
A Constraint-Based Approach for Managing Declarative Temporal
Business Process Models

Andrés Jiménez-Ramírez ajramirez@us.es

Irene Barba irenebr@us.es

Carmelo Del Valle carmelo@us.es
Departamento de Lenguajes y Sistemas Informáticos, Universidad de Sevilla
Seville, Spain

Abstract
There is an increasing interest in aligning information systems in a process-oriented way. As an
alternative of the traditional imperative models which tend to be too rigid, processes may be
specified in a declarative (e.g., constraint-based) way. Nonetheless, in general, offering
operational support (e.g., generating possible execution traces) to declarative business process
models entails more complexity when compared to imperative modeling alternatives. Such
support becomes even more complex in many real scenarios where the management of complex
temporal relations between the process activities is crucial (i.e., the temporal perspective should
be managed). Despite the needs for enabling process flexibility and dealing with temporal
constraints, most existing tools are unable to manage both. In a previous work, we then proposed
TConDec-R, which is a constraint-based process modeling language which allows for the
specification of temporal constraints. However, TConDec-R revealed a number of limitations
that are overcome with the present work. More specifically, this paper significantly extends and
improves our previous work by (1) defining TConDec-R process models based on high-level
elements from the constraint programming paradigm, (2) introducing a constraint-based tool
with a client/server architecture for providing operational support to TConDec-R process
models, and (3) performing an empirical evaluation of the approach.
Keywords: constraint satisfaction problems, constraint programming, business process
modeling support, process flexibility.

1. Introduction
For several years, there has been an increasing interest in aligning information systems in a
process-oriented way in order to operationalize business processes [25]. Thereby, a business
process (BP) consists of a set of activities that jointly realize a business goal and whose
execution needs to be coordinated in an organizational as well as technical environment [25].
BPs are commonly modeled using imperative languages, e.g,. BPMN [6] or Flowcharts. The
resulting process models, however, tend to be too rigid to meet the flexibility demands of the
actors involved in many real scenarios. Declarative business process languages, in turn,
represent a promising modeling alternative in scenarios in which a high level of flexibility is
demanded. Therefore, declarative approaches are becoming increasingly popular as they are
able to cope with some of the limitations imperative notations are facing [24, 20, 18, 12, 7].

Regardless of the used process modeling paradigm, the resulting artifact can be viewed
from different perspectives, including behavior [14, 7], data [17, 5], and resources [13]. Another
perspective, which has not received sufficient attention yet, is the temporal one. In today's fast
paced world, for any enterprise it is crucial to know the temporal properties of its business
processes [8, 9, 2, 15].

In a previous work [16], we systematically analyzed 10 process time patterns (TPs for short)
i.e., solutions for representing commonly occurring temporal constraints. In particular, the TPs

https://core.ac.uk/display/301376328?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

were defined independently of a specific language or paradigm for BP modeling [15]. Despite
the needs for enabling process flexibility and dealing with temporal constraints, most existing
approaches are unable to manage both. To fill this gap, we proposed the TConDec-R language
[3], a declarative process modeling language that allows for the specification of temporal
constraints related to the aforementioned time patterns. In particular, this language was
implemented using a constraint-based approach (see [3] for details).

However, TConDec-R revealed a number of limitations that are overcome with the present
work. More specifically, this paper significantly extends and improves our previous work by:

1. Defining TConDec-R process models based on high-level elements from the constraint
programming (CP) paradigm.

2. Detailing a constraint-based software tool for managing TConDec-R business process
models. Such tool allows (1) modeling declarative business processes through the
TConDec-R language, (2) checking the correctness of TConDec-R models, (3)
generating execution traces for such models, and (4) checking the conformance of
given traces regarding a specific model.

3. Performing an empirical evaluation for checking the effectiveness and efficiency of the
proposed approach.

2. Background
This section provides backgrounds on constraint-based process models (cf. Sect. 2.1), which
are needed for understanding this work.
Furthermore, we discuss how such models can be managed through elements from the
constraint programming paradigm (cf. Sect. 2.2).

2.1. Constraint-Based Process Models

As basis of the TConDec-R language [3], we use Declare [21] for specifying activities and their
behavioral (i.e., control-flow) constraints. We consider this declarative modeling language as
appropriate as it enables the specification of a wide range of process models in a flexible way.
Respective process models are denoted as constraint-based, i.e., they comprise information
about (1) the activities that may be performed during process enactment as well as (2) the
constraints to be fulfilled in this context. Declare constraints can be categorized as existence
constraints, relation constraints, and negation constraints [21].

Table 1. Selected process time patterns and examples

Cat. Time pattern (TP) Example

I

TP1 (Time Lags between two Activities) enables the
definition of different kinds of time lags between two
activities.

The time lag between registering a
Master thesis and submitting it must
not exceed 6 months.

TP2 (Durations) allows specifying the duration of
process activities.

Processing 100 requests must not
take longer than 1 second.

II

TP5 (Schedule Restricted Element) allows restricting
the enactment of a particular activity by a schedule.

Lab tests in a hospital can only be
done on FR between 8 am and 5 pm.

TP6 (Time-based Restrictions) provides support for
restricting the number of times a specific process
element may be executed within a given timeframe.

For a specific lab test at least 5
different blood samples have to be
taken within 24 hrs.

In addition, TConDec-R extends Declare to allow the specification of 10 process time
patterns (TPs) that we systematically identified in [15, 16] by analyzing a large collection of
process models from various domains.

Table 1 shows an example of the 4 most common of the 10 TPs divided into two categories
according to pattern semantics.1 Category I (Durations and Time Lags) provides support for

1 The full set of time patterns are grouped in 4 categories. The reader is referred to [16] for details.

expressing the durations of different process granularities (i.e., activities, activity sets,
processes, or sets of process instances) as well as time lags between activities or process events
(e.g., milestones). Category II (Restricting Execution Times), in turn, allows constraining
execution times of single activities or entire processes (e.g., deadlines).

To properly cover the resource perspective, existing works (e.g., [3, 4, 13, 19, 20]) extended
constraint-based specifications by additionally considering resource constraints for each
enactment of a process activity. Few works [3, 7, 10, 12, 18, 20] enhanced constraint-based
specifications with temporal constraints. In this context, TConDec-R language considers both
the resource and the temporal perspectives. 2

Definition 1. (TConDec-R activity). A TConDec-R activity act=(a,dur,role) refers to a process
activity a with its estimated duration dur and the role of the required resource.

Definition 2. (TConDec-R process model). A {TConDec-R process model TCRM= (Acts, CT,
Res) corresponds to an extended constraint-based process model, where Acts corresponds to
a set of TConDec-R activities, CT is a set of constraints that may include any control-flow
constraint supported by Declare as well as any temporal constraint related to the time patterns
(cf. Table 1), and Res represents the resource availability.

A TConDec-R model is said to be correct if it represents a feasible problem without
conflicts (i.e., there are some traces that satisfy the model). TConDec-R constraints are
specified according to the graphical notation proposed for Declare constraints [21] and using
the graphical notation proposed in [15] for visualizing the temporal constraints.

 Fig. 1. A simple TConDec-R process model.

Example 1. (Simple TConDec-R process model) Figure 1 shows a simple example of a
TConDec-R process model where Acts = {(A,2h,R0), (B,4h,R1)}, Res corresponds to
{(R0,1),(R1,1)}, and CT comprises (1) Exactly(A,3), expressing that A shall be executed exactly
three times, (2) Exactly(B,2), expressing that B shall be executed exactly twice, (3)
Precedence(A, B), expressing that activity B may only be executed if A is executed before, (4)
TimeLagEndStart(A, B, 2h,4h), expressing that for each execution of A, there must be at least
one execution of B such that there is a time lag of at least 2 hours and at most 4 hours, (5)
DailyScheduleStart(A, 8am, 10am), expressing each execution of A must be started between
8am and 10am, and (6) CyclicEndStart(B, 12h, 48h), expressing that between the end and start
of two succeeding executions of B, there must be a time lag of at least 12h and at most 48h.

 When executing a constraint-based process model, information about the executed
activities is recorded in an execution trace.

Definition 3. (Trace). Let TCRM= (Acts, CT, Res) be a TConDec-R process model. Then, a
trace σ = (ID, <e1,e2,...en>) consists of an identifier ID and a sequence of start and completion
events respectively. Thereby, an event e relates to a specific execution (e.g., the i-th execution)
of a TConDec-R activity (a,dur,role) ϵ Acts (such execution is denoted by ai) and has one of the
following two forms: (1) e = start(ai, Rjk, T), i.e., the i-th enactment of activity a using the k-th

2 This paper focus on the temporal perspective of TConDec-R. Details of other features like the resource perspective
can be found in [3].

TConDec-R process model

Resource
Availabilities

R0: 1
R1: 1B

2
7 56

1211
10

8 4

2
1

9 3

[2h,4h]

A
3

2h
R0

7 56

1211
10

8 4

2
1

9 3Daily Schedule
Start [8am,10am] 4h

R1

7 56

1211
10

8 4

2
1

9 3

1 25
3

4 6 Cyclic End Start
[12h,48h]

resource with role j was started at time T, or (2) e = comp(ai,T), i.e., the i-th enactment of
activity a was completed at time T.

2.2. Modeling Constraint-Based Process Models as Constraint Satisfaction Problems

In general, a constraint-based process model (e.g., a TConDec-R process model) can be
modeled as a Constraint Satisfaction Problem (CSP), as detailed in [3]. The latter is a key
concept in Constraint Programming (CP) [23], which is a powerful paradigm for correctly
modeling and solving a wide variety of problems (e.g., combinatorial problems). In this section,
we are mapping TConDec-R process models to CSPs with the goal of automatically dealing
with the former. To be more precise, once we have mapped a TConDec-R process model to a
CSP, the CSP can be implemented in any constraint-based system, i.e., we can take the
advantage of a wide variety of existing algorithmic techniques and use them for different
purposes, e.g., to check for the consistency of a given TConDec-R process model, to check for
the conformance of specific traces with a given TConDec-R process model, or to generate traces
being compliant with such model.

Definition 4. (CSP). A CSP P = (V, D, CCSP) is composed of a set of variables V, a set of
domains D which is composed of the domain of values for each variable vari ϵ V, and a set of
constraints CCSP between variables, so that each constraint represents a relation between a
subset of variables and specifies the allowed combinations of values for these variables.

A solution of a CSP assigns values to CSP variables such that the assignments satisfy all
constraints. In general, a particular activity of a constraint-based process model may be
executed arbitrarily often unless this number is restricted by any constraint. Accordingly, such
activity may be repetitive.

Definition 5. (Repeating activity). A repeating activity ra = (a,dur,role,sacts) corresponds to
a TConDec-R activity act = (a,dur,role) that may be executed several times, i.e., multiple
instances of the same activity may be created in the context of a particular process instance.
Additionally, sacts is the sequence of scheduling activities related to this repeating activity,
i.e., the different times the process activity is executed.

A repeating activity is then represented by a set of optional scheduling activities, where a
particular scheduling activity represents a concrete instance of a process activity.

Definition 6. (Scheduling activity). A scheduling activity ai = (ra, st, et, res) corresponds to
the i-th enactment of a repeating activity ra. Thereby, st and et constitute CSP variables
indicating the start and end time of the activity enactment. Moreover, res corresponds to a CSP
variable representing the resource used for activity enactment.

Based on this, a CSP-TConDec-R problem can be defined as follows [3].

Definition 7. (CSP-TConDec-R problem). Let TCRM = (Acts, CT, Res) be a TConDec-R
process model (cf. Def. 2) and RActs be the set of repeating activities related to TCRM (i.e.,
RActs = {ra | ra = (a, dur, role, sacts), (a, dur, role) ϵ Acts}). Then: A CSP-TConDec-R
problem related to TCRM and RActs corresponds to a CSP P = (V, D, CCSP) with

− V being a set that comprises all variables of the CSP model, i.e., V ≡{ai.st, ai.et, ai.res
| ai ϵ ra.sacts, ra ϵ RActs}.

− D being a set covering all value domains of the respective variables from V, i.e., D ≡
{Di | i ϵ [0,|V|)}.

− CCSP being a set that comprises the resource constraints as well as the TConDec-R
constraints included in CT (cf. Def. 2). Furthermore, it states a specific enactment of a

repeating activity ra ϵ RActs precedes the next enactment of the same activity, i.e., ∀ai
ϵ ra.sacts: ai.et ≤ ai+1.st.

Constraint programming allows to separate the models from the algorithms, so that once a
problem is modelled in a declarative way as a CSP, a generic or specialized constraint-based
solver can be used to obtain the required solution. Furthermore, constraint based models can be
extended in a natural way, maintaining the solving methods.

3. Defining TConDec-R Process Models based on High-level Elements from
Constraint Programming

As explained in Def. 7, we proposed the mapping of TConDec-R process models to CSPs,
resulting in CSP-TConDec-R problems. In the current section, we provide a definition of the
latter in terms of high-level objects and global constraints from CP. Based on this, TConDec-R
process models can be implemented in any constraint-based system being able to deal with the
high-level objects and constraints considered in such definition. Consequently, the wide variety
of existing algorithms provided by CP becomes applicable and we can use them for different
purposes, e.g., checking the consistency of a given TConDec-R process model.

According to the CSP model detailed in Section 2.2, we define the high-level object
SchedAct to represent scheduling activities (cf. Def. 6) as follows:

SchedAct: 〈st−CSP int, et−CSP int, res−CSP int〉

Additionally, to represent a sequence of scheduling activities, we consider the high-level
object Sequence, which represents a sequence of elements. Considering this, each repeating
activity (cf. Def. 5) is modeled as a high-level object called RepAct, which includes a sequence
of SchedAct objects. To be more precise, the high-level object RepAct is defined as follows:

RepAct: 〈dur−int, roles−Sequence(int), sacts−Sequence(SchedAct)〉

Note that property roles of the repeating activities is represented by a sequence of integers
in such a way that the sequence includes the identifiers of the required roles.

This section provides a formalization of the temporal perspective of the TConDec-R
language which is the most challenging perspective and was not included in the previous
formalizations [3]. For this, we represent each TConDec-R constraint through an expression of
global constraints [23], i.e., high-level modeling abstractions that encapsulate the behavior of a
set of other constraints and therefore, allow defining more compact models, reducing the risk
of modeling errors, and increasing the efficiency when solving a CSP [22]. To be more precise,
the respective global constraints are taken from the catalog of global constraints as introduced
in [1]. Such formalization is required in order to detail how the constraints of a TConDec-R
process model are encoded when generating and implementing the respective CSP, i.e., the
related CSP-TConDec-R problem.

Examples 2, 3, and 4 depict how the formalization is done for three TConDec-R constraints
related to some time patterns. For this, we consider that each execution of TConDec-R activity
(cf. Def. 1) have both start time (st) and end time (et) properties. In addition, being S a set of
elements, we use the expression S.prop to denote the set of properties of the elements of S. For
example, the expression A.sacts.st represents the start times of the scheduling activities of A.

Example 2. (TConDec-R constraint related to TP1). TimeLagEndStart(A,B,Low,Up)
expresses that for each execution Ai of A there must exist at least one execution Bj of B in such
a way that there is a time lag of at least Low time units and at most Up time units between the
end time of Ai and the start time of Bj. Moreover, for each execution Bj of B there must exist at
least one execution Ai of A in such a way that there is a time lag of at least Low time units and
at most Up time units between the end time of Ai and the start time of Bj. We formalize

TimeLagEndStart(A, B, Low, Up) using constraint among_interval(Value, Variables, Low, Up)
from the Global Constraint Catalog [1]. This constraint states that Value corresponds to the
number of elements of Variables taking a value the is located within the interval [Low, Up]:

TimeLagEndStart(A, B, Low, Up)
 A,B: RepAtc
 Low,Up: int

forall(Ai in A.sacs){
 among_interval(1,B.sacts.st,Ai.et+Low, Ai.et+Up)
}
forall(Bi in B.sacts){
 among_interval(1,A.sacts.et,Bi.st-Low, Bi.st-Up)
}

Example 3. (TConDec-R constraint related to TP2). MaximumInstanceDuration(PI, D)
expresses that the execution of a process instance3 must not take longer than D time units. We
formalize MaximumInstanceDuration(PI, D) using constraint range(Variables, CTR, Value)
from the Global Constraint Catalog [1]. This constraint, in turn, states that the difference
between the maximum and minimum value of Variables must fulfill constraint 'CTR Value',
where CTR ϵ {=, ≠, <, ≤, >, ≥}:

MaximumInstanceDuration(PI, D)
 PI: sequence(RepAct)
 D: int

 range(PI.sacts.st ⋃ PI.sacts.et, ≤, D)

Example 4. (TConDec-R constraint related to TP4). DeadlineEnd(A,Date) expresses that all
executions of A should finish before Date. We formalize DeadlineEnd(A, Date) using global
constraint among_interval [1]. Note that the latter was already explained in the context of
Example 2:

DeadlineEnd(A, Date)
 A: RepAct
 Date: int

 among_interval(|A.sacts|, A.sacts.et, 0, Date)

The complete formalization of the TConDec-R constraints is available at
http://azarias.lsi.us.es/TCR/Formalization.pdf.

Based on the high-level constraints, the behavior of the TConDec-R constraints can be
monitored regarding a given trace (cf. Def. 3).

Example 5. (States of TConDec-R constraints). Figure 2 depicts the states of three TConDec-
R constraints (i.e., TimeLagEndStart(A,B,15,45), MaxInstanceDuration([A,B],90) and
DeadlineEnd(B,11:00)), regarding a set of events of a trace. As can be seen, activities become
active (ACT) after the "ts(act, i)" event (time start of the i-th instance of the activity act) happens
and become completed (COMPL) after the "tc" event (time completed) is done. In turn,
constraints can be in pending (PEND), satisfied (SAT) or violated (VIO) state.4 A constraint is
in satisfied state at time T if the trace fulfills such constraint at time T. However, it is in pending

3 For the sake of simplicity, a process instance is represented as a sequence of RepActs.
4 This paper uses the simplified activity life-cycle and constraint states discussed in [20]. In addition, for the sake of
clarity the resources are avoided in the example.

state if it is not satisfied but there is still a chance for satisfying it with future events. In case
that the constraint is impossible to be satisfied, it is in violated state. For instance, the first
constraint is pending between 10:00 and 10:30 since an instance of the activity B is started at
10:00 but there is not a complete event of an instance of activity A in the time interval [14,45].
Once the instance of activity A is finished at time 10:30, the constraint became satisfied. The
second constraint became violated at time 11:00 since the process instance continues after the
60 minutes. Finally, the last constraint is satisfied until the start event of the second instance of
B since it stats beyond the deadline 11:00.

Fig. 2. States of some example constraints.

4. Constraint-Based Software Tool
The tool presented in this paper is implemented as a client-server application (cf. Fig. 3). Both
sides can be deployed separately and connected through the REST API layer of the server.
Moreover, the client side (cf. Sect. 4.1) deploys a light-weight web interface for modeling
declarative business processes using the TConDec-R language. In turn, the server side (cf. Sect.
4.2) is in charge of (1) transforming the problem that is specified through the tool into a CSP
according to the solver, (2) launching the solver and (3) interpreting the solution which is
obtained by the solver.

Fig. 3. Proposed architecture.

4.1. Client Side

The client comprises an HTML-based user interface (cf. Fig. 4). It can be considered as a
light-weight client since it is only in charge of making the functionality offered by the server
accessible.

The user is enabled to create TConDec-R specifications by including activities and
constraints which are textually shown in the interface. In addition, previously created models
can be loaded from the server and edited in the client through the HTML-based interface. Once
models are defined and the resources which may be available in runtime are stated, different
actions can be performed.

Fig. 4. HTML-based user interface of the ModelChecker tool.

For checking the correctness of the model previously specified, the server is requested for
looking if the model can be instantiated or not. As explained latter, the server deploys a set of
CP mechanisms for addressing this task in the CSP module. In case that the CSP module finds
a solution, it means that the model is correct. In case that it explores the complete search space
and there is not a solution, it means that the model is incorrect. Finally, in case that the CSP
module is not able to find a solution in the given time,5 it means that the model is too complex
and the solver needs more time to elevate a conclusion beyond that.

Similar to the previous point, in order to generate traces for a given model the server will
look for an instance regarding such model. In case that the model is correct, the user receives
the trace which is calculated by the CSP module.

Finally, for checking the conformance of the model with a trace (or partial trace), the server
will look for an instance regarding such model where all the evens of the given trace are
reproducible on the instance. In case that the CSP finds a solution, it means that the
conformance is checked.

4.2. Server Side

The server comprises two parts. First, the REST API which exposes the functionality in a way
that it can be consumed by any client independently of the language in which it is implemented.
In summary, such interface offers a series of endpoints that can be accessed via HTTP requests
which trigger the different supported functionalities.
 Second, the logic which eventually implements the desired functionality. For this, two
different main modules are implemented. On the one hand, for managing the models there is an
independent module which is in charge of that part (cf. TCR Models module in Fig. 3). Models
can be created, retrieved, updated or eliminated from the system. Such module is written in Java
language and stores the information in a local database.
 On the other hand, the CSP module is in charge of the complex tasks, i.e., checking the
correctness of models, generating traces and checking the conformance of traces. With the aim
to make the architecture independent of a CSP language, this module implements inner
connectors to the CSP solvers. Therefore, the CSP module first transforms the desired complex
task into a CSP. Secondly, the module orchestrates the necessary executions of the solver.
Finally, the solver solutions are gathered to compose the solution of the complex task which is

5 Since the considered problems present a NP complexity, a time limit is established when solving the CSPs.

returned by the module. Part of this module is written in Java while other parts are written in
different solver languages. Currently, ILOG CPlex [11] is used as a solver.

5. Empirical Evaluation
This section describes the evaluation which was performed to assess the suitability of the
proposed constraint-based tool to deal with the considered problems, i.e., generating traces and
check their conformance.
Objects: Different TConDec-R models with different complexities are generated. Figure 5
shows the TConDec-R representation of the generic models 10A, 10B, 10C, 20A, 20B, and
20C. There are some activities that are involved in an Existence constraint, which means that
such activities must be repeated several times. We have considered 15, 30 and 60 repetitions,
i.e., N ϵ {15,30,60}. Regarding the number of available resources, in turn, for all the generated
test models, two available resources of two kinds of roles (i.e., R1 and R2) are considered.
Moreover, random durations and resource requirements are considered for each activity. In
addition, the activity relations which are specified in the generic models are randomly
instantiated using TConDec-R templates, i.e., Relation and Temporal are substituted by any
non-temporal and temporal TConDec-R template respectively. Specifically, in order to average
the results over a collection of randomly generated TConDec-R models, 30 test models are
randomly generated for each generic TConDec-R model by varying activity durations between
1 and 10, role of required resources between R1 and R2, and TConDec-R templates.6 In
summary, 6*3*30 = 540 different synthetic TConDec-R models are considered.

Fig. 5. Generic synthetic TConDec-R models

Independent Variables: For the empirical evaluation M (i.e., the generic TConDec-R model
with the values {M10A,M10B,M10C,M20A,M20B,M20C}) and N (i.e., the value for the label N
of the Existence constraints in the models with the values {15,30,60}) are considered as
independent variables.
Response Variables: The evaluation is done regarding: (1) the percentage of models which are
unknown, i.e., those whose related CSP has not been solved in the given time limit (i.e.,
%NonSol), (2) the percentage of models which are incorrect, i.e., those whose related CSP is
not satisfiable 7 (i.e., %NotSat), (3) the average time for checking the correctness of models
when they are not satisfiable (i.e., TNotSat), (4) the average time for checking the correctness
of models when they are satisfiable (i.e., TSat), (5) the average time for the checking the

6 The set of objects which are used are available at: http:\\azarias.lsi.us.es\TCR\EmpiricalObjects.zip
7 The satisfiability of the models can be only ensured if the CSP solver explores the complete search space before
reaching the time limit.

conformance of short traces (i.e., TShort), (6) the average time for the checking the
conformance of medium traces (i.e., TMed), and (7) the average time for the checking the
conformance of long traces (i.e., TLong).8
Experimental Design: 540 models are generated by considering different values for M (6
values), N (3 values) and the random generation of durations, required resources and templates
(30 models). For each model, a solver which is created following the transformations described
in Sect. 3 is executed until a time limit is reached. If the solver finishes before finding a solution
(i.e., the model is unknown), the response variable %NonSol is collected. In case that it explores
the complete search space and no solution is found (i.e., the model is incorrect), the response
variables TNotSat and %NotSat are collected. In the contrary, when a solution is found, the
response variables TSat and the solution of the solver (i.e., a complete trace) are collected. After
that, in the case of correct models, the solver is then used to check the conformance of a trace
which is created using the 25%, 50% and 75% of the solution collected previously and then,
the response variables TShort, TMed, and TLong are collected. Finally, the final values of all
the response variables consider the average of the 30 models.

Table 2. Average values related to the experimental executions (5-seconds time limit).

Experimental Execution: The complete approach is run in an Intel® Xeon® CPU E5530,
2.4GHz, 32GB memory, running Windows Server 2012.The ILOG CPLEX System [11] is used
to solve the created constraint-based problems. The solver is run until a 5-seconds CPU time is
reached.
Experimental Results and Data Analysis: Table 2 shows for each problem (i.e., M and N),
the average values of the response variables. As can be seen, the approach is able to deal with
most of the models in the given time limit (cf. column %NonSol). However, there are some
cases (cf. M10A and M10B with N=60) where the related CSPs result too complex to be solved
and thus, more time would be need to conclude if such models are correct or not. As expected,
the percentage of incorrect models (cf. column %NotSat) that are created increases with the
complexity of the problems since there are more chances of a constraint being in conflict with
others. This is because models are generated randomly. For instance, for the simplest models

8 In this context, short, medium and long traces consist of traces with the initial 25%, 50% and 75% of the events of
a full trace respectively.

(i.e., M10A), there are less than 30% of incorrect models, however, more than 90% are
generated for the most complex ones. It is important to note that the approach is able to detect
that such models are incorrect in less than one second in all the cases (cf. column TNotSat). In
turn, as depicted in column TSat, generating a complete trace (i.e., checking the correctness) of
a correct model is more time consuming than of incorrect one. Nonetheless, it remains below 3
seconds in most of the cases. As expected, checking the conformance of traces is faster than
generating new traces since the complexity of the CSP decreases as the size of the trace
increases (cf. columns TShort, TMed and TLong). In general, the results show that providing
support for declarative models is rather fast using the current proposal.

6. Conclusion
In the current work, we build upon a declarative business process modeling language which

allows specifying sophisticated temporal constraints, i.e., the TConDec-R language [3].
Although there exists related work on declarative BP modeling [7, 18, 20, 24], only few
approaches pay attention to the temporal perspective from a wider point of view. Unlike
TConDec-R, existing works do not consider other requirements such as the support of
constraints that may refer to a calendar or schedule, and time-based constraints.
Taking the TConDec-R language [3] as basis, this paper is focused on the definition of
TConDec-R process models based on high-level elements from the constraint programming
paradigm. Such a definition allows applying a variety of CP algorithms in order to provide
support for the TConDec-R models, e.g., checking the correctness of a model or generating
execution traces.
For providing a validation of the approach, a constraint-based tool has been described and
implemented to support the TConDec-R models.9 Such a tool allows (1) modeling scenarios
through the TConDec-R language, (2) checking if the scenarios are correctly modeled, i.e., they
can be instantiated, (3) generating valid execution traces according to such models, and
(4) checking the conformance of execution traces.
In addition, to demonstrate the suitability of the presented approach, a set of synthetic examples
of a variety of complexities are considered in an empirical evaluation.
We strongly believe that the proposed approach can be successfully applied in many
sophisticated scenarios for enabling flexible process support. This is faced by integrating the
high-level abstraction of BP in the CP context and contributes on improving the maturity of the
declarative technology.
As future work, we will investigate the use and validation of constraint-based algorithms to
improve the support to TConDec-R in several respects, e.g., to provide personal schedules or
generate time predictions. In addition, we will further extend the proposed approach by
considering the data perspective of business process as well. Furthermore, it is planned to
extend the evaluation by considering real scenarios.

References
1. Global Constraint Catalog. http://sofdem.github.io/gccat/. Accessed April 22, 2018
2. C. Arevalo, M.J. Escalona, I. Ramos, and M. Domínguez-Muñoz. A metamodel to

integrate business processes time perspective in bpmn 2.0. Information and Software
Technology, 77:17–33, 2016.

3. I. Barba, A. Lanz, B. Weber, M. Reichert, and C. Del Valle. Optimized time
management for declarative workflows. In Enterprise, Business-Process and
Information Systems Modeling, volume 113 of LNBIP, pages 195–210. Springer
Berlin Heidelberg, 2012.

9 It is available at http://azarias.lsi.us.es/TCR/ModelChecker

4. I. Barba, B. Weber, C. Del Valle, and A. Jimenez-Ramirez. User recommendations for
the optimized execution of business processes. Data & Knowledge Engineering,
86(0):61 – 84, 2013.

5. D. Borrego and I. Barba. Conformance checking and diagnosis for declarative business
process models in data-aware scenarios. Expert Systems with Applications,
41(11):5340–5352, 2014.

6. Business Process Model and Notation (BPMN), Version 2.0. urlhttp://
www.omg.org/spec/BPMN/2.0/, 2011. Accessed April 22, 2018

7. A. Burattin, F.M. Maggi, and A. Sperduti. Conformance checking based on
multiperspective declarative process models. Expert Systems with Applications,
65:194–211, 2016.

8. P. Dadam, M. Reichert, and K. Kuhn. Clinical workflows - the killer application for
process-oriented information systems? In BIS 2000, pages 36–59. Springer, 2000.

9. Johann Eder, Euthimios Panagos, and Michael Rabinovich. Time constraints in
workflow systems. In Advanced Information Systems Engineering, volume 1626 of
LNCS, pages 286–300. 1999.

10. T. Hildebrandt, R.R. Mukkamala, T. Slaats, and F. Zanitti. Contracts for
crossorganizational workflows as timed dynamic condition response graphs. The
Journal of Logic and Algebraic Programming, 82(5):164–185, 2013.

11. IBM. CPLEX CP Optimizer. http://www-01.ibm.com/software/commerce/
optimization/cplex-cp-optimizer, 2016. Accessed April 22, 2018

12. Y. Jiang, N. Xiao, Y. Zhang, and L. Zhang. A novel flexible activity refinement
approach for improving workflow process flexibility. Computers in Industry, 80:1–15,
2016.

13. A. Jimenez-Ramirez, I. Barba, Weber, B., and C. Del Valle. Generating optimized
configurable business process models in scenarios subject to uncertainty. Information
Software Technology, 57:571–594, 2015.

14. D. Knuplesch, M. Reichert, and A. Kumar. A framework for visually monitoring
business process compliance. Information Systems, 64:381–409, 2017.

15. A. Lanz, M. Reichert, and B. Weber. Process time patterns: A formal foundation.
Information Systems, 57:38–68, 2016.

16. A. Lanz, B. Weber, and M. Reichert. Time patterns for process-aware information
systems. Requirements Engineering, 2012.

17. Z. Liu, S. Fan, H.J. Wang, and J.L. Zhao. Enabling effective workflow model reuse: A
data-centric approach. Decision Support Systems, 93:11–25, 2017.

18. F.M. Maggi and M. Westergaard. Using timed automata for a Priori warnings and
planning for timed declarative process models. International Journal of Cooperative
Information Systems, 23(1), 2014.

19. M. Montali. Specification and Verification of Declarative Open Interaction Models: a
Logic-Based Approach. PhD thesis, Department of Electronics, Computer Science and
Telecommunications Engineering, University of Bologna, 2009.

20. M. Montali, F.M. Maggi, F. Chesani, P. Mello, and W.M.P. van der Aalst. Monitoring
business constraints with the event calculus. ACM TIST, 5(1):17, 2013.

21. M. Pesic. Constraint-Based Workflow Management Systems: Shifting Control to
Users. PhD thesis, Eindhoven University of Technology, Eindhoven, 2008.

22. J.C. Régin. Global constraints: A survey. In Hybrid optimization, pages 63–134.
Springer, 2011.

23. F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Programming.
Elsevier, 2006.

24. W.M.P. van der Aalst, M. Pesic, and M.H. Schonenberg. Declarative workflows:
Balancing between flexibility and support. Computer Science - Research and
Development, 23(2):99–113, 2009.

25. M. Weske. Business Process Management: Concepts, Languages, Architectures.
Springer, 2007.

	A Constraint-Based Approach for Managing Declarative Temporal Business Process Models
	1. Introduction
	2. Background
	2.1. Constraint-Based Process Models
	2.2. Modeling Constraint-Based Process Models as Constraint Satisfaction Problems

	3. Defining TConDec-R Process Models based on High-level Elements from Constraint Programming
	4. Constraint-Based Software Tool
	4.1. Client Side
	4.2. Server Side

	5. Empirical Evaluation
	6. Conclusion
	References

