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Bell inequality tests where the detec-
tion efficiency is below a certain threshold
ηcrit can be simulated with local hidden-
variable models. Here, we introduce a
method to identify Bell tests requiring low
ηcrit and relatively low dimension d of the
local quantum systems. The method has
two steps. First, we show a family of bipar-
tite Bell inequalities for which, for corre-
lations produced by maximally entangled
states, ηcrit can be upper bounded by a
function of some invariants of graphs, and
use it to identify correlations that require
small ηcrit. We present examples in which,
for maximally entangled states, ηcrit ≤ 0.516
for d = 16, ηcrit ≤ 0.407 for d = 28, and
ηcrit ≤ 0.326 for d = 32. We also show
evidence that the upper bound for ηcrit
can be lowered down to 0.415 for d = 16
and present a method to make the upper
bound of ηcrit arbitrarily small by increas-
ing the dimension and the number of set-
tings. All these upper bounds for ηcrit are
valid (as it is the case in the literature) as-
suming no noise. The second step is based
on the observation that, using the initial
state and measurement settings identified
in the first step, we can construct Bell
inequalities with smaller ηcrit and better
noise robustness. For that, we use a mod-
ified version of Gilbert’s algorithm that
takes advantage of the automorphisms of
the graphs used in the first step. We illus-
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trate its power by explicitly developing an
example in which ηcrit is 12.38% lower and
the required visibility is 14.62% lower than
the upper bounds obtained in the first
step. The tools presented here may allow
for developing high-dimensional loophole-
free Bell tests and loophole-free Bell non-
locality over long distances.

1 Introduction

Bell nonlocality [1, 2], that is, the violation of
inequalities satisfied by any local hidden-variable
(LHV) model, called Bell inequalities, is one of
the most fascinating features of quantum me-
chanics and a crucial mean to accomplish tasks
that are impossible with classical resources.

The detection efficiency η in an experimental
test of a Bell inequality is the ratio between the
number of systems detected by one party and
the number of pairs emitted by the source. η
depends not only on the efficiency of the detec-
tors, but also on all the losses occurring dur-
ing the distribution of the state. Pearle [3] and
Wigner [4] noticed that experimental correlations
in Bell inequality tests where the detection effi-
ciency is below a certain threshold ηcrit can be
simulated by LHV models. Therefore, if η is not
high enough, the quantum advantage in many
Bell inequality-based protocols (e.g., for random-
ness expansion [5, 6, 8, 7] and secure key distri-
bution [9, 10, 11, 12, 13]) vanishes. Avoiding this
so-called “detection loophole” requires surpass-
ing ηcrit. However, ηcrit depends on the quan-
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tum correlations (i.e., the state prepared and the
measurements performed) and the targeted Bell
inequality.

In this work, we identify quantum correlations
and Bell inequalities requiring the smallest ηcrit
reported, to our knowledge, in the literature for
symmetric Bell tests (i.e., those in which all de-
tectors have the same detection efficiency). The
correlations are produced by maximally entan-
gled states of experimentally accessible dimen-
sions (e.g., d = 16) and two-outcome measure-
ments. In addition, we describe a method that
provides arbitrarily small ηcrit but requires higher
dimensions.

The importance of these results lies on the fact
that they pave the way to extend the ground-
breaking loophole-free Bell tests performed on
quantum systems of dimension d = 2 (i.e.,
qubits) and distances between 60 and 1300 m
[17, 14, 15, 16] to quantum systems of higher di-
mensions and longer distances.

1.1 Structure of the paper

In Sec. 2, we collect the smallest values of ηcrit
reported in the literature and explain how they
have been obtained. We also recall a standard
form of expressing Bell functionals that will be
used in several places.

Finding states, measurements, and Bell in-
equalities leading to small values of ηcrit is dif-
ficult. One of the reasons is that, as we will see,
these values occur for Bell inequalities with many
settings for which computing the local bound is,
in general, intractable [18]. Another reason is
the difficulty of, given a Bell inequality, finding
the state and measurements producing maximal
quantum violations.

In Sec. 3, we introduce a method that over-
comes both problems, as it connects the local
bound of a family of bipartite Bell inequalities to
the independence number of a graph, and quan-
tum realizations that maximally violate the Bell
inequalities to orthogonal representations of the
graph. This allows us to identify examples of
quantum correlations and Bell inequalities with
unprecedentedly low ηcrit.

In Sec. 4, we present a method based on graph
theory to obtain explicit states and measure-
ments making ηcrit arbitrarily close to zero.

There are, however, two problems that make
the examples obtained up to that point not use-

ful in practice. One is that, in some cases, they
require too many settings. In Sec. 5, we present a
method for searching for examples with low ηcrit
and smaller number of settings.

The other problem is that, by construction, the
quantum violations of the graph-based Bell in-
equalities are very sensitive to noise. In Sec. 6,
we explain why and present a method to address
this problem. The method applies to any of the
(highly-symmetric) examples identified with the
techniques in Sec. 3 and produces a Bell inequal-
ity for the same correlations (i.e., the same state
and measurements) with smaller ηcrit and higher
resistance to noise.

Finally, in Sec. 7, we discuss how the differ-
ent methods presented in this work can help
us to design loophole-free Bell tests between
high-dimensional quantum systems and achieve
loophole-free Bell nonlocality over longer dis-
tances.

2 Previous works

2.1 Existing values of ηcrit

For symmetric Bell tests and perfect visibility
(as defined later), ηcrit = 0.828 using maxi-
mally entangled states [19] for the simplest Bell
inequality (the one with two dichotomic set-
tings per party): the Clauser-Horne-Shimony-
Holt (CHSH) inequality [20]. Eberhard [21] no-
ticed that ηcrit can be further reduced using non-
maximally entangled states and, in particular,
that it can be lowered down to 0.667 for the
Clauser-Horne (CH) inequality [22].

For Bell inequalities with four settings and
maximally entangled states, ηcrit is not better
than for CHSH (with one exception that allows
a slightly lower value; ηcrit = 0.821) [23, 24].

Although loophole-free Bell tests [17, 14, 15,
16] have proven that it is possible to produce
correlations between local quantum systems of
dimension d = 2 that do not admit LHV models,
the value of ηcrit required in these experiments
(≥ 0.720 due to the noise) prevents real-life ap-
plications and, in particular, applications outside
laboratories with well controlled losses, or involv-
ing longer distances (e.g., > 5 km). It is in this
sense that the requirement of ηcrit > 0.667 (with-
out noise, ηcrit > 0.720 with noise) acts as a bot-
tleneck that blocks many real-life applications.

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 2



Massar [25] discovered that high-dimensional
systems can tolerate a detection efficiency that
decreases with the dimension d of the local quan-
tum system. However, he only found an improve-
ment over the qubit case for d > 1600. Vértesi,
Pironio, and Brunner [26] lowered ηcrit down to
0.770 for maximally entangled states and to 0.618
for nonmaximally entangled states using d = 4.

Márton, Bene, and Vértesi [27] have studied
the case of N copies of the two-qubit maximally
entangled state and local Pauli measurements
which act in the corresponding qubit subsystems.
They obtained the following upper bounds for
ηcrit: 0.809 for N = 2 (which is equivalent to
d = 4), 0.740 for N = 3 (which is equivalent to
d = 8), and 0.693 for N = 4 (which is equivalent
to d = 16). More recently, Miklin et al. have
reported a method that allows us to reduce ηcrit
down to ≈ 0.469 for d = 512 [28].

In this article, we focus on the case of two
parties and symmetric detection efficiency, since
we see it as the closest one for realistic appli-
cations. However, it should be mentioned that
another way of obtaining low ηcrit is by consider-
ing Bell experiments involving ≥ 3 spatially sep-
arated parties [29, 30, 31]. Still, the difficulty
for preparing and distributing the required states
makes the resulting values ηcrit unpractical for ac-
tual applications. In addition, it should also be
pointed out that ηcrit can be reduced for some
detectors at the expense of requiring ηcrit ≈ 1 for
other detectors [32, 33, 34, 35].

2.2 Calculating ηcrit

Here, we summarize the different ways for calcu-
lating ηcrit that can be found in the literature for
the case that the propagation losses and detec-
tion inefficiencies are the same for all the detec-
tors. For a more detailed discussion, see Ref. [36].

In an ideal Bell test, every run would end up
with the two particles emitted by the source be-
ing detected, one at one party’s site and the other
at the other party’s. However, in a real Bell test
this may not be the case. As pointed out before,
reasons for that are the existence of propagation
losses and the imperfection of the detectors. Con-
sequently, a detection at one site may not be ac-
companied with a detection at the other site and
also, in some runs, both particles may be unde-
tected.

In some cases, in addition to the local losses

and imperfect detectors, the particles are not
emitted at well-known times, then the number
of emitted pairs, and thus the number of runs of
the Bell test, will be unknown.

Below we summarize how ηcrit can be calcu-
lated in each case.

Case I. The number of runs is known. This is
the case in event-ready experiments [37, 17, 16]
and in the proposals [38, 39, 40, 41] and experi-
ments [42] with heralded detection.

Case I. Strategy I. We can associate the no-
detection with a new outcome of the measure-
ment and find a new Bell inequality with the
same number of settings but one more outcome
per setting than in the original Bell inequality.
Then, the experiment will be free of the detec-
tion loophole as soon as the new inequality is
violated. The problem is that finding this new
Bell inequality may be difficult.

For example, if we add a new outcome to all
the measurements in the (2,m, 2) Bell scenario
(i.e., the one with 2 parties, m settings per party,
and 2 outcomes), then we end up in the (2,m, 3)
Bell scenario. Then, the number of determinis-
tic LHV assignments changes from 22m to 32m.
Meanwhile, the dimension of the LHV assign-
ments changes from 2m + m2 to 4m + 4m2. To
make clear the difficulties that finding such Bell
inequalities involve, notice that, so far, we do not
know the Bell inequalities for any (2,m, 3) Bell
scenario.

Case I. Strategy II. We can associate the no-
detection with one of the outcomes of each mea-
surement and use the original Bell inequality.
Then, the experiment will be loophole-free as
soon as the original Bell inequality is violated.

To obtain ηcrit in this case, we can act as fol-
lows. In an ideal Bell test in which we could
achieve the maximum quantum value Q of a Bell
expression I whose bound for LHV models is
C, and in which the experimental detection ef-
ficiency is η, the experimental value of I would
be

Iexp = η2Q+η(1−η)(QA+QB)+(1−η)2X, (1)

where QA is the value of I resulting of what the
parties output when Alice has detected the par-
ticle but not Bob (and similarly QB), and X is
the value that the parties output when both Alice
and Bob have not detected the particles. Usually,
the outputs are chosen such that X = C. The
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critical detection efficiency using this strategy is

ηcrit = 2C −QA −QB
C +Q−QA −QB

. (2)

This is the strategy used to obtain all the
values previously reported except the ones in
[21, 26]. This will also be the strategy used in
this paper.
Case II. The number of runs is not known.

This is the case in existing photonic Bell tests
with high detection efficiency [43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54].
Case II. Strategy III. This strategy works for

the CH Bell inequality [22], for inequalities that
can be written in terms of the CH functional [26],
and for some Bell inequalities that can be rewrit-
ten similarly [55]. The CH functional has a pe-
culiarity that makes it useful. It only contains
joint and marginal probabilities of one of the out-
comes. Then, there is no need to modify the
bound for LHV models when η is not 1. Instead,
a lower η makes that the probabilities become
lower so that the value of the Bell expression de-
creases. The joint probabilities decrease faster
than the marginal probabilities. This strategy
uses the expected values of η and the noise for
choosing the nonmaximally entangled state that
maximizes the violation [21].

This is the strategy used in [21, 26] and
adopted in the photonic loophole-free Bell tests
[14, 15].
Case II. Other strategies. These strategies

compute ηcrit under extra assumptions on the dis-
tribution of nondetections. See, e.g., [19]. We do
not enter into details here, as the need of extra
assumptions is considered a weak point [56, 36].

2.3 Collins-Gisin parametrization
Following the idea introduced in Ref. [57], we will
sometimes use a matrix to specify the functional
I associated to a Bell inequality I ≤ C (where C
is the bound for LHV models) as

I =
c(ΠA

1 =1) . . . c(ΠA
m=1)

c(ΠB
1 =1) c(ΠA

1 =ΠB
1 = 1) . . . c(ΠA

m=ΠB
1 =1)

...
...

. . .
...

c(ΠB
m=1) c(ΠA

1 =ΠB
m=1) . . . c(ΠA

m=ΠB
m=1)

 ,
(3)

where the entries are coefficients for different
terms that appear in I, which is assumed to

contain only two-outcome (0 and 1) measure-
ments. As an example, c(ΠA

1 = 1) indicates
the coefficient that multiplies P (ΠA

1 = 1) and
c(ΠA

1 = ΠB
1 = 1) the coefficient that multiplies

P (ΠA
1 = ΠB

1 = 1).
This technique allows us to write any Bell func-

tional (even those with measurements with more
than two outcomes) as a linear combination of
joint and marginal probabilities, but without in-
cluding one of the outcomes of each measure-
ment. The coefficients of the probabilities in-
volving this outcome can be computed from the
normalization and no-signalling conditions.

3 Graph-theoretic approach to Bell
nonlocality with low detection efficiency
3.1 General results
Here, we first introduce a family of bipartite Bell
inequalities, in which each inequality is associ-
ated to a graph G, such that the number of set-
tings of each party coincides with the number
of vertices of G and the number of outcomes is
two. The first interesting point about this family
is that the LHV bound of each inequality coin-
cides with the independence number ofG. There-
fore, we can take advantage of the vast literature
on independence numbers of countless families
of graphs to write Bell inequalities whose local
bounds would be difficult to compute otherwise.

Definition 1 (Independent set). An independent
set [58] of a graph G is a subset of vertices where
any two vertices are nonadjacent.

Hereafter, u ∼ v will indicate that u and v are
adjacent.

Definition 2 (Independence number). The inde-
pendence number [58] of a graph G, denoted by
α, is the largest cardinality of any independent
set of G.

Definition 3 (Xi number). The xi number of a
graph G is

Ξ = min
S∈Sα+1

Ξ(S), (4)

where Sα+1 is the set of all subsets of (α+1) ver-
tices of G, where α is the independence number
of G, and

Ξ(S) := max
v∈S
|{u|u ∼ v, u ∈ S}| . (5)
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For example, Ξ = 2 for the circulant graph
Ci10(2, 3), i.e., the 10-vertex graph in which ver-
tex i is adjacent to vertices i+ 2 and i+ 3.

Definition 4 (Circulant graph). A graph with
vertices 1, . . . , |V | is circulant if the cyclic per-
mutation (1, . . . , |V |) is a graph automorphism.

Definition 5 (Graph automorphism). An auto-
morphism of a graph G is a permutation σ of the
vertex set of G, such that the pair of vertices (i, j)
is adjacent (i.e., forms an edge) if and only if the
pair (σ(i), σ(j)) is adjacent.

By definition, if S1 ⊆ S2, then

Ξ(S1) ≤ Ξ(S2). (6)

This implies that, if S contains no fewer than
(α+ 1) vertices, then

Ξ(S) ≥ Ξ. (7)

In addition, Ξ ≥ 1, since there is at least one edge
among any set of (α+ 1) vertices, given that α is
the independence number.

Theorem 1. Given a graph G with vertex set
V , edge set E, independence number α, and xi
number Ξ, the following is a Bell inequality:

I =
∑
i∈V

P (ΠA
i = ΠB

i = 1)−

∑
(i,j)∈E

1
2Ξ
[
P (ΠA

i =ΠB
j =1)+P (ΠA

j =ΠB
i =1)

]
LHV
≤ α, (8)

where P (ΠA
i = ΠB

j = 1) is the probability that
Alice obtains the outcome 1 and Bob obtains the
outcome 1 when Alice measures the observable
ΠA
i (with possible outcomes 0 and 1) and Bob

measures the observable ΠB
j (with possible out-

comes 0 and 1).

Proof. To obtain the upper bound of I for LHV
models, we only need to consider deterministic
probability assignments. From the definition of
I, it is easy to see that the bound cannot be less
than α. Therefore, the bound can only be ob-
tained when the events [ΠA

i = ΠB
i = 1] have

been assigned the value 1 for any i ∈ S, where S
contains no fewer than α vertices.

Let us assume that S contains no fewer than
α + 1 vertices and let us call v the vertex in S
such that

|{u|u ∼ v, u ∈ S}| = Ξ(S). (9)

By changing the assignment of the event [ΠA
v =

ΠB
v = 1] to be 0, the increment of I is −1 + Ξ(S)

Ξ .
This is because ∀i, j ∈ S,

P (ΠA
i = ΠB

j = 1) = P (ΠA
j = ΠB

i = 1) = 1 (10)

with our current assignment, especially for i = v
or j = v.

Therefore, in the case that S contains no fewer
than (α + 1) vertices, we can always set the as-
signment of one event [ΠA

v = ΠB
v = 1] to be 0,

such that the value of I does not decrease. This
implies that the upper bound can be obtained
in the case that S contains exactly α vertices,
which implies that the upper bound can be no
more than α. Consequently, the upper bound for
LHV models is exactly α.

There is a second reason why the Bell inequal-
ities (8) are interesting for us. The reason is that
they allow us to establish a one-to-one connec-
tion between a quantum value for I and another
graph invariant of G. Moreover, this connection
also gives us the initial state and the local ob-
servables that provide the quantum value for I.

Definition 6 (Orthonormal representation). An
orthonormal representation in Cd of a graph G
with vertex set V is an assignment of a nonzero
unit vector |vi〉 ∈ Cd to each i ∈ V satisfy-
ing that 〈vi|vj〉 = 0 for all pairs i, j of adjacent
vertices. Such an assignment does not require
that different vertices are assigned different vec-
tors, nor that nonadjacent vertices correspond to
nonorthogonal vectors.

An additional unit vector |ψ〉 ∈ Cd, called han-
dle, is sometimes specified together with the or-
thonormal representation.

Notice that in many works in graph theory
the usual definition of orthonormal representa-
tion assigns orthogonal vectors to nonadjacent
—instead of adjacent— vertices.

Definition 7 (Orthogonal rank). The orthogonal
rank [59] of a graph G, denoted ξ, is the smallest
positive integer d for which there is an orthonor-
mal representation in Cd of G.

Quantum pure states are represented by rays.
Therefore, ξ is also the minimum dimension a
quantum system must have so adjacent vertices
in G can be assigned orthogonal quantum states
(or orthogonal rank-one projectors). However, it
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can be the case that the same ray is assigned to
different vertices.

Definition 8 (Graph of orthogonality). Given a
set of vectors S, the graph of orthogonality of S
is the graph in which each vector is represented
by a vertex and two vertices are adjacent if and
only if their corresponding vectors are mutually
orthogonal.

Theorem 2. For any graph G, the maximum
quantum value of I, defined in Eq. (8), is

Q ≥ |V |
ξ
, (11)

where |V | is the number of vertices of G and ξ

is the orthogonal rank of G. The value I = |V |
ξ

is achieved by preparing the maximally entangled
state

|ψ〉 = 1√
ξ

ξ−1∑
j=0
|j〉|j〉 (12)

and using as local settings on Alice’s side the ob-
servables represented by the projectors |vi〉〈vi|⊗1,
with |vi〉 in an orthonormal representation of di-
mension ξ of G, and as local settings on Bob’s
side the observables represented by the projectors
1⊗ |v∗i 〉〈v∗i |, where |v∗i 〉 is the complex conjugate
of |vi〉.

Proof. By definition of ξ, the value I = |V |
ξ ,

can be achieved in quantum mechanics using the
maximally entangled state (12) and locally mea-
suring the rank-one projectors corresponding to
an orthonormal representation of dimension ξ of
G in Alice’s side and its complex conjugate in
Bob’s side.

Theorems 1 and 2 allow us to link an upper
bound of the critical detection efficiency ηcrit for
the quantum violation of the Bell inequality (8)
produced with maximally entangled states with
invariants of the graph that originates the Bell
inequality.

Theorem 3. For any Bell inequality of the form
(8) associated to a graph G, assuming that the
number of runs of the Bell test is known (i.e.,
that we are in Case I in Sec. 2.2) and that the
parties adopt Strategy II (described in Sec. 2.2),
local models simulating the correlations produced
by the state (12) and the measurements described

after Eq. (12) are impossible if the detection effi-
ciency is

η >

√
α

|V |/ξ
≥ ηcrit, (13)

where α, |V |, and ξ are the independence number,
the number of vertices, and the orthogonal rank
of G, respectively.

Proof. Recall that the Collins-Gisin parametriza-
tion allows us to write any Bell expression as a
linear combination of joint and marginal proba-
bilities, without including one of the outcomes of
each measurement. Then, a strategy in case of
no detection is to associate the no-detection with
the outcome 0, which is assumed to be the one
that does not appear explicitly in the Bell expres-
sion. Following this strategy, the probabilities in
the Bell expression transforms as follows:

P (ΠA
i = 1)→ ηP (ΠA

i = 1), (14)
P (ΠB

j = 1)→ ηP (ΠB
j = 1), (15)

P (ΠA
i = ΠB

j = 1)→ η2P (ΠA
i = ΠB

j = 1). (16)

If the Bell expression contains no marginal items,
as it is the case in the Bell functional in (8), then,
in Eq. (2), QA = QB = 0. If no detection is
associated to the outcome 0, then X = 0. Con-
sequently, the quantum value in the ideal case
becomes η2Q. Then, in this case,

ηcrit =
√
C

Q
, (17)

where C is the upper bound of I for LHV mod-
els. Then, using Theorems 1 and 2, we obtain
Eq. (13).

3.2 Examples of nonlocal correlations with low
ηcrit

Here, we use Theorem 3 to identify quantum cor-
relations and Bell inequalities with low ηcrit.

3.2.1 Definitions

Definition 9 (Pauli observables). The set Pn
of Pauli observables for a system of n ≥ 2
qubits consists of the nontrivial quantum observ-
ables represented by n-term tensor products of the
Pauli matrices σx, σy, σz, and I (the 2× 2 iden-
tity matrix).
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The cardinality of Pn is |Pn| = 4n−1, since Pn
does not contain the 2n × 2n identity matrix.

Definition 10 (Pauli states). The set Pn(C) of
Pauli states for a system of n ≥ 2 qubits con-
sists of the common eigenstates of all the maxi-
mal subsets of Pn containing only mutually com-
patible observables (i.e., represented by mutually
commuting matrices) of maximal size.

The Pauli states are also called the “quantum
states arising from the Pauli group” [64]. The
eigenvectors of each subset of maximal size of Pn
containing only mutually compatible observables
provide an unique orthogonal basis of vectors
with d = 2n vectors. There are L =

∏n
j=1(2j + 1)

such subsets, and Pn(C) is the union of the L dis-
joint orthogonal bases. Accordingly, |Pn(C)| =
Ld.

Hereafter, we denote by Pn(R) the subset of
Pn(C) represented by vectors with all compo-
nents in R. |Pn(R)| =

∏n
j=1(2j + 2).

Definition 11 (Newman states). The set Nd of
Newman states for a quantum system of dimen-
sion d, where d = 4k, k ∈ N, consists of the states
represented by d-dimensional rays with compo-
nents −1 and 1 and such that the number of −1
components is even.

For example, N4 = {(1, 1, 1, 1), (1, 1,−1,−1),
(1,−1, 1,−1), (1,−1,−1, 1)}. We remark that
(a, b, c, d) and −1× (a, b, c, d) represent the same
state. As it can be seen, |Nd| = 2d−2.

Definition 12 (Newman graphs). The Newman
graph Yd is the graph of orthogonality of Nd,
where d = 4k, k ∈ N.

The name follows from a family of graphs stud-
ied by Newman (see Sec. 6.6 of [65]).

Definition 13 (Lovász’s number). The Lovász
number of a graph G is [60, 61]

ϑ(G) := max
∑
i∈V
|〈ψ|vi〉|2, (18)

where the maximum is taken over all orthonor-
mal representations {|vi〉}i∈V of G and handles
|ψ〉 (i.e., normalized vectors) in any dimension.

By the definition of ϑ(G), there is a quantum
realization that achieves I = ϑ(G) for the I as-
sociated to G using Eq. (8).

Definition 14 (Fractional packing number).
The fractional packing number of a graph G
[60, 61, 62] is

α∗(G) := max
∑
i∈V

pi, (19)

where the maximum is taken over all pi ≥ 0
and for all cliques C of G, under the restriction∑
i∈C pi ≤ 1.

It will be useful that ϑ(G) ≤ α∗(G).

Definition 15 (Hadamard or orthogonality
graphs Omega). For n ∈ N, an orthogonality
graph Ωn = (V,E) is the graph with vertex set
V = {−1, 1}n and edge set E = {(u, v) ∈ V ×V :
〈u, v〉 = 0}. That is, each vertex is assigned a
±1-vector of length n, and two vertices are adja-
cent if and only if the corresponding vectors are
orthogonal.

Geometrically, the vectors assigned to the ver-
tices of the Hadamard graph Ωn correspond to
the directions of the vertices of an n-dimensional
hypercube centered at the origin. Newman states
may be seen as a subset of such hypercube di-
rections. Therefore, a Newman graph Yn is an
induced subgraph of an orthogonality graph Ωn.

Definition 16 (Induced subgraph). Given a
graph G with vertex set V and edge set E, and
a subset of vertices S ⊂ V , the subgraph of G
induced by S is the graph with vertex set S, and
edge set consisting of all the edges (u, v) ∈ E such
that u, v ∈ S [58].

Definition 17 (Hadamard matrix). A
Hadamard matrix of order n is a real n × n
square matrix Hn in which all its entries are
either +1 or −1, and whose rows are mutually
orthogonal.

The order n of a Hadamard matrix must be 1,
2, or a multiple of 4. Therefore, if n is an even
number, each pair of rows in a Hadamard matrix
represents two mutually orthogonal ±1-vectors in
dimension n. The same is true for its columns
considered as ±1-vectors. Therefore, taking any
pair of rows (alternatively, columns), the number
of matching entries must be equal to the number
of mismatching entries, exactly n/2.

Definition 18 (Lexicographic product of
graphs). The lexicographic product of two graphs
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G and H with respective vertex sets V (G) = {ui}i
and V (H) = {vk}k is a graph G[H] such that its
vertex set is the Cartesian product V (G[H]) =
V (G)× V (H), and any two vertices (ui, vk) and
(uj , vl) in G[H] are adjacent if and only if either
ui is adjacent with uj in G or ui = uj and vk is
adjacent with vl in H.

The lexicographic product is associative but
not commutative (a fact emphasized by the no-
tation).

3.2.2 Pauli-4320

The graph of orthogonality of P4(R) has α = 72
and ϑ = α∗ = |V |

ξ = 270. Therefore, by preparing
the maximally entangled state (12) of local di-
mension ξ = 24 = 16 and allowing the parties to
choose between the 4320 two-outcome measure-
ments represented by |vi〉〈vi|, with |vi〉 ∈ P4(R),
they produce a violation of the Bell inequality (8)
which, using Theorem 3, allows us to conclude
that

η
P4(R)
crit ≤ 0.516, (20)

which is an unprecedentedly low upper bound for
this dimension (see Sec. 2.1).

Notice that 4320 local choices are not too many
for a realistic Bell test. For example, a photonic
loophole-free Bell test may have 3502784150 tri-
als [14], which is enough for a Bell test in which
each party has to chose between 4320 settings,
as it gives 187.7 trials for each possible combina-
tion of settings (x, y), which is more than three
times the number of trials per (x, y) in the first
loophole-free Bell test [17]. Recall that all mea-
surements have two outcomes, as in the test of
the Clauser-Horne-Shimony-Holt Bell inequality
[20]. Therefore, only two detectors per party are
necessary.

3.2.3 Pauli-36720

We conjecture that the graph of orthogonality of
P4(C) has α = 396. This conjecture is based on
the fact that, after months of computations, 396
is the largest value that we have found (and we
have found it many times, which suggests that
our search is sufficiently dense). The computa-
tion is based on a greedy-type algorithm taking
into account the symmetry of the graph as well as
known upper bounds for the independence num-
ber by means of spectral graph theory. Given a

graph G, we proceed as follows. (i) Compute the
automorphism group of G and the correspond-
ing orbits. These orbits will yield a partition of
the vertex set {1, . . . , |V (G)|}. (ii) From each
orbit Ok we select a vertex vk ∈ Ok. This ver-
tex then has two options: It can either be part
of a maximal independent vertex set or it is not,
i.e., vk ∈ I(G) or vk /∈ I(G). If vk ∈ I, then
remove vk and all neighbours of vk. This pro-
duces a tuple (G1, 1) containing a new graph G1

and 1, as we have removed a vertex from the
independent set of the original graph. On the
other hand, if vk /∈ I(G), we can remove the
whole orbit Ok of G with vk ∈ Ok what yields
another graph G2. As we have not removed a
member of I, we store the tuple (G2, 0). In to-
tal, this produces a sequence of graphs with a
strictly decreasing number of vertices. Once the
size of all graphs is lower than a threshold κ for
which α can be computed directly, the decom-
position stops yielding a set {(Gk, Hk)}, where
Hk ∈ {(0, 1)n} denotes the choice in each step.
The independence number of G is given by the
maximum over α̃k = α(Gk)+

∑
j(Hk)j . However,

the problem with this approach is (revealing the
hardness of the problem of computing α) that the
number of graphs in the decomposition grows ex-
ponentially. If one has a sufficiently high lower
bound for α(G) given a priori, one only needs
to collect those graphs appearing in the decom-
position process whose independence number is
larger than this a priori bound.

In addition, ϑ = α∗ = |V |
ξ = 2295. There-

fore, if the above conjecture is correct, then,
by preparing the maximally entangled state (12)
of local dimension ξ = 24 = 16 and allowing
the parties to choose between the 36720 two-
outcome measurements represented by |vi〉〈vi|,
with |vi〉 ∈ P4(C), they can produce a violation
of the Bell inequality (8) which, using Theorem
3, allows us to conclude that

η
P4(C)
crit ≤ 0.415. (21)

3.2.4 Newman-226

As it is proven in Sec. 3.2.6, the graph of orthog-
onality of N28 has α = 397594 and ϑ = α∗ =
|V |
ξ = 16777216

7 ≈ 2.3967 × 106. Therefore, by
preparing the maximally entangled state (12) of
local dimension ξ = 28 and allowing the parties
to choose between the 226 two-outcome measure-
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ments represented by |vi〉〈vi|, with |vi〉 ∈ N28,
they can produce a violation of the Bell inequal-
ity (8) which, using Theorem 3, allows us to con-
clude that

ηN28
crit ≤ 0.407. (22)

Arguably, 226 two-outcome measurements are
too many for a real Bell test. The aim of this
and the next example is to show that, by digging
in the literature, one can find sets of vectors (or
graphs), leading to gedanken Bell tests with very
low ηcrit.

3.2.5 Newman-230

As it is proven in Sec. 3.2.6, the graph of or-
thogonality of N32 has α = 3572224 and ϑ =
α∗ = |V |

ξ = 225. Therefore, by preparing the
maximally entangled state (12) of local dimen-
sion ξ = 32 and allowing the parties to choose
between the 230 two-outcome measurements rep-
resented by |vi〉〈vi|, with |vi〉 ∈ N32, they produce
a violation of the Bell inequality (8) which, using
Theorem 3, allows us to conclude that

ηN32
crit ≤ 0.326. (23)

3.2.6 Independence number and quantum value
for the Newman graphs

The independence number of the Newman graph
Yn can be obtained by exploiting a connection
[65] between Yn and the orthogonality graphs
Ωn, also known as Hadamard graphs or Deutch-
Jozsa graphs. The graphs Ωn were introduced
by Ito [70, 71] as a tool to provide an alge-
braic graph theoretic background for Hadamard
matrices. Hadamard graphs appear in rela-
tion to some quantum communication protocols
and some proofs of the Kochen-Specker theorem
[72, 73, 74, 75, 76].

By definition, the graph Yn is a subgraph of
Ωn induced by a specific subset of its vertices.

For our purposes, the only interesting graphs
Ωn are those for which n = 4k, k ∈ N. Oth-
erwise, Ωn is empty for n odd, or bipartite for
n = 2 mod 4 [65]. Restricting ourselves to such
interesting graphs Ωn=4k, the first observation is
that Ωn is the disjoint union of two isomorphic
graphs,

Ωn = Ωe
n t Ωo

n, (24)

where Ωe
n is the graph defined by the vertices

corresponding to vectors with an even number

of components 1, and Ωo
n is the graph defined

by the vertices corresponding to vectors with an
odd number of components 1. Therefore, the in-
dependence numbers are related as follows:

α(Ωn) = α(Ωe
n) + α(Ωo

n) = 2α(Ωe
n) (25)

and the orthogonal ranks are related as follows:

ξ(Ωn) = ξ(Ωe
n) = ξ(Ωo

n). (26)

The second step is noticing that Ωe
n is the lexi-

cographic product of Yn with the complement of
the complete graph on two vertices,

Ωe
n = Yn[K̄2]. (27)

Therefore (see Theorem 5),

α(Ωe
n) = α(Yn)α(K̄2) = 2α(Yn) (28)

and
ξ(Ωe

n) = ξ(Yn). (29)

The orthogonal rank of Ωn is n [77, 78]. There-
fore,

ξ(Yn) = n, (30)

and the assignment of n-dimensional rays with
components −1 and 1 to the vertices Yn such
that adjacent vertices are assigned orthogonal
rays yields an orthogonal representation of Yn of
minimum dimension.

On the other hand, α(Ωn) is known for n =
4pk, for k ≥ 1 where p is an odd prime [79], and
also for n = 2k for k ≥ 2 [80]. In both cases,

α(Ωn) = 4
n/4−1∑
i=0

(
n− 1
i

)
. (31)

It still remains a conjecture whether Eq. (31) is
valid when n is another multiple of 4. To our
knowledge, the first open case is n = 40 [80].
Taking Eqs. (25), (28), and (31) into account,

α(Y28) = 397594 (32)

and
α(Y32) = 3572224. (33)

In addition, Yn has |V | = 2n−2 vertices and
|E| = 2n−4( n

n/2
)

edges.
Let us show that, for the two considered New-

man graphs, the orthogonal rank (i.e., the mini-
mal dimension of the physical realization) equals
their clique number (size of the largest clique).
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In order to prove that Newman’s graphs Y28
and Y32 contain cliques of size 28 and 32, re-
spectively, note that such cliques correspond to
sets of pairwise orthogonal ±1-rays of cardinal-
ity 28 in dimension 28, or cardinality 32 in di-
mension 32, in which the number of −1 com-
ponents is an even (alternatively, odd) number.
This fact allows us to rephrase this problem in a
slightly different and more convenient way, using
Hadamard matrices: our goal is to construct ad-
equate Hadamard matrices Hn of orders n = 28
and n = 32. Each row in Hn is a ±1-vector in
dimension n and, by definition, the n rows in
Hn constitute a set of n pairwise orthogonal ±1-
vectors in dimension n. In fact, these vectors are
rays since no two rows can have the same entries
with opposite signs, due to orthogonality. If nec-
essary, we can transform Hn into another equiv-
alent n × n Hadamard matrix by negating rows
or columns, or by interchanging rows or columns,
so that the number of −1 components of the row
vectors is an even (alternatively, odd) number.
Notice that, in the end, the resulting set of vec-
tors corresponds to a maximum clique of size n
in the Newman graph Yn.

According to Hadamard’s conjecture, a
Hadamard matrix Hn of order n = 4k exists
for every positive integer k. At the present
time, after applying the construction methods
due to Sylvester, Paley, Williamson and others,
the smallest order for which no Hadamard matrix
is known is n = 668. And there are many orders
n > 668 for which Hn is known. This means that
all Newman graphs Ωn=4k with n < 668 satisfy
that ω(Yn) = n.

There is a well known recursive procedure to
construct Hadamard matrices Hn of order n =
2k, k ∈ N, the so called Sylvester’s construction
[81]. Applying this procedure, H32 can be ob-
tained. This matrix fulfills the condition that
the number of −1 entries in each row is an even
number, hence providing a clique of size 32 for
the Newman graph Y32.

Specifically, from H32, we arrive at the
following clique of size 32: the set of
rays of the form ui ⊗ uj ⊗ vk, where
ui, uj ∈ {(1, 1, 1, 1), (1, 1,−1,−1), (1,−1, 1,−1),
(1,−1,−1, 1)}, vk ∈ {(1, 1), (1,−1)}, and ⊗ de-
notes tensor product.

A Hadamard matrix H28 is more convoluted.
It can be obtained through the so-called Paley’s

construction (Lemma 2 in Ref. [82]). There are
487 inequivalent matrices H28. Examples of them
can be found in the literature. To exhibit a spe-
cific instance of a clique of size 28 induced in Y28
we look for a matrix H28 such that the number of
−1 entries in each row is again an even number.
Such a matrix (using 0, 1 entries instead of ±1)
can be found, v.g., in Fig. 1 in Ref. [83]: The set
of row vectors obtained by replacing therein each
0 entry with −1 constitutes the desired clique.

Finally, we will prove that for Newman graphs
Yn with n = 28 and n = 32, the quantum value
of I given by Eq. (8) can be α∗(Yn) = ϑ(Yn) =
|V (Yn)|
ξ(Yn) . First, note that both Ωe

n and K̄2 are

vertex-transitive. Given that Ωe
n = Yn[K̄2], we

know that Yn is also vertex-transitive, since the
lexicographic product of two graphs is vertex-
transitive if and only if both graph factors are
vertex-transitive [84].

On one hand, it is known [77] that

ϑ(Ωn) = 2n

n
. (34)

Since ϑ is multiplicative in the lexicographic
product (see Theorem 5), we have ϑ(Ωe) =
ϑ(Yn) × ϑ(K̄2) = 2ϑ(Yn). Notice that ϑ(Ωe) =
ϑ(Ωn)

2 , because Ωn = Ωe tΩo. As a consequence,

ϑ(Yn) = ϑ(Ωn)
4 = 2n−2

n
. (35)

On the other hand, the fractional packing
number in a vertex-transitive graph G satisfies
α∗(G) = |V (G)|

ω(G) , where |V (G)| is the number of

vertices and ω(G) is the clique number of G.
Given that |Yn| = 2n−2 and knowing that the
clique number for Y28 and Y32 is ω(Y28) = 28 and
ω(Y32) = 32 (as proved before), and by vertex-
transitivity, we obtain that the quantum values
of I can be

α∗(Y28) = ϑ(Y28) (36)

and

α∗(Y32) = ϑ(Y32), (37)

respectively.

3.2.7 Newman-226 and Newman-230 are state-
independent contextuality sets

Definition 19 (SI-C set). A State-independent
contextuality (SI-C) set [85] in dimension d ≥ 3
is a set of projectors that produces noncontextual
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correlations (i.e. that violate some noncontextu-
alty inequality) for any initial quantum state of
dimension d.

SI-C sets play a fundamental role in our
method for identifying correlations with low ηcrit,
as any SI-C set produces a quantum violation
of a graph-based Bell inequality of the form (8).
However, there are sets that are not SI-C sets and
produce a quantum violation of a Bell inequality
of the form (8) [85].

Theorem 4. Newman-226 is a SI-C set in di-
mension d = 28 and Newman-230 is a SI-C set
in dimension d = 32.

In order to prove Theorem 4, we will first state
and prove the following lemma, in which in a mild
abuse of notation, we will use Ωe

n and Ωo
k to re-

fer not only to the Hadamard graphs but also to
the sets of vectors constituting their orthogonal
representations:

Lemma 1. For n ≥ 3,∑
〈v|∈Ωe

n

|v〉〈v| =
∑
〈v|∈Ωo

n

|v〉〈v| = 2n−1In, (38)

∑
〈v|∈Ωe

n

〈v| =
∑
〈v|∈Ωo

n

〈v| = 〈0|n, (39)

where 〈0|n = (0, . . . , 0) and all the vectors 〈v|’s
are unnormalized.

Proof. We prove the lemma by induction. It’s
straightforward to verify that those claims hold
for n = 3. Let us assume now that they also hold
for n = k. Notice that, by adding an adequate
extra component ±1 to the vectors of Ωe

k and
Ωo
k, we obtain orthogonal representations Ωe

k+1
and Ωo

k+1, so that

Ωe
k+1 = {(〈u|, 1)|〈u| ∈ Ωe

k} ∪ {(〈u|,−1)|〈u| ∈ Ωo
k},

(40)
Ωo
k+1 = {(〈u|, 1)|〈u| ∈ Ωo

k} ∪ {(〈u|,−1)〈u| ∈ Ωe
k}.

(41)

This implies that∑
〈v|∈Ωe

k+1

〈v| =
∑
〈u|∈Ωe

k

(〈u|, 1) +
∑
〈u|∈Ωo

k

(〈u|,−1)

= (〈0|k, 2k−1) + (〈0|k,−2k−1)
= 〈0|k+1, (42)

where the last equality holds because Ωe
k and Ωo

k

have same number of elements, i.e., 2k−1.

On the other hand:∑
〈v|∈Ωe

k+1

|v〉〈v|

=
∑
〈u|∈Ωe

k

[
|u〉〈u| |u〉
〈u| 1

]
+

∑
〈u|∈Ωo

k

[
|u〉〈u| −|u〉
−〈u| 1

]

=


∑
〈u|∈Ωe

k

|u〉〈u| |0〉k

〈0|k 2k−1

+


∑
〈u|∈Ωo

k

|u〉〈u| |0〉k

〈0|k 2k−1


=
[
2k−1Ik |0〉k
〈0|k 2k−1

]
+
[
2k−1Ik |0〉k
〈0|k 2k−1

]
=2kIk+1. (43)

Similarly, we can prove
∑
〈v|∈Ωo

k+1
|v〉〈v| =

2kIk+1.
Thus, our claims hold for any n ≥ 3.

Now, Theorem 4 is straightforward:

Proof. Let Nn be the set of rays constituting
an orthonormal representation for the Newman
graph Yn. From Lemma 1, and by definition,

∑
〈v|∈Nn

|v〉〈v| = 1
2n

∑
〈u|∈Ωe

n

|u〉〈u| = 2n−2

n
In, (44)

where 〈v|’s are normalized vectors, 〈u|’s are un-
normalized. In the case 2n−2/n > α(Yn), the
set Nn is a SI-C set. In particular, this is true
for N28 and N32, as claimed. It is also true for
Nn with n = 12, 16, 20, 36, 44, 52, 64, 68, 100,
108, 128, 196, 256, 324, 484, 500, 512, since these
are the values for which Eq. (31) can be proven,
satisfy α(Yn) < |V (Yn)|/ω(Yn), and are smaller
than 668, which is the smallest value for which
no Hadamard matrix is known.

For these sets of Newman states, ηcrit tends
to zero as n grows. In particular, for n = 512,
ηcrit < 1.6× 10−14.

3.2.8 Experimental realization

One way of preparing and measuring Pauli and
Newman states of dimension d is by using single
photons (or neutrons or atoms or any type of ra-
diation) in a Reck et al. d-input d-outcome mul-
tiport [66] or in its simplification by Clements et
al. [67]. For state preparation, we may take fur-
ther advantage from the fact that any unitary can
be achieved no matter in which input the photon
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is injected. Therefore, we can use a specific in-
put and remove all the elements in the paths not
used. More interestingly is the possibility of si-
multaneously injecting several indistinguishable
particles (either bosons or fermions) in different
ports of a multiport interfeometer. This would
allow us to achieve high d using more compact
setups. In this case, the problem of preparing
and measuring Pauli and Newman states is still
open, but can be addressed by taking advantage
of the criteria for the suppression of certain out-
put events in particular interferometers [68, 69].
For example, Newman states seem to be achiev-
able using Sylvester interferometers [69].

4 Arbitrarily small detection efficiency
Here we show that, beyond specific examples,
there are constructive methods such that, if there
are no restrictions on the number of local settings
or the local dimension of the quantum system,
we can identify quantum correlations and a cor-
responding Bell inequality with respect to which
the critical detection efficiency (above which no
LHV model can be constructed) is as close to zero
as desired.

4.1 Definitions

Definition 20 (OR product of graphs). The
OR product (aka disjunctive product or conormal
product) of two graphs G and H with respective
vertex sets V (G) = {ui}i and V (H) = {vk}k is a
graph G?H such that its vertex set is the Carte-
sian product V (G?H) = V (G)×V (H), and any
two vertices (ui, vk) and (uj , vl) in G?H are ad-
jacent if and only if ui is adjacent with uj in G
or vk is adjacent with vl in H. The OR product
is both associative and commutative.

Definition 21 (Spanning subgraph). Given a
graph G with vertex set V (G) and edge set E(G),
a spanning subgraph H of G (also known as a fac-
tor of G) is a subgraph of G such that V (G) =
V (H) [58].

4.2 General results

Theorem 5. If G◦H is the graph obtained either
by the OR product or the lexicographic product of
the graphs G and H, then α(G◦H) = α(G)α(H)
and ϑ(G ◦H) = ϑ(G)ϑ(H).

That α and ϑ are both multiplicative in the
OR product is proven in, e.g., [86] (Sec. 21) and
[87] (Lemma 2.9). The same fact with respect to
the lexicographic product is proven in, e.g., [88]
and [89].

Theorem 6. For any Bell inequality of the form
(8) associated to a graph Gn, denoting the OR or
lexicographic product of n copies of the graph G,
local models are impossible if the detection effi-
ciency is

η >

√
αn

(|V |/ξ)n ≥ η
Gn

crit, (45)

where α, |V |, and ξ are the independence number,
the number of vertices, and the orthogonal rank
of G, respectively.

The proof follows from Theorem 3 and The-
orem 5 for the case H = G. These two theo-
rems can be combined whenever ϑ(G) = α∗(G) =
|V (G)|
ξ(G) and ϑ(H) = α∗(H) = |V (H)|

ξ(H) , but not in
general.

By definition, G[H] is a spanning subgraph of
G?H. More explicitly, V (G[H]) = V (G?H) and
E(G[H]) ⊂ E(G?H). Therefore, by taking G?H
and deleting some specific edges, we obtain G[H].
This implies that using the lexicographic product
is more convenient, as a smaller number of edges
in the final graph means that the violation of
the Bell inequality (8) is, as we will see, more
resistant to noise.

4.3 Example: Pauli-240n

The graph of orthogonality of P3(R) has α = 16
and ϑ = α∗ = 30. Therefore, by preparing the
maximally entangled state (12) of local dimen-
sion ξ = 23 = 8 and allowing each of the parties
to choose between the 240 two-outcome measure-
ments represented by |vi〉〈vi|, with |vi〉 ∈ P3(R),
they can produce a violation of the Bell inequal-
ity (8) which, using Theorem 3, allows us to con-
clude that ηcrit ≤ 0.730.

Therefore, with a system of local dimension 82,
and locally measuring the observables associated
to the vertices of the lexicographic product of
P3(R) with itself,

η
P2

3 (R)
crit ≤ 0.533. (46)

And with a system of local dimension 83,

η
P3

3 (R)
crit ≤ 0.389. (47)
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The interest of this method is that it tends
faster to ηcrit = 0 using smaller d than in any
previous method. The downside is that, at least
applied to the examples provided here, it requires
too many settings.

5 How to search for examples with low
ηcrit and a smaller number of settings
Most of the examples we have presented so far re-
quire too many settings to be tested in actual ex-
periments. This leads to the question of whether
we can achieve low ηcrit using a moderate num-
ber (e.g., < 100) of settings. The aim of this
section is showing that, arguably, the answer is
affirmative. However, finding them will require
some extra work.

5.1 First strategy: Vertex-transitive graphs

So far, our strategy for finding examples with low
ηcrit was inspired by (the graphs of orthogonality
of) sets of states common in quantum mechan-
ics and quantum information (Pauli and Newman
states). Interestingly, all our examples are sets of
states whose graph of orthogonality is a vertex-
transitive graph. In addition, vertex transitivity
will be an important property for the second part
of the paper, where optimizations of the Bell in-
equalities will be carried out. In fact, for a large
number of settings, optimization will only be fea-
sible for vertex-transitive graphs.

Definition 22 (Vertex-transitive graph). A
graph is vertex-transitive if, for every pair of ver-
tices, there exists an automorphism of the graph
mapping one to the other.

Consequently, in searching for a systematic
method to identify additional examples with low
ηcrit (for maximally entangled states and before
any optimization), it makes sense to focus on
vertex-transitive graphs.

Vertex-transitive graphs have been investi-
gated for decades. As a fruit of these efforts
(see, e.g., [84, 91, 90]), there are databases with
all vertex-transitive graphs with up to 47 ver-
tices [92], all vertex-transitive graphs of degree 3
(i.e., each vertex is adjacent to three others) up
to 1280 vertices [93], all circulant graphs up to
60 vertices, and all circulant graphs with degrees
at most 20 up to 65 vertices, at most 16 up to

70 vertices, and at most 12 up to 100 vertices [94].
Therefore, we can use these databases to compute
ηcrit for all these graphs and their complements
and then select those that are interesting.

For any graph G, ω(G) ≤ ϑ(G) ≤ ξ(G) ≤
χ(G), where ω(G), ϑ(G), ξ(G), and χ(G) are,
respectively, the clique number, the Lovász num-
ber of the complement of G, the orthogonal rank,
and the chromatic number [86, 95]. The clique
number ω is a trivial lower bound for ξ. The
problem is that ξ cannot be computed efficiently.
However, in all the examples with low ηcrit that
we have identified, ξ = ω. Therefore, we can
use the databases and compute, for each |V |, the
minimum of

√
α
|V |/ω . This gives a lower bound for

ηcrit that can be expected (for maximally entan-
gled states and before any optimization) for the
corresponding set of graphs. The results of these
computations for all vertex-transitive graphs up
to 47 vertices are presented in Table 1.

Table 1 shows that the aforementioned lower
bound for ηcrit decreases as the number of ver-
tices increases. Moreover, it suggests that (for
maximally entangled states and before any opti-
mization) there are examples with ηcrit < 0.5 and
|V | < 100 vertices.

We can use existing computational tools [96]
to estimate the exact ξ. To find a orthogonal
representation in Rd (or in Cd) with minimal ξ of
the promising graphs, we can write each vector
in the orthogonal representation as a unit vec-
tor using d (or 2d) real variables, and rotating
the orthogonal representation into some canon-
ical position to reduce the number of variables.
Then, we take into account that the automor-
phisms of the graph (which can be easily com-
puted) lead to geometric symmetries in the or-
thogonal representation. Then, using numerical
optimization software, we run the minimization
problem where the objective is to minimize the
sum of squares of inner products for Rd (or the
sum of squares of absolute values of inner prod-
ucts for Cd), where the sum is taken over those
pairs of vectors that are supposed to be orthogo-
nal in the orthogonal representation. Notice that
the automorphisms of the graph dramatically re-
duce the number of variables in the optimization
problem because now we need only one vector per
each orbit of a symmetry group. This works with
many dozens of variables quite well. Maple and
other software can run this in arbitrary precision
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from which one may recover analytical expres-
sions for the solutions.

|V | n min
√

α
|V |/ω

18 380 0.816
19 60 0.795
20 1214 0.775
21 240 0.756
22 816 0.739
23 188 0.780
24 15506 0.707
25 464 0.775
26 4236 0.734
27 1434 0.745
28 25850 0.732
29 1182 0.719
30 46308 0.707
31 2192 0.696
32 677402 0.667
33 6768 0.625
34 132580 0.64
35 11150 0.627
36 1963202 0.615
37 14602 0.604
38 814216 0.593
39 48462 0.632
40 13104170 0.571
41 52488 0.561
42 946226 0.6
43 99880 0.635
44 39134640 0.581
45 399420 0.571
46 34333800 0.562
47 364724 0.597

Table 1: The minimum value of
√

α
|V |/ω , which is a

lower bound for ηcrit, for all vertex-transitive graphs with
|V | ≤ 47 vertices. n is the number of vertex-transitive
graphs with the corresponding number of vertices.

5.2 Second strategy: Nonvertex-transitive
graphs

So far, we have focused on graphs that are vertex
transitive. The reasons for this are that vertex-
transitive graphs are relatively easy to identify
and have a lot of symmetry. The latter is crucial

for the optimization discussed in the second step
of the method.

However, in [97], it is shown that there are
other graphs leading to quantum correlations
based on maximally entangled states violating
a Bell inequality: Those admitting an orthonor-
mal representation in dimension ξ and nonneg-
ative vertex weights w = {wi}ni=1 such that∑n
i=1wi/ξ > α(G,w), where α(G,w) is the inde-

pendence number of the corresponding weighted
graph. In addition, in [85], it is shown that a con-
dition for these graphs is that the fractional chro-
matic number satisfies χf > ξ. Interestingly, this
condition, which is not sufficient for the graphs to
have associated SI-C sets (see Theorem 1 in [85])
is, in fact, sufficient for having quantum corre-
lations based on maximally entangled states vio-
lating a Bell inequality.

Therefore, another strategy to find examples
with low ηcrit would be the following: Find
graphs with χf > ξ. For each of them, find w,
such that

∑n
i=1wi/ξ > α(G,w). Then, in a simi-

lar way as for Theorem 3, we can prove for these
graphs and weights,

ηcrit ≤

√√√√α(G,w)∑n
i=1

wi
ξ

. (48)

Interestingly, since these weights are often nat-
ural numbers (e.g., for the Yu-Oh set [98], the
weights are 2 for 4 of the vectors and 3 for the
other 9 vectors [97]), one can see the weighted
graphs (G,w) as nonweighted graphs G with an
extended number of vertices (e.g., for the Yu-Oh
set, G would have 4 × 2 + 9 × 3 = 35 vertices).
Then, for finding candidates that may have a low
ηcrit, we can use databases of nonweighted graphs
of 13 or more vertices (as it is known that the
graphs for which χf > ξ must have, at least, 13
vertices [99]) and there identify, first, graphs with
χf > ω, where ω is the clique number, which is
easier to compute than ξ. Since ω ≤ ξ, this is a
necessary condition. Later on, one can use exist-
ing computational tools [96] to obtain ξ.

6 Noise and how to obtain better Bell
inequalities
Here, we first show that, in all the examples with
low ηcrit presented so far, the values shown for
ηcrit are very sensitive to noise (Theorem 8). The
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good news is that all the upper bounds for ηcrit
have been obtained with respect to a graph-based
Bell inequality of the form in Eq. (8). However,
for fixed correlations, we can optimize our Bell in-
equalities and obtain a lower value for ηcrit, which
can also be more robust to noise. This optimiza-
tion is discussed in Sec. 6.2 and uses the high
symmetry of the measurements (their graph of
orthogonality is vertex-transitive) producing the
correlations.

6.1 Noise and graph-based Bell inequalities

In most discussions on the critical detection ef-
ficiency (e.g., [21, 29, 30]), the effect of noise is
modeled with the assumption that the effective
state is of the form

ρ = W |ψ〉〈ψ|+ (1−W ) 1
d2 , (49)

where |ψ〉 is the targeted state, W is the visibility
of the state, 1 is the identity, and d is the dimen-
sion of the local system. In this work, we will
follow this practice. However, it must be pointed
out that, in some cases [100], the effective state
is not of the form (49) and it is important to take
this into account [101].

Theorem 7. For a Bell inequality of the form
(8) associated to a graph G(V,E) with vertex set
V and edge set E, and states of the form (49),
the critical visibility Wcrit, i.e., the minimal value
of W in (49) for a violation in (8) is given by

Wcrit ≤
α−Qmix

(|V |/d)−Qmix
, (50)

where
Qmix = 1

d2 (|V | − |E|/Ξ) . (51)

Proof. Notice that Qmix is the violation of (8) for
the maximally mixed state.

Theorem 8. For a Bell inequality of the form
(8) associated to a graph G(V,E) with vertex set
V and edge set E and states of the form (49), the
critical detection efficiency ηcrit is given by

η2
crit ≤

αd2

|V | [W (d− 1) + 1]− |E|(1−W )/Ξ .

(52)

Proof. The quantum violation of the Bell in-
equality (8) with state (49) and perfect detection
efficiency is given by

Q′ = WQ+ (1−W )Qmix, (53)

where Q ≥ |V |d is the expected quantum violation
and Qmix is the value for the maximally mixed
state, which is given by (51). Then, the critical
detection efficiency in Eq. (13) becomes Eq. (52).

Theorem 8 implies that, for the graph-based
Bell inequalities (8), ηcrit rapidly increases with
the number of edges unless W is very close to
1. Therefore, although experimental values of W
can be as high as 0.980 for d = 3 and 0.943 for
d = 17 [102], it would be desirable to find Bell
inequalities for which the same correlations (i.e.,
the same state and the same measurements) have
a value for ηcrit (and for Wcrit) that is much less
sensitive to noise. This problem is addressed in
the next section.

6.2 Optimized Bell inequalities based on sym-
metries

6.2.1 Introduction

The graph-based Bell inequality (8) only takes
into account probabilities P (ΠA

i = a,ΠB
j = b) in

which either i = j or i and j are adjacent in the
graph G. However, in a Bell test Alice and Bob
independently choose their measurements in such
a way that the choice on one of them is spacelike
separated from the recording of the measurement
outcome on the other. Therefore, while every
observable ΠA

i of Alice is compatible with ev-
ery observable ΠB

j of Bob, inequality (8) does
not use most of the joint probability distributions
P (ΠA

i = a,ΠB
j = b). All the not used distribu-

tions are thus wasted.

An interesting question is the following: What
if we use the same state and measurements used
in the violation of the graph-based Bell inequality
(8) and consider all the joint probability distribu-
tions P (ΠA

i = a,ΠB
j = b)? Can we then obtain a

better Bell inequality?

“Better” may mean having higher resistance
to noise (i.e., lower Wcrit), having lower criti-
cal detection efficiency ηcrit, or both, depending
on what we are interested in. For designing a
loophole-free Bell test, what we need is that the
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experimental values for the visibility and the de-
tection efficiency, Wexp and ηexp, respectively, are
both above their respective critical values. That
is, we need Wexp > Wcrit and ηexp > ηcrit.

In the next sections we show how to compute
Wcrit and ηcrit for states of interest. Intention-
ally, in the first example, we focus on an instance
which does not offer neither a low Wcrit nor a
low ηcrit, but which will guide us to attack more
interesting examples.

6.2.2 Pauli-24

Fig. 1 shows the graph of orthogonality of the
24 (not normalized) states in P2(R). This graph
has α = 5 and ϑ = α∗ = 6. Therefore, by
preparing the maximally entangled state (12) of
local dimension ξ = 22 = 4 and allowing each
of the parties to choose between the 24 two-
outcome measurements represented by |vi〉〈vi|,
with |vi〉 ∈ P2(R), Alice and Bob can produce
a violation of the Bell inequality (8) which, using
Theorem 3, allows us to conclude that

η
P2(R)
crit ≤ 0.913 (54)

and, using Theorem 7, allows us to conclude that

W
P2(R)
crit ≤ 0.911. (55)

6.2.3 Gilbert’s algorithm

While our graph-based Bell inequalities are nei-
ther tight (i.e., facets of the local polytope) nor
robust to noise, they can be further improved to
offer better detection efficiency and noise robust-
ness. This can be achieved by calculating the Bell
functional in Eq. (3) using two different methods.

The first method is a linear program which op-
timizes over the entire local polytope to find the
best Bell functional [27]. However, this technique
requires enumerating and storing all the local de-
terministic points which are given by the vertices
of the local polytope. This becomes an increas-
ingly difficult computational task as the number
of measurement settings increases. As an exam-
ple, the local polytope corresponding to the Bell
inequality with 24 settings per party derived from
P2(R) has 248 vertices. This number is too large
to be stored on a standard computer. In this
paper, we use a second method which is based
on Gilbert’s distance algorithm [103] and does
not require storing all the vertices of the local

polytope. However, it should be noted that, for
the cases we are interested in (e.g., P2(R)), the
problem is still intractable using Gilbert’s origi-
nal algorithm. The problem only becomes feasi-
ble when symmetries are also taken into account,
as explained in Sec. 6.2.4.

Gilbert’s algorithm is a well-known numerical
method to detect collisions between convex sets.
It has been used for improving detection efficien-
cies of Bell inequalities [27], deciding whether
or not a given correlation is nonlocal [104], and
entanglement witnessing [105, 106]. The algo-
rithm minimizes the distance between a local
point on a facet of the local polytope and a non-
local point specified by the user. The minimiza-
tion is achieved by iteratively finding a better
local point that minimizes this distance. The al-
gorithm terminates when the difference of dis-
tances between successive iterations falls below
a certain threshold value (typically taken to be
extremely small). The resulting Bell functional
is then identified as the separating hyperplane
between the specified nonlocal point and the lo-
cal point on the facet found by minimizing the
distance. In the following, we will present this
algorithm in more detail. The algorithm is based
on an oracle which is capable of maximizing over
the local polytope P the inner product between a
point in Rn. Initially, one has to specify the local
polytope P ⊂ Rn, presented as the convex hull
of vertices {ck}k, and a point q ∈ Rn associated
to the given quantum correlation. Then, the al-
gorithm proceeds as follows. First, it chooses a
point s0 ∈ P. Second, with the given point sk, it
uses the oracle to compute

s̃k : = argmax
p∈P

〈q − sk, p− sk〉

= argmax
p∈P

〈q − sk, p〉. (56)

Third, given sk and s̃k, it calculates the convex
combination of both which minimizes the dis-
tance to the quantum point q, that is,

λk := min
λ∈[0,1]

||(1− λ)sk + λs̃k − q||. (57)

Since the objective function in (56) is linear and
P convex, the maximizer will be an extreme point
of P. In particular, s̃k will be a vertex of the
local polytope P. The optimal value for λ in the
k-th iteration, denoted by λk, can be computed
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v15=(0,0,1,1)

v13=(1,1,0,0)v12=(-1,1,1,1)

v11=(1,-1,1,1)

v10=(1,1,-1,1)

v9=(1,1,1,-1)

v8=(1,-1,-1,1)

v7=(1,-1,1,-1)

v6=(1,1,-1,-1)

v5=(1,1,1,1)

v4=(0,0,0,1)

v1=(1,0,0,0) v24=(0,1,-1,0)

v23=(0,1,1,0)

v22=(1,0,0,-1)

v21=(1,0,0,1)

v20=(0,1,0,-1)

v19=(0,1,0,1)

v18=(1,0,-1,0)

v17=(1,0,1,0)

v16=(0,0,1,-1)

v14=(1,-1,0,0)

v2=(0,1,0,0)

v3=(0,0,1,0)

Figure 1: Graph of orthogonality of the 24 Pauli states in P2(R). Vertices (dots) represent states and edges connect
those that are orthogonal. The 24 states can be distributed in 6 disjoint orthogonal bases, which are indicated by
thicker edges.

directly and is given by

λk = min

{〈q − sk, s̃k − sk〉
||s̃k − sk||2

, 1
}
. (58)

Then, it defines the new starting point to be
sk+1 := (1−λk)sk+λks̃k and it proceeds with the
second step. In the standard Gilbert’s algorithm,
the oracle is implemented by enumerating all the
vertices of the local polytope P to compute the
inner product in the last equality of Eq. (56).
For a geometrical interpretation of the iteration
of Gilbert’s algorithm, see Fig. 2.

This algorithm provides a sequence of Bell
functionals, which become better with each it-
eration. Note that it does not necessarily pro-
vide a tight Bell inequality like the first method.
Moreover, calculating the local bound of the re-
sultant Bell functional still remains an NP hard
problem, which again requires enumerating and
storing all the local deterministic points at least
for one party1. This issue is also shared by the

1For a given bipartite Bell functional where each mea-

Figure 2: Illustration of Gilbert’s algorithm. The quan-
tum point q lies outside the local polytope P. Starting
with an arbitrary local point sk ∈ P, the oracle yields the
point s̃k within P, maximizing the overlap with q − sk.
From there, a new starting point sk+1 can be calculated.

oracle in the standard Gilbert’s algorithm, since

surement has only two outcomes ±1, once we have fixed
the deterministic assignment of one party, the optimal
value of the Bell functional and the corresponding deter-
ministic assignments of another party are determined. Re-
fer to Sec. 1 in appendix C of Ref. [107] for more details.
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the evaluation of Eq. (56) is equivalent to find
the local bound of one Bell functional.

6.2.4 Gilbert’s algorithm with symmetrization

The two problems mentioned at the end of the
previous section can be solved simultaneously by
replacing the hitherto generic oracle with an or-
acle that takes into account the symmetries of
the problem. This provides an advantage that is
crucial for improving the speed of convergence.
In this respect, it is important to notice that the
vertices of the local polytope (and the polytope
itself) are invariant under the following invert-
ible transformations: (i) Swapping the outcomes
of a measurement setting for either Alice or Bob.
(ii) Simultaneously permuting the measurement
settings of Alice and Bob. (iii) Swapping the
measurement settings of Alice and Bob. Here,
“invariant” means that the transformations map
local correlations to local correlations.

The joint probability distributions obtained by
performing measurements on a quantum state are
also invariant under some of these transforma-
tions. We denote by S a subset of these transfor-
mations which keep the quantum joint probabil-
ity distributions and the local polytope invariant
simultaneously.

We consider a matrix similar to the one in
Eq. (3) in which the entries are probability dis-
tributions instead of coefficients, given as,

Mp =
1 P (ΠA

1 =1) . . . P (ΠA
m=1)

P (ΠB
1 =1) P (ΠA

1 =ΠB
1 =1) . . . P (ΠA

m=ΠB
1 =1)

...
...

. . .
...

P (ΠB
m=1) P (ΠA

1 =ΠB
m=1) . . . P (ΠA

m=ΠB
m=1)

 .
(59)

The corresponding Bell inequality can then be
calculated as tr(IMT

p ) ≤ λ. Under the transfor-
mations S ∈ S we have,

tr(IMT
p )=tr(IS(Mp)T )=tr(S−1(I)MT

p ) ≤ λ,
(60)

where S(Mp) is the resultant matrix after trans-
formation S. Therefore, we have

tr(IMT
p )=tr

(
IM̄T

p

)
=tr(ĪMT

p )=tr(ĪM̄T
p ),

(61)

where

M̄p = 1
|S|

∑
Si∈S

Si(Mp), Ī = 1
|S|

∑
Si∈S

S−1
i (Mp),

(62)
and |S| is the cardinality of S. Using this sym-
metry S, it is sufficient to consider only inequal-
ities that share this symmetry. In particular, for
a symmetric inequality, the vertices of the local
polytope can be partitioned into different equiv-
alence classes with respect to that symmetry
and the local bound can be computed by choos-
ing only one representative out of each class.
This drastically reduces the total number of lo-
cal vertices required, allowing us to enumerate all
symmetrized local points and evaluate the local
bound.

For convenience, here we focus on the sym-
metrization applied only to Alice’s measurement
settings. Each equivalence class consists of ver-
tices which can be transformed into each other
by using the aforementioned symmetry transfor-
mations, while the same is not true for vertices
in different equivalence classes, i.e., the partition
generates disjoint sets. This leads to a modified
oracle, which is much more efficient than the orig-
inal one since the number of equivalence classes
could much smaller than the number of all ver-
tices. This is indeed the case for P2(R).

Now, we describe how to obtain the reduced
set of vertices on which the optimization in (56)
has to run. In the first step, we have to deter-
mine the allowed symmetry transformations S,
which should be shared by the chosen quantum
point q and the local polytope P. As already
pointed out, P is invariant under the permuta-
tion of parties, the permutation of the measure-
ments for each party, and the permutation of the
outcomes for each measurement. By construc-
tion, the chosen quantum point q is also invari-
ant under the permutation of parties. Usually,
q can change after the permutation of outcomes
for each measurement. In general, determining
the permutation symmetries of measurements in
the point q can be difficult when the number
of measurements is large. In the cases consid-
ered here, those symmetry transformations cor-
respond to the ones in the automorphism group
of the graph associated to the SI-C sets. There-
fore, the symmetry transformations used in the
Gilbert’s algorithm with symmetrization are the
ones in the automorphism group and the permu-
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tation of parties. It remains to explain how the
vertices are partitioned into different equivalence
classes.

The first important observation is that now we
do not need to generate, store, and classify all
vertices, since assignments with different number
of 1’s cannot be equivalent to each other. Hence,
we can do the classification inductively. We start
with the assignment that only contains 0’s. Obvi-
ously, this is invariant under all possible permu-
tations. From this, we generate all possible as-
signments that can be obtained by replacing one
0 by one 1. Within this set, we check whether
some of these assignments are equivalent under
the given symmetry transformations S, which are
presented as permutations. Then, we only keep
one representative for each class. This procedure
is repeated until no 0 is left in the assignment
vector.

Selecting only a single vertex from each equiv-
alence class (and all the vertices of Bob), we
find that the total number of deterministic as-
signments for Alice is 21564 for the Bell inequal-
ity corresponding to P2(R) (while, without sym-
metrization, it would be 224).

We also modify the Gilbert’s algorithm to eval-
uate the Bell functional according to the sym-
metrization procedure in Eq. (61). Specifically,
we symmetrize the local point chosen in each it-
eration of the program after minimizing its dis-
tance from the target nonlocal point, see Fig. 3
for a simple illustration. This results in better
convergence times of the algorithm since sym-
metrization does not increase the distance.

6.2.5 Example: Bell inequality for Pauli-24 that
minimizes ηcrit and Wcrit

As an example, here we present a Bell functional
for the correlations produced by the maximal en-
tangled state (12), with ξ = 4, and the measure-
ments associated to the states in P2(R) which has
lower detection efficiency and larger tolerance to
white noise than those of to the graph-based Bell
functional (8). The purpose of this example is to
show that the values of ηcrit and Wcrit obtained
in the first step of the method can, in principle,
always be improved.

Applying Gilbert’s algorithm and the sym-
metrization technique to the correlations pro-
duced by P2(R) and maximally entangled states,

Figure 3: Illustration of Gilbert’s algorithm with sym-
metrization. In this simple example, the point q and the
polytope P are invariant under the flip around line l.
After the point sk+1 has been found in the standard
Gilbert’s algorithm, we obtain its symmetrization s̄k+1
for the flip around line l. The point s̄k+1 is used instead
of sk+1 as the new starting point for the next iteration.

we have obtained the following Bell inequality:

IP2(R) ≤ 0, (63)

where

IP2(R) =

 |v〉 |v〉
〈v| M1 M2
〈v| M2 M1

 , (64)

with M1 to be a matrix full of 0’s, |v〉 to be a
vector full of −6’s, and

M2 =



5 5 4̄ 4̄ 5 5 4̄ 4̄ 5 5 4̄ 4̄
5 5 4̄ 4̄ 4̄ 4̄ 5 5 4̄ 4̄ 5 5
4̄ 4̄ 5 5 5 5 4̄ 4̄ 4̄ 4̄ 5 5
4̄ 4̄ 5 5 4̄ 4̄ 5 5 5 5 4̄ 4̄
5 4̄ 5 4̄ 5 4̄ 5 4̄ 5 4̄ 5 4̄
5 4̄ 5 4̄ 4̄ 5 4̄ 5 4̄ 5 4̄ 5
4̄ 5 4̄ 5 5 4̄ 5 4̄ 4̄ 5 4̄ 5
4̄ 5 4̄ 5 4̄ 5 4̄ 5 5 4̄ 5 4̄
5 4̄ 4̄ 5 5 4̄ 4̄ 5 4̄ 5 5 4̄
5 4̄ 4̄ 5 4̄ 5 5 4̄ 5 4̄ 4̄ 5
4̄ 5 5 4̄ 5 4̄ 4̄ 5 5 4̄ 4̄ 5
4̄ 5 5 4̄ 4̄ 5 5 4̄ 4̄ 5 5 4̄



,

(65)
where 4̄ = −4.

For the maximally entangled state (12), the
quantum value is

IP2(R) = 18. (66)
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In addition, for the correlations produced by
P2(R) and maximally entangled states,

Wcrit = 7
9 = 0.778, (67)

which is 14.62% lower than the upper bound in
(55), and

ηcrit = 4
5 = 0.8, (68)

which is 12.38% lower than the upper bound in
(54).

We can prove that Wcrit and ηcrit are the small-
est possible values for the correlations produced
by P2(R) and maximally entangled states as fol-
lows: First, we collect all the 452929 pairs of de-
terministic assignments for the two parties which
achieve the maximal bound for LHV models.
Each of them corresponds to a matrix Mp. Af-
ter symmetrization, there are only 132 different
matrices M̄p, whose convex combination can lead
to the corresponding quantum probability matrix
either with W = 7/9 or with η = 4/5, as one
can verify with linear programming. Inequality
(63) is not tight. There is a tight Bell inequality
providing the same ηcrit and Wcrit than the ones
for inequality (63), but it does not have the two
blocks of 0’s that we have in (65). If we want to
keep the 0’s, inequality (63) is the only solution.

Notice that symmetries of the initial graph are
crucial for finding (65). For example, notice that
there are only 6 different parameters in the sym-
metric inequality for the case of P2(R). In com-
parison, there are 624 parameters in the nonsym-
metric inequality for P2(R). In the general case,
there are 2m + 2 parameters in the symmetric
inequality for Pm(R) and Pm(C). This makes
it also possible to find a better inequality with-
out resorting to Gilbert’s method. To be more
explicit, we can choose t different values for each
parameter, then there are t2m+2 different inequal-
ities. For each inequality, we can verify whether
it separates the target quantum point and the
LHV polytope or not by considering only the de-
terministic assignments up to symmetry. As dis-
cussed before, when m = 2, there are 21564 dif-
ferent deterministic assignments for Alice up to
symmetry. Therefore, for a fixed inequality, this
verification can be done very fast. Similarly, we
can calculate ηcrit and Wcrit for each inequality.
As we can see in Eq. (65), we can set some pa-
rameters to be 0 for the best ηcrit and Wcrit. This

trick can speed up the numerical calculation fur-
ther.

7 Towards high-dimensional long-
distance loophole-free Bell tests

We have shown how to identify quantum cor-
relations between systems of moderate dimen-
sion (d ≤ 128) that allow for loophole-free Bell
nonlocality with low detection efficiency. Our
results imply that, probably, loophole-free Bell
nonlocality can be achieved in carefully designed
tests involving pairs of systems of these dimen-
sions, which is interesting by itself as it goes be-
yond previous loophole-free Bell tests, all of them
based on qubits. More interestingly, our results
also imply that loophole-free Bell nonlocality can
be achieved through longer distances than those
of previous loophole-free Bell tests. When pho-
tons propagate thorough fibers, they experience
propagation losses proportional to the propaga-
tion distance and which depend on the optical
wavelength. This means that in a Bell test over
long distances (and unless we add, e.g., heralded
qudit amplifiers [39] or split each photon into two
[41, 42] before the local measurements), the de-
tection efficiency decreases with the distance. For
example, with telecom wavelengths, in 10 km of
fiber, we may have losses of 0.2 dB/km, which im-
plies multiplying by 0.64 the detection efficiency
that we had before adding 10 km of fiber. There-
fore, if we have examples of loophole-free Bell
nonlocality requiring ηcrit < 0.5, we can achieve
loophole-free nonlocality over 10 km if we have
ηexp > 0.785 before adding the 10 km of fiber.
Such ηexp has been achieved in previous photonic
loophole-free experiments [14, 15], even including
(< 200 m of) fibers and the couplings.

In this paper, we have shown how to achieve
ηcrit < 0.52 with local dimensions 16 [see
Eq. (20)] and how to obtain Bell inequalities with
even lower ηcrit and higher resistance to noise.
Now the question is what are the values of the
visibility W that are experimentally achievable
for the required configurations. Although some
previous results are very promising [102], it is not
clear to us whether similar values (Wexp > 0.95)
can be achieved for the states and measurements
described in this paper. For further progress,
we need to know what pairs (ηexp,Wexp) can
be obtained for the type of states and measure-

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 20



Previous smallest value

Pauli states

Newman states

20 40 60 80 100 120
d

0.2

0.4

0.6

η

Figure 4: ηcrit as a function of the dimension d of the
local system. The previous smallest values are those
in [21, 26, 28] and use nonmaximally entangled states.
Pauli (Newman) states refer to the case in which the lo-
cal measurements are projectors on the Pauli (Newman)
states and the initial state is maximally entangled, as
described in Sec. 3.2.

ments proposed here (e.g., for d = 16 and Pauli-
4320). In addition, we have introduced methods
to identify further examples with low ηcrit requir-
ing smaller number of settings.

As shown in Fig. 4, the first step of our
method already yields upper bounds for ηcrit
which are substantially smaller than the lowest
values previously known for any dimension d ≥
16. These values indicate that there are quantum
correlations which have sufficiently low ηcrit for
loophole-free Bell tests with higher-dimensional
quantum systems and, eventually, over longer
distances. We have also shown how to improve
any of these values and we have described how
we are trying to find more, and probably better,
examples in the future.

It now remains to be seen how far we can go on
the experimental side. In particular, there is one
question, to which we do not have the answer: Is
there a way to encode high-dimensional entangle-
ment in photons that allows, at the same time,
(i) to measure all the necessary one-dimensional
projectors locally and switch quickly between
them, (ii) distribute the photons over, e.g., 5–
10 km achieving visibilities Wexp > 0.95, (iii) us-
ing superconducting detectors to actually achieve
ηexp > 0.5? Hopefully, the combination of tech-
niques presented here and the interaction with
experimental groups will help us to produce high-
dimensional loophole-free Bell nonlocality over
long distances in the near future.

The code supporting the results reported in

this paper is available in [108].
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ing the detection efficiency threshold in Bell
tests using multiple copies of the two-qubit
maximally entangled state, Phys. Rev. A
107, 022205 (2023).

[28] N. Miklin, A. Chaturvedi, M. Bourennane,
M. Paw lowski, and A. Cabello, Exponen-
tially decreasing the critical detection effi-
ciency for any Bell inequality, Phys. Rev.
Lett. 129, 230403 (2022).
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