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Abstract 8 

Food nutritional labeling is compulsory in the European Union since 13 December 2016. The 9 

olive oil fatty acid composition shows high variation depending mainly on the variety. Thus, 10 

olive oil nutritional labeling is problematic for the industry. Besides, the analysis of all batches 11 

of olive oil using the official methods is expensive. Therefore, the olive oil industry is seriously 12 

concerned about solutions for nutritional labeling. In this study, a new rapid technique to 13 

measure the nutrients for the olive oil nutritional labeling, is assessed. A novel partial least 14 

squares (PLS) calibration model using log-ratio coordinates has been formulated and 15 

successfully tested for predicting the percentages of monounsaturated, saturated, and 16 

polyunsaturated fatty acids based on visible and near infrared spectroscopy. The model 17 

provided accuracy suitable for labeling, under the rules in force in the European Union. The 18 

error was generally much lower than the tolerance.  19 

Industrial relevance: The approach here proposed can be a suitable solution for olive oil 20 

nutritional labeling, which is a current challenge for the olive oil industry. 21 

Keywords: compositional data; monounsaturated fat; polyunsaturated fat; saturated fat; 22 

nutritional labeling; olive oil. 23 

Abbreviations: EVOO, extra virgin olive oils; FAME, fatty acids methyl esters; MUFA, mono-unsaturated 24 

fatty acids; OO, current olive oils; PLS, partial least squares; PUFA, polyunsaturated fatty acids; SFA, 25 

saturated fatty acids; TSFA, total saturated fatty acids; TUFA, total unsaturated fatty acids; Vis/NIR, 26 

visible and near infrared spectroscopy; VOO, virgin olive oils. 27 

1. Introduction 28 

The regulation of the European Union (CE, 2011) settles the duty of food manufacturers to 29 

include nutritional information in the product labels. It has been applicable since 13 December 30 

2016. Olive oil results from the extraction of a substance produced by biosynthesis, in contrast 31 
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to what happens in foods manufactured according to a composition with several ingredients. 32 

The practical challenge of nutritional labeling is different in both cases, since it depends on the 33 

diversity of their nutritional features. Compulsory information includes energy value, total fat 34 

contents, total saturated fatty acids (TSFA), carbohydrates, sugars, proteins and salt. As 35 

voluntary nutritional information, the rule considers other nutrients’ values such as mono-36 

unsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), among others. 37 

Regarding olive oil, the most common information included up to date in its nutritional label is 38 

total fat, saturated fat, monounsaturated fat and polyunsaturated fat. The producers show 39 

voluntarily these two last features. However, the olive oil industry has almost generalized their 40 

inclusion in the labeling, since they characterize the product showing its nutritional 41 

advantages. It is interesting also that the European Food Safety Agency issued scientific 42 

opinion report on the healthy properties provided by olive oil polyphenols (EFSA, 2012). 43 

Therefore, the nutritional label information on these bioactive compounds could be well 44 

appreciated by the consumers.  45 

In olive oil, the total fat comprises practically 100% of the product, since carbohydrates, 46 

sugars, proteins and salt are absent. MUFA are those fatty acids which carbon chain have a 47 

single unsaturation. The most common example of this type is oleic acid (C18:1). Its 48 

unsaturation locates after the number 9 carbon, and commonly called -9. Oleic acid is the 49 

olive oil major fatty acid, as detailed later on. Palmitoleic acid (C16:1) is the second MUFA of 50 

olive oil, generally lower than 1% (García-González, Infante-Domínguez, & Aparicio, 2013a). 51 

PUFA are those fatty acids containing more than one double bond in their backbone. Good 52 

human health requires diets with small quantities of these compounds, such as the essential 53 

fatty acids linoleic (C18:2), -6, and linolenic (C18:3),this last called -3. Saturated fatty acids 54 

(SFA) are those without any unsaturation within their chain. Olive oil includes as major SFA 55 

palmitic acid (C16:0), in quantities 8-14%, estearic acid (C18:0), 3-6%, margaric acid (C17:0), 56 

araquidic acid (C20:0), and behenic acid (C22:0). 57 

MUFA are the most characteristic fatty acids in olive oil because of their high content of oleic 58 

acid. This is helpful, since the positive effect of MUFA on cardiovascular health has been widely 59 

demonstrated (Schwingshackl and Hoffmann, 2014; Hernáez et al., 2017). The olive oil fatty 60 

acids show high variation depending mainly on the variety. The varieties used to produce olive 61 

oil in the world are around 100, although there are more than 2000. The proportions of MUFA 62 

in an olive oil depends on many agronomic conditions, the major ones being olive variety and 63 

climate. Therefore, olive oils with MUFA proportions relatively small, show PUFA or SFA 64 
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relatively high. In addition to genetics and climate, agronomic conditions influence the 65 

diversity of fatty acids. Oleic acid (18:1), which is the major fatty acid of olive oil, ranges from a 66 

minimum 60.94% of Cv. Barnea in Argentina to 84.11% of Cv. Picual in New Zealand (García-67 

González, Infante-Domínguez, & Aparicio, 2013a). At the same time, palmitic acid (16:0), the 68 

major among those olive oil saturated fatty acids, ranges from 8.13% of Cv. Koroneiki in New 69 

Zealand to 19.78% of Cv. Arbequina in Argentina. Diversity also exists within the product 70 

manufactured by the major operators in the main producing countries, even when considering 71 

some cultivars only. As an example, in the main olive oil producer, which is Spain, palmitic acid 72 

ranges from 7.86% in Cv. Gordalilla to 12.55% in Cv. Negral, while oleic acid ranges from 73 

66.49% in Cv. Sevillenca to 81.61% in Cv. Gordalilla (García-González, Infante-Domínguez, & 74 

Aparicio, 2013a). These facts imply that generic nutritional labeling of olive oil would involve a 75 

significant risk of error. Besides, the analysis of all batches of olive oil using the official 76 

methods is expensive and complicated. Thus, the olive oil industry is seriously concerned 77 

about the best solution for nutritional labeling. Rapid and reliable techniques to achieve this 78 

purpose may be an alternative solution. Among the various non-destructive techniques that 79 

have offered solutions to these needs so far, near infrared spectroscopy (NIRS) stands out for 80 

its important achievements. NIR spectroscopy data analysis is based on multivariate models, in 81 

which the spectral data correlate with the analyzed characteristic. Several authors (Armenta, 82 

Garrigues, & De la Guardia, 2007; Bendini et al., 2007; Cayuela, Moreda & García, 2013) 83 

reported the ability of NIRS to analyze the main features of olive oil quality, such as free acidity 84 

or the peroxides value. In fact, a growing number of laboratories use NIRS techniques for these 85 

routine analyses, although they are still a minority. The possibility of authenticating the olive 86 

oil variety or geographical origin (Galtier et al., 2006, among others), as well as detecting 87 

adulteration by NIRS (Azizian et al., 2015) have been also reported, in both cases through NIRS 88 

analysis of their acidic composition. NIRS offers several important advantages, as it is a fast, 89 

non-destructive and potentially multi-parametric method. In addition, NIRS does not need 90 

solvents or reagents, therefore avoiding a significant expense and protecting the environment.  91 

Chemometric methods, using traditional multivariate data analysis, are frequently applied to 92 

analyze the fatty acid composition of oils and fats with diverse aims. Thus, NIR data analyses of 93 

the olive oil fatty acid composition have been reported (Mailer, 2004; Mossoba et al., 2013, 94 

among others). However, standard multivariate analysis techniques are formally designed for 95 

ordinary unconstrained data, which take values which are directly meaningful and can be 96 

compared across samples. Fatty acid profiles of plant oils are instead generally expressed as 97 
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relative amounts, using percentages respecting the total weight. Thus, the data information is 98 

relative and there are intrinsic co-dependence relationships between components. A higher 99 

percentage of one type of fatty acid will necessarily imply lower percentage of, at least, one 100 

other fatty acid. Specialized theory and methods for this type of data, so-called compositional 101 

data, have been developed in the statistical literature (see e.g. Aitchison, 1986, and 102 

Pawlowsky-Glahn, Egozcue, and Tolosana-Delgado, 2015).  Issues related to compositional 103 

data have been discussed recently regarding volatile fatty acids profile of table olives (Garrido 104 

et al., 2017; Garrido et al. 2018) and fatty acid composition of pork meat (Ros-Freixedes and 105 

Estany, 2014). For a case in which the composition played the role of explanatory variable, 106 

Palarea-Albaladejo et al. (2017) developed a compositional mixed model to explain methane 107 

production from ruminal volatile fatty acids in cattle, along with other diet and animal 108 

covariates. Partial least squares (PLS) analysis involving compositional data was first discussed 109 

in chemometrics by Hinkle and Rayens (1995), although it was not done in terms of orthogonal 110 

ILR-coordinates since this was a later development introduced by Egozcue et al. (2003). An 111 

application of PLS modelling to discriminant analysis (PLS-DA), which treats the metabolomics 112 

profiles as compositions via log-ratios, can be found in Kalivodová et al. (2015). However, to 113 

our knowledge, there are no studies using PLS modelling under a compositional approach, to 114 

predict the fat composition of vegetable oils from NIR spectroscopy through a convenient log-115 

ratio representation. Neither there are studies on the purpose of using NIRS for olive oil 116 

nutritional labeling, which requires a compositional approach. 117 

This study proposes a new rapid technique to measure the nutrients required for olive oil 118 

nutritional labeling from Vis/NIR data. For this purpose, a novel compositional PLS calibration 119 

model has been formulated, in terms of log-ratio coordinates of the percentage fatty acid 120 

composition, to suitably deal with its relative scale. This model has been implemented and 121 

successfully tested for estimating the percentage composition of PUFA, MUFA and TSFA. The 122 

total unsaturated fatty acids (TUFA) was arithmetically determined from PUFA and MUFA. 123 

2. Material and Methods 124 

2.1.  Olive Oils 125 

The robustness of NIRS calibrations depends on the statistical range of the analyzed features. 126 

Therefore, several sources provided olive oil samples to assure enough diversity. High quality 127 

Extra Virgin Olive Oils (EVOO) from special markets contributed with 70 samples. Olive oils 128 

normally found in common markets included 56 EVOO, 5 virgin olive oils (VOO) and 40 non-129 
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virgin olive oils (OO). Moreover, 10 pomace olive oils were included along with 45 EVOO from 130 

a collaborative industry and other 45 EVOO samples from a separate research project. These 131 

were extracted at the Instituto de la Grasa (CSIC) from olives using a laboratory mill (MC2, 132 

Seville, Spain) based on the Abencor system (Martínez, Muñoz, Alba, & Lanzón, 1975). In total, 133 

226 samples were used. 134 

2.2. Spectral Acquisition 135 

The temperature of a body has an important influence on the NIR radiation it reflects and 136 

absorbs, thus it is decisive in NIRS (Jiang, Xie, Peng, & Yin, 2008). Therefore, the samples were 137 

taken from 4 °C storage and placed in the laboratory 18 h before processing. Before recording 138 

spectra, a thermostatic bath (Nahita, London, United Kingdom) fixed at 33 °C held the 20 mL 139 

sample containers for 30 min., until temperature stability was reached. 140 

The spectrum of every sample was acquired with the spectrometer Labspec (Analytical 141 

Spectral Devices Inc., Boulder). Labspec is equipped with three detectors. The detector for the 142 

visible range (350-1000 nm) is a fixed reflective holographic diode array with a sensitivity of 143 

512 pixels. A holographic fast scanner InGaAs detector cooled at -25 ºC covers the wavelength 144 

range of 1000-1800 nm. This coupled with a high order blocking filter runs for the 1800-2500 145 

nm interval. The instrument equips internal shutters and automatic offset correction, the 146 

scanning speed is 100 ms. The repeatability of the instrument, expressed as standard deviation 147 

on the average absorbance of five measures of a white tile between 350 and 2500 nm, is 6.00 148 

10-4 cm-1 mol-1. Using the Labspec, the spectra were registered by transmittance from each 149 

sample of VOO directly, without any other treatment. A Hellma quartz spectrophotometric 150 

cuvette with 10 mm path length held the samples while their averaged spectra were acquired. 151 

The whole spectrum Vis/NIR (350−2500 nm) was registered, each spectral variable matching to 152 

a 1 nm interval. Configuration for 50 spectra in continuous acquisition was used, each spectral 153 

variable matching to 1 nm interval. Indico Pro software (Analytical Spectral Devices Inc., 154 

Boulder, Colorado, USA) was used for this purpose. The registering time was less than a minute 155 

for each sample spectrum, all steps included. 156 

2.3. Reference Analysis 157 

The fatty acids compositions were analyzed by gas chromatography (GC) as fatty acid methyl 158 

esters (FAME), according to the IUPAC Standard Method (IUPAC, 1987), at the Instituto de la 159 

Grasa (CSIC). Briefly, 50 mg of olive oil were dissolved in 2 mL heptane and then transesterified 160 
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using 300 L 2 N methanolic potassium hydroxide solution. After decanting, the supernatant 161 

was collected. GC analysis was carried out using an Agilent 7697A gas chromatograph (Agilent 162 

Technologies, Santa Clara) equipped with a capillary column (poly (90% biscyanopropyl−10% 163 

cyanopropylphenyl) siloxane, 60 mÅ, 0.25 mm i, and 0.20 μm film thickness). Automatic split 164 

injection and a flame ionization detector (FID) were used. The carrier gas was hydrogen at a 165 

flow rate of 1 mL min–1. The temperatures of the injector and detector were 225 and 250°C, 166 

respectively. The oven was programmed at a temperature of 180 °C (10 min), which was then 167 

increased 3 °C min–1 up to 220 °C (10 min). The injection volume was 1 μL. The fatty acid 168 

composition was expressed as percentage of each fatty acid in total fatty acids.  169 

The MUFA, PUFA, TUFA and TSFA percentages were arithmetically calculated from the 170 

analyzed fatty acids values. Thus, MUFA was the sum of percentages of the fatty acids 171 

palmitoleic (C16:1), heptadecenoic (C17:1), oleic (C18:1) and eicosenoic (C20:1). PUFA was the 172 

sum of percentages of the fatty acids linoleic (C18:2) and linolenic (C18:3). TUFA was the sum 173 

of percentages of MUFA and PUFA. TSFA was the sum of percentages of the fatty acids palmitic 174 

(C16:0), estearic (C18:0), margaric (C17:0), araquidic (C20:0), and behenic (C22:0). 175 

2.4. Principal Component Analysis of the Vis/NIR data 176 

The absorbance data of the whole spectra were pre-treated by mean normalization and 177 

Savitzsky-Golay first derivative, with polynomial order 2 and smoothing point 3. The suitability 178 

of this treatment has been previously reported (Cayuela et al., 2015). The NIR and Vis/NIR 179 

spectral data of the analyzed olive oil samples were reduced by principal component analysis 180 

(PCA). This statistical technique projected the data onto low dimensions by computing optimal 181 

linear combinations (principal components, PCs) of the measured absorbances across 182 

wavelengths. In particular, the two first principal components defined dimensions accounting 183 

for the highest percentage of the total variability in the original data and were used to visualize 184 

the olive oil samples in an ordinary scatter plot. 185 

2.5. Compositional modelling of fatty acid percentage profiles 186 

Compositional data stand for all kinds of multivariate data representing parts of some whole 187 

and, thus, carrying only relative information. This implies that values in each part have 188 

meaning only in relation to the other parts. Percentage fatty acid compositions, consisting of 189 

mutually exclusive fatty acid categories and expressed as percentages of total fatty acids, 190 

correspond to this definition. Percentage compositions are formally defined on a simplex, a 191 



7 

 

constrained subset of the real space formed by vectors of positive values adding up to 100. 192 

Compositional data bring some difficulties in relation to the most basic elements of data 193 

analysis and modelling like correlations, distances, etc., which are defined according to the 194 

geometry of the ordinary real space. It has been shown that the direct use of standard 195 

statistical and chemometrics tools on them can introduce artifacts like negative bias in 196 

correlation measures, singularity of the covariance matrix, predictions beyond the range of 197 

possible values (e.g. the interval [0, 100] in our case) and results which depend on the units of 198 

measurement. Obviously, these issues can potentially lead to misleading scientific conclusions. 199 

A principled methodology based on using log-ratios between parts of the composition was 200 

introduced in the seminal work by Aitchison (1986) and further developed thereof. A key point 201 

is that all the relative information in a composition is contained in the ratios between its 202 

components. Importantly, working with ratios also guarantees that results do not depend on 203 

the scale of measurement of the data. Taking logs of the ratios is mathematically convenient 204 

and maps the data onto the real space, where ordinary statistical methods, models and graphs 205 

can be used on log-ratio coordinates (Aitchison, 1986; Van den Boogaart and Tolosana-206 

Delgado, 2013; Pawlowsky-Glahn, Egozcue, and Tolosana-Delgado, 2015). 207 

2.5.1. PLS regression modeling on log-ratio coordinates 208 

According to the above characterization, PLS modelling was based on log-ratio coordinates 209 

involving the three fatty acid (FA) categories used as reference, MUFA, PUFA, and TSFA. In 210 

particular, we employed an isometric log-ratio (ILR) representation (Egozcue et al., 2003) of 211 

the 3-part FA composition, by which its information is projected onto real space by way of two 212 

orthogonal coordinates as follows: 213 

      
 

 
  

    

          
  and       

 

 
  

    

    
.   [1] 214 

Note that it is possible to define alternative ILR representations, but they all are orthogonal 215 

rotations of each other and lead to the same results in terms of the original composition. An 216 

ILR-coordinate roughly accounts for the relative importance of some components (in the 217 

numerator of the log-ratio) with respect to others (in the denominator). The reduction from 218 

three to two dimensions after the ILR transformation is coherent with the actual degrees of 219 

freedom of the FA composition, we only need any two components to determine the third. 220 

Multivariate PLS regression was conducted using the two ILR-coordinates of the FA 221 

composition as response and the Vis/NIR spectra as predictors. Predictions obtained in ILR 222 
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coordinates were then transformed back into the corresponding predicted FA percentages by 223 

inverse ILR transformation. After this, predicted TUFA was obtained by adding predicted 224 

percentages of MUFA and PUFA. 225 

A selection of best Vis/NIR spectral variables was conducted prior to multivariate PLS 226 

calibration to minimize prediction error using the genetic search algorithm (Hasegawa et al. 227 

1997; Mehmood et al., 2012). The PLS calibration model was fitted by the kernel algorithm to 228 

predict the FA ILR-coordinates from the selected (51 out of 237) Vis/NIR spectral variables 229 

(scaled by standard deviation). The optimal number of PLS latent components used (10 latent 230 

components) was determined by 5-time repeated 10-fold cross validation aiming to minimize 231 

the root mean square error of prediction (RMSEP) and maximize the coefficient of 232 

determination (R2) as model performance measures. The prediction performance of the final 233 

joint PLS model was evaluated by RMSE and R2 based a partition of the data into a calibration 234 

data set of 75% of the data, used to tune and estimate the model as well as to assess 235 

performance using 5-time repeated 10-fold cross-validation, and a test set of 25% of the data.  236 

The prediction performance of the PLS model for the entire FA composition as a whole was 237 

assessed by an overall R2, computed as the following formula: 238 

   
                     

                   
                   [2]  239 

Where       , so-called total or metric variance, was obtained as the trace of the covariance 240 

matrix of, respectively, the ILR residuals matrix and the observed FA data in ILR-coordinates 241 

(ILR FA). Moreover, the metric standard deviation (MSD) of the ILR residuals, obtained as 242 

follows: 243 

                              ,                                                                      [3] 244 

In this case,     was computed. This last statistic provided an overall dispersion measure of 245 

the model residuals analogous to RMSE (Van den Boogaart and Tolosana-Delgado, 2013). 246 

These statistics were obtained from calibration, cross-validation and test data. For the purpose 247 

of comparison with official measurement error tolerance guidelines, analysis of the residuals 248 

for each FA category separately was conducted from the cross-validation and test data sets by 249 

computing the correlation between predicted and reference values and the mean percent 250 

deviation of predictions with respect to the reference data. These differences were also 251 
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visualized for individual test samples in a scatter plot along with the official error tolerance 252 

limits for reference. 253 

All the data analyses and modelling described above were conducted on the R system for 254 

statistical computing v3.4 (R Core Team, 2017). 255 

3. Results 256 

3.1. Olive Oil Spectra 257 

The major near-infrared absorption bands of olive oil have been described by Hourant, Baeten, 258 

Morales, Meurens, & Aparicio (2000). Near-infrared spectra show various overlapping bands, 259 

because their first and second overtones and a combination of fundamental vibrations, mainly 260 

carbon–hydrogen (Shenk, Workman, & Westerhaus, 2001). A broad absorbance band exists 261 

around 1220 nm, probably due to second overtones of C–H and CH=CH– stretching vibrations 262 

from oil. There is other high intensity area related to the C-H first overtone at 1700 nm (García-263 

González, Infante-Domínguez, & Aparicio, 2013b), and a combination band at 1880–2100 nm. A 264 

high intensity absorbance peak occurs about 2300 nm, caused by a combination of 265 

fundamental vibrations from the C-H groups (Hourant, Baeten, Morales, Meurens, & Aparicio, 266 

2000). Besides, the major visible absorption bands of olive oil were made by  oyano, 267 

 el nde , Alba, & Heredia (2008).  268 

Olive oil spectra from the samples analyzed in this work, shown in Fig. 1, agree with the 269 

previously indicated reports. A first minor peak occurs next to 415 nm. This area suits to the 270 

wavelengths of oil absorption for dark blue colored light. It could be due mainly to carotenoids, 271 

as well to pheophytin A, pheophorbide A and pyropheophytin A. A second peak is near 450 272 

nm, matching to blue light absorption, which is characteristic of carotenoids. A third peak 273 

appears around at 670 nm, which coincides with chlorophylls absorp on ( oyano,  el nde , 274 

Alba, & Heredia, 2008). The high intensity area related to the C-H first overtone at 1700 nm 275 

can be seen clearly, as well as the combination band at 1880–2100 nm and the high intensity 276 

absorbance peak at 2300 nm, from the combination of fundamental vibrations of the C-H 277 

groups. 278 

Fig. 1 279 

3.2. Fatty Acids Characterization 280 



10 

 

A preliminary exploration of the FA data revealed a very atypical percentage composition of 281 

MUFA, PUFA, and TSFA (44.75%, 3.82%, 51.42%) of a commercial sample with registered data, 282 

supposedly of olive oil and type ‘acidity lower to 1%’. It was atypical particularly in relation to 283 

the relative weight of TSFA (51.42%, whereas for the other samples this was around 16%), thus 284 

the possibility of this corresponding to a case of fraud cannot be discarded, and it was left out 285 

of the analysis. 286 

Ordinary univariate descriptive statistics of the percentage MUFA, PUFA, TUFA and TSFA in the 287 

olive oil samples used in this study are shown in Table 1 for reference. The TUFA ranged from 288 

76.7% to 88.3%, while MUFA ranged from 57.8% to 82.4%, PUFA from 3.1% to 20.2% and TSFA 289 

from 11.7% to 23.3%. The most important fatty acid category in olive oil is TUFA, with MUFA in 290 

particular being the main contributor in mean (74.60%). The highest variation relative to mean 291 

values was shown by PUFA (Cv   50.12). Note that, given the compositional nature of the data, 292 

ordinary univariate statistics of central tendency and variability for different FA categories are 293 

interrelated and are not considering their particular geometry. Thus, one must interpret them 294 

with caution (Pawlowsky-Glahn, Egozcue, and Tolosana-Delgado, 2015). 295 

Table 1 296 

3.3. PCA Analysis  297 

A scatter plot based on the two first dimensions obtained from PCA analysis of the olive oil 298 

spectral data is shown in Fig. 2. These two first PCs retained 77.5% of the original data 299 

variability. Note that a certain 2-group structure can be appreciated along the horizontal axis 300 

(first PC) in the graph. It was checked that these two groups corresponded to olive oil samples 301 

separated by a MUFA content threshold at 70%. The largest group, with 180 olive oils, 302 

corresponded to MUFA greater than 70%. The remaining 52 samples had MUFA less than 70%, 303 

41 of them corresponding to Arbequina olive oils from super-intensive crop system obtained in 304 

a research project, 4 to commercial gourmet quality EVOO, 1 to industrial EVOO, 5 to 305 

commercial VOO and 1 to commercial OO samples.  306 

A 95% concentration ellipse was estimated to help with the visual identification of outlying 307 

spectra. The 9 samples falling beyond the boundaries of the ellipse were identified and not 308 

considered for the subsequent analysis. They corresponded to 4 industrial EVOO, 1 commercial 309 

EVOO, 1 commercial OO and 3 EVOO from an independent research project. Interestingly, note 310 

that 7 out of these 9 outlying spectra corresponded with industrial and research samples. It is 311 
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frequent with this type of samples to find oils with a higher moisture content, despite having 312 

been filtered as the rest ones, which differentiates their spectrum from the other samples with 313 

normal moisture content. Although it is not possible to provide moisture content data, since 314 

this parameter was not analyzed, we consider that this was the reason why most of these 315 

samples were atypical. In the case of the two commercial samples, their spectra may be 316 

defective due to methodological factors in their registering process. Hence, we eventually 317 

worked with a data set consisting of 223 samples. For each one, we had the basic 3-part FA 318 

composition and NIR data along 237 spectral windows. This data set was randomly partitioned 319 

into calibration set (75% data, 168 samples) and test set (25%, 55 samples) for subsequent PLS 320 

regression analysis. 321 

Fig. 2 322 

3.4. Compositional PLS model on log-ratio coordinates 323 

Figure 3 displays the results from the fitted PLS model for each of the two ILR-coordinates of 324 

the FA composition as detailed in Eq. [1]. Figures 3a and 3b show the respective PLS regression 325 

coefficients plots using the pre-selected 51 best Vis/NIR spectral variables. Figures 3c and 3d 326 

show the corresponding observed versus predicted plots. The associated model performance 327 

statistics are summarized in Table 2. The most parsimonious model amongst those reaching 328 

comparable highest performance following the one-standard error rule (Kuhn and Johnson, 329 

2013) used 10 latent components (see Supplementary File 1). The individual ILR1 and ILR2 330 

models provided R2 equal to 0.95 and 0.90 respectively based on the calibration data (denoted 331 

R2
c). The corresponding cross-validated values R2

cv were 0.92 and 0.83 respectively; with RPDs 332 

equal to 3.53 and 2.43 respectively. The coefficients of determination from the test data set, 333 

R2
t, were 0.93 and 0.86 for ILR-coordinates ILR1 and ILR2 respectively. Table 2 also includes the 334 

calibration, cross-validation and test data based RMSE values of up to 0.10.   335 

Fig. 3 336 

Table 2 337 

3.5. Overall model performance for predicting the FA composition 338 

Predictions from the fitted PLS models on ILR-coordinates were conveniently transformed back 339 

to be expressed in terms of the entire 3-part FA percentage composition. We obtained an 340 

overall calibration R2, which accounted for variation in the FA composition as a whole 341 



12 

 

explained by the model, and MSD, which accounted for dispersion in model residuals. They 342 

were equal to 0.93 and 0.07 respectively (Table 2). The cross-validated and test data set 343 

counterparts were 0.90 and 0.09 respectively in both cases (Table 2). Supplementary File 2 344 

includes the reference and predicted values for the test data set expressed both in ILR-345 

coordinates and in terms of the entire FA percentage composition by ILR back-transformation.  346 

Figure 4 illustrates the performance of the model by showing predicted (open triangles) versus 347 

reference observed (open circles) FA compositions on a ternary diagram. The axes on the sides 348 

of the triangle correspond with MUFA (left), PUFA (right) and TSFA (bottom) percentage 349 

contents. The closer a point is to a vertex the higher the relative importance of the 350 

corresponding FA in the sample. The region where the data were concentrated was zoomed in 351 

for better visualization. The mean FA composition was included for reference (solid square). 352 

Fig. 4 353 

3.6. Assessment of model residuals by FA category  354 

For each individual FA category, Table 3 provides cross-validated and test data based 355 

correlation coefficients (r) between predicted and observed percentage contents and average 356 

percent deviation (% deviation) of predicted with respect to observed percentage content, 357 

including results for TUFA as obtained by aggregation of MUFA and PUFA. These measures 358 

were useful for the assessment of the results according to current guidance for olive oil 359 

nutritional labeling in the European Union, namely in relation to measurement error tolerance 360 

which is set at 20%. The correlation coefficients for MUFA and PUFA were over 0.95 for both 361 

cross-validated and test data. For TUFA and TSFA, they were around 0.9. PUFA showed the 362 

highest cross-validated average percent deviation (9.61%), whereas for MUFA and TUFA it was 363 

close to 1%. A comparable pattern was observed based on test data (Table 3). Figure 5 364 

compares predicted and reference test values for each FA percentage individually, including 365 

exact prediction line (in grey) and 20% tolerance limits (in red) for reference. Predicted values 366 

falling beyond the tolerance limits were obtained for TUFA and TSFA in very few isolated 367 

samples. They were associated with the lowest percentage contents. Note however that, 368 

according to the conceptualization of the FA percentage composition as a whole with values 369 

conveying only relative information, these individual statistics and graphical representations 370 

are not fully independent from one another and overall measures of performance as provided 371 

in Section 3.5 would be preferable. 372 

Table 3 373 
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Fig. 5 374 

4. Discussion 375 

The assessment of the performance of the compositional PLS model based on either 376 

calibration, cross-validation or test data provided R2s over 0.9 and RMSEs below 0.1. The 377 

obtained differences between predicted and reference FA percentage compositions strongly 378 

support the possibility of conducting highly accurate predictions of the FA composition of olive 379 

oil samples from Vis/NIR spectroscopy data. Among them, MUFA is the most important 380 

category in terms of its relative abundance and also due to its nutritional benefits for human 381 

health (García-González, Infante-Domínguez, & Aparicio, 2013; Schwingshackl & Hoffmann, 382 

2014). 383 

The tolerances considered for the olive oil nutritional labeling have been, up to date, detailed 384 

in a guidance document only (CE, 2012), which compliance is not compulsory. When the 385 

nutritional component is present in less than 4g per 100g, the tolerance is  0.8g, whereas 386 

when it is present in more than 4g per 100g, the tolerance is 20%, including measurement 387 

uncertainty in both cases. In this study, none of the features analyzed showed mean 388 

percentage lower than 4%, thus 20% tolerance is applicable. Our results show expected 389 

percent deviations far within these tolerance limits, with PUFA showing the highest deviation 390 

(average deviation of 9.61% from cross-validated data and of 9.59% from test data, Table 3). 391 

This agrees with the higher variation coefficient of PUFA shown in Table 1. The predictions for 392 

TUFA, as sum of MUFA and PUFA, also satisfied these tolerance limits. 393 

5. Conclusions 394 

The results of this study show that rapid Vis/NIR spectroscopy combined with sensible 395 

chemometric modelling can be used for accurate determination of the components required 396 

for olive oil nutritional labeling. Measuring the percentages of monounsaturated fatty acids, 397 

polyunsaturated fatty acids, and saturated fatty acids, provided accuracy suitable for labeling 398 

under the rules in force in the European Union. The data modelling conducted took into 399 

account the intrinsic relative and inter-dependent nature of percentage fatty acid 400 

compositions. The measured error was generally much lower than the tolerance indicated in 401 

European Union guidance documentation, providing then a wide margin of safety. Thus, the 402 

approach here proposed can be a suitable solution for olive oil nutritional labeling, which is a 403 

current challenge for the olive oil industry. 404 
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Figure captions 521 

Figure 1. Vis/NIR spectra of the olive oil samples analyzed. 522 

Figure 2. Principal component analysis of olive oil Vis/NIR spectral data (first PC on the 523 

horizontal axis and second PC on the vertical axis). 524 

Figure 3. Compositional PLS model results: PLS regression coefficient estimates of individual 525 

models for the first (a) and second (b) ILR-coordinates of the FA composition and 526 

corresponding predicted versus observed plots (c) and (d) respectively.  527 

Figure 4. Ternary plot of the predicted and observed FA percentage compositions from the 528 

fitted compositional PLS model. 529 

Figure 5. Predicted and observed percentage contents for individual FA categories based on 530 

test data (including 20% tolerance limits according to European Union guidance). 531 
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