
SPECIAL SECTION ON BLOCKCHAIN TECHNOLOGY: PRINCIPLES AND APPLICATIONS

Received July 28, 2020, accepted August 17, 2020, date of publication September 3, 2020, date of current version September 21, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3021502

Model-Based Software Design and Testing in
Blockchain Smart Contracts: A Systematic
Literature Review
NICOLÁS SÁNCHEZ-GÓMEZ , JESUS TORRES-VALDERRAMA, J. A. GARCÍA-GARCÍA,
JAVIER J. GUTIÉRREZ, AND M. J. ESCALONA
Web Engineering and Early Testing Research Group, Escuela Técnica Superior de Ingeniería Informática, University of Seville, 41012 Seville, Spain

Corresponding author: Nicolás Sánchez-Gómez (nicolas.sanchez@iwt2.org)

This work was supported in part by the Spanish Government’s Ministry of Economy and Competitiveness through the Guided Solutions for
the Systematization of Early Quality Assurance in Software Engineering (POLOLAS) Project under Grant TIN2016-76956-C3-2-R, and in
part by the Andalusian Regional Ministry of Economy, Knowledge, Business and University through the Trop@ Project under Grant
CEI-12-TIC021.

ABSTRACT Blockchain technology promises to spark a real revolution. One of most important concepts
associated with this technology is smart contracts, which enable the automatic execution of agreements and
augur a world without intermediaries. The conditions and rules of ‘‘contracts’’ are established in a computer
codes and trust is enforced by consensus among the participants. One relevant feature associated with smart
contract is the immutability property, which establishes the non-alteration of blockchain network data after
the clauses of the contract are been approved by all parties or entities involved. For this reason, smart contract
development requires more effort and care than the development of other common programs. They require
systematic mechanisms to collect requirements and functional specifications. In addition, it is necessary
to verify and validate the agreed functionality and the implemented code before they are deployed in the
blockchain platform. This article presents a systematic literature review of primary studies in the field of
Software Development Life Cycle, focusing on model-based software design and testing in the blockchain
domain of smart contracts. This research aims to identify gaps and/or opportunities for further research. After
carried out this review, it was observed that no clear methodology exists for evaluating and validating the
quality either of this software or the overall development process. This means that software developers may
implement smart contract code in which bugs and serious security vulnerabilities appear when the software
is delivered to their customers.

INDEX TERMS Software engineering, software development life cycle, blockchain, smart contract, model-
based software engineering, software testing, systematic literature review.

I. INTRODUCTION
Blockchain technology has well-known benefits in many
areas (e.g., economic, political, humanitarian, or social,
among others) and could reconfigure many aspects of today’s
society [2]. Blockchain technology, based on distributed
ledger technologies (DLT), is a chain of cryptographically
linked blocks. This technology provides mechanisms to
define agreements using the concept of smart contract [61],
which is computer programs that run on blockchain net-
works without intermediaries. A smart contract, in the case of
legal agreement, tends to replace the printed document with

The associate editor coordinating the review of this manuscript and

approving it for publication was Srinivas Sampalli .

legal language. The software requirements that this computer
program must satisfy, from the engineering perspective, are
analogous to the terms, rules, and conditions in a conventional
legal contract. However, it is important to highlight that smart
contracts can encode automated agreement execution, but not
all smart contracts may necessarily be agreements and do
not always necessarily codify actions between more than one
party.

The first conceptualization of the smart contract term was
published by Nick Szabo in 1994 [66]. In this article, the
author defines a smart contract as a set of clauses, data and
protocols. These protocols implement algorithms to auto-
matically verify the fulfilment of each condition by each
party/entity involved in the contract. In this sense, these

164556 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-9102-6836
https://orcid.org/0000-0002-8742-5786


N. Sánchez-Gómez et al.: Model-Based Software Design and Testing in Blockchain Smart Contracts: A SLR

contracts are smarter than paper-based contracts because they
automatically enforce the obligations of the parties involved.
But a smart contract should not be seen as intelligent tools
that can parse a contract’s more subjective requirements.

On the other hand, it is important to note that the fact of
eliminating the need for a trusted third party significantly
reduces the transaction costs, that is, it facilitates the most
economic exchanges.

In this context, a set of important concepts will be intro-
duced:

• Software Development Life Cycle (SDLC) is a pro-
cess that defines good practices to document, develop,
maintain, and replace the software adequately [57]. As
mentioned above, smart contracts are also software.
Therefore, it is necessary to apply methodological pro-
cesses for eliciting their requirements and functional
specifications to improve their quality [36]. However,
to the best of our knowledge, there are currently no
guidelines for implementing smart contracts.

• One of the most important aspects, to consider in SDLC,
is the Software Testing because it allows improving the
quality of the software [28]. However, this testing phase
often becomes less important due to delays in devel-
opment. Then, it is usually performed at the end once
the coding phase is finished and before the software is
delivered to the customer. In this context, it is relevant to
start testing software as soon as possible when SDLC is
carried out. Early testing allows detecting many defects
soon what helps to increase quality and customer’s sat-
isfaction [14].

• Over last years, Model-Driven software engineering
[70] has become a practical, efficient, and successful
methodology for software design and testing. Many pro-
posals [7], [20], [21], [26] use this paradigm to define
software requirements in structured, comprehensible,
and formal models. This formalization allows estab-
lishing mechanisms to measure, check and verify these
requirements from early stages. In addition, the defini-
tion of these formal models facilitates the definition of
transformation rules to generate a test case systemati-
cally and automatically, and even software code asso-
ciated with these test cases [19]. These methodological
practices facilitate code reusability and the reduction of
human errors.

• Other important benefits achieved by Model-Driven
software engineering are: (1) systematized design, and
continuous software testing to increase software devel-
opment effectiveness, and (2) reusable models and
software code which can reduce costs and time in the
software development process.

In this context, this article presents the results of a study
that analyzes the state-of-the-art of research works in the
field of SDLC. Concretely, this study is focused on proposals
that address the Model-Based software design and testing for
smart contracts within blockchain domain. For this purpose,

FIGURE 1. Schedule of the systematic review followed in this article.

the Systematic Literature Review (SLR) method is used to
identify gaps and to offer future research guidelines related
to our research topic.

The rest of the paper is structured as follows: Section II
and III describe the method used for the systematic review
and its planning, respectively; After defining the review pro-
tocol to be applied, it is conducted presenting in Section IV
the results; Section V analyses and discusses the most rele-
vant findings; finally, SectionVI provides a set of conclusions
and suggestions for future works.

II. REVIEW METHOD
The present study was carried out using one of the SLR
methods most successfully and widely applied in software
engineering field. Specially, the Kitchenham’s method [30].
This method present rigorous stages to analyze research
knowledge using a trustworthy and auditable methodology.
Some authors, however, have criticizedKitchenham’smethod
and/or proposed improvements on this one [15], [31].

In the wake of these criticisms and suggestions for
improvement, Kitchenham published an updated version of
her method in [30]. But, at present, some authors [15] admit
that an important gap still exists regarding the evaluation of
quality in studies based on empirical methods.

This SLR follows the latest version of Kitchenham’s
method, referenced above. It describes three phases for exe-
cuting a systematic review: (1) planning, which defines
aspects such as the need for the research, review protocol
and research questions; (2) conducting, which the previously
established protocol is carried out; and (3) reporting, which
presents the final analysis to answer each research question.

Figure 1 shows these phases and their tasks on a timeline
to achieve research objective of this article.

III. PLANNING THE SYSTEMATIC REVIEW
This section describes the planning process conducted in this
SLR. During this process, the need to perform the review was
identified, the research questions (RQs) were formed, and the
review protocol was established and verified.

VOLUME 8, 2020 164557



N. Sánchez-Gómez et al.: Model-Based Software Design and Testing in Blockchain Smart Contracts: A SLR

A. THE NEED FOR THE REVIEW
Over the last few years, much researches around the world to
evaluate and identify challenges and obstacles to the appli-
cation of blockchain smart contracts in different fields. This
research has reported and evaluated the use of blockchain
technology in multiple processes and services in different
business areas (e.g., Internet of Things [39], Supply Chain
[55], [64], [68], education [74], agriculture [72] or health
[73], among others). In addition, one of the objectives of these
investigations has been identifying challenges and barriers of
this technology in different scenarios (e.g., quality [32], Big
Data [29] or e-government [4]).

In addition, some works partially related to our proposal
have been published. Alharby et al. [3], present a System-
atic Mapping Study (SMS) of technology-oriented research
in smart contracts. In this study, the authors followed the
method presented by Petersen et al. [52]. However, the pro-
cess followed is not well detailed which makes reproducibil-
ity difficult. Following the same method, Macrinici et al. [41]
propose an SMS to know the state-of-the-art in smart contract
applications within blockchain technology. Authors deeply
reviewed 64 papers identifying some gaps but, there is no
mention about testing. Leka et al. [35] develop an SLR but
the authors follow the SMS method mentioned earlier, they
do not follow the SLR process. Moreover, no explanation
about the execution is described and results cannot be repro-
ducible. Finally, Dhaiouir and Assar [17] present an SLR of
Blockchain-Enabled Smart Contracts, focusing on platforms,
languages, or applications among others. Again, there is no
mention about testing.

Conversely to the present literature, this article describes
an SLR carried out in the field of SDLC, in particular on smart
contract development life cycle. The focus is on the model-
based design and testing of blockchain smart contracts. More
specifically, we review the state of formal smart contract
modelling and automatic code generation, together with the
verification/validation of this code, in order to characterize
and present the state-of-the-art (approaches) in this field and
identify gaps and opportunities for further research.

B. RESEARCH QUESTIONS
Following Kitchenham’s method, RQs needed to be stab-
lished for clearly focus the research on the topic and improve
our understanding of the proposals being studied. The general
RQ guiding our whole SLR was: �What is the state-of-
the-art as regards blockchain smart contracts in software
engineering?�. If software engineering is applied, it is fun-
damental to have specific analysis and design methods, qual-
ity control through testing and metrics, security assessment
and overall development process. Therefore, this question
could be considered very general, so it was reformulated in
several more specific questions to provide a clear view of
the most relevant aspects of proposals addressing the collec-
tion of requirements and functional specifications, analysis,
design, coding and testing in the context of blockchain smart

contracts. Table 1 shows together the defined RQs with their
motivations and corresponding sub-questions. In addition, the
possible answers to be responded are described.

C. REVIEW PROTOCOL
After formulating each research question, the review proto-
col must be specified to define search strategies, inclusion
and exclusion criteria for primary studies (PS), and quality
criteria. This section aims to define these aspects.

1) SEARCH STRATEGY
The search strategy is the procedure followed to locate the
most relevant PS that have been indexed in different digital
libraries. In this sense, this strategy is focused on locating
papers published in peer-review journal and international
conferences. The search strategywas divided into two phases:
• Phase 1. The first phase consists of defining keywords
that are going to be used in the search protocol. This
definition has been performed after running different
pre-searches, which allow to refine the most appropriate
set of keywords. In this sense, it is important to obtain
appropriate keywords because these allow improving the
quality of the results. Table 2 presents the keywords used
in this SLR.

Equation1 = [(V 4
i=1Ai) ∧ (V 8

j=1Bj)] ∧ (V 2
k=1Ck )

Boolean expression of keywords (1)

• Phase 2. After defining keywords, these have been sys-
tematically used to carry out searches in different digital
libraries. For this purpose, keyword combinations have
been used as Equation 1 states. This formula formalizes
the boolean expression of the keywords used in the
searches.

Moreover, regarding digital libraries to be used, some authors
establish criteria to select the most appropriate libraries.
For example, Ngai et al. [48] propose more than ten dig-
ital libraries (i.e., Academic Search Premier, ACM Digital
Library, Emerald Full Text or IEEE Xplore Digital, among
others) considering their relevance. However, during the pro-
cess of carrying out preliminary searches, we noticed that
many papers were repeatedly returned by different digi-
tal libraries. After considering this fact, we decided to use
only the following databases: ACM Digital Library, IEEE
Xplore Digital Library, ScienceDirect, Elsevier’s Scopus, and
Springer Link. References were managed using the Jabref
tool [23] and a spreadsheet.

Equation2 = keyword(E1) ∧ abstract(E1) ∧ Title(E1)

Boolean expression for the metadata of a paper (2)

Once keywords and digital libraries were established,
search expressions were formalized using Equation 1 and
executed on each digital library. For this purpose, title-
abstract-keyword metadata of each paper were selected as
information sources. The use of these metadata is formalized
in Equation 2. Each digital library has its own syntax for

164558 VOLUME 8, 2020



N. Sánchez-Gómez et al.: Model-Based Software Design and Testing in Blockchain Smart Contracts: A SLR

TABLE 1. Research Questions (RQ).

TABLE 2. Keywords.

indicating custom search expressions. Moreover, they have
certain limits on the maximum number of logical clauses
in the same search. Therefore, Equation 2 was applied into
different queries. Table 3 shows each of the queries executed
in each of the databases selected in this SLR.

In addition, it was also necessary to extend each search
query using filters due to the considerable number of search
queries. These filters are provided by each digital library. For
example, scientific area, specific topic, and year of publica-
tion greater than or equal to 2016 were some of the filters
applied. Only from 2016, we started to identify paper that
enhanced the predefined search criteria. Although Ethereum,
for instance, was formally announced by Vitalik at The North
American Bitcoin Conference in 2014 [8], the Ethereum
network was not launched till 2015. In that year, develop-
ers began writing smart contracts and decentralized apps to
deploy on the live Ethereum network.

Finally, the previously defined systematic search protocol
has been extended using the ‘‘snowball’’ technique [71]. This
technique involves extending the search process to cover both
the reference lists and the citations in each paper under study.

Section IV-A describes in detail how the search strategy was
executed.

2) SELECTION PROCESS, EXCLUSION AND INCLUSION
CRITERIA, AND QUALITY ASSURANCE
This section defines the selection process of relevant papers,
which are going to be later analyzed considering the objec-
tives of this SLR. Three researchers are responsible for carry-
ing out this selection process. Table 4 summarizes each phase
conducted in the process of selecting papers for study.

Our selection process includes some face-to-face meet-
ings to offer a forum for discussion and agreement between
researchers when there are doubts to evaluate a paper. The
objective of these meetings is to reduce the bias of each
researcher. On the one hand, the first meeting each face is
made in the third phase (Ph3) of our selection process (see
Table 4). As mentioned above, this phase aims to resolve any
doubts when inclusion/exclusion criteria are applied. In these
cases, a full reading of dubious papers is necessary. After this
reading, all researchers decide — always jointly — to finally
include or exclude the PS. The decision must be joint to
avoid subjectivity. On the other hand, the second face-to-face
meeting (Ph5) is carried out after applying the ‘‘snowball’’
technique and its objective is also to resolve any doubts when
the papers returned by this technique are evaluated or when
exclusion/inclusion criteria are applied.

Regarding exclusion/inclusion criteria, we have estab-
lished some objective criteria which have been grouped by
each phase of the selection process (Table 5). In short, we con-
sider papers written in English and published in well-reputed

VOLUME 8, 2020 164559



N. Sánchez-Gómez et al.: Model-Based Software Design and Testing in Blockchain Smart Contracts: A SLR

TABLE 3. Search queries.

TABLE 4. Phases of the study selection.

journals (i.e., journals indexed in Journal Citation Reports;
JCR) or prestigious conferences (i.e., A*, A, B and C
conference level categorized in CORE Conference Rank-
ing). Regarding international conferences, we have consid-
ered conferences. Furthermore, we have decided to exclude
surveys, discussion, reviews or opinion papers related to
blockchain smart contracts.

Finally, Table 5 summarizes criteria defined to include and
exclude PS during the selection process.

3) QUALITY QUESTIONS
Quality Criteria (QC) were defined to obtain the best results
for future research. Table 6 shows the quality questionnaire
applied in this SLR. The cumulative score for each criterion
would make up the final quality score for each PS. It is impor-
tant to note that these quality criteria are not used to exclude
papers, but they are used to determine the most relevant and
representative PS in future research.

4) DATA SCHEMA
The analysis of each PS could become a difficult task due
to the heterogeneous information and different structures

TABLE 5. Exclusion and inclusion criteria per phase.

of each study. In this sense, we propose a characterization
scheme (see Table 7) to homogenize this analysis and reduce
the complexity of this task.

5) REVIEW PROTOCOL VALIDATION
Following the recommendations given in Kitchenham’s
method, the SLR protocol was reviewed to obtain a com-
prehensive review process. As mentioned above, some ran-
dom searches were applied to refine definitive keywords and
exclusion/inclusion criteria, among other aspects. However,
we decided to seek advice from experts in the conduct of
SLR to define a systematic, full and comprehensive process.
In this sense, a Full Professor in Software Engineering at

164560 VOLUME 8, 2020



N. Sánchez-Gómez et al.: Model-Based Software Design and Testing in Blockchain Smart Contracts: A SLR

TABLE 6. Quality criteria questionnaire.

TABLE 7. Data Scheme.

TABLE 8. Summary of PS considered in the systematic review.

the University of Seville (Spain) participated as an external
expert to validate our review protocol.

IV. CONDUCTING AND QUALITY RESULTS
This section aims to present the results obtained after exe-
cuting the review protocol defined in the previous section.
This section also presents the set of PS obtained, as well as
the quality score of each PS according to our quality criteria
questionnaire (cf. Table 6). Finally, Section IV-B describes
some threats to this work’s validation process.

A. DETECTION, SELECTION OF PRIMARY STUDIES (PS)
AND DATA EXTRACTION
Table 8 presents the distribution of PS obtained after applying
inclusion/exclusion criteria in each phase of the selection
protocol. For each digital library, it is showed the number of
papers thrown up in each stage of the review protocol. Table 8

also includes a record of papers obtained after the ‘‘snowball’’
technique had been applied (to streamline the handling of the
results, these papers were not classified by digital library).

Figure 2 graphically displays the evolution of the consid-
ered PS in the search protocol.

FIGURE 2. Papers retrieved using the digital libraries.

Figure 3 displays the number of PS retrieved from each
digital library, and finally included in the analysis divided by
the number of papers selected from all the digital libraries.

FIGURE 3. Analysis of results retrieved from each digital library as a
percentage of the total papers included.

B. THREATS TO VALIDITY
The review and validation protocol presented in previous
sections may involve weaknesses or threats on this protocol
because the tasks have been conducted by people. Due to this
human factor, the selection of papers could be affected by
errors during the process of classification and selection of PS.
These risks have been mitigated with the execution of several
iterations in the review process and several meetings between
researchers when there were doubts about the categorization
of any PS.

Although the review process has been exhaustively defined
and executed, it is not possible to guarantee full coverage of
the scientific literature about a topic (e.g., non-indexed papers
or grey literature are not considered in this SLR).

Moreover, Schmucker et al. [60] states that those types of
publications are very rarely relevant in SLR results. That is

VOLUME 8, 2020 164561



N. Sánchez-Gómez et al.: Model-Based Software Design and Testing in Blockchain Smart Contracts: A SLR

TABLE 9. Primary studies (PS) included in the SLR and their quality assessment scores.

why in our study the search terms were used in five online
digital libraries covering a wide range of topics enough to
be reasonably considered exhaustive for the research field
on which this SLR focused. Furthermore, it is important to
note that all authors have been involved in the definition of
the search protocol, RQs and search terms. This decision has
allowed to increase the objectivity of the review process.

V. DISCUSSION AND ANALYSIS
This section aims to answer and discuss each research ques-
tion to identify state-of-the-art weaknesses according to the
objective of this SLR.

A. RQ1. ARE THERE APPROACHES IN THE LITERATURE
THAT PROMOTE THE APPLICATION OF A SMART
CONTRACT DEVELOPMENT LIFE CYCLE? WHAT PHASES OF
THE LIFE CYCLE DO THE DIFFERENT PROPOSALS
PROMOTE?
Table 9 shows the PS that were found and finally included
in this SLR following all the quality criteria described in
Section III-C.

It is important to mention that the number of PS has not
been reduced after applying quality measurements. These
measures allow us to score the most relevant and represen-
tative PS for consideration in future research. In this sense,
Table 9 shows the quality score (chosen in the last column
of Table 9; SC column) for each PS. The maximum score for
quality measurement is ten points according to the criteria
established in Section III-C.

For instance, Grigg (PS15) proposes to use the Ricardian
contracts. A Ricardian contract places the defining elements
of a legal agreement in a format that can be expressed and

executed in software. This work is very relevant to be consid-
ered in future research. In this studies list, highlights several
papers as:

• Marchesi (PS01) proposes a software development pro-
cess to gather the requirement, analyze, design, develop,
test and deploy blockchain applications.

• Choudhury (PS03) provides a novel framework for auto-
generating smart contracts by enabling the seamless
translation of constraints encoded in knowledge repre-
sentation to blockchain requirements. This framework
uses ontologies and semantic rules to encode domain-
specific knowledge and then leverages the structure of
abstract syntax trees to incorporate the required con-
straints.

• Tateishi (PS04) proposes a technique to automatically
generate a smart contract from a human-understandable
contract document that is created using a document
template and a controlled natural language (CNL). The
automation is based on a mapping from the document
template and the CNL to a formal model that can define
the terms and condition in a contract including temporal
constraints and procedures.

• Mavridou (PS13) argues, in practice, the smart contracts
are riddled with vulnerabilities comprising a critical
issue. To facilitate the development of secure smart con-
tracts, we have created a framework, which allows devel-
opers to define contracts as finite state machines (FSMs)
with rigorous and clear semantics.

• Syahputra (PS19) discusses the development pro-
cess of a smart contract platform that aims to gen-
erate smart contracts for heterogeneous blockchain
technologies.

164562 VOLUME 8, 2020



N. Sánchez-Gómez et al.: Model-Based Software Design and Testing in Blockchain Smart Contracts: A SLR

• Mavrodou (PS22) introduces a framework for the formal
verification of smart contracts that are specified using a
transition-system based model with operational seman-
tics. This framework allows the generation of Solid-
ity code from the verified models, which enables the
correct-by-design development of smart contracts.

After the detailed analysis of numerous studies, it can
be said that software development practice has progressed
steadily, and many methods and models have been rec-
ommended to enhance its productivity and effectiveness.
Royce [58] is acknowledged as the first person to introduce
a methodology specifically conceived for software devel-
opment. Known as the waterfall model, this method was
subsequently redefined by many different organizations and
people, resulting in several variations known collectively as
SDLC methodology.

Despite the appearance of some new agile models it is
also important to mention that SDLC is still the most widely
used development methodology in most organizations [5].
Themain phases of SDLC are requirements gathering, system
analysis and design, coding, testing, deployment, and mainte-
nance. Table 10 shows the distribution of PS about the phases
they support, in the context of smart contract Development
Life Cycle.

As illustrated in Table 10, the most addressed phases by
authors were, respectively: (A1) Requirements gathering,
analysis or design phases (68%), (A2) Coding phase (40%),
(A3) Testing phase (28%), and (A4) Other phases (12%).

In these aspects, highlights the work of Marchesi (PS01)
and Tsai (PS05). Marchesi proposes a software develop-
ment process to collect the requirements, analyze, design,
develop, test and deploy blockchain applications. On the
other hand, Tsai (PS05) proposes a framework. This frame-
work has 5 stages: smart contract template development from
domain analysis, formal smart contractmodel and code devel-
opment from templates and verification/validation.

It can be concluded that the scientific community’s efforts
are currently aimed at implementing some kind of SDLC. But
in the smart contract context, this process consists only of
a certain number of unlinked phases, lacking in a common
vocabulary. These phases are not arranged in a clear order
of precedence and the inputs/outputs are not clearly defined
from one step to the next. In addition, there is no deterministic
‘‘definition of done’’ that can be used to confirm whether a
step is truly completed.

On the other hand, it is important to highlight the fact that,
despite its importance to efficient blockchain development,
the phase with the least impact in the literature is that of soft-
ware testing. Blockchain differs from other, traditional appli-
cations, requiring testers to address specific requirements and
acceptance criteria. Once a smart contract is implemented,
its execution cannot be reversed. This calls for robust testing
with emphasis on code debugging, but blockchain software
testing is a highly specialized domain which requires proven
expertise and a rigorous approach. Moreover, smart contract

TABLE 10. Distribution of primary studies (PS) in relation to the Smart
Contract Development Life Cycle phases.

testing involves simulating all possible expected and unex-
pected variables for every smart contract and for the triggers
that execute transactions.

Smart contract testing requires expert knowledge of
scenarios, business, and transaction variables specific to
blockchain networks. In this kind of network, with numerous
nodes and combinations, automatic testing should predom-
inate. Since smart contracts enforce a set of rules through
strong cryptography, it is also necessary to validate encryp-
tion codes using robust testing methodologies. Smart contract
testing is complicated and requires specialized validation
capabilities. Testers need QA (quality assurance software)
skills and API skills in addition to regulatory, business pro-
cess management, security, and compliance skills.

B. RQ2. DO THEY PROMOTE MODEL-BASED
ENGINEERING, EARLY STARTING OF THE TESTING PHASE
OR AUTOMATIC SMART CONTRACT GENERATION?
Since a few years ago, modelling tools [59] have been helping
document enterprise process functionality and using model
transformations to automate software code generation with
Unified Model Languages (UML) and other modelling stan-
dards. For example, Marchesi (PS01) and Syahputra (PS19)
make use of UML-Diagrams to describe the requirements of
the applications.

UML for testing, known as the UML 2.0 Testing Pro-
file (U2TP) [13] has also closed the gap between designers
and testers by providing a good reason for using UML for

VOLUME 8, 2020 164563



N. Sánchez-Gómez et al.: Model-Based Software Design and Testing in Blockchain Smart Contracts: A SLR

both system modelling and test specification. This allows
UML-Design documents to be reused for testing and, most
importantly, enables test development in an early phase of
system development.

Since models are usually easier to understand than soft-
ware source code [24], it also makes it possible to improve
development productivity and quality. It is easier to check the
correctness of a model, and modelling tools can ensure that
the deployed code, from the model, has not been modified
after its generation [40].

Model-based software engineering [53], [56] is important
in blockchain-oriented applications for the following reasons:

• Best practices can be implemented, and well-tested
codes generated, thereby reducing the occurrence of vul-
nerable code. Moreover, model-based tools can improve
the verification/validation of smart contract code by
applying testing techniques right from the early stages
of the SDLC, a practice known as early testing.

• The software code is more difficult to understand than
the models. It is, therefore, easier to check the correct-
ness of a model. Software code can also be generated
automatically from model-based tools, thus ensure that
the generated code has not been modified after it is
obtained.

• As they are platform-agnostic, models can avoid lock-
in to specific blockchain technology and model-based
engineering can be applied across multiple blockchain
platforms.

Table 11 shows the distribution of PS concerning this type of
proposals.

As the table shows, the types of proposals most addressed
by authors are, respectively: (B1) Application ofmodel-based
software engineering (48%), (B2) Promotion of early testing
(5%), and (B3) Proposal of automatic code generation (48%).

It can be concluded that although early testing helps to
reduce the number of defects and, ultimately, cuts the cost
of final revisions, the scientific community’s efforts are cur-
rently not aimed at this approach. Every software engineer
knows that if a bug is detected in the final stage of testing
[59], changes may then need to be made in the design and
analysis phase. It is therefore important to carry out testing
in every phase to ensure that software will run according to
expectations and will not fail once it has been delivered to
the client. When testing is performed at the end of the SDLC,
i.e., after the coding phase, there may not be enough time to
do it properly, resulting in compromises which could affect
the quality of the software [27]. Early testing will provide
enough time to identify the absence or inadequacy of any
functional requirements. Moreover, test cases obtained from
the requirements and shared with the developer’s team before
the coding phase may reveal new possibilities and help them
to estimate the chances of failure in their code [27].

In this context, Koul (PS06) highlights the need to deliver
first-time quality while minimizing the impact of testing
on the delivery teams. This PS stands out the challenges

TABLE 11. Distribution of primary studies (PS) according to the scope of
their proposal.

currently faced in testing such applications. It also acknowl-
edges the need to devise specialized tools and techniques for
blockchain-oriented software testing to ensure high standards
of quality. In short, the role of software testing is not only to
verify the ‘‘rightness’’ of the software but rather to discover
defects in time for then be rectified. The goal should be to
develop smart contracts with higher quality code and as few
errors as possible. Exhaustive testing, covering 100% of a
software’s functionality, is not possible, but it is important to
eliminate the highest number of errors as soon as possible. All
members of the development team should be involved early
in the SDLC. This will, in turn, have a positive impact on
the development of the smart contract. If there are testers at
the beginning of the development cycle, then errors can be
reported at every step and team members may contribute to
remedying those errors. By including early testing throughout
this process, smart contracts can be implemented with higher
reliability, and lower development costs [27].

Another important aspect to consider in connection with
automatic smart contract generation is the technique used.
Table 12 shows the distribution of PS regarding the different
techniques used in the proposals.

In our opinion, another important aspect is an automatic
smart contract code generation using a model-based soft-
ware engineering process. This eliminates the manual effort
required in coding from design and therefore accelerates
the process while decreasing the possibility of errors in
comparison with manual coding from requirements or mod-
els. As the table shows, the techniques most proposed by
authors are, respectively: (C1) Automatic code generation

164564 VOLUME 8, 2020



N. Sánchez-Gómez et al.: Model-Based Software Design and Testing in Blockchain Smart Contracts: A SLR

TABLE 12. Distribution of primary studies (PS) according to the
techniques proposed.

using domain-specific ontologies and/or semantic rules (4%),
(C2) Automatic code generation using model-based soft-
ware engineering (4%), and (C3) Automatic code generation
through templates and other utilities (28%).

Model-based software engineering has been gaining trac-
tion in the development of embedded software in industries,
especially in safety-critical domains [6]. Automatic code
generation with model-based development is an important
technology that offers software engineers advanced options
for requirements gathering and software deployment and
verification. In this context, Syahputra (PS19) discusses the
development process of a smart contract platform that aims
to generate smart contracts for heterogeneous blockchain
technologies. With the modeling approach they are using in
their paper, UML, and OCL (Object Constraint Language),
they implement the workflow and algorithm in a supply chain
demo sample. It is important to understand the potential appli-
cations of code generation, but technology alone is not going
to improve software quality processes. Developers must also
establish an SDLC that leverages code generation technolo-
gies and yet adheres to well-established software engineer-
ing principles like the reduction of complexity, requirements
traceability, efficient configuration management and version
control.

C. RQ3. WHAT SCIENTIFIC OR EMPIRICAL VALIDATION
METHODS WERE USED IN THE DIFFERENT PROPOSALS?
After analyzing the PS shown in Table 13, it can be seen
that only 12% of the papers used scientific validation. More

TABLE 13. Distribution of primary studies (PS) according to validation
method.

specifically, the table details the distribution of each of the
PS with respect to the evaluation methods used to validate
proposals. As can be seen, 44% of the PS carry out their
evaluation by means of experimental case studies or proofs
of concept, and yet the same percentage of studies does not
even have a full validation plan, making it difficult to verify
their assertions.

VI. CONCLUSION AND OPEN ISSUES
This paper presents the results of an SLRwhich identifies and
analyses the state-of-the-art of scientific publications in the
field of software design, coding, testing and SDLC phases,
all in the context of blockchain smart contracts. To achieve
its objectives, the paper follows Kitchenham’s most recent
method for carrying out an SLR.

This study, however, presents some limitations. Following
Kitchenham’s method, we did not consider grey literature,
which might contain other significant results. Nor papers
from other languages rather the English. After conducting a
search of potential studies and having selected a few PS, we
identified several types of proposals addressing SDLCs in the
target context. Specifically, 25 PS were identified once the
search protocol described in this paper had been executed.
These studies were also classified according to the phases of
the SDLC for which they offer support. After conducting the
review, open issues were identified.

Requirements gathering and, above all, software testing is
among the most important aspects of smart contract develop-
ment, but they are almost always overlooked. For example,
Marchesi (PS01) proposes a software development process to
gather the requirements, analyze, design, coding, testing and
deploying blockchain applications. The process is based on
several Agile practices. But it makes use of UML-Diagrams
to describe the design of the applications. This work moves
toward this direction providing full modeling of interac-
tions among traditional software and blockchain environ-
ment, including Class diagrams, Sequence diagrams, Smart
Contracts diagrams, etc. Other authors as Syahputra (PS05)
discusses on the development process of smart contract plat-
form that aims to create a smart contract for heterogeneous
blockchain technologies. The author starts the process by
creating blueprint design and modelling with UML and OCL.

Whenever we create a smart contract, we must make sure
that it works properly. Emphasis should be placed on the
functionality, security, and performance of smart contracts,

VOLUME 8, 2020 164565



N. Sánchez-Gómez et al.: Model-Based Software Design and Testing in Blockchain Smart Contracts: A SLR

and testing is the only way to reduce the risk. Functional tests
and non-functional tests are both necessary for validating and
correcting a contract’s behaviour before it is released. Smart
contract testing is crucial in the blockchain development
process, because blockchain, with its immutability, forgives
no errors. The only way to fix a bug on an already deployed
smart contract is to deploy a new release of that agreement;
the old version with the bug will remain on the blockchain
(and will stay there forever).

Efficiently testing a smart contract before deploying it
will ensure that it works as expected, following the estab-
lished requirements. In functional testing, all business rules or
requirements - including valid/invalid arguments, boundary
values, and argument combinations - should be verified in
various test cases. In this context, Koul (PS06) highlights
the need to deliver first-time quality while minimizing the
impact of testing on the development teams. This PS stands
out the challenges currently faced in testing such applications.
It also acknowledges the need to devise specialized tools and
techniques for blockchain-oriented software testing to ensure
high standards of quality.

In traditional development software processes, analysis
and design information is usually transferred and handled
in the form of text-based documents, which are difficult to
understand and subject to interpretation bias. Engineers cre-
ate embedded code from those text-based documents, lead-
ing to error-prone processes. There is also little scope to
ascertain whether or not functionality is being implemented
correctly. In this regard, the main benefit of using model-
based development software is the auto-generation of code,
which can eliminate human error and facilitate code reusabil-
ity. Other important benefits of model-based software engi-
neering are (i) disciplined analysis, design and continuous
testing to improve development effectiveness, (ii) the possi-
bility of using verification as a parallel activity taking place
throughout the development process, because test cases can
be automatically generated from models, and (iii) reusable
models which can reduce development times and costs. Given
all this, the following conclusions were from this SLR:

• The efforts of the scientific community should be aimed
at implementing a smart contract Development Life
Cycle with clearly defined phases and a common vocab-
ulary for each step.

• In this context, the software testing phase is critical to
efficient blockchain development. Smart contract testing
requires expert knowledge of scenarios, business, and
transaction variables specific to blockchain networks.

• Model-based design and model-based testing should be
promoted by the scientific community because model-
based software engineering makes it possible to find
errors in design and code. Model-based tools can also
improve the verification/validation of smart contract
code through the application of testing techniques right
from the early stages of the SDLC. Early testing pro-
vides enough time to identify the absences and the

inadequacies of functional requirements. In addition,
test cases composed amid prerequisites and shared with
the development team before the coding phase can
reveal new possibilities and help developers estimate the
chances of failure in their code.

• Automatic smart contract (code) generation in a model-
based software engineering process is vital for effec-
tive quality development. It eliminates the manual effort
required when coding from design and therefore accel-
erates the process while decreasing the chance of error
in comparison with manual coding from requirements or
models.

Having completed this SLR, we plan to explore a new
line of potentially very interesting research: the possibilities
offered by the model-based software engineering paradigm,
which may facilitate mechanisms for validating smart con-
tracts by applying early testing techniques before a contract
code is deployed in the blockchain network. The use of this
approach has given very satisfactory results in other technolo-
gies and its application would appear to be of great interest in
blockchain technology.

Such application constitutes our future objective, and we
also intend to apply other methods such as the one published
by ISD2014 [22] to enrich this study, where not only new
articles should appear, but also the existing grey and commer-
cial literature. For example, during the last few months, new
relevant papers have appeared as Pankov [49] lists several
existing tools for testing and verifying blockchain systems
and smart contracts, and also identifies the problem of the
lack of an appropriate normative base and standards in this
area. Miraz and Ali [47] explores the 6 traditional SDLC
models and advocates that there is an urgent need to develop
a new standard model(s). This paper concludes that the tra-
ditional SDLC models are unsuitable for blockchain-enabled
smart contract-based applications. These studies confirm the
current need and indicate that we are on the right track in our
investigations.

REFERENCES
[1] F. Al Khalil, T. Butler, L. O’Brien, and M. Ceci, ‘‘Trust in smart contracts

is a process, as well,’’ in Proc. Financial Cryptogr. Workshops, 2017,
pp. 510–519.

[2] W. Al-Saqaf and N. Seidler, ‘‘Blockchain technology for social impact:
Opportunities and challenges ahead,’’ J. Cyber Policy, vol. 2, no. 3,
pp. 338–354, Sep. 2017.

[3] M. Alharby, A. Aldweesh, and A. V. Moorsel, ‘‘Blockchain-based smart
contracts: A systematic mapping study of academic research (2018),’’ in
Proc. Int. Conf. Cloud Comput., Big Data Blockchain (ICCBB), Nov. 2018,
pp. 1–6.

[4] F. Batubara, J. Ubacht, andM. Janssen, ‘‘Challenges of blockchain technol-
ogy adoption for e-government: A systematic literature review,’’ in Proc.
19th Annu. Int. Conf. Digit. Government Res., GovernanceData Age, 2018,
pp. 1–9.

[5] O. Benediktsson, D. Dalcher, and H. Thorbergsson, ‘‘Comparison of soft-
ware development life cycles: A multiproject experiment,’’ IEE Proc.-
Softw., vol. 153, no. 3, pp. 87–101, 2006.

[6] M. Bialy, V. Pantelic, J. Jaskolka, A. Schaap, L. Patcas, M. Lawford,
and A. Wassyng, ‘‘Software engineering for model-based development by
domain experts,’’ in Handbook of System Safety and Security. Amsterdam,
The Netherlands: Elsevier, 2017, pp. 39–64.

164566 VOLUME 8, 2020



N. Sánchez-Gómez et al.: Model-Based Software Design and Testing in Blockchain Smart Contracts: A SLR

[7] R. Blanco, J. G. Enríquez, F. J. Domínguez-Mayo, M. J. Escalona, and
J. Tuya, ‘‘Early integration testing for entity reconciliation in the context of
heterogeneous data sources,’’ IEEE Trans. Rel., vol. 67, no. 2, pp. 538–556,
Jun. 2018.

[8] V. Buterin et al., ‘‘A next-generation smart contract and decentral-
ized application platform,’’ Ethereum White Paper, vol. 3, no. 37,
2014. [Online]. Available: https://cryptorating.eu/whitepapers/Ethereum/
Ethereum_white_paper.pdf

[9] O. Choudhury, N. Rudolph, I. Sylla, N. Fairoza, and A. Das, ‘‘Auto-
generation of smart contracts from domain-specific ontologies and seman-
tic rules,’’ in Proc. IEEE Int. Conf. Internet Things (iThings), IEEE
Green Comput. Commun. (GreenCom), IEEE Cyber, Phys. Social Comput.
(CPSCom), IEEE Smart Data (SmartData), Jul. 2018, pp. 963–970.

[10] C. D. Clack, ‘‘Smart contract templates: Legal semantics and code valida-
tion,’’ J. Digit. Banking, vol. 2, no. 4, pp. 338–352, 2018.

[11] C. D. Clack, V. A. Bakshi, and L. Braine, ‘‘Smart contract templates:
Essential requirements and design options,’’ 2016, arXiv:1612.04496.
[Online]. Available: https://arxiv.org/abs/1612.04496

[12] C. D. Clack, V. A. Bakshi, and L. Braine, ‘‘Smart contract tem-
plates: Foundations, design landscape and research directions,’’ 2016,
arXiv:1608.00771. [Online]. Available: https://arxiv.org/abs/1608.00771

[13] A. Cockbum, Writing Effective Use Cases, vol. 303. Boston, MA,
USA: Addison-Wesley, 2001, pp. 158–161.

[14] C. Cutilla, J. A. G. García, J. J. G. Rodríguez, P. D. Mayo,
M. J. E. Cuaresma, L. Rodríguez, and F. J. D. Mayo, ‘‘Model-driven test
engineering: A practical analysis in the AQUA-WS project,’’ in Proc. 7th
Int. Conf. Softw. Paradigm Trends (ICSOFT), 2012, pp. 111–119.

[15] F. Q. B. da Silva, A. L. M. Santos, S. Soares, A. C. C. França,
C. V. F. Monteiro, and F. F. Maciel, ‘‘Six years of systematic literature
reviews in software engineering: An updated tertiary study,’’ Inf. Softw.
Technol., vol. 53, no. 9, pp. 899–913, Sep. 2011.

[16] J. de Kruijff and H. Weigand, ‘‘Ontologies for commitment-based smart
contracts,’’ in Proc. OTM Confederated Int. Conf. Move Meaningful Inter-
net Syst., Oct. 2017, pp. 383–398.

[17] S. Dhaiouir and S. Assar, ‘‘A systematic literature review of blockchain-
enabled smart contracts: Platforms, languages, consensus, applications
and choice criteria,’’ in Proc. Int. Conf. Res. Challenges Inf. Sci. Cham,
Switzerland: Springer, 2020, pp. 249–266.

[18] A. Dolgui, D. Ivanov, S. Potryasaev, B. Sokolov, M. Ivanova, and
F. Werner, ‘‘Blockchain-oriented dynamic modelling of smart contract
design and execution in the supply chain,’’ Int. J. Prod. Res., vol. 58, no. 7,
pp. 2184–2199, Apr. 2020.

[19] I. Drave, S. Hillemacher, T. Greifenberg, S. Kriebel, E. Kusmenko,
M. Markthaler, P. Orth, K. S. Salman, J. Richenhagen, B. Rumpe,
C. Schulze, M. von Wenckstern, and A. Wortmann, ‘‘SMArDT model-
ing for automotive software testing,’’ Softw., Pract. Exp., vol. 49, no. 2,
pp. 301–328, Feb. 2019.

[20] J. G. Enríquez, R. Blanco, F. J. Domínguez-Mayo, J. Tuya, and
M. J. Escalona, ‘‘Towards an MDE-based approach to test entity recon-
ciliation applications,’’ in Proc. 7th Int. Workshop Automating Test Case
Design, Selection, Eval. (A-TEST), 2016, pp. 74–77.

[21] M. J. Escalona and G. Aragón, ‘‘NDT. A model-driven approach for
Web requirements,’’ IEEE Trans. Softw. Eng., vol. 34, no. 3, pp. 377–390,
May 2008.

[22] M. J. Escalona, J. A. Garcia-Garcia, F. J. D. Mayo, and I. Ramos, ‘‘Tech-
nical tool surveys and comparative studies: A systematical approach,’’ in
23rd Int. Conf. Inf. Syst. Develop. (ISD CROATIA). ISD, Sep. 2014.

[23] S. Feyer, S. Siebert, B. Gipp, A. Aizawa, and J. Beel, ‘‘Integration of
the scientific recommender system Mr. DLib into the reference manager
JabRef,’’ in Proc. Eur. Conf. Inf. Retr. Cham, Switzerland: Springer, 2017,
pp. 770–774.

[24] A. Forward and T. C. Lethbridge, ‘‘Problems and opportunities for model-
centric versus code-centric software development: A survey of soft-
ware professionals,’’ in Proc. Int. Workshop Models Softw. Eng., 2008,
pp. 27–32.

[25] I. Grigg. (Feb. 2015). On the Intersection of Ricardian and Smart Con-
tracts. [Online]. Available: https://iang.org/papers/

[26] J. Gutierrez, C. Nebut, M. Escalona, M. Mejías, and I. Ramos, ‘‘Visual-
ization of use cases through automatically generated activity diagrams,’’
in Proc. Int. Conf. Model Driven Eng. Lang. Syst. vol. 5301, Sep. 2008,
pp. 83–96.

[27] S. Jain and H. Joshi, ‘‘Impact of early testing on cost, reliability and release
time,’’ in Proc. 5th Int. Conf. Rel., Infocom Technol. Optim., Trends Future
Directions (ICRITO), Sep. 2016, pp. 318–322.

[28] T. Jindal, ‘‘Importance of testing in SDLC,’’ Int. J. Eng. Appl. Comput.
Sci., vol. 1, no. 2, pp. 54–56, Dec. 2016.

[29] E. Karafiloski and A. Mishev, ‘‘Blockchain solutions for big data chal-
lenges: A literature review,’’ in Proc. 17th Int. Conf. Smart Technol., 2017,
pp. 763–768.

[30] B. Kitchenham and P. Brereton, ‘‘A systematic review of systematic review
process research in software engineering,’’ Inf. Softw. Technol., vol. 55,
no. 12, pp. 2049–2075, Dec. 2013.

[31] B. Kitchenham, R. Pretorius, D. Budgen, O. P. Brereton, M. Turner,
M. Niazi, and S. Linkman, ‘‘Systematic literature reviews in software
engineering—A tertiary study,’’ Inf. Softw. Technol., vol. 52, no. 8,
pp. 792–805, 2010.

[32] B. Koteska, E. Karafiloski, and A. Mishev, ‘‘Blockchain implementation
quality challenges: A literature review,’’ in Proc. 6th Workshop Softw.
Qual., Anal., Monit., Improvement, Appl. (SQAMIA), 2017, pp. 11–13.

[33] R. Koul, ‘‘Blockchain oriented software testing–challenges and
approaches,’’ in Proc. 3rd Int. Conf. Converg. Technol. (ICT), Apr. 2018,
pp. 1–6.

[34] S.-M. Lee, S. Park, and Y. B. Park, ‘‘Formal specification technique in
smart contract verification,’’ in Proc. Int. Conf. Platform Technol. Service
(PlatCon), Jan. 2019, pp. 1–4.

[35] E. Leka, B. Selimi, and L. Lamani, ‘‘Systematic literature review of
blockchain applications: Smart contracts,’’ in Proc. Int. Conf. Inf. Technol.
(InfoTech), Sep. 2019, pp. 1–3.

[36] W. E. Lewis, Software Testing and Continuous Quality Improvement.
Boca Raton, FL, USA: CRC Press, 2017.

[37] C.-F. Liao, C.-J. Cheng, K. Chen, C.-H. Lai, T. Chiu, and C. Wu-Lee,
‘‘Toward a service platform for developing smart contracts on blockchain
in BDD and TDD styles,’’ in Proc. IEEE 10th Conf. Service-Oriented
Comput. Appl. (SOCA), Nov. 2017, pp. 133–140.

[38] Y. Liu, Q. Lu, X. Xu, L. Zhu, and H. Yao, ‘‘Applying design
patterns in smart contracts,’’ in Proc. Int. Conf. Blockchain. Cham,
Switzerland: Springer, 2018, pp. 92–106.

[39] S. K. Lo, Y. Liu, S. Y. Chia, X. Xu, Q. Lu, L. Zhu, andH.Ning, ‘‘Analysis of
blockchain solutions for IoT: A systematic literature review,’’ IEEEAccess,
vol. 7, pp. 58822–58835, 2019.

[40] Q. Lu, I. Weber, and M. Staples, ‘‘Why model-driven engineering fits the
needs for blockchain application development,’’ IEEE Blockchain Tech.
Briefs, p. 3, Jul. 2018.

[41] D. Macrinici, C. Cartofeanu, and S. Gao, ‘‘Smart contract applications
within blockchain technology: A systematic mapping study,’’ Telematics
Informat., vol. 35, no. 8, pp. 2337–2354, Dec. 2018.

[42] D. Mao, F. Wang, Y. Wang, and Z. Hao, ‘‘Visual and user-defined smart
contract designing system based on automatic coding,’’ IEEE Access,
vol. 7, pp. 73131–73143, 2019.

[43] M. Marchesi, L. Marchesi, and R. Tonelli, ‘‘An agile software engineering
method to design blockchain applications,’’ in Proc. 14th Central Eastern
Eur. Softw. Eng. Conf. Russia ZZZ (CEE-SECR), 2018, pp. 1–8.

[44] A. Mavridou and A. Laszka, ‘‘Designing secure ethereum smart contracts:
A finite state machine based approach,’’ in Proc. Int. Conf. Financial
Cryptogr. Data Secur. Berlin, Germany: Springer, 2018, pp. 523–540.

[45] A. Mavridou and A. Laszka, ‘‘Tool demonstration: FSolidM for designing
secure Ethereum smart contracts,’’ in Proc. POST, 2018, pp. 270–277.

[46] A. Mavridou, A. Laszka, E. Stachtiari, and A. Dubey, ‘‘VeriSolid: Correct-
by-design smart contracts for Ethereum,’’ in Financial Cryptography and
Data Security. Cham, Switzerland: Springer, 2019, pp. 446–465, doi:
10.1007/978-3-030-32101-7_27.

[47] M. H. Miraz and M. Ali, ‘‘Blockchain enabled smart contract
based applications: Deficiencies with the software development
life cycle models,’’ 2020, arXiv:2001.10589. [Online]. Available:
http://arxiv.org/abs/2001.10589

[48] E. W. T. Ngai, Y. Hu, Y. H. Wong, Y. Chen, and X. Sun, ‘‘The application
of data mining techniques in financial fraud detection: A classification
framework and an academic review of literature,’’ Decis. Support Syst.,
vol. 50, no. 3, pp. 559–569, Feb. 2011.

[49] K. N. Pankov, ‘‘Testing, verification and validation of distributed ledger
systems,’’ in Proc. Syst. Signals Generating Process. Field Board Com-
mun., Mar. 2020, pp. 1–9.

[50] R. M. Parizi, A. Dehghantanha, K.-K. Raymond Choo, and A. Singh,
‘‘Empirical vulnerability analysis of automated smart contracts security
testing on blockchains,’’ 2018, arXiv:1809.02702. [Online]. Available:
http://arxiv.org/abs/1809.02702

[51] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and
M. Vechev, ‘‘VerX: Safety verification of smart contracts,’’ in Proc. IEEE
Symp. Secur. Privacy (SP), May 2020, pp. 18–20.

[52] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, ‘‘Systematic mapping
studies in software engineering,’’ in Proc. 12th Int. Conf. Eval. Assessment
Softw. Eng. (EASE), 2008, pp. 1–10.

VOLUME 8, 2020 164567

http://dx.doi.org/10.1007/978-3-030-32101-7_27


N. Sánchez-Gómez et al.: Model-Based Software Design and Testing in Blockchain Smart Contracts: A SLR

[53] K. Pohl, H. Hönninger, R. Achatz, andM. Broy,Model-Based Engineering
of Embedded Systems. The SPES 2020 Methodology. Berlin, Germany:
Springer, 2012, doi: 10.1007/978-3-642-34614-9.

[54] S. Porru, A. Pinna, M. Marchesi, and R. Tonelli, ‘‘Blockchain-oriented
software engineering: Challenges and new directions,’’ inProc. IEEE/ACM
39th Int. Conf. Softw. Eng. Companion (ICSE-C), May 2017, pp. 169–171.

[55] S. Pranto, L. Jardim, T. Oliveira, and P. Ruivo, ‘‘Literature review on
blockchain with focus on supply chain,’’ in Proc. 19th Conf. Portuguese
Assoc. Inf. Syst. (CAPSI). Lisboa, Portugal: CAPSI, 2019.

[56] A. L. Ramos, J. V. Ferreira, and J. Barceló, ‘‘Model-based systems engi-
neering: An emerging approach for modern systems,’’ IEEE Trans. Syst.,
Man, Cybern. C, Appl. Rev., vol. 42, no. 1, pp. 101–111, Jan. 2012.

[57] S. Barjtya, A. Sharma, and U. Rani, ‘‘A detailed study of software devel-
opment life cycle (SDLC) models,’’ Int. J. Eng. Comput. Sci., vol. 6, no. 7,
pp. 1–4, 2017.

[58] W. W. Royce, ‘‘Managing the development of large software systems:
Concepts and techniques,’’ in Proc. 9th Int. Conf. Softw. Eng., 1987,
pp. 328–338.

[59] N. Sánchez-Gómez, L. Morales-Trujillo, J. J. Gutiérrez, and
J. Torres-Valderrama, ‘‘The importance of testing in the early stages
of smart contract development life cycle,’’ J. Web Eng., vol. 6, no. 2,
pp. 215–242, Jun. 2020.

[60] C. M. Schmucker, A. Blümle, L. K. Schell, G. Schwarzer, P. Oeller,
L. Cabrera, E. von Elm, M. Briel, and J. J. Meerpohl, ‘‘Systematic review
finds that study data not published in full text articles have unclear impact
on meta-analyses results in medical research,’’ PLoS ONE, vol. 12, no. 4,
Apr. 2017, Art. no. e0176210.

[61] H. Sheikh, R. M. Azmathullah, and F. Rizwan, ‘‘Smart contract develop-
ment, adoption and challenges: The powered blockchain,’’ Int. Res. J. Adv.
Eng. Sci., vol. 4, no. 2, pp. 321–324, May 2019.

[62] E. Shishkin, ‘‘Debugging smart contract’s business logic using symbolic
model checking,’’ Program. Comput. Softw., vol. 45, no. 8, pp. 590–599,
Dec. 2019.

[63] C. Sillaber and B. Waltl, ‘‘Life cycle of smart contracts in blockchain
ecosystems,’’ Datenschutz und Datensicherheit-DuD, vol. 41, no. 8,
pp. 497–500, 2017.

[64] M. Surjandy, A. Hidayanto, and H. Prabowo, ‘‘The latest adop-
tion blockchain technology in supply chain management: A system-
atic literature review,’’ ICIC Exp. Lett., vol. 13, no. 10, pp. 913–920,
2019.

[65] H. Syahputra and H. Weigand, ‘‘The development of smart contracts for
heterogeneous blockchains,’’ in Enterprise Interoperability VIII. Cham,
Switzerland: Springer, 2019, pp. 229–238.

[66] N. Szabo, ‘‘Smart contracts,’’ unpublished manuscript, 1994. [Online].
Available: http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/
CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.
contracts.html

[67] T. Tateishi, S. Yoshihama, N. Sato, and S. Saito, ‘‘Automatic smart contract
generation using controlled natural language and template,’’ IBM J. Res.
Develop., vol. 63, nos. 2–3, pp. 6:1–6:12, Mar. 2019.

[68] Y. Tribis, A. El Bouchti, and H. Bouayad, ‘‘Supply chain management
based on blockchain: A systematic mapping study,’’ in Proc. MATEC Web
Conf., vol. 200. EDP Sciences, 2018, p. 20.

[69] W.-T. Tsai, N. Ge, J. Jiang, K. Feng, and J. He, ‘‘Invited paper: Bea-
gle: A new framework for smart contracts taking account of law,’’ in
Proc. IEEE Int. Conf. Service-Oriented Syst. Eng. (SOSE), Apr. 2019,
pp. 134–145.

[70] R. Van Der Straeten, T. Mens, and S. Van Baelen, ‘‘Challenges in model-
driven software engineering,’’ in Proc. Int. Conf. Model Driven Eng. Lang.
Syst. Berlin, Germany: Springer, 2008, pp. 35–47.

[71] C. Wohlin and R. Prikladniki, ‘‘Systematic literature reviews in software
engineering,’’ Inf. Softw. Technol., vol. 55, pp. 919–920, Jun. 2013.

[72] V. Yadav and A. Singh, ‘‘A systematic literature review of blockchain
technology in agriculture,’’ in Proc. Int. Conf. Ind. Eng. Oper. Manage.,
2019, pp. 973–981.

[73] S. Yaqoob, M. Murad, R. Talib, A. Dawood, S. Saleem, F. Arif, and
A. Nadeem, ‘‘Use of blockchain in healthcare: A systematic literature
review,’’ Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 5, pp. 644–653,
2019.

[74] H. Yumna, M. Khan, M. Ikram, and S. Ilyas, ‘‘Use of blockchain in
education: A systematic literature review,’’ in Proc. Asian Conf. Intell.
Inf. Database Syst., in Lecture Notes in Computer Science: Including
Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics, 2019, pp. 191–202.

NICOLÁS SÁNCHEZ-GÓMEZ received the
degree in computer engineering and the master’s
degree in engineering and software technology
from the University of Seville.

He has developed a large part of its professional
career in the technology and process consultancy
sector, both in the private and public sectors.
Throughout more than 30 years of professional
experience, he has gone from implementing ICT
solutions to supervising work teams, managing

clients, and leading ICT projects. He is currently a member of the Web
Engineering and Early Testing Research Group. In recent years, he has
been coordinating different projects of the research group, including the
Project Management Office of the Ministry of Culture (Andalusian Regional
Government). He currently has a broad knowledge of the functions and
processes that make up the activity environment of the sectors in which he has
participated and has completed his studies in computer engineering. He has
knowledge and skills of people management, ICT project management,
customer management, and practical application of computer engineering
methodologies and techniques, in addition to obtaining the Prince2r Foun-
dation Certified, the ISTQBr Certified Tester, Foundation Level and the
PMPr Certified. From 2001 to 2009, he developed his professional activity
as the Manager of the company Everis, Spain, being responsible for different
accounts in public and private sectors. From 1990 to 2001, he has worked
for the company Coritel (Accenture Group), where he also carried out
management and project management activities.

JESUS TORRES-VALDERRAMA received the
M.Sc. and Ph.D. degrees in computer systems in
1997.

He has been working with the Department
of Computer Languages and Systems, Seville’s
University, since 1991, where he is currently a
Senior Lecturer. He was the Dean of the School
of Computer Engineering, Seville’s University,
from 2006 to 2014, where he has been theManager
of the Foundation for Research and Development

of Information Technology inAndalusia, since 2016. Hismain research inter-
ests include requirements engineering, web-based systems development,
user interfaces, usability, and early software testing. In these areas, he has
directed several Ph.D. theses and published numerous papers in journals and
conferences. He has managed and participated in a high number of projects
related to his areas of research.

J. A. GARCÍA-GARCÍA received the Ph.D. degree
in computer science from the University of Seville,
Spain, in 2015. He is currently a Lecturer and
a Researcher with the Department of Computing
Languages and Systems, University of Seville.
Since 2008, he has participated in Research and
Development projects as a Researcher in the Web
Engineering and Early Testing Group (IWT2). His
current research interests include business process
management, business process modeling, model-

driven engineering, and quality assurance. He is responsible for the BPM
area and responsible for security in IWT2. He also participates as a member
of committee in several international conferences and journals.

164568 VOLUME 8, 2020

http://dx.doi.org/10.1007/978-3-642-34614-9


N. Sánchez-Gómez et al.: Model-Based Software Design and Testing in Blockchain Smart Contracts: A SLR

JAVIER J. GUTIÉRREZ received the Ph.D. degree
in computer science from the University of Seville,
Spain, in 2011.

Since 2004, he has been a Professor with the
Department of Computer Languages and Systems,
University of Seville, where he has been a col-
laborating Professor, since 2006. He is currently a
member of theWeb Engineering and Early Testing
Research Group. Among his most notable research
results, it is worth mentioning his transfer to the

business world. With the development of the concept of early testing and its
integration with the NDT methodology also developed within the research
group, he has managed to develop a set of methodological solutions for the
development and quality assurance that has been widely used in the Andalu-
sian and national business network or even by international companies. This
can be measured not only in the transfer projects, but also in the number of
publications with companies and in the tools registered.

M. J. ESCALONA received the Ph.D. degree
(Hons.) in computer engineering from the Univer-
sity of Seville, in 2004. She is currently a Full
Professor with the Department of Computer Lan-
guages and Systems, University of Seville. She
is also the Director of the Web Engineering and
Early Testing Research Group. Her main research
interests include software engineering, specifically
to software requirements, software early quality
assurance, and early software testing. In these

areas, she has directed several Ph.D. theses and published numerous papers
in journals and conferences. She is also a member of the editorial board of
JWE and IEEE IT Professional and she collaborates as a regular reviewer
with several conferences and journals. She has managed and participated in
a high number of projects related to her areas of research.

VOLUME 8, 2020 164569


