
Journal of Software Engineering and Applications, 2014, 7, 506-512
Published Online May 2014 in SciRes. http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2014.76047

How to cite this paper: Salido, A., et al. (2014) Tests Management in CALIPSOneo: A MDE Solution. Journal of Software En-
gineering and Applications, 7, 506-512. http://dx.doi.org/10.4236/jsea.2014.76047

Tests Management in CALIPSOneo: A MDE
Solution
Alberto Salido, Julián Alberto García García, José Ponce, Javier Jesús Gutierrez
Software Engineering and Early Testing Group, Universidad de Sevilla, Sevilla, Spain
Email: alberto.salido@iwt2.org, julian.garcia@iwt2.org, josepg@us.es, javierj@us.es

Received 3 March 2014; revised 2 April 2014; accepted 10 April 2014

Copyright © 2014 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
Testing in Software Engineering is one of the most important phases although, unfortunately, it
cannot be always successfully fulfilled due to time constraints. In most cases, the development
phase takes more time than it was estimated, entailing negative effects on the testing phase. The
delay increases even more in Research and Development (R + D) projects, where the real time to
execute tasks is more difficult to control. Model Driven Engineering (MDE) offers a solution to
avoid testing costs without affecting the execution quality of the applied test. This paper presents
a practical overview of a Model Driven Testing (MDT)-based methodology and its impact on CA-
LIPSOneo project, which was carried out in liaison with Airbus Defense and Space and, particularly,
with the Product Lifecycle Management (PLM) department.

Keywords
Model-Driven Testing, Model-Driven Engineering, Product Lifecycle Management

1. Introduction
Test phase is a key point in software development. A good definition of tests will ensure the created software
quality. Unfortunately, Software Engineering does not include for this proposal any specific methodology that
ensures the expected results of this phase. Taking into account the authors’ experience, test phase is usually
avoided when the project undergoes any delay, what reduces the amount of tests executed as well as their quali-
ty.

In the particular case of Functional Tests, people who do not participate in the requirement elicitation, for in-
stance programmers, frequently describe them. Consequently, they sometimes approve some functional tests that
do not satisfy the initial needs previously defined.

Model-Driven Testing [1] is one of the initiatives applied when looking for a solution to these aspects. This

http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2014.76047
http://dx.doi.org/10.4236/jsea.2014.76047
http://www.scirp.org/
mailto:alberto.salido@iwt2.org
mailto:julian.garcia@iwt2.org
mailto:josepg@us.es
mailto:javierj@us.es
http://creativecommons.org/licenses/by/4.0/

A. Salido et al.

507

paradigm can help producing the development phase systematically and independently, by decreasing the num-
ber of generated tests.

Model-based testing is application of model-based design for designing and optionally also executing artifacts
to perform software testing or system testing. Models can be used to represent the desired behavior of a System
Under Test (SUT), or to represent testing strategies and a test environment.

A model describing a SUT is usually an abstract, partial presentation of the SUT’s desired behavior. Test cases
derived from such a model are functional tests on the same level of abstraction as the model. These test cases are
collectively known as an abstract test suite. An abstract test suite cannot be directly executed against an SUT
because the suite is on the wrong level of abstraction. An executable test suite needs to be derived from a cor-
responding abstract test suite. The executable test suite can communicate directly with the system under test.
This is achieved by mapping the abstract test cases to concrete test cases suitable for execution. In some mod-
el-based testing environments, models contain enough information to generate executable test suites directly. In
others, elements in the abstract test suite must be mapped to specific statements or method calls in the software
to create a concrete test suite.

This work presents the aforementioned idea in the context of NDT methodology (Navigational Development
Techniques) [2], but it is analyzed in a specific use case: CALIPSOneo project. This project has a special beha-
vior and it is defined by means of PLM (Product Lifecycle Management) solutions [3].

CALIPSOneo is an ambitious project based on PLM (Product Lifecycle Management). Its main objective is
the design of a new PLM methodology to conform to a PLM collaborative design and the required development
of the software that satisfies that concept. This methodology allows defining, simulating, optimizing and vali-
dating the aeronautical assembly processes in a 3D virtual environment before these processes are implemented
in a real shop floor. CALIPSOneo is subdivided into three individual subprojects, in order to effectively manage
the work needed to complete it. These subprojects are: MARS (Automated Shop-Floor Documentation Updating
System), PROTEUS (Process Structure Generation and Use) and ELARA (Generalization to Assembly Oriented
Authoring Augmented Reality).

These subprojects are independent and teams involved in each of them also differ. However, subprojects have
to be coordinated and they have to be correctly integrated because they have common actors who demand com-
mon functionality.

This paper is structured as follows. After this introduction, Section 2 analyzes the context of Test Driven En-
gineering. Then, Section 3 offers an overview of CALIPSOneo project and its methodological context and Sec-
tion 4 studies the real application of our solution to that project. Finally, this paper states the conclusions ob-
tained and presents our future work.

2. Model-Driven Testing
Everyday, Model-Driven Testing is becoming more standardized to perform software tests. One option to suc-
cessfully run this task is to focus it on the standard UTP [4], according to the methodology introduced by Dai [5]
which deals with the use of U2TP to transform system models in UML into Testing Models by means of trans-
formation queries Query/View/Transformation-QVT.

As the previous figure represents, Independent Platform Models (IPM) can be transformed into Specific Plat-
form Models (SPM), getting the code from the systems derived from SPM through another transformation step.
Once the system has been designed, it can be transformed into System’s Test (IPT). The quality team will enrich
these tests to provide additional information. Next, the SPM, which contains specific information about the im-
plementation of the system, can be translated into Specific Platform Test (SPT), using the previous information
from IPT and the knowledge of the quality team. Finally, these test are generated into code for testing the system,
ensuring the quality of the test and covering all the requirements of the project.

U2TP allows concepts to develop requirements and tests models for black-box tests [6]. The profile introduc-
es four groups of logical concepts, covering the following aspects: Test Architecture, Test Behavior, Test Data
and Time consumed. All these concepts define together a modeling language to visualize, specify, analyze, build
and document a testing system.

There are some studies on methodologies that modify the UML metamodel providing the testing oracle with
additional information from the sequence tests diagram: As a sequence diagram, it belongs to a relevant scenario
that must be populated. Such diagram is fulfilled with information on the expected result and the initial state [7].

A. Salido et al.

508

However, the Test Driven Models concept has been applied to many contexts. [8] presents a comparative
study which analyzes how some proposals cope with the systematically generation of software tests, functionally
tests, in this case. Some of these proposals start with requirements models to become functional tests models.

Despite the proposal we present along this paper, we have found another [9] based on Figure 1. It begins with
a functional requirements model, that consists in an instance of a metamodel defined, and QVT transformations
outline the functional tests. This proposal constitutes the starting point of our work, which will be then adapted
to CALIPSOneo project.

3. CALIPSOneo
The next paragraphs offer an overview of CALIPSOneo project, as well as the way the test phase has been ap-
proached.

3.1. Project Overview
CALIPSOneo (Advanced Aeronautical Solutions Using PLM Processes & Tools) is a project leader by Airbus
whose main goal is to identify a working methodology that may allow engineers to define, simulate, optimize
and validate aeronautical assembly processes on a 3D environment, before being executed in a real assembly
line. This takes place through an integral process of requirements recollection, and the customization and use of
the existing PLM software available. The definition of this methodology has been based on the design and as-
sembly process of the Fan Cowl which is the code name of the piece that covers the airplane engine. Figure 2
shows graphically the situation of this piece.

Independent
Platform Model

(IPM)

Specific Platform
Model (SPM)

System’s Code

Independent
Platform

Test (IPT)

Specific Platform
Test (SPT)

System’s Code
for testing

System Design Model Testing Design Model

Figure 1. Proposed used in the U2TP profile.

Figure 2. Fan cowl overview.

A. Salido et al.

509

Some years ago, several analyses were conducted on PLM methodology, concluding that there are many ad-
vantages for Airbus Defense and Space [10]. The knowledge obtained from such analyses help CALIPSOneo
team compile the different requirements for the project, the management plans for the requirements and re-
quirements’ track matrix to meet the needs achieved for the PLM business. Therefore, CALIPSOneo covers both,
the design of a new PLM methodology, adjusted to a collaborative PLM solution, and the development of pro-
totypes that satisfy this concept.

CALIPSOneo is divided into three sub-projects with the aim of managing effectively the work to be per-
formed in order to finish the project. This enables the project scope to be managed in a more efficient way, as the
different crews are working on the needed tasks to run the project. The three sub-projects are: MARS (Auto-
mated Shop-Floor Documentation Updating System), PROTEUS (Process Structure Generation and Use) and
ELARA (Generalization to Assembly Oriented Authoring Augmented Reality).

ELARA project’s goal is to design a software solution that makes developers work easier by means of Aug-
mented Reality. The expert can visualize the task to perform in 3D on the real image of the work zone, using the
tablet PC video camera. This 3D information comes from iDMU (industrial Digital Mock Up) [11] and the data
obtained from MARS system. The final result will be an industrial prototype that will be used in the fan cowls
assembly line for Airbus A320neo.

PROTEUS is responsible for identifying the main structure that interconnects products, processes and re-
sources, also called PPR, and creating iDMU information. Nowadays, people who design products and people
performing assembly operations work in different environments. Nevertheless, as the product is a strong re-
quirement for the assembly process, any change it undergoes will influence the team who is working on such
process. PROTEUS merges both areas through the Manufacturing Hub; a database that stores information on the
products and resources created by the design team, and shows it updated to the processing team.

Finally, MARS system uses the iDMU information PROTEUS generates, elaborating Work Instructions au-
tomatically, for workers to perform correctly their job. MARS is strongly connected with PROTEUS, adding the
necessary documentation to carry out assembly tasks. MARS, will generate the shop-floor information, even as
2D or 3D document.

Despite each project previously described has well defined objectives and a clear working scope, it is neces-
sary to emphasize that a great integration level is demanded along its development, in order to guarantee that all
information among the systems is always correct and coherent.

3.2. Methodological Environment
NDT methodology [2] has been used to get the three CALIPSOneo sub-projects’ goals. This methodology is
covered over the MDE paradigm, but for the testing phase, it uses an extension totally focused on the proposal
suggested by [9], previously referred in Section 2.

Currently, NDT controls and defines a set of metamodels for each phase of the software development life-
cycle: Viability study, Requirements, Analysis, Design, Implementation, Testing and Maintenance. In addition, it
has a set of QVT transformation rules that makes it possible to generate one model from the others systemati-
cally. This implies a lower cost for the software development.

However, it is necessary to have a tool that automates the whole process, in order to get all the potential of
NDT and make it practical and useful to the enterprise environment. For this aim, NDT has a set of tools called
NDT-Suite1 [12], which, in turn, is composed of the following tools: 1) NDT-Profile, that defines UML profiles
in Enterprise Architect2 for each NDT metamodel; 2) NDT-Quality [13], that allows measuring, automatically,
the quality of use of this methodology at each of the software lifecycle phases and checking the correct track of
the MDE rules defined in NDT; and 3) NDT-Driver [14], that mechanically follows all QVT rules defined in
NDT.

In the last years, NDT has evolved and it actually offers an effective and global work frame for the practical
application of NDT, called NDTQ-Framework3. This work frame covers a set of processes that takes place in
software development processes, quality processes, testing processes, management and security processes.
NDTQ-Framework is based on different reference models, for instance, CMMi (Capability Maturity Model In-

1Available on http://www.iwt2.org.
2Available on www.sparxsystems.com.au.
3This paper presents, on detail, NDTQ-Framework, but can be found more information on http://www.iwt2.org.

http://www.iwt2.org/
http://www.sparxsystems.com.au/
http://www.iwt2.org/

A. Salido et al.

510

tegration) [15] and ITIL (Information Technology Infrastructure Library) [16] [17]. Different standards, such as
ISO 27001, ISO 9001:2008, UNE EN 16602 and ISO 14000 certify its application to real projects.

It has been impossible to apply NDT methodology directly because of CALIPSOneo project peculiarities. In
consequence, we have adapted it for this context, what has provided great results. The modifications carried out
are listed below:

On the one hand, as mentioned before, CALIPSOneo is a project consisting of three sub-projects, thus, this
aspect has motivated the adaptation of MDE transformation rules of NDT to support the integration and coordi-
nation of these projects.

On the other hand, due to CALIPSOneo has delved into a methodological PLM context, it has developed too
few software. Therefore, NDT-Quality Profile provides an agile work environment for work teams. Besides, due
to the amount of documentation generated on the project, it was necessary to utilize a documental repository
based on ECM4 tools. The methodology offers the possibility of tracking the documents generated as well as
requirements.

4. Test Phase and Results
CALIPSOneo uses NDT-Driver tool, one of the supporting tools of NDT, for the testing phase. This way, it is
viable to generate, systematically and automatically, the set of system tests from the functional requirements of
each CALIPSOneo sub-project.

The execution process of the tests is adapted in accordance with the typology of the project, that is to say, as
commented before, that PROTEUS and MARS projects have a methodological nature, whereas ELARA is a
software development project.

The validation process in methodological projects comprises three phases. Figure 3 schematically shows the
whole methodological validation process; revision phase, validation phase according to NDT rules, preliminary
phase and exhaustive phase.

At the validation phase, the testing team carries out tasks as a technical quality office, reviewing and validat-
ing each testing plan (using NDT-Quality) developed by the software’s providers in the project. These testing
plans are generated, at first, as a draft and they are stored in the documental repository of the project. These
quality activities allow the development team to work in parallel and in collaboration with the testing team, re-
ducing time and obtaining exhaustive test plans.

After designing the testing plan (approximately 3/4), the testing team starts with the next phase, the prelimi-
nary test phase, where the main objective is to find out the largest number of incidences. At this phase, the test-
ing team has to reproduce each of the activities identified in the methodological document developed within
MARS or PROTEUS contexts. For instance, MARS project defines a methodological process to generate Work
Instructions, either in Word (to be printed in paper) or in 3DXML (to be rendered in a tablet PC or a computer)
documents. These work instructions streamline the task each worker must carry out.

Finally, when the test plan is almost completed (at 90 per cent or more advanced), the testing team performs
the exhaustive testing phase with the aim of getting the final acceptance of each methodological proposals de-
fined in MARS and PROTEUS.

Once the last phase of the testing cycle in CALIPSOneo finishes, the testing team writes a testing report with
the results, providing the tests typology, the data used and a detailed description of either the incorrect or suc-
cessful results.

During this phase, and as an added value, the testing team suggests that improvements must be optimized in
the methodological process defined.

The application of these testing phases ensures the constant validation of documents as they are developed
and it also contributes to implement deliverables quality. This way, the testing phase is boosted up, even being
the phase with more cuts over the planning time when projects are out of date.

The testing phase in ELARA project is faced up from a different perspective, but taking into account the me-
thodological bases of NDT. In this case, each testing case is defined using different variables and situations, in
which the software must guarantee functionality. For instance, ELARA project has a matching module, which
using the tablet PC camera and a virtual model (obtained from the iDMU), synchronizes the real image with the

4ECM [18] is the acronym for Enterprise Contents Management and the solution used in the CALIPSOneo context was Alfresco. More in-
formation is available on the Website.

A. Salido et al.

511

Figure 3. Test phase diagram.

virtual image, helping the shop floor workers perform their assembly tasks dynamically and without errors.

One of the most serious problems we have found out during the test phase of CALIPSOneo project is the low
maturity of the diagrams outlined in the analysis and design phases, having as a consequence a test case that
does not totally cover all the functional requirements needed. This fact has led the team towards redefining the
requirements diagrams and regenerating them again with NDT/Driver.

To conclude, it must be stated that NDT-Suite is efficient in industrial projects, even in Software or Methodo-
logical Environment, as it improves the specification of the statement “What is wanted to be obtained” and per-
mits its development and validation.

5. Conclusions
This paper presents an analysis of the work performed in the context of CALIPSOneo project, by applying
Model Driven Engineering to handle the work run through functional tests.

This work provides us with the possibility of validating our research project in a real context. NDT is a pro-
posal applied in many real contexts, but PLM context has several special characteristics that made it attractive to
certify the validation of NDT in this environment.

Regarding the executed work, we can conclude that our proposal offers a valid solution, but requires a lot of
manual activities from people directing the project and the testing team.

CALIPSOneo allows us to identify a set of requirements to improve our proposal. We have confirmed the
importance of determining correctly the system’s requirements to guarantee well-defined tests. This has offered

A. Salido et al.

512

us a new way to research on any characteristics of NDT-Suite. NDT-Suite includes NDT-Quality, which vali-
dates the quality of the artifacts defined by NDT. We have planned to investigate whether we could enrich it to
schematize, or even automate the functional revision of requirements for the first phases of the software life-
cycle.

Other aspect that must be improved is the concrete definition of PLM context, this way we will raise tools to
manage tests.

Acknowledgements
This research has been supported by MeGUS project (TIN2013-46928-C3-3-R) of the Ministerio de Ciencia e
Innovación and NDTQ-Framework project (TIC-5789) of Junta de Andalucía, Spain, and CALIPSOneo Project.
This paper has also been supported by the Universia Foundation through its student grant for PhD students.

References
[1] Bertolino, A., Marchetti, E. and Muccini, H (2005) Introducing a Reasonably Complete and Coherent Approach for

Model-Based Testing. Electronic Notes in Theoretical Computer Science, 116, 85-97.
http://dx.doi.org/10.1016/j.entcs.2004.02.084

[2] Escalona, M.J. and Aragón, G (2008) NDT: A Model-Driven Approach for Web Requirements. IEEE Transactions on
Software Engineering, 34, 370-390.

[3] Stark, J. (2011) Product Lifecycle Management: 21st Century Paradigm for Product Realisation. Springer London,
London. http://dx.doi.org/10.1007/978-0-85729-546-0_1

[4] Object Management Group (OMG) (2011) UML Testing Profile. http://utp.omg.org/
[5] Zhen, D.R. (2004) Model-Driven Testing with UML 2.0. Proceedings of the 2nd European Workshop on Model Dri-

ven Architecture, Canterbury, Canterbury, September 2004, 179-187.
[6] Beizer, B. (1995) Black-Box Testing: Techniques for Functional Testing of Software and Systems. John Wiley & Sons,

Inc., Hoboken.
[7] Lamancha, B.P., Mateo, P.R., de Guzmán, I.G.-R. and Usaola, M.P. (2008) Propuesta para pruebas dirigidas por

modelos usando el perfil de pruebas de UML 2.0. Revista Española de Innovación, Calidad e Ingeniería del Software,
4, 36 Pages.

[8] Escalona, M.J., Gutiérrez, J.J., Mejías, M., Aragón, G., Ramos, I., Torres, J. and Domínguez, F.J. (2011) An Overview
on Test Generation from Functional Requirements. Journal of Systems and Software, 8, 1379-1393.

[9] Gutiérrez, J., Aragón, G., Mejías, M., Domínguez, F. and Cutilla, C.R. (2012) Automatic Test Case Generation from
Functional Requirements in NDT. WebRE 2012.

[10] Más, F., Ríos, J., Menéndez, J.L. and Gómez, A. (2013) A Process-Oriented Approach to Modeling the Conceptual
Design of Aircraft Assembly Lines. International Journal of Advanced Manufacturing Technology, 67, 771-784.

[11] Más, F., Gómez. A., Menéndez, J.L. and Ríos, J. (2013) Proposal for the Conceptual Design of Aeronautical Final As-
sembly Lines Based on the iDMU Concept. IFIP International Federation for Information Processing, 409, 10-19.

[12] García-García, J.A., Ortega, M.A., García-Borgoñón, L. and Escalona, M.J. (2012) NDT-Suite: A Model-Based Suite
for the Application of NDT. Web Engineering, 7387, 469-472.

[13] García-García, J.A., Victorio, J., García-Borgoñón, L., Barcelona, M.A., Domínguez-Mayo, F.J. and Escalona, M.J.
(2013) A Formal Demonstration of NDT-Quality: A Tool for Measuring the Quality using NDT Methodology. The
21st Annual Software Quality Management (SQM) Conference, Not Yet Published.

[14] García-García, J.A., Cutilla, C.R., Escalona, M.J., Alba, M. and Torres, J. (2011) NDT-Driver, a Java Tool to Support
QVT Transformations for NDT. The 20th International Conference on Information Systems Development (ISD 2011),
Edinburgh, 24-26 August 2010, 170-176.

[15] Chrissie, M.B., Konrad, M. and Shrum, S. (2011) CMMI® for Development: Guidelines for Process Integration and
Product Improvement. Editorial Pearson Education.

[16] Jong, A. and Kolthof, A. (2008) Fundamentos de ITIL, Volumen 3. Van Haren Publishing, Zaltbommel.
[17] (2013) Query/View/Transformation. www.omg.org/spec/QVT/1.1/
[18] Gilbert, M.R., Shegda, K.M., Chin, K., Tay, G. and Koehler-Kruener, H. (2012) Magic Quadrant for Enterprise Con-

tent Management.

http://dx.doi.org/10.1016/j.entcs.2004.02.084
http://dx.doi.org/10.1007/978-0-85729-546-0_1
http://utp.omg.org/
http://www.omg.org/spec/QVT/1.1/

	Tests Management in CALIPSOneo: A MDE Solution
	Abstract
	Keywords
	1. Introduction
	2. Model-Driven Testing
	3. CALIPSOneo
	3.1. Project Overview
	3.2. Methodological Environment

	4. Test Phase and Results
	5. Conclusions
	Acknowledgements
	References

