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a b s t r a c t

Many popular approaches in the field of robust model predictive control (MPC) are based on nominal
predictions. This paper presents a novel formulation of this class of controller with proven input-
to-state stability and robust constraint satisfaction. Its advantages are: (i) the design of its main
ingredients are tractable for medium to large-sized systems, (ii) the terminal set does not need to
be robust with respect to all the possible system uncertainties, but only for a reduced set that can be
made arbitrarily small, thus facilitating its design and implementation, (iii) under certain conditions
the terminal set can be taken as a positive invariant set of the nominal system, allowing us to
use a terminal equality constraint, which facilitates its application to large-scale systems, and (iv)
the complexity of its optimization problem is comparable to the non-robust MPC variant. We show
numerical closed-loop results of its application to a multivariable chemical plant and compare it against
other robust MPC formulations.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

A relevant problem that has received a lot of attention from
he predictive control community is the robust regulation of
isturbed linear discrete-time systems towards a desired equi-
ibrium point. However, in spite of the potential benefits of this
aradigm, its implementation in the industry is deterred by their
ypical high complexity, especially for medium to large-scale
ystems [1].
The classical approach for robust control laws, introduced

n [2], is to minimize a cost function for the worst possible
isturbance realization. While this may lead to an optimal ro-
ust control law, it requires solving min–max optimization prob-
ems [3–5], which may be very computationally demanding even
or average-sized systems.

In order to overcome this, robust model predictive controllers
RMPC) [6] based on nominal predictions and tightened con-
traints, typically referred to as tube-based MPC, have been pro-
osed in the literature. As discussed in [7], ‘‘the many variants
of tube-based MPC] developed over the years can essentially
e classified as variations of two approaches [...] [8] and [9]’’.
ther formulations, variations and approaches for RMPC have
een proposed since then, such as non-linear RMPC formulations
10]; [11], which uses ellipsoidal robust forward invariant sets, re-
ulting in an optimization problem with linear matrix inequalities
LMI); formulations which combine tube-based and multi-stage
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MPC such as [12]; or self-triggered tube-based MPC [13]. How-
ever, we center our attention on the formulations from [8] and
[9], since this paper proposes a similar formulation that pro-
vides several benefits over these two main tube-based RMPC
formulations.

In [8], the authors propose a RMPC controller where the effect
of the disturbance is rejected with the use of a control gain F
aken from the solution of the linear quadratic regulator (LQR)
orresponding to the weighting matrices of the cost function.
he system constraints are tightened by mean of reachable sets
hich are computable for medium to large-scale systems (see
8, Eq.(7)]). The disadvantage is that F is derived from the weight-
ng matrices of the cost function. Thus, its effect on the constraint
ightening [8, Eq.(22)] cannot be freely tuned independently from
he performance of the controller.

In [9], the authors propose a RMPC controller where the con-
traints are tightened using the minimal robust positive invariant
et of the system, or an approximation of it [14], for a given
tabilizing control gain. This set is typically computationally de-
anding to obtain (in many cases prohibitively so), even for
verage-sized systems. The advantage is that the disturbance
ejection (i.e., the constraint tightening) and the performance of
he controller are decoupled, thus potentially leading to better
erformance. This approach has been successfully applied to sev-
ral applications, such as reference tracking [15] and distributed
ontrol [16].
As previously mentioned, other similar constraint tighten-

ng approaches have been proposed. In [17], an initial feasible
rajectory is calculated, and in the following sample times a
ontrol gain that keeps the system close to this initial trajec-

ory is computed. This avoids having to solve an optimization
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roblem online, since the deviation from the feasible trajectory
s corrected using the linear feedback control gain. As such, this
pproach has a low computational burden; but in general pro-
ides worse performance than other robust MPC approaches [18].
n [19] the state estimation error is explicitly taken into con-
ideration to provide a formulation that is independent of the
mployed estimation method. Finally, [20] proposes a RMPC for
onstrained linear systems described by polytopic uncertainty
odels. This approach significantly enlarges the feasibility region

or small control horizons by introducing a new set of variables
hat have to be computed offline, thus increasing the complexity
f the controller.
In this paper, we present a novel RMPC formulation based

n nominal predictions and constraint tightening, guaranteeing
nput-to-state stability (ISS) (see [21, §3] for a definition of ISS)
nd robust satisfaction of the constraints. Similarly to [8], a robust
ontrol gain is used to tighten the constraints throughout the
rediction horizon by taking into account the possible effect of
he disturbances on the resulting closed-loop system. However,
his gain does not have to be the one corresponding to the LQR,
s in [8]. Instead, it can be freely tuned to enlarge the domain
f attraction. Moreover, the terminal set does not need to be
obustly invariant for all the possible disturbances. Instead, it only
eeds to be robust for a reduced set of disturbances within a
ertain set L(N) whose size diminishes with the length of the
prediction horizon N of the controller, thus potentially leading
to a larger terminal set than in other RMPC formulations. An
additional advantage of this is that if the prediction horizon is
long enough to make the size of L(N) negligible, then a positive
nvariant set of the nominal system (i.e., one that does not take
nto account the disturbance) can be used as the terminal set,
ignificantly simplifying the design of the controller. In fact, in
his case a terminal equality constraint could be used, which
ould make the proposed controller applicable to large-scale
ystems.
The key points of the proposed formulation are:

• The use of two decoupled design parameters (the constraint
tightening robust control law, on one hand, and the terminal
set, on the other), allows for a more flexible design of the
controller, thus allowing for more opportunity to improve
its performance.

• The tightened constraints share the same complexity as
the nominal ones. That is, if the nominal constraints are
box constraints, then the tightened ones are also box con-
straints. Moreover, they do not require the computation of
the minimal robust positive invariant set.

• The design procedure seeks a robust control gain such that
L(N) decreases rapidly with N , thus increasing the size of
the robust terminal set and the likelihood of being able to
use a positive invariant set of the nominal system as the
terminal set for reasonable values of N .

• We present design procedures for the ingredients of the
controller that are tractable for average-sized systems, since
they require solving optimization problems subject to LMI
constraints.

• Its decision variables are the same as the ones of the nomi-
nal MPC variant. This, in addition with the previous points,
results in an optimization problem with a complexity sim-
ilar to that of nominal MPC (as is typical in tube-based
RMPCs [22]).

Given its computationally tractable design procedure and the
act that its resulting optimization problem is not particularly
omplex, we argue that the proposed approach simplifies the
esign of the controller, when compared with other robust pre-

ictive controllers, and may be applicable to many average-sized
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systems. To illustrate this, we show the results of controlling a
simulated 12-state, 6-input chemical plant.

The remainder of this paper is structured as follows. The
problem statement is described in Section 2. The proposed RMPC
controller is detailed in Section 3. We present design procedures
for the computation of its main ingredients in Section 4. Section 5
discusses the use of a positive invariant set of the nominal system
as the terminal constraint. Section 6 shows two case studies, one
controlling the chemical plant and one comparing the proposed
formulations with [8] and [9]. We conclude with Section 7.

Notation: Given matrices T and P , T≻(⪰)0 indicates that T is
ositive (semi)definite matrix and T≻(⪰)P indicates T −P≻(⪰)0.
or x ∈ Rn and P ≻ 0, ∥x∥ .

=
√
x⊤x, ∥x∥P

.
=

√
x⊤Px,

nd ∥x∥1
.
=

∑n
i=1 |x(i)|, where x(i) is the ith component of x.

e denote by (x1, x2, . . . , xN ) the column vector formed by the
concatenation of column vectors x1 to xN . Given two integers i
and j with j ≥ i, Zj

i denotes the set of integer numbers from i to
j, i.e. Zj

i
.
= {i, i + 1, . . . , j − 1, j}. Given two sets U ⊂ Rn and V ⊂

Rn, their Minkowski sum is defined by U⊕V .
= {u+v : u ∈ U, v ∈

V}, and their Pontryagin set difference is U⊖V .
= {u : u⊕V ⊆ U}.

In ∈ Rn×n denotes the identity matrix of dimension n. For a
symmetric matrix M , λmax(M) and λmin(M) denote its maximum
and minimum eigenvalues, respectively. Given P ≻ 0 ∈ Rn×n,
we denote the ellipsoid E(P) .

= {x ∈ Rn
: x⊤Px ≤ 1}. We

define the mapping of a set U ⊂ Rn with matrix M ∈ Rm×n as
MU .

= {Mu : u ∈ U}. A function f : R≥0 → R≥0 is of class K if it
is continuous, strictly increasing and f (0) = 0, and is of class K∞

if it is a K-function and f (x) → +∞ as x → +∞. The unitary
box of dimension n is denoted by Bn

.
= {x ∈ Rn

: maxi |x(i)| ≤ 1},
where x(i) is the ith component of x. For a given sequence of
sets {V(i)}Ni=1,

⨁N
i=1 V(i)

.
= V(1) ⊕ V(2) ⊕ · · · ⊕ V(N). Given

scalars and/or matrices M1, . . . ,MN (not necessarily of the same
dimensions), we denote by diag(M1, . . . ,MN ) the block diagonal
matrix formed by their diagonal concatenation.

2. Problem statement

We consider a plant described by the following controllable
uncertain discrete-time linear time-invariant state-space model

x(k + 1) = Ax(k) + Bu(k) + w(k), (1)

where x(k) ∈ Rn, u(k) ∈ Rm and w(k) ∈ Rn are the state, input
and disturbance of the system at sampling time k, respectively.
Additionally, we consider that the state and input trajectories
must satisfy the constraints x(k) ∈ X and u(k) ∈ U for any
possible disturbance w(k) ∈ W , where the sets X and U are
compact (convex) polytopes

X = {x ∈ Rn
: Axx ≤ bx}, (2a)

U = {u ∈ Rm
: Auu ≤ bu}, (2b)

with Ax ∈ Rpx×n, Au ∈ Rpu×m, and which we assume contain the
origin in their interiors; and set W is a (convex) zonotope, i.e., an
affine mapping of the unitary box of a certain dimension M

W = HWBM , (3)

where HW ∈ Rn×M . We note that we consider W as a zonotope
to simplify future developments.

The control objective is to regulate the system to a neighbor-
hood of the origin while fulfilling the constraints for all possible
disturbances.

3. Proposed robust MPC

For a given prediction horizon N , the proposed robust MPC
(RMPC) control law for a given state x is derived from the solution
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f the following convex optimization problem, which we label by
N (x),

N (x) : min
ū

VN (x, ū) (4a)

s.t. x̄(i + 1) = Ax̄(i) + Bū(i), i ∈ ZN−1
0 (4b)

x̄(0) = x (4c)

x̄(i) ∈ X ⊖ H(i), i ∈ ZN−1
0 (4d)

ū(i) ∈ U ⊖ KH(i), i ∈ ZN−1
0 (4e)

x̄(N) ∈ ΩKt ⊖ L(N), (4f)

where ū = (ū(0), . . . , ū(N−1)); the cost function is

VN (x, ū) =

N−1∑
i=0

(
∥x̄(i)∥2

Q + ∥ū(i)∥2
R

)
+ ∥x̄(N)∥2

P (5)

for the cost function matrices Q , R and P , which penalize the
deviation between the predicted nominal evolution of the plant,
i.e. (1) with w(i) = 0 for all i, and the origin throughout the
prediction horizon N; the sets H(i) and L(i) for i ≥ 1 are given
by

H(i) =

i−1⨁
j=0

Aj
KW, L(i) = Ai−1

K W, (6)

where AK
.
= A + BK , K ∈ Rm×n is a linear feedback control

gain and H(0), L(0) are taken as the empty sets; and ΩKt is
a robust positive invariant set of the system with the terminal
feedback control gain Kt for the disturbances contained in L(N)
(see Assumption 1.(iv) below).

Constraints (4d) and (4e) request not only that the predicted
states and inputs satisfy the constraints X and U , respectively, but
instead that they lie within tightened constraints that depend on
the sets H(i) and, so, on the feedback control gain K . As shown in
Appendix A, set L(i) is a bound of the possible deviation at time
instant i that a disturbance w ∈ W at the initial time instant,
i.e. at i = 0, can create between model (1) and the nominal model
(4b) if the control law u = K (x− x̄)+ ū is used to reject it. Notice
that, if A+BK is Hurwitz, the size of L(i) monotonically decreases
with i, whereas sets H(i) monotonically increase, converging to a
bounded set (the minimum robust positive invariant set).

Assumption 1. We make the following assumptions on the
ingredients of optimization problem (4):

(i) Q , R ≻ 0.
(ii) The control gain Kt and P ≻ 0 satisfy

P − (A + BKt )⊤P(A + BKt ) ⪰ Q + K⊤

t RKt . (7)

(iii) The control gain K is such that A + BK is Hurwitz and
X ⊖ H(N) and U ⊖ KH(N) are non-empty.

(iv) The set ΩKt is a compact convex set satisfying

(A + BKt )ΩKt ⊕ L(N) ⊆ ΩKt , (8)

ΩKt ⊆ {x ∈ X ⊖ H(N) : Ktx ∈ U ⊖ KH(N−1)}. (9)

One of the advantages of this formulation, when compared to
other robust MPC approaches, such as [8], is that it offers an extra
degree of freedom. Indeed, the gain K , which is used to compute
the sets H(i) and L(i), can be tuned in order to enlarge the region
of attraction, whereas the gain Kt , which is used to compute
the terminal cost function matrix P and the set ΩKt , is affected
by the choice of Q and R, which can be tuned to improve the
performance of the controller (as is standard in MPC). As stated
in Assumption 1.(iv), ΩKt must be a robust positive invariant set

of the system controlled with the terminal control law Kt for
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the additive disturbances contained in L(N) = AN−1
K W (which is

typically much smaller than W). The prediction horizon N can be
chosen to obtain a small set L(N), and therefore a larger terminal
set and (generally) a larger domain of attraction of the controller.

In the following, we denote by V ∗

N (x) the optimal cost, ū∗(x) =

{ū∗(0; x), . . . , ū∗(N − 1; x)} the optimal value of the decision
variable and x̄∗(x) = {x̄∗(0; x), . . . , x̄∗(N; x)} the corresponding
optimal value of the nominal state trajectory of problem PN (x).
The control law at each sample time k is given by the receding
horizon control law u(k) = ū∗(0; x(k)), where x(k) is the state of
the plant.

The domain of attraction of the RMPC controller, denoted by
XN , is the feasibility region of PN (x), i.e., the set of states that can
be steered to ΩKt ⊖L(N) in N steps while fulfilling the tightened
constraints (4d) and (4e).

The following two theorems state the recursive feasibility
and input-to-state stability of the RMPC controller for all initial
states x ∈ XN .

Theorem 1 (Recursive feasibility). Consider a system (1) as de-
scribed in Section 2 controlled with the robust MPC formulation
PN (x). Suppose that the ingredients of the controller satisfy Assump-
tion 1 and that the system state at sample time k satisfies x(k) ∈ XN .
Then, the successor state x(k + 1) = Ax(k) + Bū∗(0; x(k)) + w(k)
satisfies x(k + 1) ∈ XN for any w(k) ∈ W .

Proof. See Appendix A.

Theorem 2 (Input-to-state stability). Consider a system (1) as
described in Section 2 controlled with the robust MPC formulation
PN (x). Suppose that the ingredients of the controller satisfy Assump-
tion 1 and that the system state at sample time k satisfies x(k) ∈ XN .
Then, the closed-loop system is ISS with respect to any disturbance
signal w(i) ∈ W , i ≥ k.

Proof. See Appendix B.

4. Synthesis of the RMPC ingredients

The proposed controller requires the design of the ancillary
control gains K and Kt , the matrix P , and the sets H(i), L(i),
X ⊖ H(i), U ⊖ KH(i) and ΩKt . An appropriate design of these
ingredients, which is not immediate, must ensure the satisfaction
of the stabilizing assumptions (Assumption 1), reject the effect of
the uncertainty and seek to maximizing the domain of attraction.

This section describes tractable procedures for the computa-
tion of these ingredients satisfying the stability conditions and
guaranteeing robust constraint satisfaction whilst seeking to in-
crease the domain of attraction. The procedures and results we
show follow from prior results from the control literature, includ-
ing [23–26]. However, we present them here in a unified format
and particularized to our proposed formulation.

4.1. Computation of K

The control gain K is used to compensate the deviation from
the nominal predictions due to the disturbances. In this paper, we
follow the approach from [23], in which the robustness criterium
is to find control gain K and a matrix P̃ ≻ 0 such that the ellipsoid
E(P̃) is a robust positive invariant set of system (1) for the state
feedback control law u = Kx satisfying the constraints X and
U . Additionally, we require the sets X ⊖ H(i) and U ⊖ KH(i)
to be non-empty. Moreover, we wish to minimize the size of
E(P̃). Note that, since E(P̃) is a robust positive invariant set of
the system, and H(i) is contained in the minimum robust positive

˜
invariant set, a reduction of the size of E(P) (typically) leads to a
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eduction of the sets H(i), which is desirable since this translates
into an enlargement of the tightened constraints. However, this
reduction may come at the cost of increasing the gain of K , which
ay result in a reduction of the constraints U ⊖ KH(i). To avoid

this, we impose that Kx ⊆ ρ U , ∀x ∈ E(P̃), where the role of the
scalar ρ satisfying 0 < ρ ≤ 1 is to limit the control action of K in
order to ensure a certain control authority.

The computation of K and P̃ satisfying these criteria was posed
in [23, §4.3] as an optimization problem involving LMI constraints
(see also [24]). In the following, we detail how this optimization
problem and LMI restrictions are posed, where in this paper we
include an additional requirement with the objective of obtaining
a control gain K that provides a fast convergence to the origin of
the autonomous system x(k + 1) = (A + BK )x(k) = AK x(k). The
reason for doing so is to obtain a matrix K such that the size of
L(N) quickly decreases with N , thus leading to a larger terminal
set and domain of attraction for reasonable values of N .

Robust positive invariance of E(P̃) can formulated as

(AK x+w)⊤P̃(AK x+w) ≤ 1, ∀x ∈ E(P̃), ∀w ∈ W, (10)

which, considering the convexity with respect to w, only needs
to be checked for all w ∈ vert(W), where vert(W) denotes
the vertexes of W . Applying the S-procedure, we have that the
implication

x⊤P̃x ≤ 1 ⇒ (AK x + w)⊤P̃(Akx + w) ≤ 1

is satisfied if there exists a scalar λ ≥ 0 such that

(AK x+w)⊤P̃(AK x+w) + λ(1 − x⊤P̃x) < 1,

which can be expressed as[
x
1

]⊤ [
λP̃ − A⊤

K P̃AK −A⊤

K P̃w

−w⊤P̃AK 1 − λ − w⊤P̃w

][
x
1

]
>0.

Therefore, (10) is satisfied if there exists λ ≥ 0 such that[
λP̃ − A⊤

K P̃AK −A⊤

K P̃w

−w⊤P̃AK 1 − λ − w⊤P̃w

]
≻ 0, ∀w∈vert(W).

This expression can be rewritten as[
λP̃ 0
0 1 − λ

]
−

[
A⊤

K
w⊤

]
P̃ [AK w] ≻ 0, ∀w∈vert(W),

which applying the Schur complement, leads to⎡⎣ λP̃ 0 A⊤

K
0 1 − λ w⊤

AK w P̃−1

⎤⎦ ≻ 0, ∀w∈vert(W).

Finally, by pre- and post-multiplying by diag(P̃−1, 1, In) and tak-
ing the transformations S .

= P̃−1 and Y .
= KP̃−1, we obtain the

LMIs⎡⎣ λS 0 SA⊤
+Y⊤B⊤

0 1−λ w⊤

AS+BY w S

⎤⎦≻0, ∀w∈vert(W). (11)

For all x ∈ E(P̃), the state constraints x ∈ X must be satisfied,
i.e., Axx ≤ bx, ∀x ∈ E(P̃). It is well known that maxx∈E(P̃) c

⊤x =√
c⊤P̃−1c. Therefore, the previous condition can be posed as

Ax,jP̃−1A⊤

x,j ≤ b2x,j, j ∈ Zpx
1 , (12)

here Ax,j and bx,j are the jth row/component of Ax and bx, respec-
ively. However, since we are interested in minimizing the size of
(P̃), we impose the condition E(P̃) ⊆

√
γX , where admissibility

of the solution requires that the scalar γ satisfy 0 < γ ≤ 1. This
78
condition can be imposed by adding γ to the previous inequality,
leading to

Ax,jP̃−1A⊤

x,j ≤ γ b2x,j, j ∈ Zpx
1 .

Using the definition of S, this can be expressed as the LMIs

Ax,jSA⊤

x,j ≤ γ b2x,j, j ∈ Zpx
1 . (13)

For all x ∈ E(P̃), the input constraints u = Kx ∈ U must be
satisfied, i.e, AuKx ≤ bu, ∀x ∈ E(P̃). However, as discussed at
the beginning of this subsection, we instead impose Kx ⊆ ρ U ,
∀x ∈ E(P̃), where the scalar ρ must satisfy 0 < ρ ≤ 1. Therefore,
we impose AuKx ≤ ρbu, ∀x ∈ E(P̃), which, once again, can be
posed as

Au,jKP̃−1K⊤A⊤

u,j ≤ (ρbu,j)2, j ∈ Zpu
1 .

Then, from the definition of S and Y , and applying the Schur
complement, we have

Au,jKP̃−1P̃ P̃−1K⊤A⊤

u,j ≤ (ρbu,j)2, j ∈ Zpu
1 ,

Au,jYS−1Y⊤A⊤

u,j ≤ (ρbu,j)2, j ∈ Zpu
1 ,[

(ρbu,j)2 Au,jY
Y⊤A⊤

u,j S

]
≻ 0, j ∈ Zpu

1 . (14)

Finally, we want to find a matrix K such that the autonomous
system x(k + 1) = (A + BK )x(k) has a fast convergence to the
origin. To do this, we impose the following condition, where the
contraction factor µ is a scalar selected in the range 0 < µ ≤ 1,

µP̃ ≻ A⊤

K P̃AK ,

which following similar procedures leads to

µP̃−1P̃ P̃−1
− P̃−1A⊤

K P̃AK P̃−1
≻ 0,

µS − (SA⊤
+ Y⊤B⊤)S−1(AS + BY ) ≻ 0,[

µS SA⊤
+ Y⊤B⊤

AS + BY S

]
≻ 0. (15)

Matrices K and P̃ satisfying the above criteria can be recovered
from the solution of the following optimization problem involving
the LMIs (11), (13), (14), and (15),

min
Y ,S,γ

γ

s.t. (11), (13), (14), (15).
(16)

The procedure is to select values of ρ and µ, and to then solve
the resulting problem (16) for increasing values of λ until a
feasible problem is found. If no feasible solution is found, then
less restrictive values of ρ and/or µ should be selected. An easy
way to do this is to first fix µ = 1 and reduce ρ, and to then fix
ρ and reduce µ.

Remark 1. We note that problem (16) is a convex optimization
problem that is solved offline. Additionally, it can be solved for
(relatively) large-sized systems guaranteeing a good design of the
controller, although we remark that there is no guarantee that the
problem will be feasible, since there may not exist a K for which
the tightened constraints are non-empty if W is too large.

Remark 2. We note that elements bu,j and bx,j from (13) and (14)
can cause numerical issues when solving problem (16), since they
appear squared in the LMI constraints. To avoid this, sets X and
U should be rewritten so that the components of bx and bu only
contain the value 1, which is possible since we assume that the

origin is an interior point of X and U .
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.2. Computation of the tightened constraints

The computation of the tightened constraints requires the
omputation of setsH(i) and L(N) (6). Set L(N) is straightforward,
since it is the zonotope given by

L(N) = AN−1
K HWBM ,

and sets H(i) can be computed recursively by making use of the
following proposition.

Proposition 1 ([27], Lemma 2(3)). Let C .
= HCBMC , with HC ∈

Rn×MC , and D .
= HDBMD , with HD ∈ Rn×MD , be two zonotopes. Then,

C ⊕ D = [HC , HD]BMC+MD .

Indeed, H(i) = HiBiM , where H1 = HW and

Hi = [Ai−1
K HW , Hi−1], i > 1.

The tightened constraints X ⊖ H(i) and U ⊖ KH(i) are easily
computed by using the following well-known result, for which
we include a proof for completeness.

Proposition 2. Let D .
= HDBM , with HD ∈ Rn×M , and let C .

= {x ∈

Rn
: Fx ≤ f }. Then, Z .

= C ⊖ D is given by, Z = {x ∈ Rn
: Fz ≤

f − g}, where, denoting Fi the ith row of F , each component i of g is
given by gi = ∥FiHD∥1.

Proof. z ∈ Z if x = z + d ∈ X for all d ∈ D. This can be
posed as F (z + d) ≤ f for all d ∈ D. From the definition of set
D, this is equivalent to Fz + FHDv ≤ f for all v ∈ BM . The most
restrictive value of v for each linear inequality in F is given by
maxv∈BM FiHDv = ∥FiHD∥1. □

Remark 3. Note that Proposition 2 shows that the tightened
constraints X ⊖ H(i) and U ⊖ KH(i) have the same complexity
as the nominal ones (2), since they are polytopes with the same
matrices Ax and Au. Additionally, since the computation of the
sets are done offline and they only require vector norms and
vector–matrix multiplications, this procedure can be applied to
large-scale systems.

4.3. Computation of Kt , P and ΩKt

We follow a similar procedure to the one used in Section 4.1.
That is, we compute matrices Kt and P ≻ 0 satisfying (7), and
such that ΩKt

.
= E(P) satisfies (8) and (9). As done in Section 4.1,

these conditions can be imposed as LMIs as follows, where we
define S̃ .

=P−1 and Ỹ .
=KtP−1.

Remark 4. The design procedure that we detail below provides
the values of Kt and P . Additionally, it shows the existence of a
robust positive invariant set of the form ΩKt = E(P). The use of
an ellipsoidal terminal invariant set is useful due to it typically
being simpler to compute that the more common polyhedral
invariant set [28, §4.1], [29] and to it resulting in the addition of
fewer constraints in the optimization problem [28, §5]. However,
a polyhedral robust invariant set ΩKt can be computed by other
means [30,31], and used instead of the ellipsoidal one obtained
from the following design procedure.

Condition (7) can be posed as an LMI as follows,

S̃−(S̃A⊤
+Ỹ⊤B⊤)P(AS̃+BỸ ) ≻ S̃Q S̃ + Ỹ⊤RỸ ,

S̃ −

⎡⎣ AS̃+BỸ
Q 1/2S̃
1/2 ˜

⎤⎦⊤ [ P 0 0
0 I 0
0 0 I

]⎡⎣ AS̃+BỸ
Q 1/2S̃
1/2 ˜

⎤⎦≻0,

R Y R Y

79
⎡⎢⎢⎣
S̃ ∗ ∗ ∗

AS̃ + BỸ S̃ ∗ ∗

Q 1/2S̃ 0 I ∗

R1/2Ỹ 0 0 I

⎤⎥⎥⎦ ≻ 0, (17)

where we use the asterisks to represent the transposed of the
elements shown in the lower half of the matrix due to space
considerations. Condition (8) can be posed as

(AK x+d)⊤P(AK x+d) ≤ 1, ∀x ∈ E(P̃), ∀d ∈ L(N),

which, using the arguments used to derive (11), leads to⎡⎣ λ̃S̃ ∗ ∗

0 1−λ̃ ∗

AS̃+BỸ d S̃

⎤⎦ ≻ 0, ∀d∈vert(L(N)), (18)

for some λ̃ ≥ 0.
Finally, we pose condition (9) as two LMIs. Note that, from

Section 4.2 (see Remark 3), we have that the tightened constraints
X ⊖ H(N) and U ⊖ KH(N − 1) are compact (convex) polytopes
given by

X ⊖ H(N) = {x ∈ Rn
: Axx ≤ b̃x},

U ⊖ KH(N − 1) = {u ∈ Rm
: Auu ≤ b̃u},

where b̃x and b̃u are computed as described Proposition 2. There-
fore, condition (9) can be posed as LMIs following the same
procedure used to derive (12) and (14):

Ax,jS̃A⊤

x,j ≤ b̃2x,j, j ∈ Zpx
1 , (19)[

b̃2u,j Au,jỸ
Ỹ⊤A⊤

u,j S̃

]
≻ 0, j ∈ Zpu

1 , (20)

where we note that ρ is not used in this case. Remark 2 also
applies to the two above LMIs.

The computation of Kt , P and ΩKt can therefore be recovered
by finding a feasible solution of the LMIs (17)–(20) for some value
of λ̃ ≥ 0.

5. Using a positive invariant set of the nominal system as the
terminal set

As discussed in [1], the application of RMPC to real systems
is hindered because of its complexity, particularly for medium
to large-scale systems. A mayor contributor to this complexity
comes from the use of a robust positive invariant terminal set,
particularly in the case of a polyhedral one.

As shown in Assumption 1(iv) and (4f), our proposed formu-
lation requires a terminal set that must be robust for the distur-
bances contained in L(N), which will typically satisfy L(N) ⊂ W .
This is by itself a useful property of the formulation, since it
simplifies the computation of ΩKt and results in a larger terminal
set that in other RMPC formulations.

However, note that if L(N) = {0}, then the problem is sim-
plified further. Indeed, first note that the terminal set in (4f)
reduces to ΩKt , and, most importantly, that the conditions stated
in Assumption 1.(iv) reduce to

(A + BKt )ΩKt ⊆ ΩKt , (21a)

ΩKt ⊆ {x ∈ X ⊖ H(N) : Ktx ∈ U ⊖ KH(N−1)}. (21b)

Thus, ΩKt has to be a positive invariant set for the system
x(k + 1) = (A + BKt )x(k) subject to the constraints x(k) ∈ X ⊖

H(N) and Ktx(k) ∈ U ⊖ KH(N − 1). That is, ΩKt must be a
positive invariant set of the nominal (non-disturbed) system (1)
controlled with the state feedback gain Kt for the constraints
in (21b). This is a significant benefit over having to compute
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robust positive invariant set, since we can take the positive
nvariant set used in nominal MPC formulations, which in general
s much simpler to compute than one that has to be robust to
ome uncertainty. Additionally, we can use very simple terminal
ets, such as the ellipsoidal set ΩKt = E(P) obtained following the
ethod in Section 4.3, or a terminal equality constraints, since

n this case the set ΩKt = {0} satisfies (21). In these two cases
he proposed formulation could be applied even to medium to
arge-scale systems.

The reader may note that the condition L(N) = {0} is im-
ractical, since in general L(N) → {0} as N → +∞. If K

is taken as the gain of the dead-beat controller then N can be
selected such that AN−1

K = 0. The problem with this approach is
that, typically, the resulting matrix K will have a big gain, and
therefore the tightened constraints U ⊖ KH(i), i ∈ ZN−1

0 , will be
too restrictive (they might even be empty). Therefore, instead of
forcing L(N) = {0}, we propose to relax this condition to L(N)
being very small by forcing the norm of AN−1

K to be sufficiently
small. In particular, we take the square of the spectral norm of
AN−1
K (which is the absolute value of its maximum eigenvalue).

If this norm is smaller than a certain tolerance, then L(N) can
e taken as {0} for all practical purposes. Note that the design
rocedure we present in Section 4.1 seeks a control gain K that
rovides a fast convergence of the autonomous system x(k+1) =

K x(k). Thus, it is expected to provide a K such that a negligible
(N) is attained for reasonable values of N .
A more practical approach is to relax this condition even

urther. The optimization problem of the RMPC controller will be
olved, in real-time, using some iterative optimization algorithm
ith an exit condition determined by an exit tolerance set by the
ser. In practice, the exit tolerance is typically in the range of 10−3

o 10−6. Therefore, we argue that, in practice, it is enough to select
and compute K so that the norm of AN−1

K is significantly smaller
than the exit tolerance of the solver. In this case, for all practical
purposes, the terminal equality constraint x̄(N) = 0 can also be
used.

Remark 5. The control gain K computed as described in Sec-
tion 4.1 may still lead to a large N in order for L(N) to be
sufficiently small. In this case, to reduce the complexity of opti-
mization problem (4), a control horizon Nc may be used alongside
the prediction horizon N , as is typically done in MPC, by adding
constraint ū(i) = Kt x̄(i), i ∈ ZN−1

Nc
, to (4). Even if N has to

be large, in many cases the resulting optimization problem will
still be implementable, since many solvers for linear MPC can
exploit the structure of the optimization problem, leading to a
linear memory and computational complexity growth with the
prediction horizon N [32–34].

Remark 6. Another approach to deal with the issues that
arise from the need to compute and implement a terminal set
is to eliminate it altogether. This can be done by increasing the
penalization of the terminal cost with an additional scalar penalty
parameter λ ≥ 0 [21], i.e. to take λ∥x̄(N)∥2

P in (5). However, the
issue is that it is not clear how to select λ, since the region in
which the controller remains robust is not known a priori [35].

Remark 7. If the option of taking ΩKt as the singleton ΩKt = {0}
is taken as discussed above, then the ingredients Kt and P only
needs to satisfy (7). In this case, the most straightforward choice
is to take (7) as en equality, i.e., to solve the synthesis problem of
the discrete LQP problem, as is standard in MPC. The reason for
our choice of considering (7) as an inequality is to provide a wider
selection range for Kt and P if ΩKt is not taken as a singleton.

6. Case study

We show two case studies, one on a multivariable chemical
plant, showing that the proposed formulation is applicable to
80
Fig. 1. Double reactor and separator system.

edium-sized systems, and one to an academic example in which
e compare the terminal sets and domains of attraction of the
roposed formulation with the ones from [8,9].

.1. Multivariable chemical plant

This section presents a case study where the multivariable
hemical plant described in [36, §5.7.1] and depicted in Fig. 1
s controlled using the proposed RMPC formulation. This plant
s a 12-state, 6-input and 4-output system consisting of two
onsecutive reactors and a separator where two first-order re-
ctions, A → B and B → C , take place. We take the parameters,
onstraints and operating point shown in [36, §5.7.1] and the
eference as the one shown in [36, Table 5.5]. We include dis-
urbances w acting on the heights and temperatures of the three
olumes, given by a uniform distribution on the intervals ±0.01
or the heights and ±0.25 for the temperatures. We obtain a
odel (1) of the system by linearizing around the operating point
nd taking a sampling time of 3 seconds.
We design the RMPC controller following the procedures de-

cribed in Section 4 taking Q = 5In, R = 0.5Im, ρ = 1 and
= 0.9. Optimization problem (16) is constructed using the

ALMIP package [37] for Matlab, and solved using the SDPT3
olver [38] for increasing values of λ. A feasible solution is found
or λ = 0.701, where the optimal value of γ is 0.3358. Taking

= 60, the square of the spectral norm of AN
k is 4.06·10−6, which

s relatively small. Therefore, we consider a terminal equality
onstraint x̄(N) = 0, as discussed in Section 5, and compute P
y solving the LQR synthesis problem for our choice of Q and R

(see Remark 7).
We use this model to simulate the system, since we are inter-

ested in determining if the proposed formulation does, indeed,
robustly control model (1) for our choice of w, as stated in
Theorems 1 and 2. To this end, we compare our proposed formu-
lation with a nominal MPC controller using the same formulation
and ingredients (including the terminal equality constraint), but
that, obviously, considers the nominal constraints instead of the
tightened ones. Notice that the optimization problems of the
RMPC and the nominal MPC are nearly identical, differing only
in that the RMPC uses tightened state and input constraints.

Fig. 2 shows the trajectories of the temperature of the separa-
tor, T3, using the RMPC and MPC formulations to control model
(1). Each figure shows the result of 100 tests with different
realizations of the disturbances, where the same realizations are
used for both MPC controllers. We highlight the maximum and
minimum temperature attained at each iteration in magenta and
blue, respectively; the average temperature of the tests at each
sample time in dash/dotted black; the reference in dashed green;
and the upper bound of T3 in red. As can be seen in the figures,

the MPC controller sometimes violates the constraint, whereas
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33,
Fig. 3. Computation times of the nominal and robust controllers.

the RMPC controller does not; at the expense of not being able
to track the reference with zero offset. For references sufficiently
far away from the constraints both controllers have the same
behavior. We focus on the evolution of T3 since it is the only
tate that shows active (and violated) constraints during the
imulations. Appendix C shows the evolution of the other states
nd control inputs.
Both formulations are solved using the ADMM-based solver for

he MPC formulation with terminal equality constraint presented
n [39] from version v0.3.4 of the SPCIES toolbox [40], where we
ake the exit tolerance as 10−4 and the penalty parameter of the
DMM algorithm as ρ = 15. Fig. 3 shows the average computa-
ion times of both solvers at each sample time of the simulation
sing an Intel Core i5-8250U CPU operating at 1.60 GHz. The
ifference between the two is due to the fact that the RMPC solver
ends to have more active constraints, which typically increase
he number of iterations of first order methods. The maximum
nd minimum computation times, in milliseconds, for each solver
re 7.76 and 4.43 for the RMPC, and 7.49 and 3.04 for the MPC,
espectively.

.2. Comparison with other RMPC formulations

This section compares the terminal region and domain of
ttraction of the proposed formulation with the ones of the RMPC
ormulations from [8,9]. We consider the example from [8, §5]
aking the constraints as |x| ≤ 10, |u| ≤ 1 and |w| ≤ 0.16. We
ake Q = I2, R = 0.01 and N = 10 in the three RMPC formu-
ations. We use the LQR gain for these cost function matrices as
he Kt gain used to compute the set ΩKt , which we take as the
aximal polytopic robust invariant set. We also use this gain to
ompute the tightening of the constraints and the terminal set of
he formulation [8] as well as for the constraint tightening for the
ormulation [9]. We use the LQR gain for the matrices Q = I2 and
= 100 to compute the tightened constraints of our proposed

ormulation. For the formulation from [9], we take the LQR gain
or the matrices Q = diag(100, 0) and R = 0.01 to compute the
inimal robust positive invariant set. The gains for the proposed
ormulation and for the formulation from [8] were hand tuned to

81
ncrease their domain of attraction and terminal sets, whereas the
ain used to compute the minimal robust positive invariant set
or [9] was hand tuned to produce the smallest one possible, thus
educing the size of the associated tube. All the sets are computed
sing the MPT3 toolbox [41].
Fig. 4 shows the comparison between the three formulations,

here Fig. 4a shows the terminal sets and Fig. 4b the domains
f attraction. As can be seen, the proposed formulation provides
larger terminal region and domain of attraction. This is partly
ue to the fact that we have two degrees of freedom, one for the
ightened constraints (K ) and one for the set ΩKt , and partly due
o the fact that the terminal set only has to be robust for a subset
f the disturbances W , i.e., L(N).

7. Conclusions

This paper presents a robust MPC formulation based on nom-
inal predictions that (i) uses two independent control gains, one,
derived from the MPC cost function matrices, related to the
performance, and one related to the constraint tightening, thus
providing a good trade-off between performance and domain of
attraction, (ii) the computation of the terminal set is simplified
hanks to it not having to be robust for all the possible system un-
ertainties, but only for a reduced-sized set, and (iii) is recursively
feasible and stable in the ISS sense. Additionally, we provide
tractable procedures for the computation of its ingredients. This,
along with the possibility of being able to use a positive invariant
set of the nominal system as the terminal set, i.e., for the system
without the disturbance, results in a formulation that could be
applied to relatively large-sized systems. In particular, in this
case the resulting optimization problem would share the same
complexity as its equivalent nominal MPC formulation, although,
as is typical in tube-based robust MPC formulations, the closed-
loop performance of the proposed controller may be significantly
worse than its nominal counterpart.
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Appendix A. Proof of the recursive feasibility of the RMPC
controller

The proof of Theorem 1 makes use of the following property,
taken from claims (ii) and (v) of [42, Theorem 2.1].

Property 1. Let A,B, C ⊂ Rn. Then,

(i) (A ⊖ B) ⊕ B ⊆ A,
(ii) A ⊖ (B ⊕ C) ⊆ (A ⊖ B) ⊖ C.

roof of Theorem 1. Let the optimal solution of PN (x(k)) be
ū∗

= (ū∗(0; x(k)), ū∗(1; x(k)), . . . , ū∗(N − 1; x(k))) and let x̄∗
=

(x̄∗(0; x(k)), x̄∗(1; x(k)), . . . , x̄∗(N; x(k))) be the corresponding op-
timal values of the predicted states.

Let us denote a candidate solution of PN (x(k + 1)), where
x(k + 1) = Ax(k) + Bū∗(0; x(k)) + w(k) is the successor state,
by ū = (ū(0; x(k + 1)), . . . , ū(N − 1; x(k + 1))) and by x̄ =

(x̄(0; x(k + 1)), . . . , x̄(N; x(k + 1))) its corresponding predicted
states. Additionally, let

δ(i) .
= x̄(i; x(k + 1)) − x̄∗(i + 1; x(k)), i ∈ ZN−1

0 . (A.1)
82
We construct the candidate solution as follows. First,

x̄(0; x(k + 1)) = x(k + 1). (A.2a)

Then, take

ū(i; x(k + 1)) = ū∗(i + 1; x(k)) + Kδ(i), i ∈ ZN−2
0 , (A.2b)

x̄(i; x(k + 1)) = Ax̄(i − 1; x(k + 1)) + Bū(i − 1; x(k + 1)), (A.2c)

for i ∈ ZN
1 , where, finally,

ū(N − 1; x(k + 1)) = Kt x̄(N − 1; x(k + 1)). (A.2d)

Fig. 5 illustrates the resulting trajectory x̄(i; x(k + 1)).
In the following, we show that the candidate solution (A.2) is

a feasible solution of PN (x(k+ 1)) for any w(k) ∈ W . Indeed, (4b)
and (4c) are trivially satisfied from (A.2a) and (A.2c). Next, from
the definition (A.1) we have that

δ(i + 1) = x̄(i + 1; x(k + 1)) − x̄∗(i + 2; x(k))
= Ax̄(i; x(k + 1)) + Bū(i; x(k + 1))

− Ax̄∗(i + 1; x(k)) − Bū∗(i + 1; x(k))
= (A + BK )

(
x̄(i; x(k + 1)) − x̄∗(i + 1; x(k))

)
= (A + BK )δ(i) = AK δ(i) (A.3)

for i ∈ ZN−2
0 . Then, noting that

δ(0)
(A.2a)
= x(k + 1) − (Ax(k) + Bu(k)) = w(k),

and recursively applying (A.3), we obtain

x̄(i; x(k + 1)) − x̄∗(i + 1; x(k)) = Ai
Kw(k), i ∈ ZN−1

0 , (A.4)

which by definition of L(·) implies that

¯(i; x(k + 1)) ∈ x̄∗(i + 1; x(k)) ⊕ L(i + 1), i ∈ ZN−1
0 . (A.5)

herefore, the satisfaction of (4d) follows from

¯(i; x(k + 1)) ∈ x̄∗(i + 1; x(k)) ⊕ L(i + 1)
(∗)
⊂ (X ⊖ H(i + 1)) ⊕ L(i + 1)
(∗∗)
⊆

(
(X ⊖ H(i)) ⊖ L(i + 1)

)
⊕ L(i + 1)

Property 1(i)
⊆ X ⊖ H(i), i ∈ ZN−1

0 , (A.6)

here step (*) follows from the fact that x̄∗(i; x(k)) satisfies (4d)
or i ∈ ZN−1

0 and

¯
∗(N; x(k))

(4f)
∈ ΩKt ⊖ L(N)

(9)
⊆ (X ⊖ H(N)) ⊖ L(N) ⊆ X ⊖ H(N),
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a

X

nd step (**) follows from

⊖ H(i + 1) = X ⊖

⎛⎝ i⨁
j=0

Aj
KW

⎞⎠
= X ⊖

(
H(i) ⊕ Ai

KW
) Property 1(ii)

⊆ (X ⊖ H(i)) ⊖ Ai
KW.

From (A.2b), taking into account (A.1) and (A.4), we have

ū(i; x(k + 1)) = ū∗(i + 1; x(k))+KAi
Kw(k), i ∈ ZN−2

0 , (A.7)

which, following the same procedure used before, leads to

ū(i; x(k + 1)) ∈ ū∗(i + 1; x(k)) ⊕ KL(i + 1)
⊂ (U ⊖ KH(i + 1)) ⊕ KL(i + 1)
⊆

(
(U ⊖ KH(i)) ⊖ KL(i+1)

)
⊕ KL(i+1)

⊆ U ⊖ KH(i), i ∈ ZN−2
0 . (A.8)

Next, taking i = N − 1 in (A.5) leads to

x̄(N − 1; x(k + 1)) ∈ x̄∗(N; x(k)) ⊕ L(N)
(4f)
⊂ (ΩKt ⊖ L(N)) ⊕ L(N)
Property 1(i)

⊆ ΩKt . (A.9)

Therefore, taking into account the definition of the Pontryagin
difference, we have that

x̄(N; x(k+1)) = Ax̄(N−1; x(k+1))+Bū(N−1; x(k+1))
(A.2d)
= (A + BKt )x̄(N − 1; x(k + 1))

(A.9)
⊆ (A + BKt )ΩKt
(8)
⊆ ΩKt ⊖ L(N),

which shows the satisfaction of (4f).
Finally, since x̄(N − 1; x(k + 1)) ∈ ΩKt (A.9), and taking into

account Assumption 1.(iv), we have that

ū(N − 1; x(k + 1))
(A.2d)
= Kt x̄(N − 1; x(k + 1))

(9)
∈ U ⊖ KH(N − 1)

which, alongside (A.8), proves the satisfaction of (4e). □

Appendix B. Proof of the input-to-state stability of the RMPC
controller

The proof of Theorem 2 makes use of the following proposi-
tion.

Proposition 3. Let C be a compact set, a, b, c ∈ Rn satisfy a =

b+Mc with M ∈ Rn×n and b ∈ C. Then, for any given S ≻ 0 ∈ Rn×n

there exists a K∞ function ρ(·) such that

∥a∥2
S − ∥b∥2

S ≤ ρ (∥c∥) .

Proof. Denote τ = maxb∈C ∥M⊤Sb∥. We have that,

∥a∥2
S − ∥b∥2

S = ∥b + Mc∥2
S − ∥b∥2

S

= 2b⊤SMc + c⊤M⊤SMc
(∗)
≤ 2∥M⊤Sb∥∥c∥ + λmax(M⊤SM⊤)∥c∥2

≤ 2τ∥c∥ + λmax(M⊤SM⊤)∥c∥2,

where (∗) is due to the Cauchy–Schwarz inequality. Thus, the
claim of the property holds with

⊤ ⊤ 2
ρ(∥c∥) = 2τ∥c∥ + λmax(M SM )∥c∥ . □
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Proof of Theorem 2. In the following, we will prove that the
optimal cost function of PN (x(k)), V ∗

N (x(k)), is an ISS Lyapunov
function of the closed-loop system for any w(k) ∈ W .

Let the optimal solution of problem PN (x(k)) be given by ū∗
=

(ū∗(0), . . . , ū∗(N−1)) and x̄∗
= (x̄∗(0), . . . , x̄∗(N)) be the cor-

responding optimal values of the predicted states. Additionally,
consider the successor state

x(k + 1) = Ax(k) + Bū∗(0; x(k)) + w(k),

and let us denote by ū and x̄ the trajectories given by (A.2) for
this successor state, which by Theorem 1 are a feasible solution
of PN (x(k + 1)).

We note that, as shown in the above definitions of ū∗ and
x̄∗, we are dropping the notation ū∗(i; x(k)) for ū∗(i) to improve
readability. In fact, we will drop the (k) notation entirely. Instead,
the variables referring to the successor state will be indicated
with a superscript +, as in x+

≡ x(k + 1).
To prove the claim we follow [21, Theorem 3], which states

that the existence of α1, α2, α3 K∞-functions and a K-function
α4 such that

V ∗

N (x) ≥ α1(∥x∥), ∀x ∈ X , (B.1a)

V ∗

N (x) ≤ α2(∥x∥), ∀x ∈ ΩKt , (B.1b)

V ∗

N (x
+)−V ∗

N (x)≤−α3(∥x∥)+α4(∥w∥), ∀x∈X , w∈W, (B.1c)

proves that V ∗

N (x) is an ISS Lyapunov function of the closed loop
system.

First, we show that the lower and upper bounds (B.1a) and
(B.1b) can be obtained following standard procedures, see [43].
Indeed, the lower bound (B.1a) can be obtained by taking into
account that Q ≻ 0 as follows,

V ∗

N (x) ≥ ∥x̄∗(0)∥2
Q = x⊤Qx ≥ λmin(Q )∥x∥2, ∀x ∈ X .

Whereas the upper bound (B.1b) can be obtained in the terminal
region as follows,

V ∗

N (x) ≤ xTPx ≤ λmax(P)∥x∥2, ∀x ∈ ΩKt ,

where the left-hand side inequality is a well known result in the
field of MPC for all states x ∈ ΩKt .

To prove the satisfaction of (B.1c), let us first note the follow-
ing inequality,

∥x̄+(N − 1)∥2
Q + ∥ū+(N − 1)∥2

R + ∥x̄+(N)∥2
P

(A.2c)
= ∥x̄+(N − 1)∥2

Q + ∥ū+(N − 1)∥2
R

+ ∥Ax̄+(N − 1) + Bū+(N − 1)∥2
P

(A.2d)
= ∥x̄+(N − 1)∥2

Q+K⊤
t RKt+(A+BKt )⊤P(A+BKt )

(7)
≤ ∥x̄+(N − 1)∥2

P . (B.2)

Then, we have that

VN (x+) =

N−2∑
i=0

(
∥x̄+(i)∥2

Q + ∥ū+(i)∥2
R

)
+∥x̄+(N)∥2

P

+ ∥x̄+(N−1)∥2
Q + ∥ū+(N−1)∥2

R

(B.2)
≤

N−2∑
i=0

(
∥x̄+(i)∥2

Q + ∥ū+(i)∥2
R

)
+∥x̄+(N−1)∥2

P . (B.3)

Additionally, eliminating ∥ū∗(0)∥2
R from V ∗

N (x) leads to

V ∗

N (x) ≥

N−2∑
i=0

(
∥x̄∗(i + 1)∥2

Q + ∥ū∗(i + 1)∥2
R

)
+ ∥x̄∗(0)∥2

Q + ∥x̄∗(N)∥2
P . (B.4)
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x

Fig. C.6. States during the test shown in Section 6.1 for the double reactor and separator plant. Reference in solid back line and state constraint in dashed blue line.
Otherwise, the lines and shaded areas represent the same as in Fig. 2, but representing the results for the proposed RMPC in green and the results for the nominal
MPC in red. We only represent the upper constraint of T3 because all other constraints are inactive during all the simulations.
Fig. C.7. Control inputs during the test shown in Section 6.1 for the double reactor and separator plant. Reference in solid black line. Otherwise the lines and shaded
areas represent the same as in Figs. 2 and C.6, where green is used to represent the results using the proposed RMPC and red using the nominal MPC. We do not
represent the constraints because they are inactive during all the simulations.
f
h

∥

∥

f
t
h

∥

Therefore, from (B.3) and (B.4), and noting that x̄∗(0) = x, we have
that

VN (x+)−V ∗

N (x)≤
N−2∑
i=0

(
∥x̄+(i)∥2

Q − ∥x̄∗(i+1)∥2
Q

)
+

N−2∑
i=0

(
∥ū+(i)∥2

R − ∥ū∗(i+1)∥2
R

)
− ∥x∥2

Q + ∥x̄+(N−1)∥2
P − ∥x̄∗(N)∥2

P . (B.5)

Next, from (A.4) we know that

¯
+(i) = x̄∗(i + 1) + Ai w, i ∈ ZN−1,
K 0 f
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or any w ∈ W . Then, since x̄∗(i+1) belongs to a compact set, we
ave from Proposition 3 that,

x̄+(i)∥2
Q − ∥x̄∗(i + 1)∥2

Q ≤ αi(∥w∥), i ∈ ZN−2
0 , (B.6a)

x̄+(N − 1)∥2
P − ∥x̄∗(N)∥2

P ≤ αN−1(∥w∥), (B.6b)

or some K∞ functions αi(·), i ∈ ZN−1
0 . Similarly, from (A.7), and

aking into account that ū∗(i + 1) belongs to a compact set, we
ave that

ū+(i)∥2
R − ∥ū∗(i + 1)∥2

R ≤ γi(∥w∥), i ∈ ZN−2
0 , (B.7)

or some K functions γ (·), i ∈ ZN−2.
∞ i 0
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V

w

σ

Therefore, using (B.6) and (B.7) in (B.5) leads to

N (x+) − V ∗

N (x) ≤ −∥x∥2
Q + σ (∥w∥),

here σ (∥w∥) is given by

(∥w∥) =

N−1∑
i=0

αi(∥w∥) +

N−2∑
i=0

γi(∥w∥),

which is, by construction, a K∞-function. Finally, by optimality
we have V ∗

N (x
+) ≤ VN (x+). Thus,

V ∗

N (x
+) − V ∗

N (x) ≤ −∥x∥2
Q + σ (∥w∥). □

Appendix C. Extended case study results for the double reactor
and separator plant

See Figs. C.6 and C.7
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