one is by solving a new quadratic convex
optimization problem with linear constraints.

30




min

λli,ν
l
i ,z

λ
ilm,z

ν
ilm

‖(P−R)−Ar‖2

s.t. constraints in (3.20)
k = kr

In this problem, the variables are the integer stoichiometric coefficients
of the matrices P and R. For the resolution of this problem the global opti-
mizer CPLEX, [8], is used.

This method is going to be applied in some different experiments where for
example, the weights win in the continuous relaxation of (3.20) are changed or
the problem is solved with the formulation in zνilm and zνilm, or with zνilm,zνilm,
λli and νli .

As we have said before, this method is applied for determined experi-
ments and in each experiment this methodology is applied for a fixed number
of runs. Once we have all these integer matrices the optimization problem
of differential method is applied, (3.20), keeping the best matrix of each ex-
periment in terms of objective value. With these matrices, now we apply to
the integral method optimization problem, (3.21). The one that gives the
least value in the objective function will be taken as an initial stoichiometric
matrix.

A flow diagram of process explained above can be seen in Figure 4.1.
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Initial Solution

1. Fitting
concentra-

tions

exper=1

run=1

3.
Projection
over the
integers

2. Cont.
relax. in

run

according
to exper

4.
Differential

Method

run=run+1

run≤
Max run?

Yes

No

5. Int method to best
matrix of diff.

method in exper

exper=exper+1

exper≤
Max exper?

6. End
NoYes

Figure 4.1: Flow diagram of the initial solution procedure.
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Chapter 5

Combinatorial Method

In Chapter 3 it is explained that, for a fixed stoichiometric matrix, A, the
differential and the integral method can be applied. However, A is also a
decision variable, and thus further efforts are needed to explore the space of
stoichiometric matrices.

As initial matrix, the one obtained as in the process scheme explained
in Chapter 4 is used. The following methodology is an adaptation to this
problem of the Variable Neighbourhood Search algorithm method, VNS, [15].

VNS is a technique used in combinatorial optimization problems, such
as the Travel Salesman Problem (TSP), [15]. The idea is starting from an
initial solution and improve the objective value changing, what the authors
call, the neighborhood in the search. Contrary to most other local search
method VNS does not follow a trajectory, but explores increasingly distant
neighbourhoods of the current incumbent solution, and jumps from there to
a new one if and only if an improvement was made.

A pseudocode of VNS ([13]) is given in Figure 5.1.

In our problem a perturbation Ã of the given solution A is generated,
and then the differential method, (3.20) is applied to obtain k̃. If (Ã, k̃) gives
a better objective value, the process is repeated starting from such solution.
Otherwise, a new perturbation is generated. This process continues until a
stopping rule, related with number of iterations or running time is reached.

After such stopping rule is fullfilled, if we want more accuracy in the
results, the process can be repeated optimizing using the integral method,
(3.21), instead of the differential one.
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Figure 5.1: Pseudocode of VNS process.

The key issue, as in all applications of VNS, is how to design the per-
turbations (neighbourhoods) of a given stoichiometric matrix. We define a
perturbation of radius l as follows: l reactions from A are chosen at random
and replaced by l feasible reactions from a list previously calculated.

To build this list where all the feasible reactions are, we first choose the
number of nonzero species, 1, . . . , Cν

max that will play as reactives. For each
choice, there is a combination of 1, . . . , Cλ

max products. It is important to
observe that the species in each side must be different and the stoichiometric
components are in the set {0, . . . , νmax} for the reactives and {0, . . . , λmax}
for the products.

In the cases, where the molecular weight vector,M and/or the elemental
matrix, H are known, the feasible reactions must satisfy the constraints (3.6)
and (3.5) respectively. Otherwise, a larger list is build.

Let us show some examples of the VNS process in our particular cases.
For the data set in A.1, where the matrix H and the vector M are known,
the list of feasible reactions is not too large, as it can be seen in Table 5.1.
In this case the values λmax = νmax = 2 and Cλ

max = Cν
max = 3.
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1 -1 -1 -1 0 1 0 1
1 -1 0 1 -1 -1 1 0

-2 2 1 0 1 0 -1 -1
0 0 -1 -2 1 2 -1 1
0 0 1 2 -1 -2 1 -1

Table 5.1: Feasible reactions of the data set A.1.

(5.1) Aini =


−1 0 −1

0 −1 −1
1 −2 2
−1 2 0

1 1 0


With this matrix above, (5.1), obtained as Chapter 4 explains (more

details of this matrix can be seen in Chapter 6), we can make a perturbation
of radius 1. A column of Aini is chosen randomly, for instance we can assume,
that it is the first one, i.e.:

Aini =


−1

0
1
−1

1


Then we replace this column by one of the list in Table 5.1, for example,

the last one:

Aini =


1
0
−1

1
−1


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Then, the perturbed stoichiometric matrix is the one that appears in (5.2)

(5.2) Aini =


1 0 −1
0 −1 −1
−1 −2 2

1 2 0
−1 1 0


Let us now explain the pseudocodes used to optimize the stoichiometric

matrix A and the rate coefficient vector k with the differential or the integral
method.

ALGORITHM 1

1) Begin with an initial matrix Aini.
2) Optimize the variables in k with the differential method and obtain

an initial objective value, objini.
3) p:=1. Set Aopt := Aini and objopt := objini.
4) Until p = pmax , perturb Aopt and obtain A.

4.1)Perturb Aopt and obtain A.
4.2) Fixed A, optimize k with the differential method.

The objective value is obj.
4.3) If obj < objopt, then set Aopt := A, objopt := obj.
4.4) Let p = p+ 1.

5) Optimize k with Aopt fixed and the differential method.

Table 5.2: Algorithm 1
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ALGORITHM 2

1) Begin with an initial matrix Aini.
2) Optimize the variables in k with the differential method and obtain

an initial objective value, objini.
3) p:=1. Set Aopt := Aini and objopt := objini.
4) Until p = pmax , perturb Aopt and obtain A.

4.1)Perturb Aopt and obtain A.
4.2) Fixed A, optimize k with the differential method.

The objective value is obj.
4.3) If obj < objopt, then set Aopt := A, objopt := obj.
4.4) Let p = p+ 1.

5) Optimize k with Aopt fixed and the integral method.

Table 5.3: Algorithm 2

ALGORITHM 3

1) Begin with an initial matrix Aini.
2) Optimize the variables in k with the integral method and obtain

an initial objective value, objini.
3) p:=1. Set Aopt := Aini and objopt := objini.
4) Until p = pmax , perturb Aopt and obtain A.

4.1)Perturb Aopt and obtain A.
4.2) Fixed A, optimize k with the integral method.

The objective value is obj.
4.3) If obj < objopt, then set Aopt := A, objopt := obj.
4.4) Let p = p+ 1.

5) Optimize k with Aopt fixed and the differential method.

Table 5.4: Algorithm 3
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ALGORITHM 4

1) Begin with an initial matrix Aini.
2) Optimize the variables in k with the integral method and obtain

an initial objective value, objini.
3) p:=1. Set Aopt := Aini and objopt := objini.
4) Until p = pmax , perturb Aopt and obtain A.

4.1)Perturb Aopt and obtain A.
4.2) Fixed A, optimize k with the integral method.

The objective value is obj.
4.3) If obj < objopt, then set Aopt := A, objopt := obj.
4.4) Let p = p+ 1.

5) Optimize k with Aopt fixed and the integral method.

Table 5.5: Algorithm 4
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Chapter 6

Examples

In this chapter, results obtained by applying the procedure explained in
Chapters 3 and 5 from the data in Appendix A are shown. It is important to
note that in both data sets the differential method has been applied using the
derivatives of the spline fittings. Observe that the column order in the sto-
ichiometric matrix does not affect the solution, since the columns represent
the number of the reaction and they can be sorted in the order we choose,
keeping in mind that this order must correspond to the components of k.

The maximum time allowed for the experiments in the combinatory using
the differential method, first, and, then, the integral one has been 6 hours in
each one, that is to say the programme has been running for 12 hours. For
the experiments, the solver Scilab, [7], has been used.

Furthermore, the parameters Cλ
max, C

ν
max, λmax, νmax, Nmin that appear in

(3.20) and (3.21) are taken as

Cλ
max = Cν

max = 3

λmax = νmax = 2

Also,

Nmin =

{
3, in A.1
2, in A.2
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6.1 Data Set 1

From the data of A.1, the initial stoichiometric matrix obtained, as explained
in Chapter 4 and the k reaction rate vector obtained with this matrix, ap-
plying the differential method and integral method with their respective ob-
jective values are in Table 6.1.

Initial stoichiometric matrix Aini =


−1 0 −1

0 −1 −1
1 −2 2
−1 2 0

1 1 0


Int. method rate vector kini−diff =

 0.1693065088
0.0000100000
0.0192887246


Diff. obj value 2.0493407576 · 10−12

Diff. method rate vector kini−int =

 0.1068719346
0.0000100000
0.0188922986


Int. obj value 5.0654641711 · 10−8

Table 6.1: Initial stoichiometric matrix and reaction vector for the differential
and integral method in data set A.1.

Note, that the initial matrix has captured one of the three correct reac-
tions.

The plots of the concentrations obtained with the matrix in Table 6.1
and the values of the parameter vector k with the differential and the inte-
gral method (see also Table 6.1) are shown in Figures 6.1 and 6.2 respectively.

The next step of the procedure proposed is the combinatorial method
just using the differential method (Chapter 5). The matrix A obtained at
the end of this step is

(6.1) Acomb−diff =


−1 0 0
−1 1 −1

2 −1 1
0 −1 1
0 1 −1


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Figure 6.1: Empirical and theoretical concentrations of the data in [6] with
the initial parameters and the differential method.

The rate vector, k calculated using matrix in (6.1) with the Algorithms 1
and 2 (see Tables 5.2 and 5.3 respectively) are written with their objectives
values in Table 6.2.

Let us note that in this case, in which the molecular weight vector M
and the elemental matrix H are known, it suffices to use the combinatorial
with the differential method to obtain the correct stoichiometric matrix, be-
cause the list of the feasible matrix is small and therefore there are a reduced
number of combinations.

Nevertheless, in spite of having the correct stoichiometric matrix, the di-
fferential method does not give good values for the parameters in k, since we
are making an error assuming that the derivatives of the fitting curves are
the fitting curves of the derivatives.

Plot of the concentrations obtained using the stoichiometric matrix (6.1),
and kAlg1, and kAlg2 in Table 6.2 are given in Figures 6.3 and 6.4 respectively.
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Figure 6.2: Empirical and theoretical concentrations of the data in [6] with
the initial parameters and the differential method.

Stoichiometric matrix Acomb−diff =


0 0 −1
1 −1 −1
−1 1 2
−1 1 0

1 −1 0


Alg 1. rate vector kAlg1 =

 0.0329696098
0.1164830894
0.1130988745


Alg 1. obj value 1.3154385597 · 10−13

Alg 2. rate vector kAlg2 =

 0.0500029707
0.1499983701
0.1000005432


Alg 2. obj value 9.2939083610 · 10−17

Table 6.2: Parameters for the Algorithms 1 and 2 for the data set A.1.
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Figure 6.3: Empirical and theoretical concentrations of the data in [6] af-
ter the combinatory using the differential method and using the differential
method

In Table 6.3 the different improvements in terms of objective value along
the process can be seen. The optimal matrix has been soon trapped, that is
the reason why the improvements cannot be well observed in Figure 6.8.

Observe that throughout this chapter, all tables with times start at 0 so
they reflect the time involved in executing just the phase which is considered.

The last step in the strategy proposed (combinatory with integral me-
thod) is used to improve even more the results. In our case, that is impossible
because the correct stoichiometric matrix is obtained. However, we cannot
forget that overfitting may happen: there may exists a set of parameters that
gives a better accuracy to the empirical data and they are not the ones we
are looking for. As we can see in Table 6.4 that is not our case.
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Figure 6.4: Empirical and theoretical concentrations of the data in [6] after
the combinatory using the differential method and using the integral method

The concentrations using the parameters for the algorithms 3 and 4 (Ta-
ble 6.4) are plotted in Figures 6.6 and 6.7 respectively.

Table 6.5 shows the improvements of the objective values along this last
step. Graphically they can be seen in Figure 6.8.

6.2 Data Set 2

Let us begin this section by writing the matrix we take as initial solution in
the data set A.2 and the corresponding rate reaction vector for the differen-
tial and the integral method (Table 6.6). Observe that in this case none of
the correct reactions are chosen.
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TIME (SECONDS) OBJ. VALUE
0 0.2049340758 · 10−11

0.4380000000 0.2049339312 · 10−11

3.563000000 0.2034930982 · 10−11

5.141000000 0.1358003582 · 10−11

8.188000000 0.1358003582 · 10−11

8.281000000 0.1315438572 · 10−12

12.50000000 0.1315438560 · 10−12

17.98500000 0.1315438560 · 10−12

27.37500000 0.1315438560 · 10−12

27.89100000 0.1315438560 · 10−12

32.07800000 0.1315438560 · 10−12

92.65600000 0.1315438560 · 10−12

245.5160000 0.1315438560 · 10−12

1488.250000 0.1315438560 · 10−12

4059.469000 0.1315438560 · 10−12

Table 6.3: Improvements objective value in the combinatorial with the diffe-
rential method for the data in [6].

Stoichiometric matrix Acomb−int =


0 0 −1
1 −1 −1
−1 1 2
−1 1 0

1 −1 0


Algorithm 3 - rate vector kAlg3 =

 0.1164837408
0.0329700477
0.1130988703


Alg 3. obj value 1.3154385597 · 10−13

Algorithm 4 - rate vector kAlg4 =

 0.1499983852
0.0500029710
0.1000005385


Alg 4. obj value 9.2939083610 · 10−17

Table 6.4: Parameters for the Algorithms 3 and 4.

Plots of the theoretical concentrations obtained with the parameters of
the differential and integral method are shown in Figures 6.9 and 6.10 res-
pectively.
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Figure 6.5: Improvements in the combinatorial with the differential method
for the data in [6].

TIME (SECONDS) OBJ. VALUE
0 0.9293908361 · 10−16

113.6410000 0.9289020382 · 10−16

4256.125000 0.9288976172 · 10−16

4331.328000 0.9288964508 · 10−16

Table 6.5: Improvements objective value in the combinatory with the integral
method for the data in [6]

Data set A.2 differs from the previous example in the sense that vector
M and matrix H are not given, so the set of feasible matrices is of much
larger cardinality, and thus we have more combinations of reactions to test.

After the combinatory with the differential method the stoichiometric
matrix obtained and the rate reaction vectors, k, for the Algorithms 1 and 2
are in Table 6.7.
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Figure 6.6: Empirical and theoretical concentrations of the data in [6] after
the combinatory using the integral method and with the differential method

Plots of the concentration after the combinatory with differential method
are shown in Figures 6.11 and 6.12.

Note that, in spite of not having the correct parameters, the fitting is
almost perfect in some species.

The improvements along the process are shown in Table 6.8 and the plot
in Figure 6.16.

Finally, let us see in Table 6.9 the matrix obtained in the combinatory
with the integral method and the rate reaction vector calculated with this
matrix and the algorithms 3 and 4.

Observe that the stoichiometric matrix obtained after the combinatorial
with the integral method is exactly the same as the one obtained with the
differential one given in Table 6.7. This is due to the fact, among others, of
the absence of the molecular weights vectorM and the elemental matrix H.
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Figure 6.7: Empirical and theoretical concentrations of the data in [6] after
the combinatory using the integral method and with the integral method

.

Concentrations plots of the results of Algorithms 3 and 4 can be seen in
Figures 6.14 and 6.15. They will be very similiar to Figures (6.11) and (6.12).

Improvements along the process can be seen in Table 6.10 and Figure 6.16.
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Figure 6.8: Improvements in the combinatory with the integral method for
the data in [6]

.

Initial stoichiometric matrix Aini =


−1 1 −1 −2

0 0 −1 1
−1 −1 1 1

1 0 0 0
1 1 0 0


Int. method rate vector kini−diff =


0.0033319342
0.0000513809
0.0041930041
0.0032959845


Diff. obj value 5.6519473266 · 10−10

Diff. method rate vector kini−int =


0.0000100000
0.0169919665
0.0098788095
0.0010711874


Int. obj value 1.5335471601 · 10−5

Table 6.6: Initial stoichiometric matrix and reaction vector for the differential
and integral method in data set A.2.
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Figure 6.9: Empirical and theoretical concentrations of the data in [5] with
the initial parameters and the differential method

Figure 6.10: Empirical and theoretical concentrations of the data in [5] with
the initial parameters and the integral method.
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Stoichiometric matrix Acomb−diff =


0 −2 −1 −2
−1 0 −1 1
−1 0 1 1

1 1 0 0
2 −1 0 0


Alg 1. rate vector kAlg1 =


0.0024306747
0.2199761353
0.0030956085
0.0039886964


Alg 1. obj value 1.4693823086 · 10−10

Alg 2. rate vector kAlg2 =


0.0022631146
0.1672035153
0.0023254067
0.0037494357


Alg 2. obj value 4.2592913072 · 10−6

Table 6.7: Parameters for the Algorithms 1 and 2 of the Data Set A.2.

Figure 6.11: Empirical and theoretical concentrations of the data in [5] after
the Algorithm 1.
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Figure 6.12: Empirical and theoretical concentrations of the data in [5] after
the Algorithm 2.

Figure 6.13: Improvements in the combinatory with the differential method
for the data in [5].
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TIME (SECONDS) OBJ. VALUE
0 0.5651947327 · 10−9

3.062000000 0.4635914666 · 10−9

20.20300000 0.4055557529 · 10−9

129.9210000 0.3991671705 · 10−9

240.8430000 0.3923546641 · 10−9

249.8430000 0.3254454054 · 10−9

477.1090000 0.3134104704 · 10−9

479.2650000 0.2850598601 · 10−9

505.6090000 0.2719036922 · 10−9

526.5000000 0.2692205611 · 10−9

657.2960000 0.2417530342 · 10−9

660.4840000 0.1804711967 · 10−9

1433.921000 0.1804711966 · 10−9

3096.171000 0.1804711966 · 10−9

18903.46800 0.1758743592 · 10−9

19334.84300 0.1725465483 · 10−9

20681.45300 0.1719223189 · 10−9

21087.32800 0.1719223189 · 10−9

21400.87500 0.1469382309 · 10−9

Table 6.8: Improvements objective value in the combinatory with the diffe-
rential method for the data in [5].

Stoichiometric matrix Acomb−int =


0 −2 −1 −2
−1 0 −1 1
−1 0 1 1

1 1 0 0
2 −1 0 0


Alg 3. rate vector kAlg3 =


0.0024306746
0.2199761474
0.0030956084
0.0039886964


Alg 3. obj value 1.4693823086 · 10−10

Alg 4. rate vector kAlg2 =


0.0021676152
0.2869917220
0.0023575863
0.0036784425


Alg 4. obj value 5.3409901223 · 10−6

Table 6.9: Parameters for the Algorithms 3 and 4 of the Data Set A.2.
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Figure 6.14: Empirical and theoretical concentrations of the data in [5] after
the Algorithm 3.

Figure 6.15: Empirical and theoretical concentrations of the data in [5] after
the Algorithm 4.
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TIME (SECONDS) OBJ. VALUE
0 0.4259291307 · 10−5

Table 6.10: Improvements objective value in the combinatory with the inte-
gral method for the data in [5].

Figure 6.16: Improvements in the combinatory with the integral method for
the data in [5].
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Appendix A

Data Sets

A.1 Data Set 1

The first set of data is taken from [6]. We have:

• N = 5.

• L = 3.

• N0 = 11.

• Time steps:

T = T1×11 =
(

0 120 240 360 480 600 720 840 960 1080 1200
)

• Elemental matrix:

H = H3×5 =

 4 0 2 1 3
3 1 2 1 2
6 2 4 4 6


• Molecular weights vector:

M =M1×5 =
(

102 18 60 32 74
)

• Initial concentrations:

Y0 = Y01×5 =
(

0.1 0.1 0 0.1 0
)
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`````````̀TIME
SPECIES

1 2 3 4 5

0 0.1 0.1 0 0.1 0
120 0.0354075646011 0.0869966364218 0.0775957989771 0.0484109281793 0.0515890718207
240 0.0124453858664 0.0861603776298 0.1013942365038 0.0262850082366 0.0737149917634
360 0.0045008700064 0.0835515871445 0.1119475428491 0.0209492828619 0.0790507171381
480 0.0016663254963 0.0822421381718 0.1160915363319 0.0194241873245 0.0805758126755
600 0.0006233680361 0.0817130985407 0.1176635334233 0.0189102694954 0.0810897305046
720 0.0002341574053 0.0815097416442 0.1182561009505 0.0187244157611 0.0812755842389
840 0.0000880947678 0.0814326389772 0.1184792662551 0.0186554557906 0.0813445442094
960 0.0000331626438 0.0814035333430 0.1185633040132 0.0186296293007 0.0813703706993
1080 0.0000124866243 0.0813925630206 0.1185949503550 0.0186199236037 0.0813800763963
1200 0.0000047019440 0.0813884304655 0.1186068675905 0.0186162714784 0.0813837285216

Table A.1: Empirical concentrations of the data set in paper [6].

Figure A.1: Empirical Concentrations of the data set in [6].

The empirical concentrations of these data are shown in Table A.1. A
plot of these concentrations can be seen in Figure A.1.

In this particular case the solution of the parameters A and k are known,
as it can be seen below.
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• Stoichiometric matrix:

A = A5×3 =


−1 0 0
−1 1 −1

2 −1 1
0 −1 1
0 1 −1


• Stoichiometric reactive matrix:

R = R5×3 =


1 0 0
1 0 1
0 1 0
0 1 0
0 0 1


• Stoichiometric product matrix:

P = P5×3 =


0 0 0
0 1 0
2 0 1
0 0 1
0 1 0


• Rate coefficients:

k = k3×1 =

 0.1
0.15
0.05


A.2 Data Set 2

The second data set corresponds to the article [5].

• N = 5.

• L = 4.

• N0 = 16.

• Time steps:

T = T1×16 = ( 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 )
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• Initial concentrations:

Y0 = Y01×5 =
(

0.67 0.33 0 0 0
)

Empirical concentrations are shown in table A.2. Graphically, they can
be seen in Figure A.2.

`````````̀TIME
SPECIES

1 2 3 4 5

0 0.67 0.33 0 0 0
60 0.4891429 0.3628479 0.1071183 0.0072335 0.0002698
120 0.3678596 0.3793172 0.173477 0.0241317 0.0019658
180 0.2823506 0.3858145 0.2126880 0.0454913 0.0059471
240 0.2199138 0.3854987 0.2334394 0.0680772 0.0125241
300 0.1731481 0.3802419 0.2415418 0.0899689 0.0216191
360 0.1374479 0.3713392 0.2410032 0.1101102 0.0329201
420 0.1097974 0.3597800 0.2346443 0.1279989 0.0459998
480 0.0881404 0.3463562 0.2244757 0.143476 0.0603985
540 0.0710285 0.3317089 0.2119397 0.1565849 0.0756763
600 0.0574141 0.3163537 0.1980716 0.16748 0.0914423
660 0.0465226 0.3006980 0.1836121 0.1763684 0.1073669
720 0.0377710 0.2850577 0.1690856 0.1834753 0.1231843
780 0.0307141 0.2696705 0.1548571 0.1890232 0.1386882
840 0.0250074 0.2547105 0.1411737 0.1932212 0.1537256
900 0.0203819 0.2402994 0.1281955 0.1962598 0.1681880

Table A.2: Empirical concentrations of the data set in paper [5].

In contrast to the data set in Section A.1, matrices H and M are un-
known. Nevertheless, the optimal stoichiometric matrix A and rate coeffi-
cient vector k are known as happened before.

• Stoichiometric matrix:

A = A5×4 =


−2 −1 0 0

1 0 0 −1
0 1 −1 0
0 0 1 −1
0 0 0 1


• Stoichiometric reactive matrix:

R = R5×4 =


2 1 0 0
0 0 0 1
0 0 1 0
0 0 0 1
0 0 0 0


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Figure A.2: Empirical Concentrations of the data set in [5].

• Stoichiometric product matrix:

P = P5×4 =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


• Rate coefficients:

k = k4×1 =


0.0016667
0.0033333
0.0021667

0.005


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