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The characterization of the molecular mechanisms, such as high light irradiance
resistance, that allowed plant terrestralization is a cornerstone in evolutionary studies
since the conquest of land by plants played a pivotal role in life evolution on
Earth. Viridiplantae or the green lineage is divided into two clades, Chlorophyta and
Streptophyta, that in turn splits into Embryophyta or land plants and Charophyta.
Charophyta are used in evolutionary studies on plant terrestralization since they are
generally accepted as the extant algal species most closely related to current land
plants. In this study, we have chosen the facultative terrestrial early charophyte
alga Klebsormidium nitens to perform an integrative transcriptomic and metabolomic
analysis under high light in order to unveil key mechanisms involved in the early
steps of plants terrestralization. We found a fast chloroplast retrograde signaling
possibly mediated by reactive oxygen species and the inositol polyphosphate 1-
phosphatase (SAL1) and 3′-phosphoadenosine-5′-phosphate (PAP) pathways inducing
gene expression and accumulation of specific metabolites. Systems used by both
Chlorophyta and Embryophyta were activated such as the xanthophyll cycle with an
accumulation of zeaxanthin and protein folding and repair mechanisms constituted
by NADPH-dependent thioredoxin reductases, thioredoxin-disulfide reductases, and
peroxiredoxins. Similarly, cyclic electron flow, specifically the pathway dependent on
proton gradient regulation 5, was strongly activated under high light. We detected a
simultaneous co-activation of the non-photochemical quenching mechanisms based
on LHC-like stress related (LHCSR) protein and the photosystem II subunit S that are
specific to Chlorophyta and Embryophyta, respectively. Exclusive Embryophyta systems
for the synthesis, sensing, and response to the phytohormone auxin were also activated
under high light in K. nitens leading to an increase in auxin content with the concomitant
accumulation of amino acids such as tryptophan, histidine, and phenylalanine.

Keywords: light stress, Charophyta, omics integration, plant evolution, carotenoids, chloroplast retrograde
signaling, linear/cyclic electron flow, PsbS/LHCSR NPQ systems
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INTRODUCTION

The evolutionary history of the green plants kingdom or
Viridiplantae splits into two different lineages Chlorophyta
and Streptophyta. Chlorophyta are primarily constituted by
marine and freshwater green microalgae. In turn, Streptophyta
are divided into two different clades Charophyta and
Embryophyta. Whereas Embryophyta comprises mainly
land plants, Charophyta are still considered algae with a
preference for freshwater and with some facultative terrestrial
species (Becker and Marin, 2009). It is widely accepted that
the primary adaptation of Charophyta to freshwater played
a key role facilitating their transition to dry land in contrast
to marine Chlorophyta. Plant terrestralization constitutes
a key milestone in life evolution on Earth since it led to a
massive increase in land biomass resulting in a substantial
atmospheric CO2 drop, oxygen increase and terrestrial habitat
stabilization promoting land colonization by animals and
fungi (Lenton et al., 2016; Morris et al., 2018). Present-day
Charophyta are generally accepted as the extant algal species
most closely related to the aquatic ancestors of land plants
or Embryophyta. Accordingly, the molecular systems that
potentially allowed this group of photosynthetic organisms to
evolve toward terrestrial land plants are under intense analysis
(Nishiyama et al., 2018). These studies focus mainly on genomic
data. The lack of multi-omic data such as transcriptomic and
metabolomic data for Charophyta under specific conditions
relevant to the terrestralization process is preventing the full
characterization of the molecular systems that promoted the
transition to the first land plants (Hori et al., 2014). During
this transition, the evolution of response molecular systems to
terrestrial environmental stresses was critical. Some terrestrial
physiological adaptations, such as desiccation resistance and
tolerance to UV radiation are present in Charophyta from which
current land plant mechanisms supposedly evolved (Becker and
Marin, 2009). Multiple cellular features such as phragmoplast,
plasmodesmata, hexameric cellulose synthase, and oogamous
sexual reproduction with zygote retention first evolved in
Streptophytic algae or Charophyta leading to multicellularity
(Umen, 2014). A tight retrograde signaling communicating the
chloroplast state to the nucleus making plastids more dependent
on the nucleus has been reported in Charophyta under cold and
high light stresses (De Vries et al., 2018). Other systems found in
Embryophyta such as abscisic acid (ABA) and auxin biosynthesis
and transport, photoprotective capacity, and adaptation to
transient light changes have been identified in Charophyta as
Zygnema circumcarinatum (Ohtaka et al., 2017; Pierangelini
et al., 2017). Biosynthetic pathways sources of metabolites
relevant to abiotic stresses typical of terrestrial environments
such as the phenylpropanoid pathway has been described to first
emerged in Charophyta (de Vries et al., 2021). In this study, we
have chosen the freshwater facultative terrestrial Charophyte alga
Klebsormidium nitens (K. nitens) as model organism to study the
transcriptomic and metabolomic response to high light intensity
recreating at least one of the most critical environmental changes
faced by plants during terrestralization. Klebsormidium cultures
consist of multicellular and non-branching filaments without

specialized cells with a single chloroplast. Many Klebsormidium
species are cosmopolitan distributed in terrestrial environments
as soil crusts and rocks as well as freshwater habitats like streams
and rivers where they contribute to important ecological roles
as primary producers and soil stabilizers (Karsten et al., 2016).
Their presence in these environments expose cells to extreme
conditions including high light irradiance (Holzinger and
Pichrtová, 2016). Physiological studies under such conditions
have been carried out reporting photosynthetic resistance against
intense light meditated by the presence of photoprotective
mechanisms dissipating energy as heat (non-photochemical
quenching, NPQ) (Gerotto and Morosinotto, 2013) and/or by
the activation of alternative electron routes to reduce reactive
oxygen species (ROS) production (Alboresi et al., 2019).
Several comparative genomic analyses have been carried out
providing evidence about K. nitens possessing fundamental
molecular mechanisms required for the adaptation and survival
in terrestrial environments including wax-related genes (Kondo
et al., 2016), phytohormone signaling (Holzinger and Becker,
2015), and transcription factors involved in resistance to high
light and UV radiation (Kitzing and Karsten, 2015; Domozych
et al., 2016). Nonetheless, there are very few transcriptomic
studies integrating gene expression with physiological data
aiming at the characterization of K. nitens responses to
abiotic stresses such as desiccation, cold, and heat (Holzinger
et al., 2014; Rippin et al., 2019a; de Vries et al., 2020; Monte
et al., 2020). Furthermore, K. nitens is also of interest for its
biotechnological applications in the removal of nutrients from
horticultural wastewater (Liu et al., 2016a) and in the production
of polyunsaturated fatty acids and lipids (Liu et al., 2016b;
Xu et al., 2021).

The goal of the current study consists in identifying the
molecular mechanisms underlying the response to high light
intensity in the Charophyte alga K. nitens. The similarity of these
systems with those used by Embryophyta and Chlorophyta is
discussed in order to elucidate the key mechanisms that allowed
the transition from aquatic environments to dry land during
plant evolution. Our results were obtained from an integrative
analysis combining gene expression and metabolite profiles.
Further validation of our results were carried out using pulse-
amplitude-modulation fluorometry (PAM), Western blotting,
and confocal microscopy.

MATERIALS AND METHODS

Algal Material, Growth Conditions, and
Sample Collection
Klebsormidium nitens (strain NIES-2285) was obtained from
the National Institute for Environmental Studies (Japan). Cells
were grown photoautotrophically in Bold’s Basal Medium using
photobioreactors containing 0.8 L of cell suspension and bubbled
with air supplemented with 1% (v/v) CO2 as carbon source.
Photobioreactors were continuously illuminated with white light
lamps at 50 µE m−2 s−1 and maintained at 20◦C. Defoamer
(Antifoam 204) was added to avoid the contamination of the
aeration systems. Cultures at exponential phase with 45 µg/mL
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chlorophyll content were used in our experiments. Control
cultures were kept under a light irradiance of 50 µE m−2 s−1

whereas high light cultures were illuminated for 3 h with
an irradiance of 1500 µE m−2 s−1. Cells were collected by
centrifugation at 3500 × g for 5 min at 4◦C. Cell pellets were
washed with PBS, flash frozen with liquid Nitrogen and stored
at−80◦C.

RNA-Seq Data Generation and
Processing
Two independent biological replicates were considered for
both low and high light irradiance conditions. RNA extraction
was performed using mechanical disruption of the frozen
cell pellets in a Mini Bead Beater (Biospe Products) mixed
with 2.7 mm glass beads for filament fragmentation and
0.5 mm glass beads for individual cell lysis (ratio 1/3) in the
presence of an extraction buffer consisting of phenol:chloroform
(1:1, v/v). Subsequently, RNA was purified using ISOLATE II
RNA Plant Kit (Bioline) following manufacturer’s instructions.
RNA integrity number (RIN) was computed using an Agilent
2100 Bioanalyzer producing values greater than 8 per sample.
Sequencing libraries were generated according to Illumina
TruSeq Stranded mRNA protocol and sequenced on an Illumina
NextSeq 500 sequencer producing approximately 17 million
50 nt long reads per sample. The computational pipeline
MARACAS (Romero-Losada et al., 2022) was used to determine
differentially expressed genes according to a log2FC of ±1
and a q-value or false discovery rate (FDR) threshold of 0.05.
MARACAS uses the K. nitens genome sequence assembly and
annotation v1.0 (accession number DF236950) as reference
genome (Hori et al., 2014). The software tool AlgaeFUN1

was used to perform functional enrichment analysis based on
Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways over the sets of differentially
expressed genes.

Specifically, in our study, MARACAS was set to run using
fastqc, HISAT2 and Stringtie for quality control, read mapping,
transcript assembly, and gene expression quantification,
respectively (Pertea et al., 2016). Normalization is carried
out in MARACAS based on the Bioconductor R package
NormalyzerDE (Willforss et al., 2019). In our study, gene
expression was normalized using quantile normalization.
Differentially expressed genes were determined in MARACAS
using the bioconductor R package limma based on linear models
with a moderated t-student (Ritchie et al., 2015). This method
estimates individual gene expression variance using information
from all genes and can be applied in analysis with two replicates
in contrast to R packages such as DESeq2 based on binomial
negative distribution that require at least three replicates (Love
et al., 2014). Several studies comparing the performance of
limma (linear models with a moderated t-student) and DEseq2
(negative binomial distribution) conclude that, although they are
mostly equivalent, limma outperforms DESeq2 at reducing batch
effects and false positives (Seyednasrollah et al., 2013; Stupnikov
et al., 2021). The presence of low levels of noise in our two

1https://greennetwork.us.es/AlgaeFUN/

replicates was confirmed in MARACAS using scatterplots and
principal components analysis (PCA), Supplementary Figure 1.
We also checked that our sequencing coverage (or depth) with
more than 17 million reads per sample was enough to detect gene
expression and determine differentially expressed genes using a
saturation analysis that identified around 12 million read as the
saturation point for RNA-seq data in K. nitens (Supplementary
Figure 1). In conclusion, the read coverage, level of noise in our
data and use of linear models with a moderated t-student would
guarantee the reliability of our analysis based on two replicates.

Metabolomic Data Generation and
Processing
Six independent biological replicates were considered for low and
high light irradiance metabolomic data generation. Significant
differences were determined using the non-parametric Wilcoxon
signed-rank test implemented in the wilcox.test function from the
stats R package.

For metabolite content determination, cell pellets were
lyophilized (Skadi-Europe TFD 8503), flushed with a nitrogen
stream to prevent oxidation and stored at −20◦C. Primary
metabolites were determined from 20 mg of lyophilized biomass
subjected to mechanical disruption in a Mini Bead Beater (Biospe
Products) with a mixture of 2.7 and 0.5 mm glass beads (ratio
1/3) in the presence of 1 mL extraction buffer consisting of
chloroform:methanol (3:7, v/v). As internal standard, 5 µL of
ribitol 4 mM were added. Following centrifugation at 5000 × g
for 5 min at RT (room temperature) the supernatant was
collected. This process was repeated adding 1 mL of extraction
buffer until the supernatant was colorless. The combined
supernatants were dried under nitrogen stream, resuspended in
Milli-Q water and submitted for analysis. Primary metabolite
determination was carried out by ultra high performance
liquid chromatography system coupled with mass spectrometry
(UPLC/MS) as described in Mccloskey and Ubhi (2015).

Phytohormone content was determined from 50 mg of
lyophilized biomass following the protocol presented in Salem
et al. (2020). Cellular lysis and sample homogenization was
performed as described above for RNA and primary metabolite
extraction using, in this case, 1 mL of an extraction buffer
consisting of methyl tert-butyl ether (MTBE):methanol (3:1, v/v).
Samples were incubated for 30 min at 4◦C in a rotating mixer,
followed by sonication for 15 min at 4◦C and centrifugation at
10,000× g for 10 min. The supernatant was mixed with 0.1% HCl
(1:1, v/v) and 20 µL of paracetamol added as internal standard
at 4◦C. Subsequently, samples were first vigorously vortexed for
1 min and then gently shaken in a rotating mixer for 30 min at
4◦C and centrifuged again. The supernatant was dried overnight
in spin vacuum and finally resuspended in water:methanol (1:1,
v/v) and filtered for determination using UPLC/MS.

Carotenoid content was determined by high-performance
liquid chromatography (HPLC) coupled to an UV-visible
scanning spectrophotometer from 5 mg of lyophilized biomass
using acetone extracts subjected to mechanical disruption
for cell lysis and sample homogenization as described in
Del Campo et al. (2004).
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Pulse-Amplitude-Modulation
Fluorometry
Photosynthetic parameters were determined by pulse-amplitude-
modulation fluorometry (PAM) with a DUAL-PAM-100 (Walz).
Samples were dark adapted for 10 min before fluorescence
was measured. Values for basal fluorescence level, F0, were
determined after 5 min in the presence of non-actinic light
450 nm. Values for maximal fluorescence (Fm) were determined
by applying a pulse of saturating red light 655 nm, 2.4 µE for
40 s. Values for photosystem II (PSII) maximal efficiency (Fv/Fm)
were calculated as (Fm–F0)/Fm. Cyclic electron flow (CEF) was
detected by subjecting dark adapted samples to constant actinic
light (500 µE) for 5 min and subsequently turning off light and
measuring fluorescence.

Total Protein Extraction, Sodium Dodecyl
Sulfate-Polyacrylamide Gel
Electrophoresis, and Western Blotting
Analysis
Cells were pelleted by centrifugation at 3500 × g for 5 min at
4◦C, washed with PBS and resuspended in 50 mM Tris pH 8, SDS
9%, PID, PMSF 0.1 M and NaCl 150 mM. Total protein extracts
were obtained by freeze/thaw cycles in liquid nitrogen followed
by another mechanical disruption procedure as described above.
Protein extracts were separated by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE), stained with
Comassie blue, and transferred onto a PVDF membrane
(Immobilon R©-P, pore size 0.45 µm) using a power blotting station
(InvitrogenTM, Thermo Fischer). Immunoblotting analysis was
performed with an antibody against photosystem II subunit S
(PsbS) at 1:1000 (Agrisera). Anti-rabbit secondary antibody was
used at 1:10,000 (Invitrogen). Immunoblots were visualized using
IQ800 Control software (ImageQuant 800, Amersham).

RESULTS AND DISCUSSION

Transcriptomic and Metabolomic
Analysis Unveil a Response to High Light
Intensity
Nuclear gene expression responses to high light in K. nitens
were studied using RNA-seq data. We detected expression
in 68.4% of the 17,290 genes in the current K. nitens
genome annotation (Hori et al., 2014). We found that after
3 h of high light treatment 7.84% of the entire K. nitens
genome was differentially expressed with respect to low light
conditions. Specifically, we identified 677 activated and 678
repressed genes (Figure 1 and Supplementary Table 1).
Using AlgaeFUN (microALGAE FUNctional enrichment tool),
we performed functional enrichment analysis based on GO
terms to identify the cellular components and biological
processes significantly affected by high light (Figure 1).
The proteins encoded by differentially expressed genes, both
activated and repressed genes, were significantly localized in
the chloroplast thylakoid membranes indicating the initiation

of a major chloroplast reprogramming. Specifically, proteins
encoded by repressed genes were significantly associated with
photosystems and cellular structures present during cell division
such as condensed nuclear chromosomes and microtubules.
Accordingly, photosynthesis, hexose biosynthesis, cell cycle, and
DNA metabolism were significantly enriched processes in the
repressed genes. This points to an arrest in the photosynthetic
machinery and cell cycle progression as response to high light.
Proteins encoded by activated genes are, in turn, significantly
localized in cellular structures involved in de novo protein
biosynthesis such as preribosomes and translation initiation
factor 3′ complex. In particular, categories encompassing
ribosome biogenesis, cytoplasmic translation initiation, and
protein folding were significantly enriched in the activated
genes. Moreover, response to oxidative stress, response to high
light intensity, tetraterpenoid and carotenoid metabolism were
identified as significantly activated processes. This suggests an
activation of repair and protective mechanisms to damages
caused by high light.

Metabolomic responses to 3 h of high light treatment in
K. nitens were also analyzed. Six independent biological replicates
were considered for both, high and low light conditions. We
detected 69 different primary and secondary metabolites
including most amino acids and some phytohormones,
Supplementary Table 2. Significant differentially abundant
metabolites were identified by performing the non-parametric
Wilcoxon test using a p-value threshold of 0.05. We found 12
significantly more abundant and 8 less abundant metabolites
under high light when compared to low light (Figure 2). For
instance, under high light, we detected significant changes in
specific carotenoids, accumulation of the amino acid tryptophan
and the phytohormone indole-3-acetic acid (IAA).

An Activation of the Carotenoid
Biosynthesis β-Branch and Xanthophyll
Cycle Is Observed
Here, we present an integrated transcriptomic and metabolomic
analysis of this specific photoprotective response to high
light in K. nitens (Figure 3). The gene encoding the first
enzyme in the carotenoid pathway and the main rate-limiting
step, phytoene synthase (PSY, kfl00019_0320) was 1.53-fold
activated after 3 h of high light treatment. Similarly, the genes
encoding the next enzymes in the pathway producing lycopene,
phytoene desaturase (PDS, kfl00103_0130), and ζ-carotene
desaturase (ZDS, kfl00496_0070), were 1.88- and 1.64-fold
activated, respectively. At this point carotenoid biosynthesis
bifurcates into the ε-branch leading to lutein and the β-branch
proceeding to β-carotene and the xanthophyll cycle. These
two branches showed antagonist regulation in the response
to high light in K. nitens. On the one hand, a strong gene
repression of 7.49-fold was found for the enzyme funneling
lycopene into the ε-branch, lycopene epsilon cyclase (LCYε,
kfl00536_0070). Nonetheless, no significant change was observed
in the carotenoids produced in this branch, α-carotene and
lutein in contrast to the massive increase in this latest
carotenoid observed in Chlorophyta as Chlamydomonas under
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FIGURE 1 | Differential gene expression analysis under high light intensity and functional enrichment analysis. (A) Volcano plot representing differentially activated
(red), repressed (blue), and unaltered (gray) genes under high light when compared to low light. (B) Cellular components to which the proteins encoded by repressed
genes are significantly associated. (C) Cellular components to which the proteins encoded by the activated genes are significantly associated. (D) Biological
processes in which the proteins encoded by the repressed genes are significantly involved. (E) Biological processes in which the proteins encoded by the activated
genes are significantly involved.
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FIGURE 2 | Differential metabolite abundance analysis under high light
intensity. (A) Volcano plot representing more abundant (red), less abundant
(blue), and equally abundant (gray) metabolites under high light when
compared to low light. (B) Barplots representing the relative metabolite
abundance under high light in red (HL) with respect to low light in blue (LL) for
violaxanthin, zeaxanthin, tryptophan, and indole-3-acetic acid (IAA).

high light (Ma et al., 2019). On the other hand, simultaneously,
a strong gene activation of 2.52-fold was detected for the
enzyme channeling lycopene into the β-branch, lycopene beta
cyclase (LCYβ, kfl00003_0600) and of 2.24-fold for the enzyme
β-carotene hydroxylase (BCH, kfl00515_0050) that converts
β-carotene into zeaxanthin. This response has been also observed
in Chlorophyta (Couso et al., 2012). Although, β-carotene
content was similar under low and high light conditions,

significant changes were found in the carotenoids constituting
the xanthophyll cycle. Violaxanthin content decreased 4.73-
fold whereas antheraxanthin and zeaxanthin contents were
increased 3.44- and 41.5-fold, respectively, under high light
when compared to low light. Accordingly, the gene encoding
the enzyme involved in the xanthophyll cycle, violaxanthin
de-epoxidase (VDE, kfl00604_0070) converting violaxanthin
into antheraxanthin and zeaxanthin was activated 1.86-fold.
Furthermore, the gene encoding zeaxanthin epoxidase (ZEP,
kfl00092_0060) that catalyzes the synthesis of violaxanthin from
zeaxanthin and antheraxanthin was 3.84-fold repressed under
high light. In the xanthophyll cycle, the interconversion of
violaxanthin into antheraxanthin and zeaxanthin, constitutes
one of the major photoprotective mechanism in Embryophyta
(Latowski et al., 2011) and Chlorophyta (Goss and Jakob, 2010).
High light induces the mobilization of violaxanthin to zeaxanthin
whereas low light or darkness produce the reverse reaction. De-
epoxidation of violaxanthin to zeaxanthin enhances dissipation
of excess excitation energy (NPQ) in the PSII antenna, thereby
preventing inactivation and damage to the photosynthetic
apparatus. NPQ is considered a fundamental mechanism for
Streptophyta adaptation to terrestrial habitats (Pierangelini et al.,
2017). Here, we specifically show that the xanthophyll cycle is part
of the early transcriptomic and metabolomic response to high
light intensity in the Charophyta K. nitens.

Chloroplast Retrograde Signaling
Triggered by Oxidative Stress and
Protein Misfolding Is Identified as a
Response to High Light
Under high light conditions exceeding photosynthetic capacity,
production of harmful ROS is unavoidable associated with
electron transport in the photosystems. Excess electron leakage
to molecular oxygen and incomplete water oxidation produce
singlet oxygen (1O2), superoxide (O2

·−), hydrogen peroxide
(H2O2), and hydroxyl radical (HO·) (Pospíšil, 2016). This triggers
a signaling cascade communicating the chloroplast state to the
nucleus termed retrograde signaling that ultimately induces the
expression of nuclear genes. The evolution of this system has
played a central role in plant terrestralization (Zhao et al.,
2019; Calderon and Strand, 2021). Retrograde signaling induced
by ROS is dependent on executer (EX, kfl00184_0040), whose
gene expression was not affected in our experiment, and on
the FtsH2 protease (kfl00201_0150) strongly activated in our
study (Dogra et al., 2017, 2019b; Kim, 2020). Indeed, response
to oxidative stress was one of the most significant GO term in
our functional enrichment analysis over the activated genes in a
response to high light treatment in K. nitens. More than twofold
activation was detected in genes encoding chloroplast targeted
antioxidant enzymes such as catalase (CAT, kfl01057_0030) and
peroxiredoxins Q (PRXQ, kfl00014_0230 and kfl00014_0250)
that, together with carotenoids such as zeaxanthin, contribute
to ROS scavenging (Pinnola and Bassi, 2018). Under these
conditions proteins suffer oxidative damage specifically but not
limited to the active thiol groups of cysteine residues, which
are oxidized to disulfide bonds (Cejudo et al., 2021). This
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FIGURE 3 | Gene expression level and relative carotenoid content in the carotenoid biosynthesis pathway in Klebsormidium nitens under high light (HL) and low light
(LL). Expression fold change under high light compared to low light is represented for genes corresponding to the different enzymes involved in carotenogenesis in
Klebsormidium nitens: phytoene synthase (PSY), phytoene desaturase (PDS), ζ-carotene desaturase (ZDS), lycopene epsilon cyclase (LCYε), lycopene beta cyclase
(LCYβ), β-carotene hydroxylase (BCH), violaxanthin de-epoxidase (VDE), and zeaxanthin epoxidase (ZEP). Red squares represent strong activation whereas blue
squares stand for strong repression. Barplots show relative carotenoid content under high light in red (HL) compared to low light in blue (LL).

produces major modifications in protein structure that can lead
to misfolding and loss of function. The accumulation in the
chloroplast of aberrant misfolded proteins also contributes to
initiate retrograde signaling (Dogra et al., 2019a). In this respect,
activation was identified for genes such as kfl00120_0050 and
kfl00573_0030 encoding several thioredoxin-disulfide reductases
(TRX) and kfl00021_0420 corresponding to NADPH-dependent
thioredoxin reductase (NTR). These enzymes constitute a system
involved in oxidative damage avoidance by supplying reducing
power to reductases repairing oxidized proteins (Vieira Dos
Santos and Rey, 2006; Figure 4). Moreover, we found the
activation of multiple chloroplast targeted chaperones, co-
chaperones and chaperonins that would contribute to restore
misfolded proteins, such as heat shock proteins 90 and 101
(HSP90, kfl00002_0530 and HSP101, kfl00387_0020); chloroplast
chaperonin 60 alpha and beta subunits (CPN60A, kfl00113_0150
and CPN60B, kfl00076_0150), specifically involved in Rubisco
correct folding (Zhao and Liu, 2018), and chloroplast GrpE
involved in correct oligomerization of the photosynthesis-related
light harvesting complex II (LHCII) in Arabidopsis (de Luna-
Valdez et al., 2019). An example of a protein that suffers severe
oxidative damage under high light stress is the D1 protein
(PsbA) located at PSII reaction center. Specific tryptophan
residues undergo oxidation in this protein triggering protein
repair mechanisms (Dogra et al., 2019a). It has been shown
that the aminoacids trypthophan and histidine easily suffer

photooxidation (Huvaere and Skibsted, 2009). Recent studies
have shown accumulation of tryptophan and phenylalanine
under several environmental conditions as high light, drought,
and temperature stress in Embryophyta (Galili et al., 2016). In
this respect, our analysis shows that similar accumulation of the
amino acids tryptophan, phenylalanine, and histidine takes place
in a response to high light stress in Charophyta, like K. nitens,
Supplementary Table 2.

Concomitant to the activation of protein repair mechanisms
we found significant activation of ribosome biogenesis and
cytoplasmic translation initiation (Figure 1). For example, genes
encoding nuclear enzymes involved in 18S, 40S, and 60S
rRNA biogenesis (UTP15 kfl00593_0050, NOB1 kfl00104_0280,
and MDN1 kfl00198_0260) were strongly activated. Similarly,
the genes CRM1 (kfl00518_0070) and NMD3 (kfl00006_0030),
encoding nuclear export systems of these ribosomal components,
were also detected as more than twofold activated. Additional
activation was identified, for instance, in genes corresponding
to eukaryotic translation initiation factor 2 (eIF2 kfl00434_0020)
and 3 (eIF3 kfl00078_0290) (Figure 4). These strongly activated
processes are required for de novo protein synthesis and, together
with the previously described protein repair mechanisms,
constitute part of the response to high light in K. nitens,
contributing to maintain proteome homeostasis under this stress.

Besides, the retrograde signaling pathways induced by
ROS and aberrant misfolded proteins discussed above,
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FIGURE 4 | Gene expression level for enzymes involved in retrograde signaling triggered by high light oxidative stress inducing gene activation of protein repair
mechanisms and de novo protein synthesis. Barplots represent gene expression measured in FPKM (Fragments per Kilobase of exon and million of Mapped reads)
under high light in red (HL) and low light in blue (LL) for enzymes EX (executer), protease FtsH2, PRXQ (peroxiredoxin Q), TRX (thioredoxin), NTR (NADPH-dependent
thioredoxin reductase), HSP90 (heat shock protein 90), CAT (catalase), SAL1 (inositol polyphosphate 1-phosphatase), midasin AAA ATPase 1 (MDN1), NIN/RPN12
binding protein (NOB1), nonsense-mediated decay 3 (NMD3), and eukaryotic translation initiation factor 2 (eIF2).

there exists another pathway regulated by the accumulation
of 3′-phosphoadenosine-5′-phosphate (PAP). The inositol
polyphosphate 1-phosphatase (SAL1) removes PAP preventing
its accumulation. The gene encoding this enzyme kfl00096_0240
was twofold repressed indicating a possible accumulation of PAP
and an activation of the SAL1-PAP retrograde signaling pathway,
as a response to high light intensity in K. nitens.

Cyclic Electron Flow Is Strongly Induced
as a Response to High Light
Photosynthetic electron flow operates in two modes, linear and
cyclic (Suorsa, 2015). Our transcriptomic analysis unveiled an
antagonist regulation of these two systems as a response to
high light in K. nitens. The major route of electron transport in
oxygenic photosynthesis is linear electron flow (LEF) initiated
from water by harvesting sunlight and transferring excitation
energy by LHCII to PSII and then through cytochrome b6f
(Cytb6f) to photosystem I (PSI) and NADP+ toward the Calvin–
Benson cycle. Proteins encoded by repressed genes during the
response to high light in K. nitens were significantly associated
with both photosystems resulting in a strong repression of
photosynthesis and hexose biosynthesis (Figure 1). For example,
we found more than twofold repression for genes corresponding
to the LHCII protein LHCB1 (kfl00098_0080); to the PSII
proteins PsbP (kfl00239_0120) and PsbW (kfl00638_0030);
to the Cytb6f protein PetC (kfl00433_0020); and to the

PSI proteins PsaD (kfl00193_0150) and PsaO (kfl00283_0090)
(Figure 5). Funneling electrons from PSI to the Calvin–Benson
cycle we found similarly repressed genes encoding ferredoxin-
NADP-reductase (FNR, kfl00169_0050) and ferredoxin (Fd,
kfl00017_0060). Correspondingly, gene repression was identified
for all the enzymes involved in CO2 assimilation from the
Calvin–Benson cycle. This indicates a strong repression of LEF
in K. nitens under high light stress overexciting photosystems and
producing electron excess that would damage them. Certainly, we
observed lower values for PSII maximal efficiency (Fv/Fm) under
high light 0.49, when compared to low light 0.66. As described
in the previous section an excess of electrons at the PSI acceptor
side results in reduction of molecular oxygen and generation
of superoxide (O2

·−). The Mehler reaction or water–water
cycle removes this harmful anion radical. In our transcriptomic
analysis, we detected gene activation for enzymes in this cycle
as superoxide dismutase (SOD, kfl00631_0030), converting O2

·−

to H2O2, and ascorbate peroxidase (APX, kfl00460_0010), which
scavenges H2O2 with the aid of ascorbate to produce H2O
and monodehydroascorbate radical (MDA). In turn, MDA is
reduced by the MDA reductase (MDAR, kfl00196_0050) (Cardol
et al., 2011). Nonetheless, the corresponding gene was found
underexpressed in high light when compared to low light
conditions. Flavodiiron proteins (Flv, kfl00041_0060) constitute
another enzymatic system involved in the water–water cycle
photoreducing O2 to H2O. Although Flv genes can be found
in Charophyta genomes (Chaux et al., 2017) no activation
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FIGURE 5 | Electron flow through photosystems and non-photochemical quenching mechanisms dissipating excess light energy. Expression fold change under high
light compared to low light is represented for genes corresponding to the different proteins involved in linear and cyclic electron flow, NPQ, state transitions and
water-water cycle: violaxanthin de-epoxidase (VDE), light harvesting complex II (LHCII), LHC-like stress related (LHCSR) protein, photosystem II subunit S (PsbS),
photosystem II subunit 28 (Psb28), photosystem II subunit P (PsbP), photosystem II subunit W (PsbW), photosystem II subunit O (PsbO), plastid terminal oxidase
(PTOX), plastoquinone (PQ), cytochrome b6f (Cytb6f), proton gradient regulation 5 (PGR5), PGR-like 1 (PRGL1), NADH dehydrogenase-like complex (NDH),
photosystem I subunit O (PsaO), photosystem I subunit K (PsaK), photosystem I subunit D (PsaD), photosystem I subunit F (PsaF), photosystem I subunit D (PsaD),
photosystem I subunit F (PsaF), ferredoxin (Fd), ferredoxin-NADP-reductase (FNR), flavodiiron proteins (Flv), protein phosphatase 1 (PPH1), state transition 7/8
(STN7/8), superoxide dismutase (SOD), ascorbate peroxidase (APX) and monodehydroascorbate radical reductase (MDAR). Red represents strong activation
whereas blue stands for strong repression under high light.

was identified suggesting their expression is not related to the
response to high light in K. nitens (Figure 5).

In contrast to LEF, our transcriptomic analysis unveiled a
strong activation in CEF around PSI. In this route, electrons
are recycled from Fd back to plastoquinone (PQ), creating a
transthylakoid proton gradient, and leading to the production
of only ATP (Figure 5). Indeed, we detected CEF activity as a
clear transient increase in chlorophyll fluorescence after turning
off actinic light by PAM in K. nitens cultures under high light
that was not observed under low light (Figure 6). CEF has
been identified as an essential regulatory process governing
light acclimation and photosystems protection from ROS after
high light exposure in Chlorophyta and Embryophyta (Iwai
et al., 2010; Ma et al., 2021). Two different CEF pathways have
been identified based on their different sensitivity to antimycin
(Ravenel et al., 1994). The antimycin-insensitive CEF pathway is
dependent on the NADH dehydrogenase-like complex (NDH).
Even though this is the major pathway in cyanobacteria (Miller
et al., 2021) and it plays crucial roles at low light intensity in
Embryophyta such as rice (Yamori et al., 2015) and Marchantia
polymorpha (Ueda et al., 2012), Ndh genes have disappeared from
most Chlorophyta species including Chlamydomonas, Chlorella,
Scenedesmus, and Ostreococcus. Nonetheless, Ndh genes are
present in Charophytic genomes as Chara and Mesostigma
(Peltier et al., 2010). Specifically, in K. nitens, several Ndh
isoforms have been detected (Hori et al., 2014). However, all the
Ndh subunits encoded by nuclear genes such as Ndh M/N/O
(kfl00053_0440, kfl00564_0070, and kfl00414_0120) presented
strong downregulation under high light (Figure 5). This suggests

that the major CEF pathway in K. nitens under this stress is
not dependent on the Ndh complex. In the antimycin-sensitive
CEF pathway, the proteins proton gradient regulation 5 (PGR5,
kfl00020_0020) and PGR-Like 1 (PRGL1, kfl00342_0140) are
essential components. Genes corresponding to these proteins
have been identified across Chlorophyta, Charophyta, and
Embryophyta (Peltier et al., 2010; Hori et al., 2014; Yamamoto
and Shikanai, 2019) which supports their relevance in the
physiology of photosynthetic organisms. Although PGR5 plays
a pivotal role in CEF, its function is not fully characterized.
PGRL1 is a transmembrane protein with an iron cofactor, which
is probably responsible for electron transfer from Fd to PQ (Ma
et al., 2021). Both proteins PGR5 and PGRL1 need to operate
jointly for efficient CEF to take place. Our analysis unveiled a
strong activation of 5-fold in the gene encoding PGR5 and a
mild activation of 1.24-fold in the gene for PGRL1 indicating
that this is the major CEF pathway in response to high light in
K. nitens.

The redistribution of excitation energy between PSII and
PSI by reversible phosphorylation of LHCII, known as state
transitions, plays an important role in light response in plants
(Mekala et al., 2015). In state I, LHCII is phosphorylated by
the kinases State Transition 7/8 (STN7/8, kfl00129_0080 and
kfl00018_0210) separated from PSII and adhered to PSI. In state
II, LHCII is dephosphorylated by protein phosphatase 1 (PPH1,
kfl00753_0080), and moved back to PSII. In our transcriptomic
data, we found a strong repression greater than threefold in the
gene encoding PPH1 and no significant changes in the genes for
STN7/8 (Figure 6). This suggests that, in a response to high light,

Frontiers in Plant Science | www.frontiersin.org 9 May 2022 | Volume 13 | Article 855243

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-855243 April 29, 2022 Time: 14:10 # 10

Serrano-Pérez et al. High Light Response in Klebsormidium

FIGURE 6 | Measurement of cyclic electron flow (CEF), gene expression of enzymes involved in state transitions and identification of the response in PsbS protein
abundance to light intensity. (A) Dark adapted Klebsormidium nitens cultures exposed to low light (blue) or high light (red) were subjected to actinic light after the first
minute. CEF activity was detected after 5 min when actinic light was turn off and a clear transient increase in chlorophyll fluorescence was observed only for the high
light cultures (red) using pulse-amplitude-modulation fluorometry. (B) Barplots representing gene expression measured in FPKM (Fragments per Kilobase of exon
and million of Mapped reads) under high light in red (HL) and low light in blue (LL) for enzymes involved in state transitions: protein phosphatase 1 (PPH1) involved in
dephosphorylation of light harvesting complex II (LHCII) associating it with photosystem II (PSII) and kinases State Transition 7/8 (STN7/8) involved in phosphorylation
of LHCII associating it with photosystem I (PSI). (C) Identification of the PsbS protein abundance response using Western blotting with anti-PsbS antibody. Almost
no PsbS protein was detected from cultures maintained under constant dark for 24 h (dark), whereas for cultures under high light (HL) greater PsbS protein
abundance was observed when compared to low light (LL).

K. nitens locks photosystems in state I maintaining LHCII bound
to PSI which would protect PSII from excess light and allocate
light energy to PSI further enhancing CEF.

Another system contributing to adjust the redox poise of
the photosynthetic electron transport chain tuning the ratios
between LEF and CEF is constituted by the concerted operation
between plastid terminal oxidase (PTOX, kfl00009_0280) and

NADH dehydrogenase (Rumeau et al., 2007). Our transcriptomic
analysis showed 3.5-fold upregulation of the corresponding gene
for PTOX in high light cultures similar to a common adaptation
strategy in marine phytoplankton to high light conditions
(Cardol et al., 2008). This system has also been proposed to act as
a safety valve during photosynthesis, preventing over reduction
of the PQ pool during light stress (Niyogi, 2000).
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Photosystem II Subunit S and LHC-Like
Stress Related Systems Are
Simultaneously Activated Under High
Light
Non-photochemical quenching plays an essential role in
photoprotection dissipating excessive absorbed light energy as
heat. Two different proteins for NPQ activation are known
in Chlorophyta and Embryophyta, namely, the LHC-like stress
related (LHCSR) protein and the PsbS. These two systems
induce NPQ through different molecular mechanisms. LHCSRs
are grouped under the so-called stress-induced chlorophyll-
binding proteins (Dittami et al., 2010). The abundance of LHCSR
increases under high light just as NPQ is induced (Peers et al.,
2009). LHCSR homologs have been shown to be involved in NPQ
in diatoms (Bailleul et al., 2010; Zhu et al., 2010). LHCSR binds
pigments and is capable of efficiently dissipate excitation energy
as heat. PsbS induces a reorganization of the photosynthetic
apparatus by interfering with the formation of aggregates of
thylakoid membrane proteins, thus allowing easy exchange and
incorporation of xanthophyll cycle pigments into such structures.
The structures formed in the presence of violaxanthin are
characterized by minimized dissipation of excitation energy,
whereas the structures formed in the presence of zeaxanthin show
enhanced excitation quenching (Welc et al., 2021). It has been
reported that NPQ relies mainly on PsbS in Embryophyta (Li
et al., 2000) whereas in Chlorophyta the major role is played by
LHCSR (Peers et al., 2009). Our study aims at contributing to the
elucidation of these two systems in Charophyta as K. nitens.

Our transcriptomic analysis identified a strong overexpression
of both systems under high light when compared to low
light in K. nitens. Specifically, we detected a 3-fold activation
of the gene kfl00478_0030 corresponding to LHCSR and a
massive upregulation of 114-fold in the gene encoding PsbS,
kfl00093_0070 (Figure 5). Although the PsbS transcript has
been detected previously in K. nitens, the identification of the
corresponding protein remained elusive (Hori et al., 2014).
Accumulation of the PsbS protein has only been detected in
Charophyta, such as Zygnema and Mesotaenium (Gerotto and
Morosinotto, 2013) and so, it was discussed that the PsbS system
is only operational in late and not in early Charophyta as
K. nitens. In contrast to these previous negative results, we were
able to detect the protein PsbS in K. nitens protein extracts using
Western blotting (Figure 6). We observed almost no detectable
PsbS protein from cultures maintained under constant dark for
24 h whereas for cultures under low light a band corresponding
to PsbS was detected whose level was increased in cultures under
high light supporting a response of this system to increasing levels
of light intensity (Figure 6).

Our results support the fact that, as a response to high light,
both systems based on LHCSR and PsbS are strongly activated
for efficient NPQ in early Charophyta as K. nitens. A similar
response has been described for the Bryophyta Physcomitrium
patens (Gerotto et al., 2012), which diverged from vascular plants
early after land colonization. In this specie, both systems are
also active, contributing to efficient NPQ. This suggests the co-
existence of these two NPQ mechanisms from early Charophyta

to Bryophyta during plant evolution, before the emergence of
vascular land plants that eventually lost LHCSR while retaining
PsbS instead (Pinnola, 2019).

Genes Present Only in Streptophyta Are
Induced as a Response to High Light
Intensity
Based on sequence similarity, specific genes only found in
Streptophyta were identified in K. nitens, as those without a
significant homolog in Chlorophyta genomes (Hori et al., 2014).
These genes could have played important roles in the adaptation
of Charophyta to terrestrial environments, promoting land
colonization by Streptophyta. According to this classification, we
found 70 specific Streptophyta activated genes corresponding to
10% of the whole activated transcriptome in K. nitens. Several
genes with significant sequence homology to transcription
factors involved in development in Embryophyta were identified.
For example, potential homolog genes of transcription factors
regulating floral transition in Arabidopsis were found activated
as kfl00088_0250 (Homeobox 51), kfl00396_0130 (Protodermal
Factor 2), and kfl00882_0020 (Terminal Flower 1). Similarly,
we identified, as significantly activated, the genes kfl00186_0090
and kfl00862_0040 potential homologs of the transcription
factors growth regulating factor 2 (grf2) and homeobox
2 (HB-2), respectively (Figure 7). These are regulators of
cell growth, expansion and proliferation as a response to
phytohormones in Arabidopsis (He et al., 2020). Genomic studies
have unveiled certain types of primitive land plant signaling
pathways for phytohormone response in K. nitens (Holzinger and
Becker, 2015; Holzinger and Pichrtová, 2016). These primitive
phytohormone systems may be involved in various responses to
harsh environmental stresses on land in this early Charophyta
(Hori et al., 2014). Our metabolomic analysis identified the
presence of the phytohormones salicylic acid (SA), gamma-
aminobutyric acid (GABA), ABA, indole-3-carboxylic acid
(ICA), and IAA in K. nitens cultures, Supplementary Table 2.
None of these phytohormones changed significantly except IAA
with a threefold increase under high light (Figure 2). Auxins
are synthesized from tryptophan through a pathway where the
protein YUCCA plays a central role. As described previously, our
metabolomic analysis found a significant threefold increase in
tryptophan abundance under high light that could be related to
the increase in IAA content. Moreover, the gene kfl00109_0340
encoding YUCCA exhibited a large 16-fold increase in expression
in a response to high light in K. nitens. Other Streptophyta
specific genes involved in auxin sensing and response such as
the receptor kfl00434_0030 (auxin signaling F-box 3, AFB3) and
kfl00426_0080 (expansin, EXP) were also significantly activated
under high light (Figure 7). Nevertheless, no significant change
was observed in the gene kfl00071_0010 encoding the single
PIN auxin transporter protein identified in K. nitens. However,
the expression of the related gene kfl00192_0040, encoding a
sterol 4-alpha-methyl-oxidase (SMO), was also increased under
high light. It has been suggested that SMO enzymes affect the
polar localization of PIN altering developmental processes in
Embryophyta (Zhang and Li, 2016). Auxins has been described to
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FIGURE 7 | Expression level for Streptophyta exclusive genes. (A) Barplots representing gene expression measured in FPKM (Fragments per Kilobase of exon and
million of Mapped reads) under high light in red (HL) and low light in blue (LL) for potential homolog genes of transcription factors regulating floral transition in
Arabidopsis: Homeobox 51 (HB-51), Protodermal Factor 2 (PDF2), and Terminal Flower 1 (TFL1). (B) Barplots representing gene expression measured in FPKM
(Fragments per Kilobase of exon and million of Mapped reads) under high light in red (HL) and low light in blue (LL) for potential homolog genes involved in auxin
biosynthesis, sensing, and response in Arabidopsis: YUCCA, auxin signaling F-box 3 (AFB3), expansin (EXP), PIN, and sterol 4-alpha-methyl-oxidase (SMO).
(C) Barplots representing gene expression measured in FPKM (Fragments per Kilobase of exon and million of Mapped reads) under high light in red (HL) and low
light in blue (LL) for potential homolog genes involved in the phenylpropanoid pathway: phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H),
cinnamoyl-CoA reductase (CCR), and 4-coumarate 3-hydroxylase (C3H). The high activation of early light induced protein (ELIP) is also shown.

induce cell elongation in plants (Ma and Li, 2019). Although no
phenotypic change was apparent after 3 h of high light treatment,
we could observe significant cell elongations (p-vale 1.3× 10−11)
in K. nitens filaments after 72 h (Figure 8). Nonetheless, the
observed cell elongation could be produced by the arrest in cell
cycle identified in our functional enrichment analysis (Figure 1)
rather than on the activation of IAA responsive genes such as EXP
(Ohtaka et al., 2017).

The phenylpropanoid pathway was considered to be an
important Embryophyta specific source for metabolites relevant

to environmental stresses. Nonetheless, candidate homologous
genes codifying for enzymes acting at different steps in this
pathway have recently been identified in K. nitens (de Vries et al.,
2021). Concomitant to an increase in the aromatic amino acid
phenylalanine, input to this pathway (Figure 2), some of these
genes were found activated under high light stress in our study
(Figure 7). Specifically, one of the candidate genes encoding
phenylalanine ammonia-lyase (PAL) kfl00024_0250 was 1.53-fold
activated. Although no clear cinnamate 4-hydroxylase (C4H)
homolog has been determined in K. nitens one of the candidates
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FIGURE 8 | Klebsormidium nitens cell elongation under high light.
(A) Confocal images of Klebsormidium nitens cells under low light (LL) on the
left and high light (HL) on the right. (B) Boxplot representing the significative
increase in cell elongation under high light (HL) in red when compared to low
light (LL) in blue.

kfl00038_0230 was 3-fold activated. Similarly, candidates for 4-
coumarate 3-hydroxylase (C3H), kfl00038_0230, and cinnamoyl-
CoA reductase (CCR), kfl00062_0190, were 2.92- and 1.43-fold
activated, respectively.

Early light induced proteins (ELIPs) were thought to be
Embryophyta specific stress responsive mechanisms (Adamska
et al., 1992). Nonetheless, ELIPs have been found activated in
Charophyta under abiotic stresses such as heat and desiccation
(Holzinger et al., 2014; De Vries et al., 2018; Rippin et al., 2019b;
de Vries et al., 2020). In our study, genes codifying for
ELIPs were among the most activated ones under high light
stress, for example, kfl00052_0260 was more than 21-fold
activated (Figure 7).

CONCLUSION

Klebsormidium nitens, as a representative of early Charophyta,
exhibit the co-existence of high light response mechanisms
that are also detected in Chlorophyta and Embryophyta.
Assuming that these systems have not independently arisen
in K. nitens, our results support a model by which the
streptophyte ancestor of land plants conserved features of its
chlorophyte relatives and also developed new signaling responses
to high light that promoted the transition to land and the
emergence of Embryophyta. K. nitens possesses a tight and fast
chloroplast retrograde signaling, possibly mediated by ROS and
the SAL1-PAP pathways, as suggested by the downregulation
of the SAL1 gene. This system, after only 3 h of high light,
induces gene expression and accumulation of specific metabolites
to overcome this stress, especially relevant in terrestrial
environments. Precisely, mechanisms common to Chlorophyta
and Embryophyta are induced such as the xanthophyll cycle, with
VDE activation and ZEP repression, leading to the accumulation
of zeaxanthin; and protein repair mechanisms based on the
NTR-TRX-PRX system. Further photoprotective mechanisms
were identified such as the downregulation of LEF and the
upregulation of CEF, with the specific activation of PGR5 and
repression of Ndh components, and PPH1 locking LHCII in
state I associated with PSI. More interestingly, the simultaneous
strong activation of NPQ mechanisms specific to Chlorophyta,
as LHCSR, and to Embryophyta, as PsbS, were detected. Finally,
specific Embryophyta systems for auxin synthesis, sensing, and
response were activated leading to an increase in auxin content
with the concomitant accumulation of amino acids such as
tryptophan, histidine, and phenylalanine. Moreover, specific
genes in the phenylpropanoid pathway and ELIPs were also
activated in our study. All these systems could have been major
facilitators for plants conquest of terrestrial environments since
they would have enabled an adaptation of land plants algal
ancestors to high light, one of the major stressors for Charophyta
in terrestrial habitats.
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