

 Applying Testing Techniques to Software
Process Assessment: A Model-Based
Perspective

 L. García-Borgoñón , R. Blanco , J. A. García-García , and M. A. Barcelona

 Abstract Software processes constitute a major asset for an organization.
However, in many occasions there are differences between defi ned processes and
executed processes. For this reason, organizations spend time and effort of their
resources to fi nd these non-conformances. The use of software testing techniques
could be a use-ful way to reduce these costs. This paper proposes a model-based
approach and shows how software testing techniques can be applied to evaluate the
execution conformity in a software processes context, and also to evaluate the
model designed. A real execution of a NDT methodology process by means of the
process model included in NDTQ-Framework (a solution based on this approach
that is currently being used in software development organizations) illustrates the fi
nal results. Finally, conclusions and future work are stated.

 Keywords Model-Driven • Testing • Software Processes

27.1 Introduction

 Software processes are recognized as fundamental assets in software-intensive
organizations, since they support their capability to produce better products.
Process defi nition, documentation, management and improvement have become in

 L. García-Borgoñón (*) • M. A. Barcelona
 Aragón Institute of Technology , c/ María de Luna 7 , 50018 Zaragoza , Spain
 e-mail: laurag@ita.es; mabarcelona@ita.es

 R. Blanco
 University of Oviedo , Campus de Viesques , S/N 33204 Gijón , Spain
 e-mail: rblanco@uniovi.es

 J. A. García-García
 University of Seville , Av. Reina Mercedes , S/N 41012 Sevilla , Spain
 e-mail: julian.garcia@iwt2.org

mailto:laurag@ita.es
mailto:mabarcelona@ita.es
mailto:rblanco@uniovi.es
mailto:julian.garcia@iwt2.org

organizations’ key practices what is known as Business Process Management
(BPM). Since business in a software-intensive organization is software development,
software processes constitute the BPM focus within such organization [1].

 A software process is a set of activities, methods and practices used in the pro-
duction and evolution of software and the associated products [2 , 3]. These pro-
cesses and methodologies have always been described in appropriate terms to be
used by a developer, but they are often described in manuals or books which project
team follow as closely as possible [4].

 However, differences can usually be noticed between organizations’ defi ned pro-
cesses and really executed processes in a specifi c project context. It occurs due to
several causes, such as process described in unsuitable way, like could be natural
language and misunderstandings which involves, or the existing gap between pro-
cesses defi nition and execution. Thus, organizations draw on process and product
assessment activities to solve this problem. Process assessment is a disciplined
evaluation of an organizational unit processes against a process assessment model [5],
which provides a set of indicators used for evaluating the effective process perfor-
mance and management [6]. An assessment model can either represent the defi ned
process or be based on one or more Process Reference Models [7].

 These activities are manually executed, normally by quality offi ces, since pro-
cesses orchestration are not widely used in software-intensive organizations.
They verify and control, through a checklists set, that the process is followed prop-
erly, establishing a non-conformance record in cases of deviations between defi ned
and executed processes. Non-conformances should be solved in a concrete time
with a specifi c commitment. The cost of this kind of activity is usually called Quality
Cost, and organizations assume it as necessary.

 Besides, and particularly in periods of economic crisis like the one we are living,
where optimization effectiveness and resource effi ciency are essential, one of main
objectives deals with reducing nonproductive costs.

 In the last years, the Model Driven Engineering (MDE) [8] has been established
as a common approach for software development [9], what has shaped the software
industry to be model-centred. In addition, software testing is a very important phase
in software development and maintenance, as it aims to fi nd out faults in software
products, thus helping developers to improve the quality of these products when the
discovered faults are solved and reducing the cost produced by these faults.

 As software processes are software too [10], this paper evaluates how a model-
based approach working in liaison with testing software techniques can make
easier activities related to performed processes evaluation, reducing their time and
effort cost.

 This paper is structured as follows: After this introduction, Sect. 27.2 shows the
main work related to software processes evaluation, also known as Software
Processes Assessment. Section 27.3 introduces some concepts related to testing tech-
niques and describes how they are used in our approach. Then, Sect. 27.4 presents the
proposed metamodel and Sect. 27.5 illustrates result in the NDTQ- Framework, a
solution based on this approach that is currently being used in software-development
organizations. Finally, Sect. 27.6 outlines conclusions and proposes future work in
these lines of research.

27.2 Related Work

 An organization’s software process assessment is an activity especially related to
software process improvement and, therefore, there are several proposals concerning
it, particularly focused on integrating software process assessment and software pro-
cess modeling. Later, more remarkable proposals on this topic will be pointed out.

 OOSPICE is a project associated with the capability assessment space [11],
although it also delivers methodology components in ISO 12207 [12], ISO 15504
and method engineering context. It copes with the concepts posed for assessing an
organization’s process enactment quality, through a metamodel with metaclasses
such as Outcome as well as attributes relating to capability level on Process and
Task. It is oriented towards capability appraisals against ISO 15504.

 In [13] Hamann proposes an information model which integrates software
process assessment and process modeling. It has basic elements based on process
modeling such as Process, Product, Role and Tool, with the appropriate attributes
and classes related to assessment information, such as Rating and Purpose. Makinen
et al. [5 , 14 , 15] slightly modify Hamann’s model, to make it more general and
illustrative by classifying the elements into three categories: Assessment Model,
Assessment Result and Modeling Result.

 Henderson-Sellers and Gonzalez-Perez [4] propose a new standard metamodel
to defi ne and assess software processes with the same elements, but including two
new concepts, powertypes and clabjects, as a way to solve problems derived from
modelling both the methodology and project layers at the same time.

 Despite evaluation concepts are similar, all these proposals are focused only in
assessment based on a reference model, but they do not address the issue of assess-
ing software process executed against software process modeled. That is the goal of
our approach, which is presented in the following sections.

27.3 Applying Software Testing Techniques to Test Software
Process

 This section describes our approach with the aim of both, evaluating the executions
conformity of the software process that has been modeled and measuring the level
of acceptance of this model. Section 27.3.1 presents an overview of software testing
and Sect. 27.3.2 describes the applications of software testing techniques to test a
software process.

27.3.1 Software Testing Overview

 Software testing is part of the Verifi cation and Validation process (V&V) [16]. It
determines whether the developed products fulfi ll the requirements and satisfy the
user’s needs. Software testing deals with verifying the behavior of a system that is

executed under specifi c conditions, against the expected behavior. This evaluation is
carried out according to some aspects of the system [17].

 Reactive and proactive approaches have been developed to achieve this goal.
Proactive approaches try to detect faults in the Software Under Test (SUT) before
they produce failures in an operational environment. For example, the SUT can be
executed with a test case and, after that, the observed behavior and the expected
behavior can be compared to detect any deviation (a test case is a set of test input
data, execution conditions and expected results [17]). Reactive approaches identify
faults after they produce failures. For example, a monitoring-based technique can
detect any deviation from the expected behavior of the SUT by observing its real
time execution.

 On the other hand, several adequacy criteria have been defi ned [18] to specify
the situations of interest to be tested (to be covered), which constitute the test
requirements, and determine whether suffi cient testing has been done. For instance,
the path-testing criterion requires executing all or selected paths of the SUT (each
path is a test requirement). Measuring the test coverage achieved, that is the degree
to which the tests execute (cover) the paths of the SUT, it is possible to determine
whether the testing process can be stopped.

27.3.2 Problem Approach

 As previously mentioned, software processes can be also considered software
[10], therefore, it is possible to apply software testing techniques to test their
conformity.

 We will consider the introductory example depicted in Fig. 27.1 , to illustrate the
approach and objectives. We will use UML [19] for these examples because they
are very intuitive, but other graphic representation language, such as BPMN [20],

Process model Paths derived from the
process model

Real executions of the
stakeholders

a
Start

A1

A2

A3
Yes

No

End

A4

b Path P1 Path P2

Start

End

No

A1

A2

A4

Start

End

Yes

A1

A2

A3

A4

c Execution E1 Execution E2

Start

End

No

A1

A2

A4

Start

End

A1

A4

 Fig. 27.1 Introductory example

could be used. Part (a) shows a UML activity diagram that models a software process.
The process model contains two correct activities paths (P1 and P2), which are
shown in part (b). These paths represent the different scenarios of the software pro-
cess modeled. Part (c) offers two UML activity diagrams that represent the real
sequences of activities executed by the stakeholder (E1 and E2), which have been
monitored. Analyzing the process model and the executions poses the following
questions:

 1. Do the executions E1 and E2 satisfy the process model?
 2. If the path P2 is not followed (covered) by any execution, is it really necessary?

 We have developed an assessment approach that combines reactive testing with
path-testing criterion, to answer these questions. The goals of our approach are (1)
to evaluate whether the executions of a software process satisfy the process model
defi ned, and (2) to determine the paths of the process model that have not been
covered by these executions and measures the degree of path coverage achieved.
The following sections describe both goals.

27.3.2.1 Evaluating Executions Conformity

 A testing process is carried out to evaluate executions conformity with the process
model. First, each transition of a monitored execution is classifi ed as valid or
 invalid . It is considered valid when it also appears in the process model (for
instance, the transition from A1 to A2 in the execution E1 in Fig. 27.1), otherwise
it is considered invalid (for instance, the transition from A1 to A4 in the execution
E2 in Fig. 27.1).

 After that, our approach analyzes the classifi cation of all transitions of the execu-
tion to determine its conformity with the process model. An execution satisfi es the
process model only if all transitions have been classifi ed as valid (for instance,
execution E1 in Fig. 27.1). Otherwise, the execution does not satisfy the process
model (for instance, execution E2 in Fig. 27.1).

 On the one hand, an execution that satisfi es the process model can be considered
a positive test, as it tries to check the behavior of a specifi c scenario of the process
model. Thus, it is called Positive Execution in our approach. On the other hand, an
execution that does not satisfy the process model can be considered a negative test,
as it tries to cover a scenario for which the process model has not been designed.
Consequently, it is called Negative Execution in our approach.

27.3.2.2 Evaluating Path Coverage

 Finding the paths of the process model that have not been followed by any execution
can be useful to check the correctness of this model, and also to evaluate whether
the software process is correctly executed. If a path is never covered, several reasons
can be considered: (1) the path does not represent a scenario of the software process

and therefore the model must be improved; (2) the path represents a scenario that is
not very common but necessary, so the model is correct; and (3) the path represents
a very common scenario that is not being considered by the stakeholder, so maybe
the software process is not being correctly executed.

 Our approach applies the path-testing criterion to the process model to address
this issue. This way each path represented in the model is considered a test require-
ment, which is covered when a positive execution satisfi es the path. Measuring the
path coverage achieved allows observing the level of acceptance of the process
model, due to the coverage is increased when a stakeholder executes a set of activities
of the software process that is modeled by a path in the process model.

 Considering the example in Fig. 27.1 , the path testing criterion derives two test
requirements: paths P1 and P2. Path P1 is covered by the positive execution E1 and
path P2 is not covered by any positive execution then, the path coverage achieved
is 50 %.

27.4 A Metamodel for Software Process Assessment

 As mentioned above, many approaches have been developed in order to assess
software processes with a reference model, but they have not been used to assess
software processes executed against software processes modeled. This issue and the use
of MDE to manage the conceptual complexity have been the basis of our proposal,
that is, designing a metamodel for testing software process models.

 This approach is presented in Fig. 27.2 and it is an extension of the software
process metamodel presented in [21]. Besides, we present metaclasses from the
extension metamodel.

 The Action metaclass is the main class in the testing metamodel. We defi ne an
 Action for each Activity aimed to test. It is possible not to test all activities in a
process, so this relationship guarantees it. The attributes in this metaclass are: the
start and end date of the action, the status of the action in a specifi c moment and
the test result, where the result of the testing process performed on the action is
recorded.

 An Action has a set of preconditions and postconditions. The Precondition
metaclass represents the previous action we need to check to be able to execute it.
The Postcondition metaclass shows the following action and whether it is properly
executed.

 The WorkProduct metaclass represents a piece of the Product that is developed
in each action, so that a Product could be considered as a collection of several
 WorkProducts . Finally, the Stakeholder represents someone or a tool that has
 actually executed the Action .

 The main feature of our approach is that the metamodel extension allows us to
test a process model which has been defi ned with the initial metamodel. This will
enable us to establish testing points in the defi nition moment.

27.5 NDTQ-Framework: A Practical Example

 This section includes a practical example to illustrate our approach. We use processes
currently supported by NDT [22]. It is a methodology that defi nes metamodels for
every phase of software development life cycle by providing a framework that make
easier the use of new methods, standards and paradigms and as a result, it helps us
improve software development quality. NDT uses different software processes,
each one supported by main models, standards and rules related to the fi eld where it
is defi ned. These processes are classifi ed in six groups:

• Software Development Processes. They are defi ned in terms of NDT life cycle.
• Software Maintenance Processes. They are based on ITIL [23] and CMMI [2].
• Testing Processes. They are based on ISO/IEC 29119 [24] standard. 1
• Software Quality Processes. They are based on ISO 9001:2008 [25] and CMMI.

1 ISO 29119 has not been yet approved completely, but they are based on the group of processes
already defi ned.

 Fig. 27.2 Testing process models metamodel

• Project Management Processes. They are based on PMBOK [26] and CMMI.
• Security Processes. They are based on ISO 27001 [27] standard.

 It is necessary a real deployment supported by tools to allow a software-intensive
organization using this methodology to benefi t from all its potential. This enhances
its use and accomplishment. NDTQ-Framework was created with this goal in order
to support all processes defi ned by NDT.

 NDTQ-Framework is a framework implemented on Enterprise Architect tool,
developed by means of the UML profi le presented in [21]. It is based on the
metamodel our approach has extended, presented in Sect. 27.4 , to achieve the goal
we are looking for.

27.5.1 A Process Example: Requirements Engineering Process

 We are going to use the requirements engineering process as an example, to show
how the testing approach presented in Sect. 27.3 and the metamodel described in
Sect. 27.4 work together. Figure 27.3 shows the map of activities of this process.

27.5.2 Applying Testing Techniques to Requirements
Engineering Process Assessment

 We have considered that all activities have an action associated, and preconditions
and postconditions are previous and next actions respectively. In this case, we are
not going to use the WorkProduct concept to explain the testing techniques used.

 We are going to consider the execution shown in part (a) of Fig. 27.4 , which has
been obtained from a working report tool, to illustrate how to evaluate a requirement
engineering process execution conformity with the process model represented in
Fig. 27.3 . This tool registers the real data demanded by the process model, such as
the start and end dates for each action performed as well as the status. Actions RS01 ,
 RS02 , RS03 and RS10 represent the execution of the corresponding activities of the
process model. The action Condition1 represents the execution of the conditional
activity after RS02 , and the status indicates the answer obtained.

 The result of the testing process performed is shown in part (b) of Fig. 27.4 .
Along this process, each action is evaluated as valid or invalid. We analyze the data
registered by the working report tool and the knowledge obtained from the model
about which are its previous and next actions in order to determine the test result.

 For instance, the action RS02 is valid because it starts after its previous action
 RS01 has fi nished. That means that the execution of actions RS01 y RS02 repre-
sents a valid transition, as it is present in the process model, whereas the action
 RS10 is evaluated as invalid. This action starts after the other actions of the work-
ing report have fi nished, nevertheless none of them constitutes its previous action.

The test result is invalid, because it is not possible to fi nd a valid transition for
action RS10 .

 As a conclusion, it should be mentioned that the execution does not satisfy the
process model, since the test result of at least one action is invalid. Therefore, an
inconsistency has been identifi ed during the software process execution.

 Fig. 27.3 Map of activities of the requirements engineering process

 This example represents a negative test that is useful to identify inconsistencies
in the process model. However, positive tests, which cover the different paths of
the process model, must be considered to measure the path coverage that allows
evaluating the level of acceptance of the process model.

27.6 Conclusions and Future Work

 Nowadays, business processes constitute a very important asset for organizations in
general and software-intensive organizations are not an exception. Defi ning, docu-
menting and managing these processes require techniques and tools to support their
application and maintenance. Nevertheless, these are not enough. Once the process
is defi ned and deployed in an organization, it is mandatory to verify that it must be
executed as it was defi ned. Usually, verifi cation actions are mainly manual activities
demanding an important effort and time cost. That is something that organizations
assume as quality cost, although they need to reduce it as much as possible.

 This paper presents a solution for automating this activities founded on a
model- based approach and on the application of software testing techniques. This
solution is offered by a metamodel and illustrated by a concrete solution named
NDTQ-Framework.

 This approach will improve in different ways as a future work. Firstly, we are
working on obtaining more empirical data about its use in software-intensive orga-
nizations. This would allow establishing our approach as a continuous improvement
mechanism according to the comments discussed in Sect. 27.3.2.2 , which is widely
recommended in many standards and good practices manuals. Getting data from
these testing techniques may allow organizations to identify problems and make

 Fig. 27.4 Example of an execution of a software process and the evaluation of its conformity

easier decision-making processes. Secondly, this approach can support an orchestration
mechanism that conceives NDTQ-Framework as a whole solution for process
defi nition and execution.

 Finally, the approach can be used as assessment model in formal appraisals using
a reference model like CMMI or ISO 15504, by helping obtain evidences as
requested by these standards and models.

 Acknowledgements This work has been supported by the projects TEMPROS (TIN2010-
20057- C03-02) and Test4DBS (TIN2010-20057-C03-01) of Ministerio de Educación y Ciencia,
Spain, and the NDTQ-Framework project (TIC-5789) of the Junta de Anda-lucía, Spain.

 References

 1. Bendraou R, Gervais MP (2007) A framework for classifying and comparing process tech-
nology domains. In: International conference on software engineering advances, ICSEA 2007.
Cap Esterel, French Riviera, France. IEEE, pp 5–5

 2. Chrissis MB, Konrad M, Shrum S (2003) CMMi. Addison-Wesley, Boston
 3. Humphrey WS (1989) Managing the software process (Hardcover). Addison-Wesley

Professional, Reading
 4. Henderson-Sellers B, Gonzalez-Perez C (2005) A comparison of four process metamodels and

the creation of a new generic standard. Inf Softw Technol 47(1):49–65
 5. Makinen T, Varkoi T, Soini J (2007) Integration of software process assessment and modeling.

In: Portland International Center for Management of Engineering and Technology, Portland,
PICMET 2007. IEEE, pp 2476–2481

 6. Coletta A (1997) Process assessment using spice: the assessment activities. SPICE: The theory
and practice of software process improvement and capability determination, Computer Society
Press. IEEE, pp 99–122

 7. ISO/IEC (2005) ISO 15504-1 information technology - process assessment - part 1 concepts
and vocabulary

 8. Ardagna D, Ghezzi C, Mirandola R (2008) Rethinking the use of models in software architec-
ture. In: Quality of software architectures. Models and architectures. Springer, Berlin, pp 1–27

 9. Schmidt DC (2006) Model-driven engineering. Computer (IEEE Computer Society) 39(2):25
 10. Osterweil L (1987) Software processes are software too. In: Proceedings of the 9th interna-

tional conference on software engineering. IEEE Computer Society Press, Los Alamitos,
pp 2–13

 11. Henderson-Sellers B, Stallinger F, Lefever B (2002) Bridging the gap from process modelling
to process assessment: the oospice process specifi cation for component-based software engi-
neering. In: Euromicro conference, Dortmund, Germany, 2002. Proceedings. 28th. IEEE,
pp 324–331

 12. ISO/IEC (1995) ISO 12207 Information technology - software lifecycle processes
 13. Hamann D (2006) Towards an integrated approach for software process improvement: com-

bining software process assessment and software process modeling. Fraunhofer-IRB-Verlag
 14. Lepasaar M, Makinen T (2002) Integrating software process assessment models using a pro-

cess meta model. In: IEEE international engineering management conference, 2002. IEMC’02,
Cambridge, UK, vol 1. IEEE, pp 224–229

 15. Makinen T, Varkoi T (2008) Assessment driven process modeling for software process
improvement. In: Portland International conference on management of engineering & technol-
ogy, Portland, PICMET 2008. IEEE, pp 1570–1575

 16. IEEE Standards Software Engineering (2004) Vol. 2. Process Standards. IEEE Std. 1012 2004.
Standard for Software Verifi cation and Validation Plans

 17. ISO/IEC (2006) ISO/IEC 24765 software and systems eng. vocabulary
 18. Zhu H, Hall PA, May JH (1997) Software unit test coverage and adequacy. ACM Comput Surv

29(4):366–427
 19. OMG (2012). UML (unifi ed modeling language). Last accessed 01-2013. http://www.omg.

org/spec/UML/
 20. OMG. BPMN, Business process modeling notation, version 2.0. Last accessed 01-2013. http://

www.omg.org/spec/BPMN/2.0/
 21. García-Borgoñon L, García-García JA, Ortega MA, Escalona MJ (2012) Software process

management: a model-based approach. In: Proceedings of the 21st international conference on
information systems development (ISD)

 22. Escalona MJ, Aragon G (2008) Ndt. A model-driven approach for web requirements. IEEE
Trans Softw Eng 34(3):377–390. http://doi.ieeecomputersociety.org/10.1109/TSE.2008.27

 23. ITIL (Information Technology Infrastructure Library). Last Accessed 01-2013. http://www.
itil-offi cialsite.com

 24. ISO/IEC (2013) ISO/IEC 29119 software engineering – software testing standard. International
Organization for Standardization

 25. ISO/IEC (2008) ISO 9001:2008 quality management systems - requirements. International
Organization for Standardization

 26. Project Management Institute (2008) A guide to the project management body of knowledge
(PMBOK guide)

 27. ISO/IEC (2005) ISO 27001 information technology - security techniques - information security
management systems - requirements

http://www.omg.org/spec/UML/
http://www.omg.org/spec/UML/
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
http://doi.ieeecomputersociety.org/10.1109/TSE.2008.27
http://www.itil-officialsite.com
http://www.itil-officialsite.com

	Chapter 27: Applying Testing Techniques to Software Process Assessment: A Model-Based Perspective
	27.1 Introduction
	27.2 Related Work
	27.3 Applying Software Testing Techniques to Test Software Process
	27.3.1 Software Testing Overview
	27.3.2 Problem Approach
	27.3.2.1 Evaluating Executions Conformity
	27.3.2.2 Evaluating Path Coverage

	27.4 A Metamodel for Software Process Assessment
	27.5 NDTQ-Framework: A Practical Example
	27.5.1 A Process Example: Requirements Engineering Process
	27.5.2 Applying Testing Techniques to Requirements Engineering Process Assessment

	27.6 Conclusions and Future Work
	References

