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Abstract This paper presents new advances in the
arbitrary Lagrangian–Eulerian modal method (ALEM)
recently developed for the systematic simulation of the
dynamics of general reeving systems. These advances
are related to a more convenient model of the sheaves
dynamics and the use of axial deformation modes to
account for non-constant axial forces within the finite
elements. Regarding the sheaves dynamics, the origi-
nal formulation uses kinematic constraints to account
for the torque transmission at the sheaves by neglect-
ing the rotary inertia. One of the advances described
in this paper is the use of the rotation angles of the
sheaves as generalized coordinates together with the
rope-to-sheave no-slip assumption as linear constraint
equations. This modeling option guarantees the exact
torque balance at the sheavewithout including any non-
linear kinematic constraint. Numerical results show the
influence in the system dynamics of the sheave rotary
inertia. Regarding the axial forces within the finite ele-
ments, the original formulation uses a combination
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of absolute position coordinates and transverse local
modal coordinates to account for the rope absolute posi-
tion anddeformation shape. The axial force,which only
depends on the absolute position coordinates, is con-
stant along the element because linear shape functions
are assumed to describe the axial displacements. For
reeving systems with very long rope spans, as the ele-
vators of high buildings, the constant axial force is inac-
curate because the weight of the ropes becomes impor-
tant and the axial force varies approximately linearly
within the rope free span. To account for space-varying
axial forces, this paper also introduces modal coordi-
nates in the axial direction. Numerical results show that
a set of three modal coordinates in the axial direction
is enough to simulate linearly varying axial forces.

Keywords Reeving systems · Cable-pulley mecha-
nisms · ALE method · Wire-rope dynamics

1 Introduction

Reeving systems are used in many engineering appli-
cations such as elevators, cable-driven robots, all types
of cranes, or hoisting machines for mining. In these
systems, ropes are winded on sheaves or reels to trans-
mit large amounts of power and force to relatively
large distances. Due to their lightweight and mechan-
ical simplicity, these mechanisms are widely used in
many different industries. However, the attention that
the research community of flexible multibody dynam-
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ics has paid to these systems is not proportional to
their use in the industry. Reeving systems show spe-
cific properties that require specialized methods for
their modeling and simulation:

1. Special structural properties of the rope: non-solid
cross section, very low bending stiffness, axial-
torsion coupling, and bending-torsion coupling.

2. Axially moving mass that results in rope spans with
varying length.

3. Long load-free, low-deformation segments (free
spans) next to short, highly loaded, high-deformation
segments (rope-sheave contact).

The simplest and very efficient ropemodels consider
them as linear spring with length-dependent stiffness,
thus neglecting the inertia or weight forces [1]. These
models can be accurate enough in some applications.
However, this approach has been shown to be ener-
getically inconsistent [2]. The lumped mass approach
considers the rope as a set of point masses connected
with spring-dashpot systems [3]. These models can be
adapted to the modeling of length-varying rope span,
and they account for gravity and inertia forces. Most
real-time simulators of ropes are based on these lumped
mass models. The Rayleigh–Ritz method can also be
used to model the elasticity, and inertial forces in ropes
with little computational effort [2]. Of course, the finite
element model (FEM) can also be used to model ropes.
FEM models are well-suited to develop detailed mod-
els of the different wires and strands in a rope and their
interaction [4]. However, these detailed models are
computationally too expensive for the dynamic analy-
sis of reeving systems. The Absolute Nodal Coordinate
Formulation (ANCF) [5] is a finite element method for
the efficient modeling of very slender structures that
undergo large displacements and deformations. The
ANCF allows the development of efficient models of
cables [6,7]. The ANCF has also been used to model
belt drives [8,9]. For the modeling of belt drives, the
ANCF method requires a large number of elements to
account accurately for the belt-sheave contact interac-
tion.

Ropes are neither beams nor rods and their dynamics
may not bewell-modeledwhen applying geometrically
exact beams models (GEBM) [10] or the ANCF . In
the last decade, new specialized models have started
to be developed for the efficient and accurate mod-
eling and simulation of reeving systems as flexible
multibody systems. The key aspect of these models

is the use of an arbitrary Lagrangian–Eulerian (ALE)
description of the continuum. The following discus-
sion deals with pulley mechanisms that include uni-
rigid solids, that is, solids that are very rigid when sub-
jected to axial forces and very flexible when the loads
are compressive. These solids can be wire ropes, tex-
tile ropes, belts, chains, strands, or coated wires. They
will be called next simply cable-pulley mechanisms
or reeving systems. Recently developed ALE formu-
lations can be applied to the modeling and simulation
of two types of cable-pulley mechanisms, as shown
in Fig. 1. Shape-preserving mechanisms are those that
under the assumptions of: (1) perfectly rigid cable in the
axial direction, (2) perfectly flexible cable in the trans-
verse direction and (3) no-slip in the cable-pulley inter-
face, keep the shape of the cable constant throughout
the mechanism motion. On the contrary, non-shape-
preserving mechanisms do not keep that shape con-
stant; therefore, the length of the cable-free spans varies
throughout the mechanism motion. Shape-preserving
cable-pulley mechanisms are used, for example, in
belt or chain transmissions in machines or in rope-
ways. Non-shape-preserving cable-pulley mechanisms
are used, for example, in elevators, cranes, or 3D-
printers.

Under assumptions (1)–(3), the reference kinemat-
ics of the shape-preserving mechanisms is simple. All
the cable cross sections move with an axial velocity V
that coincideswith the peripheral velocity of all the pul-
leys. If the cable transports rigid bodies, as in ropeways,
the velocity of these rigid bodies is V too. However, the
reference kinematics of non-shape-preserving mecha-
nisms is far more complex. As it can be observed in
the example shown in the right of Fig. 1, each of the
rope spans may have different axial velocities, each of
the pulleys may have different angular and peripheral
velocities and each of the rigid bodies that are attached
to the cablesmay have different velocities. In the exam-
ple shown in Fig. 1, the counterweight moves with a
velocity V that is 4 times the velocity of the car. Out of
the five rope spans, two of them have an axial velocity
that is V , two of them have an axial velocity that is
V/2, and one has zero axial velocity. The four pulleys
have different angular velocities, being ω, 3ω/4, ω/2,
and ω/4, where ω = V/R, where R is the radius of the
pulleys.

Pechstein and Gerstmayr [11] developed an ALE
formulation for the modeling and simulation of axi-
ally moving beams. The beam discretization is car-
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Fig. 1 Cable-pulley mechanisms. a Shape-preserving and, b non-shape-preserving

ried out with the absolute nodal coordinate formulation
(ANCF). In this work, the axial velocity is prescribed
and assumed constant throughout the beam. The prin-
cipal benefit of the ALE approach is the use of dif-
ferent mesh refinements along the beam. In the case
of cable-pulley mechanisms, the mesh is coarse in the
free-span regions and fine in the contact areas. There-
fore, this method is appropriate for the dynamic anal-
ysis of shape-preserving cable-pulley mechanisms. As
an example, the paper presents a simple belt transmis-
sion like the one shown in Fig. 1 on the left, without
transported masses. An important detail of this paper
is the use of the Lagrange equations for systems with
non-material volumes previously developed by Irschik
and Holl [12]. A recent publication of the research
group of Gerstmayr by Ntarladima et al. [13] follows
the same approach as [11]. However, the axial veloc-
ity of the beam is no longer prescribed but described
by a new generalized coordinate called the Eulerian
coordinate s of the beam. This Eulerian coordinate
is shared by all the finite elements, which is a valid
approach for shape-preserving reeving systems. The
other beamcoordinates are again theANCFnodal coor-
dinates that are considered as the Lagrangian coordi-
nates of the system. The use of the Eulerian coordinate
allows the stability analysis of axially moving beams.
In the work of the group of Gerstmayr, the meaning of
theALEapproach is to consider a Lagrangian finite ele-
ment mesh with a superimposed material motion that
is described with the unique Eulerian coordinate. As
mentioned, this approach is valid for the simulation of
shape-preserving cable-pulley mechanisms.

Vetyukov [14] developed a similar approach as the
group of Gerstmayr for the study of the vibrations of
axially moving strings and beams. He does not call
this approach ALE but “mixed Eulerian–Lagrangian
description” and developed the variational formulation
of D’Alamberts principle of virtual work for this mixed
formulation using a spatially fixed range of integration.
He also demonstrated the equivalence of this principle
and the Lagrange equations with kinematic boundary
conditions. The formulation developed by Vetyukov
was applied by Oborin et al. [15] to the belt-pulley
problem with dry friction, to an axially moving plate
[16], to the deformation of a metal sheet in rolling mill
[17], to the steady motion of a slack belt drive [18] and,
recently, to an endless elastic beam travelling on amov-
ing surface [19]. Grundl et al [20] developed a general
method based on the floating frame of reference and the
ALE method for the modeling and simulation of belt
drives, ropeways, or strings in flexible multibody sys-
tems. This work can be considered in line of the work
of Gerstmayr and Vetyukov in the sense that it is appli-
cable to shape-preserving cable-pulley mechanisms.

The research group of Ren has been very produc-
tive in the formulation of beam finite elements under
the ALE approach. Hong and Ren [21] also defined
an ALE formulation with the ANCF discretization
method. However, this approach is very different and
more general than the one defined in [11]. Each finite
element node includes a set of nodal coordinates (abso-
lute position vectors and slopes) for the description of
the deformation of the beam and one material coor-
dinate that defines the instantaneous position of the
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node in the reference-undeformed configuration of the
beam. Therefore, this ALE-ANCF beam element can
describe an arbitrary input and output material flow
through the boundaries of the element. The formulation
described Hong and Ren [21] was applied to flexible
multibody systems with sliding joints. This formula-
tion was applied by Escalona [22] for the modeling and
simulationof arbitrary reeving systems.The conceptual
difference between the ALE formulation of the groups
of Gerstmayr or Vetyukov, described in the previous
two paragraphs, and the ALE formulation of the group
of Ren is that, while the former is a mixed Lagrangian
and Eulerian approach, the latter is neither Lagrangian
nor Eulerian, because the finite element nodes do not
have to be fixed in material points and do not have to
be fixed in space. Therefore, the approach used in the
ALE formulation of Ren is truly arbitrary. “Arbitrary”
means here “according to the convenience of the user”.
If you want the node to be fixed to a material point
(Lagrangian node), you can do it, if you want the node
to be fixed in space (Eulerian node), you can do it, and if
you want it neither to be fixed to a material point nor to
a spatial point, you can do it too. As shown by Escalona
[23], the use of nodal material coordinates together
with kinematic constraints allows all these possibili-
ties when modeling reeving systems. Thanks to this
freedom in the definition of the mesh, this formulation
can be applied to the modeling and simulation of arbi-
trary non-shape-preserving cable-pulley mechanisms.
Consider the cable-pulley mechanism at the left of Fig.
1. Points that are tangent to the fixed sheaves or the
endpoint of the cable that is clamped can be defined
as Eulerian nodes, the connecting point of the cable to
the counterweight can be defined as a Lagrangian node.
The points that are tangent to the pulleys thatmovewith
the car can be defined as nodes that are neither Eulerian
nor Lagrangian, that is, pure ALE nodes.

Following with the work of the group of Ren, in
the paper by Liu et al. [24], they extended the ALE
approach defined in [21] for ANCF beams to GEBM
beams using again the nodal material coordinates for
the definition of the position of the nodes and absolute
position and absolute rotation vectors for the descrip-
tion of the displacement and deformation at the nodal
points. In this paper, the application was the motion
of beam through a curved tube with frictional contact.
The idea of the paper was the definition of a spatially
fixed finemesh in the areas of high curvature of the tube
next to a coarse mesh in the areas of small curvature of

the tube. The equations of motion were obtained using
the principle of virtual work. This is another differ-
ence with the work of the group of Gerstmayr that used
Lagrange equations for non-material volumes instead.
However, Chen et al. [25] of the group of Ren demon-
strated analytically the equivalence of Lagrange equa-
tions for non-material volumes and the principle of vir-
tual work without any additional correction terms due
to the material flow. The ultimate contribution of the
group ofRen in this area is the paper byZhang et al. [26]
in which they model a reeving system using the ALE-
GEBM procedure. The modeled system is an arresting
mechanism used to decelerate aircraft when landing in
aircraft carriers. The model is 2D, including aircraft
to rope contact with friction and length-varying rope
spans. The rope to pulley contact areas is not modeled.
To this end, pulleys are considered as a dimensionless
point. Pulleys are treated as pointswhere the orientation
of the cross-sectional frame is discontinuous. The ALE
approach of Hong and Ren [21] has been applied to the
modeling of non-shape-preserving reeving systems by
Qi et al. [27] and Wang et al. [28].

Escalona [22] applied the ALE-ANCF method
developed by Hong and Ren [21] for the first time for
the modeling and simulation of non-shape-preserving
reeving systems. In this work, the benefits of the ALE
approach for an efficient discretization of reeving sys-
tems were highlighted. The formulation presented by
Escalona [22] is a general and systematic method for
the simulation of arbitrary 3D reeving systems. To this
end, the different types of nodes and their associated
constraints and generalized forces were defined. This
formulation was extended by Escalona [23] including a
systematic computational method to get the equations
of motion of reeving systems and the consideration of
the axial-torsion coupling in the constitutive behavior
of wire ropes. In the paper by Escalona et al. [29], the
ANCF beam model was abandon and substituted by a
description of the transverse deformation of the ropes
using modal amplitudes, being the modal shape func-
tions defined in an element fixed frame. Due to this
change in the description of deformation, the method
was recalledALEM (ALE-modal). TheALEMmethod
allows the accurate discretization of long rope spans
using a single element. This paper is the last step in the
development of this ALEM method.

This paper is organized as follows. Section 2 is a
summary of the ALEMmethod. Section 3 explains the
changes to be made in this formulation to account for
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the sheaves’ rotary inertia. Section 4 is devoted to the
addition of newmodal coordinates in the axial direction
that allows the definition ofALEMelementswith space
varying tension force. Section 5 applies these advances
to the simulation of a 100-m height elevator with 2:1
suspension.Numerical results show the influence of the
rotary inertia and the space-varying tension force in the
overall dynamics of the system.

2 Modeling reeving systems with the ALEM
method

2.1 Kinematics of the ALEM finite elements

Figure 2 shows an ALEM finite element in an arbi-
trary position in space. The element occupies part of
the volume of a rope. Nodes 1 and 2 do not have a
fixed position in space. In other words, nodes 1 and
2 are not material points. The instantaneous location
of the nodes in the rope is determined by the value of
the time-dependent variable s1(t) and s2(t) that can be
observed in the right of the figure (parameter space).
Variables s1(t) and s2(t), which are also calledmaterial
coordinates, are considered as nodal coordinates of the
element.

The ALEM element coordinates are divided into
four different sets, as follows:

q =

⎡
⎢⎢⎣

qa

qθ

qm

qs

⎤
⎥⎥⎦ , (1)

where qa = [
r1 r2

]T
includes the absolute posi-

tion coordinates of the end nodes 1 and 2, qθ =[
θ1 θ2

]T
includes the twist angles at the end nodes,

qs = [
s1 s2

]T
includes the material coordinates and

qm = [
qy,1 qy,2 · · · qy,nmy qz,1 qz,2 · · · qz,nmz

]T
(2)

is the set of nmy + nmz modal amplitudes in the local
ye and ze directions (axes of the element local frame)
used to describe transverse deformation.

The absolute position vector of an arbitrary point P
in the centerline of the element resolved in the global
frame is obtained as:

r = ra + ut = N (s, qs) qa + Ae (qa) ūt (3)

where ra and ut are the axial position vector and trans-
verse displacement vector, respectively, both resolved

in the global frame,N is a linear-interpolating functions
matrix that depends on the nodal coordinates qs and the
parameter s associated with point P , as follows:

N (s, qs) = [
N113×3 N213×3

]

N1 = 1−ξ
2 , N2 = 1+ξ

2 ,

ξ = 2s−s1−s2
s2−s1

.

(4)

In Eq. 3, the term ūt contains the components of the
transverse elastic displacement in the element frame
〈ie, je, ke〉. Vector ūt can be calculated using linear
interpolation as follows:

ūt = S (s, qs) qm , (5)

where S is the following shape functions matrix:

S (s, qs) =
⎡
⎢⎣

0 0 · · · 0 0 0 · · · 0

S1 S2 · · · Snmy 0 0 · · · 0

0 0 · · · 0 S1 S2 · · · Snmz

⎤
⎥⎦ ,

Si = sin
[
iπ(s−s1)
s2−s1

]
, i = i = 1, 2, ...

(6)

The first row of S is zero because ūt is a transverse
displacement, that is, it has zero component along the
xe direction. Therefore, in the original ALEM formu-
lation, the axial displacement ra of the arbitrary point
P is a function of the absolute position coordinates qa

and the transverse displacement ūt is a function of the
modal coordinates qm . This geometric interpretation of
the vectors and the functional dependency changes in
the work presented in this paper.

2.2 Dynamics of the ALEM finite elements

Using this kinematic description and Lagrange equa-
tions, the equations of motion (EOM) of the ALEM
finite element are given as:

Mq̈ = Qv + Qelas + Qap + Qreac (7)

where M is a coordinate-dependent mass matrix, Qv is
the generalized quadratic-velocity inertia force, Qelas

is the generalized elastic force vector, Qap is the gen-
eralized applied forces vector, and Qreac is a vector
of generalized reaction forces that may appear due to
kinematic constraints. Details about the calculation of
these terms can be found in [29].

2.3 Modeling reeving systems with ALEM finite
elements

The ALEMmethod presented here to model and simu-
late the dynamics of reeving systems is valid to analyze
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Fig. 2 Kinematics of an
ALEM finite element. (1)
Physical Space, (2)
Parameter Space

the overall dynamics of the system. This method has
not been developed for detailed dynamic analysis, as
the behavior of the individual wires within the rope.
Another very important assumption is related to the
rope-sheave contact. So far, the method does not model
the wire rope to sheave contact. The no-slip condition
is assumed all along the contact segment. That means
that this method is not used to analyze the rope-sheave
contact stress or themicro-slip area. This is future work
that is already under preparation. In a rope winded in
a sheave, it is assumed that the location of the tangent
points at the sheave is known in advance. This assump-
tion is quite reasonable in most reeving systems.

A reeving system, like the tower crane shown in Fig.
3, is considered as a multibody system that includes
rigid bodies as well as ALEM finite elements to dis-
cretize the ropes. Other bodies in the system could also
be considered as flexible and modeled with the floating
frame of reference approach. However, this possibility
is not developed in this paper. Therefore, the set of coor-
dinates used to model the reeving system is divided in
two groups: (1) the set qWR (WR stands forwire ropes)
that includes the nodal coordinates of the wire rope
ALE-FEM elements, and (2) the set qRB (RB stands
for rigid bodies) that includes the coordinates used to
describe the global position and orientation of the rigid
bodies in the system. The total set of coordinates used
to model the reeving systems, which is called here p,
is given by:

p =
[

qRBT
qWRT

]T

qWR =
[

qWR1T qWR2T · · · qWRneT
]T (8)

where qWRi are the coordinates of the wire rope ele-
ment i and ne is the total number of elements used to
model the reeving system.

Fig. 3 Example of reeving system: tower crane

2.4 Node types in reeving systems

Ropes in reeving systems have two ends, obviously, and
they are winded in sheaves or reels. It is common in this
type of mechanisms to attach the end of the ropes using
flexible supports that can be modeled as spring-damper
force elements. There are two types of sheaves: devia-
tion sheaves and drive sheaves. Therefore, four differ-
ent types of element nodes are needed to model reeving
systems: continuous node, fixed node, node attached
to an elastic support and node tangent to a sheave or
reel. Figure 4 shows a reeving system that is discretized
with five elements and includes the four types of node.
Each node can be systematically treated, as explained
in Ref. [23], for the automatic generation of the EOM
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Fig. 4 Nodes used in reeving systems

of reeving systems. To this end, each node has a set of
associated constraints, which are linear or nonlinear, as
a set of generalized forces. In this paper, the constraints
used to model the node tangent to a sheave are going
to be modified to account for the sheave rotary inertia.

The continuous node, which is located in the middle
of the span of the rope in Fig. 4, is not used in practice.
In case it is used, its definition requires the usual con-
nectivity conditions used in the FEM. However, in the
ALEM approach, because the transverse deformation
is described using the modal amplitudes (sines) qm , an
additional set of constraints would be needed to guar-
antee tangent continuity at that node, thus avoiding the
appearance of a kink. In practice, the continuous node
is not used because, in the ALEM method, thanks to
the developments described in this paper, the complete
free span of the rope can be modeled with a single
variable-length ALEM element.

Most of the constraints needed to model the reeving
systems are linear in terms of the qWR , as shown in
Ref. [23]. These linear constraints can be eliminated
systematically and, as a result, the following velocity
transformation can be easily obtained:

ṗ = B
(

qRB
)

q̇ + D (t) (9)

where q is a new set of generalized coordinates that
is a subset of p and includes coordinates that are not
independent but are subjected to aminimum set of non-
linear constraints. Matrix B and vector D are given in
Ref. [23]. Typically, the nonlinear constraints are due
to the torque balance at the nodes tangent to a sheave.

In the work presented in this paper, these nonlinear
constraints are eliminated, thus leading to a more con-
venient set of independent system coordinates q.

2.5 Equations of motion of reeving systems

The equations of motion of the reeving system include
the equations of the rigid body parts and the equations
of the wire rope elements, as follows:
⎡
⎢⎢⎢⎣

MRB 0 · · · 0
0 MWR1 · · · 0
...

...
. . .

...

0 0 · · · MWRne

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

q̈RB

q̈WR1

...

q̈WRne

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

QRB

QWR1

...

QWRne

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

QRB
reac

QWR1
reac
...

QWRne
reac

⎤
⎥⎥⎥⎦ ⇒

⇒ M̂p̈ = Q̂RS + Q̂reac (10)

where MRB and QRB are the mass matrix and gen-
eralized force vector (including applied forces and
quadratic-velocity inertia vector) associated with the
rigid bodies andQRB

reac is the vector of generalized reac-
tion forces of the rigid bodies. ThemassmatricesMWRi

and generalized force vectors QWRi and QWRi
reac for the

ne ALEM elements are as those given in Eq. 7.
The velocity transformation matrix given in Eq. 9

is used to turn these equations into a set of equations
written in terms of q, as follows:

Mq̈ = Q + Qreac (11)

where

M = BT M̂B,

Q = BT
(

Q̂ − M̂
(
Ḃq̇ + Ḋ

))
,

Qreac = BT Q̂reac

(12)

The procedure followed to obtain the equations
of motion Eq. 11 is borrowed from the well-known
coordinate-partitioningmethod [30]. From thismethod,
it is known that the rows of the matrix B are perpendic-
ular to the Jacobian of the (linear) constraint equations
that are used to obtain Eq. 9. This means that the vec-
tor of reaction forces associated with the reduced set
of coordinates q is associated only with the nonlinear
reaction constraints that are not accounted for in Eq.
9. The vector of reaction forces can be included into
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Fig. 5 Wire rope rolled in a sheave

the system of equations of motion using the Lagrange
multipliers method as:
[

M CT
q

Cq 0

] [
q̈
λ

]
=

[
Q

−Ċqq̇ − Ċt

]
(13)

where

Cq = ∂Cnl
∂p

∂p
∂q = CnlpB (14)

is the Jacobian matrix on the nonlinear constraints Cnl

that are given in terms of p. Equations 13 has a standard
form in multibody dynamics and it can be solved using
standard methods.

3 Adding the sheaves rotary inertia

Figure 5 shows awire ropewinded in a sheave, the axial
loads T1 and T2 at the two tangent points, the external
torque applied on the sheave Mext that can be a drive
torque or a resistance torque, and the torque due to the
rotary inertia Minertia = −I α̈, where I is the moment
of inertia of the sheave and α its angle of rotation. This
value of the rotary inertia is just an approximation since
the pulley may be attached to a rigid body with its own
angular acceleration. However, in reeving systems, the
rotation of the sheaves about their axis use to be much
higher than other rotations.

The torque balance in the sheave yields:

(T2 − T1) R + Mext = I α̈ (15)

If the moment of inertia is small such that the term
(T2 − T1) R is much larger than the rotary inertia (this
assumption is reasonable in most reeving systems), the
following equation can be used to find the axial load
difference:

(T2 − T1) R + Mext = 0 (16)

In a deviation sheave, that is, a sheavewhereMext =
0, this equation yields the equal-axial force condition,
as follows:

(T2 − T1) R = 0 ⇒ T2 = T1 (17)

This simple condition is used as nonlinear con-
straints in the nodes tangent to a sheave in reeving sys-
tems.

Consider the sheave attached to the rigid body i
shown in Fig. 6. Regardless of being a drive sheave
(Mext �= 0) or a deviation sheave (Mext = 0), the fol-
lowing linear constraints apply:

Clin =
⎡
⎢⎣

r j
2 − (

ri + Ai ūi
t1

)
rk1 − (

ri + Ai ūi
t2

)
s j2 − sk1

⎤
⎥⎦ = 0 (18)

where the first two sets of equations guarantee that the
absolute position of the end nodes of the elements j
and k coincide with the absolute position of the tan-
gent points to the sheave, t1 and t2. The fact that the
position of the tangent points in the body frame, ūi

t1 and
ūi
t1, is known is a reasonable approximation in reeving

systems. The third constraint is a continuity constraint
that makes sense because, in the formulation presented
in this paper, the rope segment winded in the sheave is
not modeled.

In addition to the constraint equations given in Eq.
18, a constraint equation has to be added to fulfill the
torque balance given in Eq. 16. This equation is writ-
ten in terms of the coordinates of elements j and k as
follows:

Cnl =
(
F j2
ax

(
q j

)
− Fk1

ax

(
qk

))
Rs − Mext (t) = 0

(19)

where the axial force at element j , F j2
ax and the axial

force at element k, Fk1
ax , can be calculated as functions

of the element coordinates. This equation is a rheo-
nomic constraint if the torque applied on the sheave
is a known function of time, Mext (t) . In the case of
a deviation sheave, in which typically Mext = 0, this
equation turns into:

Cnl = F j2
ax

(
q j

)
− Fk1

ax

(
qk

)
= 0 (20)

The linear constraint equations given in Eq. 18 plus
the nonlinear constraint equation given in Eq. 19 (drive
sheave) or the nonlinear constraint equation given in
Eq. 20 (deviation sheave) are required tomodel sheaves
in reeving systems. Note that the angle rotated by the
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Fig. 6 Rope rolled in a sheave

sheave θ is is not used in these equations. In fact, this
angle is not needed as a generalized coordinate of the
reeving system. Besides, this angle has little interest in
the system dynamics.

The method based on the set of constraint equations
defined above to model sheaves of reeving systems has
two drawbacks:

1. The sheavesmayhave a sufficiently largemoment of
inertia, such that the rotary inertia (right-hand side
of Eq. 15) is not negligible but has an influence in
the system dynamics. This large moment of inertia
can be due not to the sheave itself but to the contri-
bution of a gear motor. As known from elementary
mechanics, the moment of inertia of the motor is
divided by the square of the gear ratio to obtain the
equivalent moment of inertia of the sheave. For low
gear ratios (speed reducer), the contribution of the
moment of inertia of the motor can be very impor-
tant.

2. Equation19 is useful tomodel torque-driven sheaves.
However, in the case of a kinematically driven
sheave, the angle θ is has to be obtained in the
dynamic simulation. This is the case, for example,
when simulating the dynamics of an elevator with
a given velocity profile. In this case, the equations
given above are useless to find the drive torque.

The alternative is, of course, to add the sheave rota-
tion angle θ is as a generalized coordinate and to elimi-
nate the torque balance in the sheaves (Eq. 19 or Eq. 20)
of the set of constraints. When using this method, the

sheave rotation θ is must be linked to the rope material
coordinate to guarantee the no-slip condition. In this
case, the linear constraint turns into:

Clin =

⎡
⎢⎢⎢⎣

r j
2 − (

ri + Ai ūi
t1

)
rk1 − (

ri + Ai ūi
t2

)
s j2 − sk1

s j2 −
(
s j20 − θ is R

)

⎤
⎥⎥⎥⎦ = 0, (21)

where the first three sets of constraints are the same
as those in Eq. 18, and the fourth one guarantees that
the rope does not slip with respect to the groove of the
sheave. In the examples, the results of both types of
modeling of sheaves in reeving systems will be com-
pared.

Regardless of the better accuracy that can be
obtained when considering the sheaves rotary iner-
tia, the method described in this section has a clear
computational benefit. The substitution of the equal-
axial force nonlinear constraint equations with the no-
slip linear constraint equations results into equations
of motion that unless the rigid body coordinates set
qRB were subjected to other nonlinear constraints,
are ordinary differential equations (ODE) instead of
differential-algebraic equations (DAE). As it is well-
known, ODE are more easily solved than DAE.

4 ALEM elements with axial modes

In the kinematic description of the ALEM elements
given in Section 2.1, Eq. 3, the longitudinal displace-
ment of the cross sections of the rope is given by ra
and the transverse displacement by ut . The longitudi-
nal displacement is a linear function of the absolute
coordinates qa and also linear in terms of the parame-
ter s, since the shape functions in matrix N are linear
polynomials. The axial strain, which is a function of
the partial derivative of the longitudinal displacement
ra with respect to s, is constant along the element. Due
to Hooke’s law, the axial force along the element is also
constant.

In hoisting machines in which the wire ropes work
vertically, the weight of the ropes can be an important
force for long rope spans. Think, for example, about the
elevators of skyscrapers. In these cases, the axial load
along the ropes varies approximately linearly with s
and the constant axial load is not admissible. The solu-
tion to simulate non-constant axial load distributions
in the context of the ALEM method is to assume in
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Fig. 7 Deformation of a
rod under its own weight

the kinematic description, a modal contribution also in
the axial direction. In this case, vector ūt is no longer
considered as transverse displacement because it also
carries part of the axial displacement of the cross sec-
tions. The new definition of vector ut is given by:

ūt = S (s, qs) qm ,

S (s, qs) =
⎡
⎣
S1 · · · Snmx 0 · · · 0 0 · · · 0
0 · · · 0 S1 · · · Snmy 0 · · · 0
0 · · · 0 0 · · · 0 S1 · · · Snmz

⎤
⎦ ,

Si = sin
[
iπ(s−s1)
s2−s1

]
, i = 1, 2i = 1, 2, ...

qm = [
qx,1 · · · qx,nmx qy,1 · · · qy,nmy qz,1 · · · qz,nmz

]T

(22)

where qm includes nmx modal amplitudes in the local
xe direction, nmy modal amplitudes in the local ye
direction and nmz modal amplitudes in the local ze
direction.

In order to check the capability of the sine func-
tions to represent a linear axial force distribution accu-
rately, a simple quasi-static structural problem has been
solved. Figure 7 shows a uniform cantilever rod under
the action of its ownweight,ρAg, beingρ mass density,
A cross-sectional area and g acceleration of gravity.
The axial force distribution along the rod is of course
linear, Fax (s) = ρg (L − s), where L is the length of
the cantilever. Modeling the axial displacement with a
linear mode and a set of nm sine modes:

u (s, t) = s

L
uL +

nm∑
i=1

sin
iπs

L
qi , (23)

being uL the amplitude of the linear mode and qi the
amplitude of the i th mode, the modal amplitudes can
be obtained analytically, yielding:

uL = mL2/2E A, q1 = 4mL2/π3E A, q2 = 0,

q3 = 4mL2/27π3E A (24)

wherem is the totalmass of the cantilever and E A is the
stiffness per unit length. Using this model, the resulting
axial force distribution along the cantilever is plotted
in Fig. 8. As it can be observed in the figure on the
left, without modal contribution (nm = 0) the result-
ing axial force distribution is constant and an average
of the exact linear distribution. The central plot shows
that adding just one sine mode (nm = 1) approximates
the linear distribution, while the plot on the right shows
that using three modes (nm = 3), the approximation
becomes quite acceptable. The second mode does not
contribute to the result for symmetry reasons. This sim-
ple example shows that the axial modes can be used to
obtain a reasonable approximation of the axial force
distribution along the ropes.

The simple quasi-static problem used in this sec-
tion is not representative of the dynamics of ropes in
reeving systems because no payload has been assumed,
and inertia forces are not considered. Results just show
that a few axial modes are sufficient for an acceptable
description of a triangular tension field along the ropes.
It canbe shown that the trapezoidal tensionfield appear-
ing under the presence of the payload is equally well-
described. In dynamics, tension is affected by axial
elasticwaves. It iswell-known from the theory of vibra-
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Fig. 8 Deformation of a rod under its own weight

tions of continuous systems that a sufficient number of
axial modes can be used to describe axial elastic waves
along a rope.

5 Example: simulation of an elevator with a 2:1
suspension

The reeving systemmodeledwith the presentedmethod
is the 2:1-suspension electric driven elevator shown in
Fig. 9. The model includes a motor elastically sup-
ported in the vertical direction, a cabin, a counter-
weight, one drive sheave attached to the motor and
two deflection sheaves attached to the cabin and the
counterweight. Figure 10 shows the cabin target veloc-
ity during a 12 seconds-ride with a nominal value of 6
m/s. The cabin displacement during the ride is 80 m.
The simulation is kinematically driven. To this end, the
rotation of the drive sheave is prescribed to produce the
mentioned cabin velocity profile in the ideal conditions
of perfectly rigid ropes (axially) and zero ropes-to-drive
sheave slipping. Four wire ropes elements are used to
model the elevator reeving system, labeled as a, b, c
and d. Only the longitudinal dynamics of the system
are modeled here. The main parameters of the elevator
system are given in Table 1.

5.1 Model without sheaves inertia and without axial
modes

This is the model that could be built with the ALEM
method developed previously by the authors. This

Fig. 9 Electric driven elevator with 2:1 suspension system

model includes three rigid body coordinates. For the
wire rope elements, four coordinates per node and eight
nodal coordinates per element are used. Figure 9 shows
the global frame where the heights of the different bod-
ies and nodes aremeasured. The set of total coordinates
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Table 1 Elevator parameters

Cabin and payload mass 3000 kg Cabin initial height 10 m

Counterweight mass 3500 kg Counterweight initial height 90 m

Motor mass 10000 kg Motor initial height 100 m

Ride displacement 40 m Nominal velocity 6 m/s

Stiffness of motor support 10 MN/m Stiffness of wire rope supports 2.5 MN/m

Wire ropes linear density 5.0 kg/m Wire ropes stiffness/unit length 50 MN

Fig. 10 Commanded velocity profile of the cabin

p is given by:

qRB = [
zcab zcw zmot

]T
qi = [

zi1 zi2 si1 si2
]T

, i = a, ..., d

qWR =
[

qaT qbT qcT qd T
]

p =
[

qRBT
qWRT

]T
(25)

Using the standard nodal coordinate constraints
defined in Section 2.4, the following set of 16 linear
constraints can be deduced:

Clin (p, t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

za2 − (zcab + dcab)
za2 − zb1
zb2 − zmot

zb2 − zc1
zc2 − (zcw + dcw)

zc2 − zd1
sa1
sa2 − sb1
sb2 − sc1
sc2 − sd1
sd2 − l

sb2 −
(
sb20 + 2

∫ t
0 V (t) dt

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 (26)

where dcab and dcw are the distances from the center of
gravity of the cabin and counterweight to the deviation
sheaves, respectively, l is the total length of the wire

rope, sb20 is the initial value of s
b
2 and V (t) is the com-

manded velocity of the cabin shown in Fig. 10. Note
that the last of the linear equations is a mobility con-
straint that drives the entire system forcing the cabin
to approximately follow the velocity profile V (t). The
factor ‘2’ that multiplies the integral of V (t) is due to
the 2:1 suspension. In this problem, the angle rotated
by the drive sheave is a function of time given by:

α (t) = − 2

R

∫ t

0
V (t) dt, (27)

where the negative sign means that the sheave has to
be rotated counter-clockwise for a positive velocity of
the cabin in the upward direction. Since no generalized
coordinates are used to model the rotation of the devi-
ation sheaves, the nonlinear constraints that establish
the equal-axial loads of the wire ropes have to be used
as follows:

Cnonlin (p, t) =
[
Fa2
ax (qa) − Fb1

ax

(
qb

)
Fc2
ax (qc) − Fd1

ax

(
qd

)
]

= 0 (28)

In this equation, the axial forces Fi
ax

(
q j

)
are con-

stant along the elements because no axial modes are
considered. In the model with axial modes presented
next, the axial forces are also functions of s, that is,
Fai
ax = Fi

ax

(
s, q j

)
.

In this problem, n = 3 + 4 × 4 = 19, ml = 12,
mnl = 2, and the number of degrees of freedom is g =
19− (12+ 2) = 5. The set of generalized coordinates
q used in this example is given by:

q = [
zcab zcw zmot za1 zd2 sa2 sc2

]T
(29)

and the subsets of independent and dependent coordi-
nates in q can be established as:

qind = [
zcab zcw zmot za1 zd2

]T
qdep = [

sa2 sc2
]T (30)

The reason for this separation is that sa2 and sc2 can
be easily obtained solving Eq. 28 once the value of
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qind is known. With the values of q and time t , all
other coordinates in p can be obtained using the linear
constraints given in Eq. 26.

The velocity transformation matrix B that appears
in Eq. 9 is constant for this example, it can be simply
obtained from the time-derivative of Eq. 26 and it takes
the form:

B =

⎡
⎢⎢⎢⎢⎣

BRB

Ba

Bb

Bc

Bd

⎤
⎥⎥⎥⎥⎦

(31)

where
BRB = [

I3×3 03×4
]
,

Ba =

⎡
⎢⎢⎣
0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0

⎤
⎥⎥⎦ , Bb =

⎡
⎢⎢⎣
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0

⎤
⎥⎥⎦ ,

Bc =

⎡
⎢⎢⎣
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1

⎤
⎥⎥⎦ , Bd =

⎡
⎢⎢⎣
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

⎤
⎥⎥⎦ ,

(32)

And array D in Eq. 9 is given by:

D =

⎡
⎢⎢⎢⎢⎣

DRB

Da

Db

Dc

Dd

⎤
⎥⎥⎥⎥⎦

, (33)

where
DRB = 03×1, Da = Dd = 04×1,

Db = [
0 0 0 2V (t)

]T
Dc = [

0 0 2V (t) 0
]T (34)

5.2 Model with sheaves rotary inertia and without
axial modes

In the model with sheaves rotary inertia, the number
of rigid body coordinates is 5 instead of 3 because the
angle rotated by the deviation sheave of the cabin, θcab,
and the counterweight, θcw, have to be added. The
nonlinear equal-axial load constraints Eq. 28 are not
needed. These nonlinear constraints are substituted by
the no-slip constraints at the deviation sheaves, which
are linear and given by:

sa2 − sa20 − θcabRcab = 0
sc2 − sc20 − θcwRcw = 0

(35)

where sa20 and sc20 are initial values of the arc-length
nodal coordinates and Rcab and Rcw are the radius of
the cabin and counterweight deviation sheaves. Equa-
tions 35 have to be added to the set of linear equations
given in Eq. 26 that also apply to this model. There-
fore, in this problem n = 5 + 4 × 4 = 21, ml = 14,
mnl = 0, and the number of degrees of freedom is
g = 21−(14+0) = 7. Themodel with sheave’s inertia
has two more degrees of freedom than the model with-
out it. Of course, these are the rotations of the deviation
sheaves. The set of generalized coordinates q used in
this example is given by:

q = [
zcab zcw zmot θcab θcw za1 zd2

]T
(36)

This problemdoes not include non-linear constraints
and all coordinates are treated as independent:

qind = q, qdep = [ ] (37)

In this model, matrices B and D that appear in the
velocity transformation Eq. 9 are built similarly to the
previousmodel, but in this case accounting for the addi-
tional linear constraint equations (Eq. 35).

5.3 Models with axial modes

Using the results shown in Fig. 8, in the models built
to simulate non-constant axial forces along the rope
elements, three axial modal amplitudes per element are
considered. Therefore, the number of coordinates per
element becomes 7, as follows:

qWRi = [
zi1 zi2 si1 si2 qix,1 qix,2 qix,3

]T
, i = a, ..., d

(38)

The models with axial modes keep the same con-
straints than the models without them. Therefore, the
modelwith axialmodes butwithout sheaves rotary iner-
tia has n = 3+4×7 = 31,ml = 12,mnl = 2, and the
number of degrees of freedom is g = 31− (12+ 2) =
17. The model with axial modes and with sheaves
rotary inertia has n = 5 + 4 × 7 = 33, ml = 14,
mnl = 0, and the number of degrees of freedom is
g = 33 − (14 + 0) = 19.

5.4 Simulation results

In the figures shown in this section, Figs. 11, 12, 13,
and 14, the plots on the left are the results of the models
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without axial deformation modes (constant tension on
ropes), while plots on the right are the results of the
models with three axial deformation modes (length-
varying tension on ropes). Both plots, left and right
plots, include the results of themodelswith andwithout
considering the sheaves rotary inertia (SRI).

Figure 11 shows the cabin acceleration during the
ride. The triangular shapes that appear at the beginning
and the end of the ride are due to the triangular shape
of the acceleration profiles that are used in the elevator
industry. These triangular shapes can also be observed
in the forces and torques involved in the system dynam-
ics. As it can be observed in the figure, all models pro-
vide very similar results. There is little influence of
the sheave rotary inertia or the tension variation along
the ropes. Figure 12 shows the vibration of the cabin.
Because the cabin is modeled as a rigid body, this plot
can be interpreted as the vibration of the ropes during
the ride. These curves are obtained by subtracting to the
real cabin displacement the ideal displacement consid-
ering a perfectly rigid system. Conclusions drawn from
this figure are the sameas those fromFig. 11.Therefore,
in the simulated system, results show that the influence
of the sheaves rotary inertia and the tension variation
along the ropes in the dynamic response of the system
is not significant.

Figure 13 shows the tension of ropes a and b at the
deviation sheave of the cabin. There are four curves per
plot. However, because both tensions are equal in the
models without sheaves rotary inertia, it seems there
are only three. As can be observed, the effect of the
sheave rotary inertia is important in the resulting ten-
sion. In this example, differences in the order of 1 KN
can be observed. It is also true that the assumed sheaves
moment of inertia has been 10 kgm2, which is a very
high value. Regarding the effect of the length-varying
tension, its effect is very important as well. There are
differences of the order of 3 KN in the tensions shown
in the left and the right plots, being larger in the mod-
els with constant tension along the ropes (without axial
modes). The reason is that being the tension measured
at the bottom of the ropes, the length-averaged value
provided by the constant-tension models overestimates
the real one, as it occurs with the simple result shown
in Fig. 8.

Figure 14 shows the motor torque. In this case,
results show again that both the sheave rotary inertia
and the variation of tension along the ropes influence
the resulting motor torque, being the effect of the ten-

sion variation much more important. Contrary to what
is observed in Fig. 13, in this case, the models with
constant tension underestimate the motor torque. The
reason is that being the tension measured at the top
of the ropes, the length-averaged value provided by the
constant-tensionmodels underestimates the real one, as
it occurs with the simple result shown in Fig. 8. Differ-
ences of the order of 1 KNm can be observed. It is also
interesting to observe that the static equilibrium values
of the motor torque (brake torques) are also different.
In the initial instant, the motor torque is negative in the
models with constant tension (counterweight tends to
fall) while positive in the models with length-varying
tension (cabin tends to fall).

It can be concluded that in the simulated example
that represents the reeving system of the elevator of a
tall building (100 m), the effect of the sheaves rotary
inertia and the variation of tension along the ropes have
very little effect on the dynamic response of the system
but important effect in the resulting forces and torques
that produce or are transmitted during the ride.

Results of this section just show the dynamics of
the cabin-side (ropes a and b), but not the dynamics of
the counterweight-side (ropes c and d). The reason is
that the dynamics in the counterweight-side is totally
equivalent, and their simulation results do not add any
new qualitative information.

6 Comparison with the ALE-ANCF formulation

The formulation presented in this paper, originally
developed in [29], cannot be considered as ANCF for-
mulation because the selected generalized coordinates
are not all absolute, and they are not all nodal. Modal
coordinates do not fulfill these two properties. The use
of an arbitrary number of mode shapes andmodal coor-
dinates allows the description of elastic waves along
the element. With the work presented in this paper,
not only transverse elastic waves, but also axial elas-
tic waves can be described. The ALE-ANCF formu-
lation developed in [21] and applied to reeving sys-
tems in [23] cannot be used to describe elastic waves
within the elements. That is why rope spans should not
be modeled with a single element if the elastic wave
propagation is important in a particular problem. How-
ever, because the elements of the ALE-ANCF use line-
parametrized cubic shape functions, the axial strain
may vary quadratically. Therefore, linear tension distri-
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Fig. 11 Cabin acceleration

Fig. 12 Vibration of cabin

butions are naturally described because the straight line
is a particular case of a quadratic polynomial. In other
words, the capability that is approximated in this work
with axial modes is exactly obtained with the original
ALE-ANCF formulation. Therefore, in that sense, the
ALE-ANCF can be considered superior. This section
describes the modeling and simulation of the elevator
system shown in Fig. 9 and compares the results with
the ALEM method presented in this paper with three
axial deformation modes.

The ALE-ANCF kinematic description uses a set of

14 nodal coordinates per element, q =
[

qa
T qs

T
]T

,

that are separated into absolute and material coordi-
nates. The kinematic description of an arbitrary point
within the element can be summarized as:

r = N (s, qs) qa

qa =
[

r1T r′
1
T r2T r′

2
T

]T
, qs = [

s1 s2
]T

r′
i = ∂ri

∂s
, i = 1, 2.

N = [
N1 (s) 13×3 N2 (s) 13×3 N3 (s) 13×3 N4 (s) 13×3

]

N1 = 1

4
(ξ − 1)2 (2 + ξ) ,N2 = s2 − s1

8
(ξ − 1)2 (ξ + 1)

N3 = 1

4
(ξ + 1)2 (2 − ξ) ,N4 = s2 − s1

8
(ξ + 1)2 (ξ − 1)
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Fig. 13 Tension of ropes at cabin deviation sheave

Fig. 14 Motor torque

ξ = 2s − s1 − s2
s2 − s1

(39)

When modeling the 2:1 elevator with ALE-ANCF
elements with sheaves rotary inertia the number of
coordinates and constraints are n = 5 + 4 × 6 = 29,
ml = 14, mnl = 0, and the number of degrees of free-
dom is g = 29− (14+0) = 15. In this calculation, the
number of nodal coordinates per element is 6 instead
of 14 because the problem is 1D.

Figure 15 shows the tension along ropes a and b in
the static equilibrium position at the initial configura-
tion. It can be observed that the ALE-ANCF provides

the exact linear distribution, while the ALEM method
describes a quite acceptable approximation with modal
superposition. The results obtained with the ALEM
method slightly overestimates the tension in the lower
end of the rope and slightly overestimates it in the
higher end. The error is approximately 1.5%. Figure 16
shows the time history of the tension of the rope a sim-
ulated with both methods. It is apparent that the ALEM
method provides slightly higher values of that tension.
This is a clear consequence of the modal superposition
as shown in the static result of Fig. 15. Therefore, from
that figure, it can be interpreted that near the ends of the

123



Advances in the modeling and dynamic simulation of reeving systems 4001

rope is where the maximum error in the rope tension is
obtained, and its value is about 1.5% of the average. It
is also apparent for Fig. 16 that the ALEM method is
able to capture higher frequency contents.

Regarding the simulation times, using MATLAB
R2021b on an Intel i7 8th Gen laptop and ode45 as
solver, the computational timewas 80.23s for theALE-
ANCF solution and 149.45s for the ALEM solution.
Therefore, theALEMsolution takes a little less than the
double time of the ALE-ANCF solution. The increase
in simulation time is due to two facts. First, the ALE-
ANCF model has fewer degrees of freedom. Second,
the higher frequency content of the ALEM solution
forces the solver to select smaller time steps during
integration. Recall that ode45 is a variable time-step
solver.

Results of this section can be used to compare the
ALEMmethod presented in this paper with the existing
ALE-ANCFwith line-parametrized cubic polynomials
in terms of ease of implementation, accuracy, and com-
putational efficiency, as follows:

1. Ease of implementation. The ALE-ANCF method
is easier to implement because the kinematics is less
involved. The number of coordinates per element
is fixed (14) for the ALEANCF method but vari-
able for the ALEM method, since it depends on the
selected modal coordinates in each direction.

2. Accuracy. While the ALE-ANCF method can rep-
resent exactly linear variations of axil forces along
the ropes, the ALEM method just approximates it,
but the error is relatively small. The maximum error
has been estimated in about 1.5% of the average
value of the tension. However, the ALEM method
is able to describe higher frequency vibrations at the
ropes. The limit frequency depends on the selected
number of modal coordinates. That property allows
the ALEM method to discretize the complete rope
span using a single element while showing a high-
frequency response. That is not possible with the
ALE-ANCF method.

3. Efficiency. The ALE-ANCF is more efficient com-
putationally. This is due to the simpler kinematics
but also because the resulting model just captures
relatively low-frequency vibrations. In other words,
the ALEM model takes longer to simulate, but the
results include higher frequency content.

It is worth to mention that these conclusions are
taken based on an example that just models axial vibra-

Fig. 15 Comparison of tension along the ropes in static equilib-
rium with ALE-ANCF and ALEM methods

Fig. 16 Comparison of time history of tension at cabin side with
ALE-ANCF and ALEM methods

tions. However, the ALEM method what originally
developed in [29] to model transverse vibrations. That
is why only modal coordinates in the transverse direc-
tion were used. For the description of transverse vibra-
tions in ropes, the ALE-ANCF simply cannot compete
with the ALEM method when using a coarse mesh.
The cubic polynomials are not adequate to model the
sinusoidal modal shapes that appear in taut ropes.

7 Summary and conclusions

This paper includes two new modeling features of
the ALEM method for the modeling and simulation
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of reeving systems under the multibody dynamics
framework. These features are the consideration of the
sheaves rotary inertia and the use of new modal coor-
dinates to simulate free rope spans with non-constant
axial forces along the rope. The paper begins with a
detailed introduction of the different ALEmethods that
have been developed by different research groups in the
last decade for the simulation of axially moving beam-
like structures. Tomake the paper self-contained and to
understand the reasons and effects of the new features,
Sect. 2 summarizes the ALEM method.

Section 3 explains the changes needed to account
for the sheaves rotary inertia. To this end, the system
coordinates have to be augmentedwith newcoordinates
that describe the rotation of the sheaves, thus increas-
ing the number of degrees of freedom of the model.
Besides, the nonlinear axial force constraints are substi-
tuted with linear no-slip constraints. As a consequence,
in most typical reeving systems, the EOM of the reev-
ing systems are ODE instead of DAE when consider-
ing the rotary inertia of the sheaves. Section 4 explains
the method followed to add new modal coordinates in
the axial direction. These new coordinates allow the
description of non-constant axial forces along the ele-
ments. When using this new set of modal coordinates,
the modal superposition not only describes the trans-
verse deformation but it also carries part of the axial
deformation. A simple quasi-static example shows that
the use of three axial modal coordinates is enough to
model linearly varying axial forces that typically appear
due to the own-weight of the ropes.

Section 5 includes the simulation results. The sys-
tem modeled is an electrically driven elevator with a
2:1 suspension and a height of 100 m. Four models
are simulated and compared, the result of the combi-
nation of considering or not considering the sheave’s
rotary inertia and using or not using axial modal coor-
dinates. Simulation results show that in the selected
example, both new features have little effect in the sys-
tem dynamics, that is, in the resulting motion of the
rigid bodies, but they have a significant effect on the
forces and torques that produce or appear during the
ride.

Section 6 compares the presented ALEM method
with the ALE-ANCF method developed in [21] and
applied to reeving systems in [23] in terms of ease
of implementation, accuracy, and computational effi-
ciency. It is shown that the increase in complexity
and decrease in computational efficiency of the ALEM

model are not very significant. In turn, the method pro-
vides an accurate representation of non-constant ten-
sion along the ropes, and it can be used to model high-
frequency vibrations. These conclusions are taken from
an example that is dominated by axial vibrations. In
problems where the transverse vibrations of the ropes
are of interest, the benefits of the ALEM model with
respect to theALE-ANCFmodel aremuchmore impor-
tant.
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