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1 Introduction
Since the development, in 1943, of the first completely functional computer (ENIAC), classical
computers have been establishing a before and after in data treatment of many science fields.
Although its computing potential is rising exponentially, the most essential operation in a com-
puter is the control of an electric pulse in order to create bits. In this context, the existence of
this pulse is understood as “1” and the absence of it as “0”. This creates a physical limitation of
the performing of classical computers. The efficiency of current hardware relies in the increase
of the density of transistors.

Furthermore, in 1900s, quantum mechanics (QM) emerges. This is a physical theory
which can describe properly the microscopical reality. QM explained some phenomena unob-
served at macroscopic scales.

In 1970s decade, some computer and information scientists tried to combine QM with
information science in order to design and manipulate a quantum system. This idea subse-
quently introduced quantum technology field, in which quantum computers are proposed and
studied. Nevertheless, at this point, classical computers had excellent performance. Thus, it
was necessary to prove that the quantum ones could give an advantage.

The first time, theoretically, that a quantum computer could overcome a classical one
in the resolution of a task was shown by Peter Shor with his well-known factoring quantum
algorithm [1]. Shor’s factoring algorithm is a quantum algorithm for factoring a number N in
a polynomial time. It has implications in cryptography and was a motivation for increasing the
interest in this field.

This incentive is translated in a two-decade of investigations and attempts of implement-
ing these ideas in physical systems. Best candidates to perform quantum computing are super-
conductors, optical lattices, trapped ions, as well as nuclear magnetic resonances, among others.
We will focus in the trapped-ion quantum computer paradigm.

The field of quantum technologies has led, most notably, to the development of quantum
computers, which permit the study of systems (generally of a quantum nature) that cannot be
simulated via current supercomputers or in the laboratory.

The first chapter of this thesis will provide a presentation to quantum computing, followed
by the basic trapped-ion physics formalism. Once we have described both topics, we will
discuss how to implement quantum computing concepts into an ion trap.
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2 Introduction to quantum computing
Quantum computing (QC) consists in employing quantum devices in order to perform compu-
tation and information processing tasks more efficiently than with classical computers. This
thesis main aim is to give a review of QC, focusing on the quantum platform of trapped ions.

Let us introduce some helpful mathematical definitions used for QC formalism:

• Dirac notation (braket notation). Typically used in QM. It introduces two objects de-
notated as “ket”, |·〉, abstract and complex elements from a vectorial space E and “bra”,
〈·|, linear forms belonging to the dual space E∗. This structure allows one to identify a
“bra-ket”, 〈·|·〉, as an inner product which gives E the properties of a Hilbert space.

• Operator. Linear map which converts a ket into a ket. |ψ〉 ∈ E , Â |ψ〉 ∈ E . In our
interests, we can understand it as an N x N matrix acting on the states of a system.

In 2000, David P. DiVincenzo proposed his criteria enumerating what a physical system
should satisfy to be considered as a quantum computer [2].

1. A scalable physical system with well characterized qubits.

2. The ability to initialize the state of the qubits to a simple fiducial state.

3. Long relevant decoherence times, much longer than the gate operation time.

4. A “universal” set of quantum gates.

5. A qubit-specific measurement capability.

6. The ability to interconvert stationary and flying qubits.

7. The ability to faithfully transmit flying qubits between specified locations.

2.1 Quantum bits (qubits)
A qubit is defined as a two level quantum system that can be properly modified. In Dirac
notation:

|ψ〉 = α |0〉+ β |1〉 (1)

where α, β ∈ C and |α|2, |β|2 are the probabilities of the system to collapse to |0〉 or |1〉
respectively. It can be understood as a generalization of a classical bit, which states available
are only 0 or 1.
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2.1.1 Bloch sphere

The most common representation of a single qubit is the Bloch sphere. Applying this descrip-
tion, the qubit state is shown as a point of the surface of a unitary sphere. [3]

To express Eq. (1) hereby, we must rewrite α and β in their polar form:

α = rαe
iφα β = rβe

iφβ (2)

We obtain:
|ψ〉 = eiφα(rα |0〉+ rβe

i(φβ−φα) |1〉) (3)

The first term in Eq. (3) is a global phase, thus it is unobservable and we omit it. In a
quantum state, 〈ψ|ψ〉 = 1. If we rewrite the amplitude of |1〉 as rβei(φβ−φα) = rβe

iφ = (x+ iy),

〈ψ|ψ〉 = r2
α + x2 + y2 = 1 (4)

Eq. (4) is the implicit equation of a sphere of radius 1. We identify (x, y, r) −→ (x, y, z).
Applying a spherical transformation: (x, y, z) −→ (r = 1, θ′, φ), Eq. (3) takes the form:

|ψ〉 = cos θ′ |0〉+ sin θ′eiφ |1〉 0 ≤ θ′ ≤ π/2, 0 ≤ φ ≤ 2π (5)

However, with this mapping, there only exists half sphere of independent points. It is
straightforward to see: |ψ(θ′ = 0, φ)〉 = |0〉 and |ψ(θ′ = π/2, φ = 0)〉 = |1〉. In addition, the
downside represents the same states as the upper-side: |ψ′(π − θ′, φ+ π)〉 = − |ψ(θ′, φ)〉.

To fix this problem, we introduce a variable change θ = 2θ′ turning Eq. (5) into

|ψ〉 = cos (θ/2) |0〉+ sin (θ/2)eiφ |1〉 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π (6)

Figure 1: Scheme of a qubit in the Bloch sphere. Source in Ref. [4].
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2.1.2 Multiple qubit systems

Beyond a single qubit system, this problem can be generalized to a situation with multiple
qubits. In the N-qubit case dimension grows as 2N . To reach scalable quantum computers a
requirement must be to increase the number of qubits.

We can write an N qubit state as (the symbol ⊗ denotes the tensor product among all the
inner spaces of qubits):

|010 . . . 0〉 = |0〉1 ⊗ |1〉2 ⊗ |0〉3 ⊗ · · · ⊗ |0〉N (7)

An important application of a two-qubit system is the Bell state or EPR pair. They permit
to create correlated quantum states between qubits, also known as quantum entanglement. An
example of Bell state is:

|Ψ〉 =
1√
2

(|00〉+ |11〉) (8)

2.2 Quantum logic gates
The way to describe quantum gates (QG) is via unitary operators acting on qubits. In an N-
dimensional Hilbert space, an operator can be represented as an N × N matrix. The only
constrains which limit the form of the operators is that they must maintain invariant the norm
and be linear. Thus, the operator Â will be unitary: Â†Â = ÂÂ† = I

As the system can be found in two orthogonal states when it is measured, |0〉 and |1〉 can
be written as,

|0〉 ≡
(

1
0

)
; |1〉 ≡

(
0
1

)
; (9)

In this context, a single qubit gate is represented by a 2× 2 matrix. Graphically, it could
be understood as rotations of |ψ〉 around the Bloch sphere [see Fig. (1)]. The single QG can be
expressed in terms of Pauli matrices:

X ≡
(

0 1
1 0

)
; Y ≡

(
0 −i
i 0

)
; Z ≡

(
1 0
0 −1

)
(10)

and the Hadamard gate, H = 1√
2

(
1 1
1 −1

)
Generalizing, a multiple qubit gate will be interpreted as a 2N × 2N matrix, where N is

the number of qubits involved.

An important result of theoretical computing is the research of the universality of the
NAND gate. Any function can be computed as the proper composition of NAND gates. An
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equivalent statement is postulated for QG. A universal gate set is compound of the Controlled-
NOT (CNOT) and single qubit gates [5].

2.2.1 CNOT gate

The CNOT gate is a two-qubit gate, with two inputs and two outputs. It has the following matrix
elements [see Fig. (2)]:

Figure 2: Circuit of a CNOT gate.

In multiple-qubit states, we construct a compound state as the tensor product of the single-
qubit states. Employing the representation of Eq. (9), we can create any two-qubit state. An
example for clarity purposes would be:

|11〉 = |1〉 ⊗ |1〉 =

(
0
1

)
⊗
(

0
1

)
=

 0 ·
(

0
1

)
1 ·
(

0
1

)
 =


0
0
0
1

 (11)

Thus, employing this notation, its matrix representation is: UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


This gate has two well differentiated inputs, a control qubit, which produces, when set to

zero, that the second qubit (target) remains unaltered. Otherwise, the target flips.

Summarizing, the action of a CNOT gate over two qubits can be described as:

|A,B〉 −→ |A,B ⊕ A〉 (12)

In this case, ⊕ is defined as the addition modulo two.
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2.3 Quantum algorithms
The fundamental application of qubits and quantum gates is the elaboration of quantum algo-
rithms which improve classical ones, specifically, on the time speedup solving a problem. They
can be classified in two groups: QFT (quantum Fourier transform) and quantum searching.

The first quantum algorithm which overcame the classical protocol was the Deutsch-
Jozsa algorithm. Despite solving a trivial problem, it caught the attention of many scientists
and contributed to rise quantum computing.

2.3.1 Deutsch-Jozsa algorithm

Problem statement: Given an unknown Boolean function f : {0, 1}n → {0, 1}, which is
guaranteed to be balanced or constant, determine the behaviour of the function.

Classical approach. To have certainty that f is constant, in the worst case, it is necessary
to try half plus one combinations. In an n-bits chain, 2n−1 + 1 trials.

Quantum solution. In this case, with only one trial we can determine the solution.

Figure 3: Deutsch-Jozsa’s diagram. Source in Ref. [3]

The algorithm can be split in three steps, where we have introduced the notation: |0〉⊗n =
n−times︷ ︸︸ ︷
|0 . . . 0〉.

The initial state is:
|ψ0〉 = |0〉⊗n ⊗ |1〉 = |0 . . . 01〉 (13)
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Applying a Hadamard gate on Eq. (13).

|ψ1〉 =
1√
2n+1

2n−1∑
x=0

|x〉(|0〉 − |1〉), (14)

where we define x as the different possibilities of sorting an n-length chain of 0’s and 1’s (the
last qubit |1〉 is written explicitly, H |1〉 = 1√

2
(|0〉 − |1〉)).

The function Uf is called an oracle. It behaves like a black box for which only the inputs
and outputs are known.

|ψ2〉 = Uf |ψ1〉 =
1√
2n+1

2n−1∑
x=0

|x〉(|f(x)〉 − |1⊕ f(x)〉) =
1√
2n+1

2n−1∑
x=0

(−1)f(x)|x〉(|0〉 − |1〉)

(15)
because f(x) = 0 or 1, thus: |f(x)〉 − |1⊕ f(x)〉 = (−1)f(x)(|0〉 − |1〉)

At this point, let us ignore the last qubit interaction. A second Hadamard gate is applied
on the first n-qubits. To simplify the notation, a concise way of writing the action of a Hadamard
gate for a single qubit is: H |x〉 =

∑1
z=0(−1)xz|z〉/

√
2, x = 0, 1.

|ψ3〉 =
1

2n

2n−1∑
x=0

(−1)f(x)

[
2n−1∑
y=0

(−1)x·y|y〉

]
=

1

2n

2n−1∑
y=0

[
2n−1∑
x=0

(−1)f(x)+x·y

]
|y〉 (16)

The last step is to measure |ψ3〉. The system will collapse to an eigenstate. If it is re-
turned |0〉⊗n then f(x) is constant and it is balanced otherwise. This is due to the fact that the
probability of the system to be in |0〉⊗n is:

P (|0〉⊗n) =

∣∣∣∣∣ 1√
2n

2n−1∑
x=0

(−1)f(x)

∣∣∣∣∣
2

If f(x) is a balanced function, the quantity of +1 is the same as −1. Thus, |ψ3〉 cannot collapse
to it.
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3 Introduction to trapped ions
In this section, we will introduce the basics of what an ion trap is and how it works. Furthermore,
we will study a procedure of cooling ions and detecting their state.

3.1 Ion trapping
An ion trap is an isolate system of confined ionized atoms which is set in a well-known state of
motion. To achieve this state (and manipulate it later), it is necessary to employ electromagnetic
fields. Depending on the kind of field, there exists different ion traps, such as Penning and Paul
traps.

Penning traps are designed employing a homogeneous magnetic field and a quadrupole
electric field. On the other hand, Paul traps are built of an inhomogeneous time-dependent field,
typically oscillating in the rf (radio-frequency) domain. As a result, Paul traps are often named
as rf traps.

3.2 Motion of particles in a Paul trap
Since this kind of traps is sometimes used for confining ions for the purpose of employing them
as physical qubits, let us describe in detail their complete behaviour.

Initially, it is important to remark Earnshaw’s theorem: a stable stationary equilibrium of
a set of charges cannot be maintained by the purely electrostatic interaction of the system. Due
to this result, the electric potential, quadrupolar-shaped, may be decomposed into a static part
and a sinusoidal part with an angular frequency ωrf .

Φ(x, y, z, t) =
K

2

(
αx2 + βy2 + γz2

)
+
K ′

2
cos (ωrft)

(
α′x2 + β′y2 + γ′z2

)
(17)

In each point with no particles, this potential has to fulfill Laplace’s equation: ∇2Φ = 0.
Developing the equation:

∇2Φ(x, y, z, t) = K (α + β + γ) +K ′ cos (ωrft) (α′ + β′ + γ′) = 0, ∀t (18)

it leads to the geometrical relations:

α + β + γ = 0
α′ + β′ + γ′ = 0

(19)

Consequently, there are no local minima in the free space that are consistent with Earn-
shaw’s theorem. For instance, a geometrical factor election in which the charge is confined in a
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purely rotating field would be:
α = β = γ = 0
α′ + β′ = −γ′ (20)

Figure 4: Schematic of a linear ion
trap. Source in Ref. [6]].

Figure 5: Commonly used static potential well created for
an isolated ion. This is represented via an equipotential
surface, Φ = 0 of Eq. (17) with the parameter condition
−(α + β) = γ > 0. We have chosen α = β = −1 and a
range 0 < |r| < 100 µm.

In addition, it is important to analyze the motion of ions in rf traps. These traps are of
the order of ∼ 1mm − 1cm. Nevertheless, atoms are systems of ∼ 1Å, therefore, a quantum-
mechanical treatment of the problem may be required. In addition, the potential in Eq. (17) is
time-dependent, the most considerable effect of is: 〈Φ(x, y, z, t)〉 6= Φ(x, y, z, 〈t〉). In 1985,
Cook, Shankland, and Wells [7] developed the first quantum-treatment of a rf trap and con-
cluded that the stability regions of the traps are identical as the classical ones.

Eq. (17) can be rewritten as a separable problem in Cartesian coordinates. Without loss
of generality, let us focus in the x-coordinate.

V (t) =
1

2
mW (t)x̂2 (21)

with
W (t) =

1

4
ω2

rf [ax + 2qx cos (ωrft)] . (22)

The two new parameters are related to the geometrical factors: ax ∝ α and qx ∝ α′.
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The motional Hamiltonian is:

Ĥ(m)(t) = K + V (t) =
p̂2

2m
+

1

2
mW (t)x̂2. (23)

In the Heisenberg picture, the time evolution of the operators x̂ and p̂ follows the expression,

dÂH

dt
(t) =

∂ÂH

∂t
+
i

~
[Ĥ, ÂH ] (24)

Thus,
˙̂x = p̂

m
,

˙̂p = −mW (t)x̂.
(25)

Coupling both equations,

¨̂x+W (t)x̂ = ¨̂x+
1

4
ω2

rf [ax + 2qx cos (ωrft)] x̂ = 0. (26)

This kind of equation is called ”Mathieu equation” [8], which has the standard form,

u′′ + (a− 2q cos(2ξ))u = 0, (27)

and its more general solution is:

u(ξ) = Aeiβxξ
∞∑

n=−∞

C2ne
i2nξ +Be−iβxξ

∞∑
n=−∞

C2ne
−i2nξ. (28)

As a result, if we relate x̂ −→ u(t), Eq. (26) has the structure of Eq. (27). Imposing the
boundary conditions, u(0) = 1, ˙u(0) = iν, the solution can be constructed using Eq. (28)
with A = 1, B = 0.

u(t) = eiβxωrf/2

∞∑
n=−∞

C2ne
inωrf t ≡ eiβxωrf t/2Φ(t). (29)

The complex conjugate solution is linearly independent of u(t). It can be shown calculat-
ing the Wronskian:

u∗(t)u̇(t)− u(t)u̇∗(t) =U∗(t; 0)u∗(0)U(t; 0)u̇(0)− U(t; 0)u(0)U∗(t; 0)u̇∗(0) =

= u∗(0)u̇(0)− u(0)u̇∗(0) = 2iν.
(30)

In this context, U(t; 0) is the time evolution operator and [U(t; 0), u(0)] = 0.
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Since the Wronskian is a time constant and u(t), x̂ follow the same ODE, multiplying Eq.
(30) by a constant and u∗(t) −→ x̂,

Ĉ(t) = Ĉ(0) =

√
m

2~ν
i{u(t) ˙̂x(t)− u̇(t)x̂(t)} =

1√
2m~ν

[mνx̂(0) + ip̂(0)] = â. (31)

From Eq. (31), the Heisenberg position operator can be rewritten in terms of u(t) and its
complex conjugate function,

x̂(t) =

√
~

2mν

{
âu∗(t) + â†u(t)

}
. (32)

In this context, â is the annihilator operator of a harmonic oscillator. As a result, it will
satisfy its commutation relations and a basis of the problem will take the form, |n, t〉ν , n =
1, ...,∞

The ground state obeys,

â |n = 0, t〉 =

√
m

2~ν
[u(t) ˙̂x− ˙u(t)x̂] =

√
m

2~ν
[u(t)

p

m
− ˙u(t)x̂] = 0. (33)

Rearranging:
[u(t)

p

m
− ˙u(t)x̂] = 0. (34)

Moreover, in the coordinate space,{
u(t)

~
i

∂

∂x
−mu̇(t)x

}
〈x | n = 0, t〉 = 0. (35)

Solving and normalizing Eq. (35),

〈x′ | n = 0, t〉 =
(mν
π~

)1/4 1

{u(t)}1/2
exp

[
im

2~
u̇(t)

u(t)
x′2
]
. (36)

By a similar procedure used in harmonic oscillator, the excited states can be created,

|n, t〉 =

[
â†(t)

]n
√
n!
|n = 0, t〉 =

[
C†(t)

]n
√
n!
|n = 0, t〉 (37)

The essential statement shown in Eq. (37) is that the solutions are coherent states. Conse-
quently, they are not eigenstates of the hamiltonian (there is a periodical exchange between the
rf field and the ions) and, eventually, these states will collapse into an eigenstate. As a result,
the operation time of the gates acting on the qubits must be shorter than decoherence time.
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3.3 Trapped ion Hamiltonian
A further ingredient in trapped ion dynamics is the coupling of electromagnetic fields with
the internal and motional states of the ions. It is formally equivalent to the Jaynes-Cummings
Hamiltonian.

As a result of the relative strength of the coupling, the interaction with levels distant from
the resonance frequency is negligible. The structure is typically approximated by a two-level
quantum system. The two levels are denoted by |g〉, the ground state, and |e〉, the excited state.
The energy between both levels is ~ωo = ~(ωe − ωg) and the Hamiltonian is:

H(e) = ~(ωg |g〉 〈g|+ ωe |e〉 〈e|) (38)

By rescaling the energy in Eq. (38) a factor −~ (ωe + ωg) /2, the Hamiltonian can be
rewritten as:

Ĥ(e) = ~
ωo
2
σz. (39)

For a two-level system, operators can be expressed using Pauli matrices assigning |g〉 7→
(1, 0) and |e〉 7→ (0, 1).

The total Hamiltonian will include the motion of the ions, Ĥ(m), the internal electronic
level, Ĥ(e) and the interaction with electromagnetic fields, Ĥ(i).

Ĥ = Ĥ(m) + Ĥ(e) + Ĥ(i) (40)

Let us discuss how to deduce the interaction part of the Hamiltonian. The electromagnetic
field can be modelled as a plane wave:

E = E · ê = Eo(e
i(kx−ωt+φ) + c.c.) (41)

“c.c.” indicates the complex conjugate of the expression inside brackets.

The interaction term reads (assuming d̂ and E points along the same direction),

Ĥ(i) = −d̂ · E(t) = −d̂ · E(t) (42)

In this case, d̂ is defined as the transition dipole moment operator. It provides the electric
dipole moment associated with two different states. Thus, for two arbitrary states |i〉 6= |f〉:

〈i| d̂ |f〉 = 〈f | d̂ |i〉 = d (43)

〈i| d̂ |i〉 = 〈f | d̂ |f〉 = 0 (44)
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Expanding Eq. (42) throughout a two-level system:

Ĥ(i) = (|g〉 〈e|+ |e〉 〈g|) 〈i| Ĥ(i) |f〉 =
1

2
~Ω(|g〉 〈e|+ |e〉 〈g|) × (ei(kx−ωt) + c.c.), (45)

rewriting the constant as 1
2
~Ω, where ~Ω = dE0. It is convenient to understand Eq. (45) in

terms of Pauli matrices (Eq. (10)): |e〉 〈g| 7→ σ+ = 1
2
(σx+ iσy), |g〉 〈e| 7→ σ− = 1

2
(σx− iσy)

Ĥ(i) =
1

2
~Ω(σ+ + σ−) × (ei(kx−ωt) + e−i(kx−ωt)) (46)

This expression introduces the concept of Rabi frequency, namely, coupling frequency in
a two-level quantum system which generates oscillations between the ground and the excited
state. It can be interpreted as if the system periodically absorbs photons of the electromagnetic
field. Thus, it is excited and the electron promotes to the higher energy state. After a certain
time, the photon is reemitted by the system and the cycle is repeated. If the frequency of the
laser is the same as the level transition, Ω can be interpreted as a measure of the strength of the
coupled field-ion.

Ωi,f =
di,f · E0

~
(47)

Besides the specified frequency, it is important to define and differentiate the following
quantities,

• ν := trap frequency (of the levels of the harmonic oscillator associated).

• ω := effective light frequency of the laser.

• ωo := transition frequency of the ion at rest.

• δ = ω − ωo := detuning.

In any case, the interesting picture is how electromagnetic fields couple with the ions. It
will be studied in the interaction picture.

The interaction picture is an hybrid representation between the Schrödinger and Heisen-
berg picture. It is useful when one initially knows the exact solution for a part of the Hamilto-
nian, Ĥo. In this way,

Ĥo = Ĥ(m) + Ĥ(e) (48)

and the time evolution propagator,
Û0 = e−

i
h
Ĥot, (49)

The interaction Hamiltonian in the interaction picture is:

Ĥint = Û †0Ĥ
(i)Û0 =

=
1

2
~Ωe(i/~)Ĥ(e)t (σ̂+ + σ̂−) e−(i/~)Ĥ(e)t × e(i/~)Ĥ(m)t(ei(kx−ωt+φ) + c.c.)e−(i/~)Ĥ(m)t.

(50)
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The two terms differentiated in Eq. (50) are expressed in the interaction picture. However,
they evolve in a formal mode equivalent to Heisenberg picture but with a reduced Hamiltonian.
Consequently, they obey observable Heisenberg’s equation in Eq. (24).

Analyzing σ̂+ and â will be useful for future mathematical developments in this section.

˙̂σ+ =
i

~
[Ĥ(e), σ̂+] = i

ωo
2

[σ̂z, σ̂+] = iωoσ̂+ (51)

˙̂a =
i

~
[Ĥ(m), â] ' iν[â†â, â] = −iνâ (52)

Solving Eqs. (51) and (52):

σ̂+(t) = σ̂+e
iωot (53)

â(t) = âe−iνt (54)

In Eq. (52), as it has been established before, the movement of the ions inside a rf trap is
modelled as an harmonic oscillator. Thus, this expression can be used correctly. At this point,
Eq. (50) is,

Ĥint =
1

2
~Ω
(
σ̂+e

iωot + σ̂−e
−iωot

)
× e(i/~)Ĥ(m)t(ei(kx−ωt+φ) + c.c.)e−(i/~)Ĥ(m)t. (55)

Attending to the second part of the expression, only the space dependent part of the plane
waves will interact with Ĥ(m). Likewise in Eq. (31), the spatial part can be decomposed in
terms of ladder operators of a harmonic oscillator:

x̂ =

√
2~
mν

(â+ â†) (56)

This leads to,

kx̂ =

√
~

2mν
(â+ â†) = η(â+ â†), (57)

We define the Lamb-Dicke parameter as,

η = kxo = k

√
~

2mν
. (58)

Afterwards, we consider the Heisenberg evolution of the operators in Eq. (57).

kx̂H(t) = η(â(t) + â†(t)) = η(âe−iνt + â†eiνt) (59)

In addition, in the Hamiltonian two kinds of time dependent oscillatory terms appear,
some with ωo − ω = δ and the others with ωo + ω. The latter can be neglected since they
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oscillate much faster than the system time evolution. As a consequence, they do not disrupt the
evolution of the ions. This is called a Rotating wave approximation (RWA) and the resulting
Hamiltonian is (taking advantage of (σ̂−)† = σ̂+):

Ĥint(t) =
1

2
~Ω0σ+ exp

{
iη
(
âe−iνt + â†eiνt

)}
ei(φ−δt) + H.c. (60)

“H.c.” indicates the Hermitian conjugate of the expression.

This expression can be simplified if the ion is in the Lamb-Dicke regime. This means
that the coupling induced by the external field between motional states and ion internal states is
small enough such that √

〈(kx̂)2〉 =
√
η2〈(â+ â†)2〉 << 1 (61)

When Lamb-Dicke regime is achieved, the recoil energy of the laser is negligible com-
pared to the spacing energy of the harmonic oscillator levels and transitions changing the mo-
tional state of the ion are decoupled of ion internal transitions. Expanding Eq. (60) in power
series of η � 1:

ĤQC(t) =
1

2
~Ω0σ+

{
1 + iη

(
âe−iνt + â†eiνt

)}
ei(φ−δt) + H.c. (62)

Equation (62) is also known as the basic Hamiltonian of an ion trap quantum computer.
It will contain three resonances depending on the detuning, δ. When the system is in one of the
resonances, the contributions of the other are not relevant (second RWA) and time dependent
terms are negligible.

Figure 6: Relative strength of transitions in the Lamb-Dicke regime. The probability of having
a transition involving more than one phonon decreases as η increases.
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• Carrier resonance, δ = 0. Transition of the type: |n〉 |g〉 ↔ |n〉 |e〉. It has the form:

Ĥcar =
1

2
~Ω0

(
σ+e

iφ + σ−e
−iφ) (63)

• First red sideband (rsb), δ = −ν. Transition of the type: |n〉 |g〉 ↔ |n− 1〉 |e〉. In
this interaction, while the ion promotes to the excited state, it absorbs a phonon (motion
quantum). The form of the Hamiltonian is:

Ĥrsb =
i

2
η~Ω0

(
σ+âe

iφ + σ−â
†e−iφ

)
(64)

with Rabi frequency:
Ωn,n−1 = ηΩ0

√
n (65)

• First blue sideband (bsb), δ = +ν. Transition of the type: |n〉 |g〉 ↔ |n+ 1〉 |e〉. It is the
counterpart of rsb resonance. It adds a phonon while the ion promotes. Its form is:

Ĥbsb =
i

2
η~Ω0

(
σ+â

†eiφ + σ−âe
−iφ) (66)

with Rabi frequency:
Ωn,n+1 = ηΩ0

√
n+ 1 (67)

When η increases while standing in the Lamb-Dicke regime, transitions among more
than one phonon are allowed but are less probable than first order resonances. It is necessary to
expand Eq. (62) in a power series to higher order in η.

3.4 Ion cooling
In order to start a quantum computing, it is necessary to know the initial state of the system to
make correct predictions of its behaviour.

This can be achieved via cooling the ions of the rf trap to the ground state of the trapping
potential. Besides, this process sets the system in the Lamb-Dicke regime. Thus, the Hamilto-
nian approximations in Eq. (61) are valid.

kBT � ~ν (68)

Ion cooling is commonly realized as a two-step procedure. First stage is called Doppler
cooling which can reduce the temperature of ions to a certain limit. After reaching this tem-
perature, a second stage cooling is required for ground state guarantees. There exist different
methods to reach it but, as a brief introduction, we will discuss EIT cooling (electromagnetically
induced transparency).
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3.4.1 Doppler cooling

A complete treatment requires a rigorous analysis which is far beyond this study. Instead, we
will analyse a simple model where micromotion from secular motion is neglected. This effect
was studied in global picture by Cirac, Galay et al. [9].

Considering Eq. (21), when micromotion is omitted, it can be approximated as a time-
independent harmonic oscillator potential:

Vrf(x) ≈ 1

2
mv2x2 (69)

Taking a classical description of the trapped ion movement inside the potential, its velocity will
be,

v(t) = v0 cos(νt) (70)

The laser radiation pressure is described as a continuous force when radiative decay time,
Γ (the average time an ion emits) is much shorter than an ion oscillation: Γ � ν. In one
absorption-emission cycle, the ion velocity remains constant.

Along one direction, the ion momentum will raise ∆p = ~k each time it absorbs a pho-
ton. Emission will be in every direction. Eventually, it will lead to a zero-momentum average
transfer and a Brownian motion in momentum space.

The probability of being in the excited state is given through Bloch equations [10].

ρee = 〈e| ρ̂ |e〉 =
s/2

1 + s+ (2δeff/Γ)2 (71)

Defining s as the saturation parameter,

s = 2|Ω|2/Γ2 (72)

For s � 1 → ρee ≈ 1/2 and the system is in a superposition of ground and excited state.
Otherwise, if s� 1, the whole system is almost in the ground state.

Another parameter we consider is the global detuning composed by the Doppler shift and
the laser detuning,

δeff = δ − k · d. (73)

Consequently, the average force on the ions in the model is,(
dp

dt

)
a

≈ 〈Fa〉 = ~kΓρee. (74)
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This absortion force can be linearized employing a Taylor series (1+x2)−1 ∼ 1−x2+. . . ,
if v is enough small (it implies δeff � Γ).

Fa ≈ F0(1 + κv), F0 = ~kΓ
s/2

1 + s+ (2δ/Γ)2
(75)

and κ is the friction coefficient.

κ =
8kδ/Γ2

1 + s+ (2δ/Γ)2
(76)

It will define the nature of the force depending on the detuning sign. If δ > 0, it will
contribute to increase the kickback. On the other hand, when δ < 0, the force will present a
damping proportional to v.

The cooling evolution of the system will be equivalent to the energy dissipated by the
system and the kinetic term time evolution:

Ėc = 〈Fav〉 = F0

(
〈v〉+ κ

〈
v2
〉)

(77)

Evaluating Eq. (70), 〈v〉 = 0 and:

Ėc = F0κ〈v2〉 < 0 (78)

Nevertheless, ρee(v = 0) 6= 0. Even if the ion is at rest, it will continue absorbing-
emitting photons (near steady state). At this point, both processes will have the same rate but
different directions. Experimentally, it has been tested that the emission recoil kick over the ion
motion axis is ξ = 2/5 for dipole radiation. [11].

The heating rate will be,

Ėh =
1

2m

d

dt

〈
p2
〉

= Ėabs + Ėem = Eabs(1 + ξ) ' 1

2m
(~k)2Γρee(v = 0)(1 + ξ), (79)

considering that 〈p〉 = 0. We also neglect emission and absorption correlation.

If the ion is in equilibrium, Eq. (78) must be equal to Eq. (79), such that,

F0κ〈v2〉 =
1

2m
(~k)2Γρee(v = 0)(1 + ξ). (80)

One can assume the thermal energy will be of the order of kinetic energy.

UT = kBT ∼ E = m〈v2〉 (81)
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Rearranging Eq. (80) and expanding F0, κ and ρee(v = 0):

kBT ≈ m
〈
v2
〉

=
~Γ

8
(1 + ξ)

[
(1 + s)

Γ

2δ
+

2δ

Γ

]
(82)

Even for this simple model, in which many cooling trap effects are neglected, there exists
a minimal temperature,

Tmin =
~Γ
√

1 + s

4kB
(1 + ξ), (83)

for a detuning

δ =
1

2
Γ
√

1 + s, (84)

obtained minimizing T (δ) in Eq. (82).

In conclusion, the ion will lose energy if cooling events are more likely than heating
events. The limit is reached when both processes are equally likely.

3.4.2 EIT cooling

The main purpose of the electromagnetic induced transparency (EIT) cooling is to set the initial
state of the ion trap in the ground state |0 . . . 0〉.

We consider a three-level system with two lasers coupling ground and an auxiliary state
with the excited state applying a detuning. Both lasers have different strengths. Precooling the
ions to the Lamb-Dicke regime forbids transitions with ∆n > 1.

Figure 7: Scattering rate of the transitions as a function of the weak laser detuning. Source in
Ref. [12].
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The idea of this method relies in the fact that, when δg ≈ δr, a resonance effect appears
which suppresses the carrier scattering. The strong laser (δr) links |e〉 ↔ |r〉 and it pumps ions
to |g〉. The weak laser interferes and the transition |e〉 ↔ |g〉 is less probable.

Finally, the system will be found in its ground state. A necessary condition to be certain
is to choose δg ≈ δr � Γ .
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4 Trapped-ion quantum computing
In this chapter, I will discuss how the ions in rf traps can be manipulated via laser pulses to
perform quantum gates,

We will first review quantum-state preparation. It has been assumed for this analysis
that system levels are stable (they have an infinite lifetime), which is only fulfilled if residual
interactions are neglected. This approximation can be done properly because the time scale for
quantum gates is significantly smaller than the state lifetime.

The most general state will take the form:

|Ψ(t)〉 =
∞∑
n=0

cn,g(t) |n, g〉+ cn,e(t) |n, e〉 (85)

Choosing a large detuning one obtains:

δ = lν + δ′ ( δ′ � ν, l ∈ Z) (86)

The state will be resonant with the l-th blue sideband. Thus, with the general Hamiltonian in
Eq. (60), only the l-th term of the Taylor expansion (η � 1) is going to interact.

exp
{
iη
(
â†eiνt

)}
≈ 1 + iηâ†eiνt +

(iη)2

2!
(â†)2ei2νt + . . .

l−th term︷︸︸︷−→ (iη)l

l!
(â†)leilνt, (87)

and analogously to the â term.

The time evolution is governed by the Schrödinger equation,

i~
d |Ψ(t)〉
dt

= Ĥint |Ψ(t)〉 . (88)

Developing the fist side of Eq. (88), since eigenstates of |Ψ(t)〉 are time-independent we
achieve

i~
d |Ψ(t)〉
dt

= i~

(
∞∑
n=0

ċn,g(t) |n, g〉+ ċn,e(t) |n, e〉

)
. (89)

On the other side, we have the four terms that, in principle, are resonant in the interaction
Hamiltonian,

Ĥr
int =

~
2

Ω0(
(iη)l

l!
){σ+

(
(â)le−ilνt + (â†)leilνt

)
ei(φ−δ

′t) + H.c.}. (90)
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Nevertheless, the action over |n, g〉 and |n, e〉 are not zero only in the cases,

σ+(â†)l |n, g〉 =
√

(n+ l)! |n+ l, e〉 (91)

σ−(â)l |n+ l, e〉 =
√

(n+ l)! |n, g〉 , n > l (92)

With the aim to rewrite Eq. (88) as a set of equations for the ci,j coefficients, it will be
projected over arbitrary states 〈n, g| and 〈n+ l, e| respectively.

Case 〈n, g| · [Eq. (88)]:

i~ 〈n, g| d
dt
|Ψ(t)〉 = 〈n, g| Ĥr

int |Ψ(t)〉 (93)

Analyzing term by term:

〈n, g| · i~d |Ψ(t)〉
dt

= ihċn,g(t) 〈n, g|n, g〉 = ihċn,g(t), (94)

because 〈n, g|m, g〉 = δnm.

The interaction matrix element is,

〈n, g| Ĥr
int |Ψ(t)〉 =

~
2

Ω0(
(iη)l

l!
) 〈n, g|σ+(â†)leilνtei(φ−δt) + σ−â

le−ilνte−i(φ−δt)) |Ψ(t)〉 (95)

which is not zero for the term cn+l,e(t), applying Eq. (92),

〈n, g| Ĥr
int |Ψ(t)〉 =

il~
2

Ω0
ηl

l!

√
(n+ l)!e−ilνte−i(φ−δt)cn+l,e(t). (96)

In this case, the form of δ [Eq. (86)] cancels the evolution part of â operator: −ilνt −
i(φ − δt) = −il(φ − δ′t) and the generalized Rabi frequency for an l-number state jump is
Ωn+l,n = Ω0η

l
√

(n+ l)!/l!.

The final expression is

〈n, g| Ĥr
int |Ψ(t)〉 = il

~
2

Ωn+l,ne
−i(φ−δ′t)cn+l,e(t) (97)

Matching both sides, Eq. (94) and Eq. (97), we obtain the following expression,

ċn,g(t) = −i(1−|l|)ei(δ′t−φ) Ωn+l,n

2
cn+l,e(t). (98)
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The second coupled equation can be deduced similarly but projecting Eq. (88) over
|n+ l, e〉, in which it is necessary to use Eq. (91).

ċn+l,e(t) = −i(1+|l|)e−i(δ
′t−φ) Ωn+l,n

2
cn,g(t). (99)

The system of coupled equations can be solved using Laplace transform method. The
following properties of the transform will be used.

1. Laplace transform of a function derivative.

L[f ′(t)] = sL[f(t)]− f(0). (100)

2. Laplace transform of an exponential multiplying a function.

L[e−atf(t)] = F (s+ a). (101)

3. Inverse transform of a dumped sine or cosine.

L−1

[
b

(s+ a)2 + b2

]
= e−at(bt), L−1

[
s+ a

(s+ a)2 + b2

]
= e−at cos(bt), (102)

where s is a complex variable and a, b ∈ R. To simplify notation, in Eq. (98), Eq. (99), the
time-independent terms will be written as:

K ≡ i1−|l|e−iφΩn+l,n/2 K̃ ≡ i1+|l|e−iφΩn+l,n/2

beingKK̃ = −Ω2
n+l,n/4. The transformed functions will be denoted byL[cn,g(t)] ≡ G(s), L[cn+l,e(t)] ≡

E(s). After applying Eqs. (100) and (101), the transformed coupled equations are:{
sG(s)− cn,g(0) = −KE(s− iδ)
sE(s)− cn+l,e(0) = −K̃G(s+ iδ)

(103)

After some algebra, it can be written as a function of the initial conditions. The following
analysis is restricted to calculate cn,g(t). This process is analogue to cn+l,e(t).

G(s) =
s− iδ

s(s− iδ) + Ω2
n+l,n/4

cn,g(0)− K

s(s− iδ) + Ω2
n+l,n/4

cn+l,e(0) (104)

Finally, the transformation must be inverted to recover the solution. The inverse Laplace
transform has no effect over constant values. Thus, its action in Eq. (104) will be equivalent to
solving a dumped sine or cosine [Eq. (102)].
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The final solution is, (
cn+l,e(t)
cn,g(t)

)
= T ln

(
cn+l,e(0)
cn,g(0)

)
, (105)

with

T ln =

 e−i(δ
′/2)t

[
cos
(
f lnt/2

)
+ i δ

′

f ln
sin
(
f lnt/2

)]
−iΩn+l,n

f ln
ei(φ+|l|π/2−δ′t/2) sin

(
f lnt/2

)
−iΩn+l,n

f ln
e−i(φ+|l|π/2−δ′t/2) sin

(
f lnt/2

)
ei(δ

′/2)t
[
cos
(
f lnt/2

)
− i δ′

f ln
sin
(
f lnt/2

)]
 ,

(106)
and f ln =

√
δ′2 + Ω2

n+l,n.

This is a generalized solution of the behaviour of a two-level quantum system and a laser
resonant for the l-th sideband. It describes a Rabi floppling between ground and excited state.

4.1 Single-qubit gates with carriers
The starting point of most ion gates is the ground state of motion. Besides, to reach this ground
state the system must be inside the Lamb-Dicke regime.

In a single trap, it is difficult to implement multi and single-qubit gates due to the fact
that it requires a strong laser manipulation. At ion-ion distance, laser beams must be extremely
narrow. A solution could be to address the ions in a perpendicular direction to the trap axis.
Nevertheless, it will strongly decrease the laser-axial motion coupling. Currently, one of the
most appropriate methods is to split single pulses into composite pulses.

In this section, we will discuss only the creation of single qubit gates.

4.1.1 Creation of number states

At the first place, the ion is precooled to |Ψ(0)〉 = |g, n = 0〉. The objective will be to modify
the number state applying multiple π-pulses. A π-pulse will take a resonance frequency of the
trap, thus in Eq. (86), δ′ = 0. It must fulfill the condition

f lntπ,n = |Ωn+l,n| tπ,n = π (107)

where tπ,n is the time pulse.

With this requirement, Eq. (106) simplifies for the carrier and the sidebands to:

T 0
n =

(
0 −ieiφ

−ie−iφ 0

)
T±1
n =

(
0 eiφ

−e−iφ 0

)
(108)

disregarding the global phase (not measurable). If the state is a superposition of number states,
the relative phase is relevant.

30



The technique to raise the number state is to create a ladder of blue and red sideband
pulses. The ion may follow the next level scheme:

|0, g〉 −→ T 1
0 |0, g〉 = |1, e〉 −→ T−1

1 |1, e〉 = |2, g〉 −→ . . . (109)

Finally, if the final state of the qubit is excited one can apply a carrier pulse to produce |m, g〉
state.

|m, e〉 −→ T 0
1 |m, e〉 = −i |m, g〉 , m ∈ N (110)

in a single-qubit operation, the global phase will not take any real effect.

A motional state can be detected due to the fact that Rabi frequency is different for each
state [Eqs. (65) and (67)]. Inside Lamb-Dicke regime, the most important transitions are the
first blue and red sidebands (outside this regime frequency behaviour is more complicated to
distinguish).

Measuring the probability of finding the ion in the ground state after a blue sideband pulse
(l = +1) one will obtain

Pg(t) =
〈

Ψ(t)
∣∣∣(|g〉〈g| ⊗ Îm)∣∣∣Ψ(t)

〉
. (111)

In this case, |Ψ(t)〉 corresponds to a general state [Eq. (85)] projected on any motional state in
the ground state. Îm is the identity operator of the motional space.

Therefore, Eq. (106) will have the form (δ′ = 0):

T+1
n =

(
cos (1

2
Ωn,n+1t) 0
0 cos (1

2
Ωn,n+1t)

)
(112)

Furthermore, utilizing the equality cos2 (a) = 1+cos(2a)
2

and the probability normalization
∑|

n cn(0)|2 =
1

Pg(t) =
∞∑
n=0

|cn(t)|2 =
1

2

[
1 +

∞∑
n=0

|cn(0)|2 cos (Ωn,n+1t)

]
(113)

Consequently, the population of each state Pn = |cn(0)|2 is deduced by Fourier trans-
forming Eq. (113):

F{Pg(t)} =

√
π

2

{
δ(ω) +

1

2

∞∑
n=0

Pn [δ(ω − Ωn+1,n) + δ(ω + Ωn+1,n)]

}
(114)

where δ(ω ± a) is the Dirac delta function.
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Experimentally, in Eq. (111) the signal is damped for each n. Thus, to fit the data, we have
introduced n-dependent exponential functions with a constant modelled as: γn ≈ γ0(n+ 1)0,7.

Pg(t) =
1

2

[
1 +

∞∑
n=0

Pn cos (Ωn,n+1t) e
−γnt

]
(115)

Some explanations to this phenomenon associate dumping to intensity fluctuations of
lasers and magnetic fluctuations at the ion position.

4.1.2 Creation of coherent states

A coherent state |α〉 of the ion is defined as a state that minimizes the wave packet uncertainty
in the position representation. They are Gaussian-shaped and oscillate classically in a harmonic
well. A way to define coherent states is as the action of the displacement operator on the
vacuum:

D̂(α) = exp
[
αâ†(t)− α∗â(t)

]
, α ∈ C (116)

and
|α〉 = D̂(α) |0〉 (117)

Physically, the displacement operator can be interpreted as a phase shift in optical phase
space. It has a group structure and the action of this operator on a coherent state is

|Ψ′〉 = D̂(α) |Ψ〉 (118)

There are different paths to achieve coherent states, including pairs of stationary waves, a
spatially uniform driving field, inter alia.

The second method will be discussed hereinafter. The homogeneous field is described as
a force of the form:

F (t) = eE0(ωdt− ϕ) (119)

in which ωd is the drive frequency.

In a homogeneous force, if the position operator is reexpressed in terms of Eq. (32), the
interaction term will be

HI = −F (t)x̂ = −eE0(ωdt− ϕ)

√
~

2mν

{
âu∗(t) + â†u(t)

}
(120)

It is enough to consider a first-order approximation to analyze the resonant behaviour of
the system. In this case, when we neglect in Eq. (29) the sum for n ≥ ±2 and ν = βxωrt/2.,

u(t) ≈ eiνt
{[

1 +
(qx

2

)
cos (ωrft)

]
/
(

1 +
qx
2

)}
. (121)
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The laser will only interact if the drive is resonant with the ion motion. Choosing ωd = ν
and expanding the sine using Euler relationships, we obtain

HI = −eE0

√
~

2mν

ei(νt−ϕ) − e−i(νt−ϕ)

2i

(
âe−iνt + â†eiνt

) [1 +
(
qx
2

)
cos (ωrt)

](
1 + qx

2

) . (122)

In this equation, the rotating term with frequency 2ν can be neglected (RWA). Likewise,
non-steady terms can be discarded. The approximate interaction Hamiltonian is,

HI ≈
−eE0

2i

1

1 + qx
2

√
~

2mν

(
âe−iϕ + â†eiϕ

)
(123)

The evolution of the system is governed by the time evolution operator [Eq. (49)] with the
interaction Hamiltonian [Eq. (120)]. Introducing Eq. (123), it takes the form of a displacement
operator [Eq. (116)]

U(t) = exp
[
(Ωdt) â

† − (Ω∗dt) â
]

= D (Ωdt) (124)

with

α = Ωd · t =
−eE0

2~
1

1 + qx
2

√
~

2mν
eiϕ · t (125)

Thus, the time the drive is operating is proportional to the coherent displacement.

4.1.3 Creation of squeezed states

A squeezed state is a non-classical state of the system for which the position or momentum
variance is lower than the position and momentum variance of the ground state (which are
equivalent to coherent states because they are minimum-uncertainty states too).

The variance of an operator will be denoted as: ∆Y =
√
〈Y 2〉 − 〈Y 〉2

Any quantum system must fulfill Heisenberg uncertainly relations hence, if the position
variance is squeezed, the momentum variance will become wider.

Squeezed states can be defined as the action of the squeeze operator in vacuum,

S(ζ) = exp

[
1

2

(
ζ∗â2 − ζâ†2

)]
, ζ ∈ C (126)

being â, â† ladder operators.

It can be interpreted as a two-photon generalization of the displacement operator [Eq.
(116)]. As ladder operator appears in pairs, only even-n levels will be populated.
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For this type of states, we define the parameter βs which gives information of the squeez-
ing of the state,

βs =
∆x0

∆xs
. (127)

∆x0 represents the variance of the ground state. If βs > 1, the position dispersion is tighter
than the ground state one. Otherwise, when 0 < βs < 1, the momentum variance is narrower.

Those states could be created from three sources: by a change in the rf trap spring con-
stant, as a combination of steady/traveling wave lasers and by a parametric drive at 2ν.

The last method is similar to the one employed for creating coherent states. In this case,
a 2ν frequency is necessary as a consequence of the odd-n levels being depopulated. βs grows
with the driving laser time in an exponential way. Thus, for short time periods an important
percentage of the population is in high-n states (n > 20). As soon as n increases, the difference
between Rabi frequencies decreases [Eq. (67)] and it is harder to distinguish frequencies. This
is an important error source.

4.1.4 Schrödinger-cat states of motion

In the field of quantum optics, a “Schrödinger-cat” state refers to a linear combination of two
motional coherent states |α〉 and |α′〉 where its wave-packet width is smaller compared to its
spatial separation to avoid decoherence.

For a single trapped ion, the analogous form is the superposition:

|α, g〉+ |αeiφ, e〉 (128)

This state can be achieved by using a pair of Raman laser beams. The relative phase at any
step can be controlled by phase locking. Excited internal states are not affected by displacement
beams because they are polarized σ+.

Figure 8: Steps of a Schrödinger-cat state creation. Source in Ref. [13].
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The explicit form of a π/2 and π pulse can be found from Eq. (106)

T 0
n(
π

2
, φ) =

1√
2

(
1 −ieiφ

−ie−iφ 1

)
T 0
n(π, φ) =

(
0 −ieiφ

−ie−iφ 0

)
(129)

We will chose for Eq. (129): φ = −π/2.

The process is summarized in the following sequence [12],

(a) Precooling to ground state:
|Ψa〉 = |n = 0〉 |g〉 . (130)

(b) Carrier π/2-pulse to split the state (relative phase remains constant)

|Ψb〉 = T 0
n(
π

2
,−π

2
) |0〉 |g〉 =

1√
2

(|0〉 |g〉+ |0〉 |e〉) . (131)

(c) Displacement beam excites motion of |e〉

|Ψc〉 = D̂e(α) |Ψb〉 =
1√
2

(|0〉 |g〉+ |α〉 |e〉) , (132)

where the sub-index e means that it only interacts with the excited state and D̂e is the
displacement operator.

(d) Carrier π-pulse to swap internal states:

|Ψd〉 = T 0
n(π,−π

2
) |Ψc〉 =

1√
2

(|α〉 |g〉+ |0〉 |e〉) (133)

(e) Displacement beam of the second laser: D̂e(αe
iφ)

|Ψe〉 = D̂e(αe
iφ) |Ψd〉 =

1√
2

(
|α〉 |g〉+

∣∣∣αeiφ′〉 |e〉) (134)

the relative phase between coherent states is fixed to φ′ = π. Therefore,

|Ψe〉 =
1√
2

(|α〉 |g〉+ |−α〉 |e〉) (135)

(f) Final π/2 pulse on the carrier (with φ = −π/2) creates a superposition of both coherent
states in each internal state:

|Ψf〉 ≈
1

2
[|g〉(| − α〉 − |α〉) + |e〉(| − α〉+ |α〉)] (136)
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The accuracy of this method depends on the relative-phase lock. This results in destruc-
tive interference of the states. Schrödinger-cat states can be used to study quantum entanglement
between ions [14].

This procedure can be extended to generate arbitrary motional states on single-ion traps.

4.2 Mølmer-Sørensen gates
The Mølmer-Sørensen (MS) [15] gate is a two qubit gate to entangle two ions. It is created via
pumping a bichromatic laser field tuned close to first blue and red sidebands.

Thereafter, we will briefly describe the procedure to deduce MS gate operator [16], [17].

The Hamiltonian of both lasers will have the form of Eq. (64) and Eq. (66) but with a
detuning. The total Hamiltonian can be approximated to the sum of independent laser Hamilto-
nians.

HMS,n ≈
1

2
η~Ωo,n

(
σ+,ne

iφ + σ−,ne
−iφ) (aeiδt + a†e−iδt

)
(137)

where rewriting σ± in terms of Pauli matrices the first part of the expression is:

σn =
(
σ+,ne

iφ + σ−,ne
−iφ) = (σx,n cos (φ) + σy,n sin (φ)) , (138)

The total spin contribution of the two ions interacting with MS gates will be,

Sφ =
2∑

n=1

σn =
2∑

n=1

(σx,n cos (φ) + σy,n sin (φ)) . (139)

At this point, it is convenient to define Magnus expansion series in order to provide a path
for calculating the time evolution operator. It is defined as an infinite sum of exponentials of the
form,

U(t, 0) = exp

{(
−i
~
∑
κ

ϑκ(t)

)}
(140)

This expansion relies in the hypothesis that the solution can be written in this form. In
this case, the relevant term is ϑ2 as the first term will result as a displacement of the motional
states and extra terms will vanish. The second-term expression is:

ϑ2(t) =
1

2

∫ t

0

dt1

∫ t1

0

dt2 [HI (t1) , HI (t2)] (141)

with [HMS (t1) , HMS (t2)] = i
2
(η~Ω0Sφ)2[δ(t1 − t2)]
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The final form of this expression can be found via including constants in θ parameter [18].
Sx, Sy are the sum of the x and y components of the spin of all ions respectively.

UMS(θ, φ) = exp
[
−iθ (cosφSx + sinφSy)

2 /4
]

(142)

The action of this gate on the two-ion basis is:

|ee〉 → (|ee〉+ i|gg〉)/
√

2

|eg〉 → (|eg〉+ i|ge〉)/
√

2

|ge〉 → (|ge〉+ i|eg〉)/
√

2

|gg〉 → (|gg〉+ i|ee〉)/
√

2

(143)

Therefore, it can be used to create entangled states [19]. The main problem of this kind
of gate is, as other two-qubit gates, that its operation time is slower than single-qubit gates and
than the trap frequency.

On the other hand, expressing the qubit states in the Hadamard basis,

|±〉 =
1√
2

(|e〉 ± |g〉) (144)

the action of MS operator on Eq. (143) can be seen as a π/2-delay of the phase θ, i.e., it is
interpreted as a rotation of 90º degrees of the Bloch sphere.

|+ +〉 → |+ +〉
|+−〉 → i|+−〉
| −+〉 → i| −+〉
| − −〉 → | − −〉

(145)

The MS gate establishes a method to experimentally identify if qubits 1 and 2 are in the
same state. This idea can be exploited to employ it as a local CNOT gate. The set of one-qubit
gates and MS gate constitutes a universal set of universal quantum gates [20]. In other words,
any operation of a quantum computer can be expressed as a finite combination of these gates.

4.3 Tomography of quantum states
The creation of an arbitrary state in an ion trap is definitely important in order to manipulate
information using qubits. Nevertheless, the action of measuring the qubit state is equally im-
portant. A state tomography on the ion states would record all the information available on
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the system. Thus, it allows to analyze the data obtained without requiring subsequent measure-
ments.

Over the course of trapped-ion Quantum Computing there have been many methods pro-
posed to recover the motional states and recreate the full density matrix of the system. Let
us highlight some of them. In 1995, Wallentowitz & Vogel [21] proposed to recover motional
states via laser field pulses tuned at the same time at the first red and blue sideband. Other tech-
nique applied is the use of sidebands which combines micro and macromotion to check the state
evolution of ions (1996, Bardroff et al. [22]). In the same year, Leibfried et al. [23] tried to em-
ploy coherent displacements on the blue sideband to recreate the density matrix. The technique
was improved next year by Freyberger [24] adding a filter to measure the motional ground state
population as well. Another interesting tomography process would be one which only measures
a previously selected part of the ions which must leave the unmeasured ions states coherent. It
was achieved using segmented ion traps in 2004 by Barrett et al. [25].

The method originated by Leibfried et al. was remarkably important at the NIST (Na-
tional Institute of Standards and Technology) experiments of quantum tomography because a
coherent displacement [Eq. (116)] can leave the state of the ions at many different locations
of the phase space. This procedure is analogue to the motional-state technique previously de-
scribed in (Chapter 4.1.1). It involves averaging measurements over different displacements via
applying blue sideband pulses to an ion (with an internal state |g〉). Probability function with
the form of Eq. (115) is recovered.

Pg(t, α) =
1

2

{
1 +

∞∑
k=0

Qk(α) cos (Ωk,k+1t) e
−γkt

}
(146)

with Qk(α) the population of a coherently displaced number state k.
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5 Decoherence in trapped ions
Trapped-ions processes as described above are approximations of the real experiments where
we have omitted any interaction with the environment. These couplings of the latter with the
quantum system under study produce decoherence phenomena and the behaviour turning into
a classical one. This constitutes one of the largest difficulties in quantum computing field.
For this reason, quantum error-correction algorithms with high fidelity and fault-tolerance for
information processing is one of the main developing topics currently.

5.1 Defect sources in ion trap quantum computers
The most relevant sources of decoherence in an ion trap quantum computer can be catalogued
in three different categories: bit-flip error, dephasing and imperfect control of the system.

The first type of imperfections appears by radiation/absorption processes, generally spon-
taneous emission from the excited level. In bit-flip errors, some electrons are transferred of |g〉
to |e〉 states and viceversa. The presence of this error type is reduced because average life times
of levels are some orders of magnitude longer than gate times.

Dephasing effects cause that a well characterized qubit (quantum system) follows a clas-
sical behaviour. In a two-level system, it leads to the creation of a relative phase between both
states. The dephasing experimented is neither constant. It is generated by the fluctuations of a
classical parameter such as the magnetic field which confines ions.

Magnetic fluctuations originate variations of the atomic resonance frequency. As a func-
tion of the change of the frequency over time they can be classified in fast fluctuations, if the
relative phase varies during the experiment and in slow fluctuations, if it changes between ex-
periments but remains constant throughout the same trial.

With the aim to reduce dephasing there exists many proposals. A generic way is to shield
the ion trap from environmental magnetic fields with a high permeability metal. In addition,
studying a Fourier analysis of the noise introduced by magnetic fluctuations it can be detected
which are the main frequencies and synchronize them with the experiment phase evolution.
Another interesting procedure is the use of ion levels with the same magnetic moment. Using
this election, the dephasing evolution due to the magnetic field of the pair will be the same. The
best choice is that state transition follows the form: mF,g = 0 ↔ mF,e = 0 which cannot feel
linear Zeeman effect (it only experiences degeneracy breaks). Transitions between states can be
induced with stronger magnetic fields which isolate higher order Zeeman phenomena. Nonethe-
less, the phase coherence between states is primarily important during phase gate operations (in
two-qubit gates).

The last source of imperfections is originated by inefficiently calibrated parameters, as
intensity of the laser beam fluctuations, or by side effects on the pulsed ion or surrounding ions.
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The main imperfections caused on an ion trap computer are the following:

• Pulse length errors. The fluctuations are of an order below kHz. They emerge from
laser pointing instabilities, intensity fluctuations or incorrect calibrations. An insufficient
precooling increases the magnitude of these imperfections. However, when the number
of ions inside the trap rises, this effect decreases because the Lamb-Dicke factor lowers
when the number of ions increases [26].

• Detuning errors. Its effect is the emergence of a constant phase evolution. It is produced
by transition frequencies miscalibrations or when the time of coherent manipulations is
considerably shorter than drift frequency fluctuations. The most effective method to min-
imize it is called spin-echo method [27]. It consists of swapping internal states of the
qubit halfway. If the detuning is constant along all the experiment, it will be compensated
after the complete manipulation time.

• Addressing error. When laser beams are focused in a single ion, residual illumination can
interact with other ions. They produce uncontrolled unitary evolutions in the trap qubits.
A methodology to reduce addressing at ions is the use of compound pulses. Splitting a
large movement in the phase space into smaller ones entails that undesired evolution can
be compensated. Another procedure to minimize addressing effects is to recalibrate trap
stiffness to change the distance between ions [28].

• Off-resonant excitation. In the same way that magnetic fluctuations can be Fourier char-
acterized to identify main frequencies, they are not the only frequencies of the excitation.
It is appreciable when a weak transition is driven next to a strong transition. This kind of
excitation behaves as Rabi oscillations. Off-resonant terms modify the eigenvalues of the
Hamiltonian, therefore, there are oscillations of the population to the new eigenstates. To
increase accuracy, it is useful to use laser beams with no spectral Fourier components of
the transition applied to the strong laser. If these excitements affect the qubit’s phase they
are called AC-Stark shifts

• Likewise bit-flip errors, when qubits are stimulated by Raman transitions, it has to be
considered that they can spontaneous decay from the transition level between qubit states.
This probability can be reduced applying large detunings [29].

These are the most relevant imperfections that may occur in a trapped ion quantum com-
puter. In practise, all of them can be minimized adjusting external parameters. However, a
detailed study is needed to maintain simultaneously decoherence sources small.

5.2 Environmental quantum decoherence
On the other hand, other effects like the finite temperature of the ion string produce decoherence.
To study them, the analysis of how the environment interacts with the system will be restricted
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to the motion of a single atom, formally equivalent to a decoherence problem of a single mode
of the EM field [30].

With laser pulses, it is attainable to link motional and internal states of the qubit:

|g〉 |n〉 −→ cos θ |g〉 |n〉+ eiφθ |e〉 |m〉 (147)

where |n〉 and |m〉 represents different motional states (〈n|m〉 = δnm).

This kind of evolution is useful to characterize the system after measurements. Exper-
imentally, laser fields are highly stronger than environment noise. However, the latter is not
completely negligible. The global state can be understood as a coupling of |n〉, the motional
states (which cannot be measured directly), |χM〉, a quantum meter (the internal state) and, |φ〉,
the external environment.

|Ψ〉 = (c1 |n〉+ c2 |m〉)⊗ |χM〉 ⊗ |φe〉 (148)

The environment can be modelled as a superposition of states, |φe〉 =
∑

k ak |φe,k〉, where
if the ion is strongly coupled to it, each state will attach to a different |φe,k〉. Generally, environ-
ment states are unmeasured (because its evolution is hard to predict and control), it is assumed
that they are barely correlated and 〈φe,n|φe,m〉 ≈ 0 .

Coupling the superposed system with the meter leads to a dephasing at the motional states
of the form |n′〉 = exp(iζ1) |n〉. Consequently, after the second coupling the final state is

|Ψf〉 = c1 |n′〉 |g′〉 |φe,1〉+ c2 |m′〉 |e′〉 |φe,2〉 −→ c1 |n〉 |g〉 |φe,1〉+ ei(ζ2−ζ1)c2 |m〉 |e〉 |φe,2〉
(149)

The information of the motional system states is represented by the density matrix. Con-
sidering the behaviour of the environment, the information relative to the off-diagonal is lost

ρf = |Ψf〉 〈Ψf | ≈ |c1|2 |n〉 〈n| ⊗ |g′〉 〈g′|+ |c2|2 |m〉 〈m| ⊗ |e′〉 〈e′| (150)

It leads to search for methods to measure the coherence terms of the density matrix indi-
rectly through internal states of the ion [31].

Environmental decoherence can be modelled using reservoirs. In particular, a single ion
can be studied as a harmonic oscillator system interacting with different types of reservoirs.
They will be interpreted as a bath of quantum oscillators [32]. Based on the effect they produced
in the qubit, two differentiated high-temperature reservoirs will be studied: amplitude and phase
reservoirs.

They are important because in all experiments decoherence can be characterized as them.
The temperature is associated with the lumped elements of the electrodes.
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High-temperature amplitude reservoir Hamiltonian is:

HAR =
~
2

∑
i

Γiab
†
i + H.c. (151)

with a, a† ladder operators of the harmonic oscillator and b, b† environment ladder operators. Γi
establish the coupling strength.

A more theoretical analysis of the Hamiltonian was made by Murao and Knight, 1998
[33]. The following procedure is a suitable method to recreate this kind of decoherence in a
laboratory in order to isolate the effect (and study it in controlled conditions).

The interaction is modelled as the coupling between the ion and a noisy electric field,
E. It is uniformly distributed amidst electrodes and it has some frequencies of the energetic
motional spectrum of the ion. This situation is equivalent to a dipole (the ion) inside a classical
electric field. Thus, the potential of the qubit is:

U = −p · E = −Z|e|∆x · E (152)

where Z|e| is the ion charge and ∆x the separation from the equilibrium position.

The motional states utilized are coherent states, |α〉 and |α′〉 produced forming Schrödinger-
cat states. The procedure tracked is: firstly, the state is exposed to the field a fixed time. Re-
combining the superposition obtained, the internal state is measured. In order to compare the
decoherence evolution, the result is contrasted with the initial state [34].

Results reveal that decoherence rate evolution is directly proportional to phase space sep-
aration ∆α = |α − α′| of the superposition. Experimentally, there exist discrepancies with the
model because the interaction of the environment and the system is negligible |φe,1〉 ≈ |φe,2,〉 ≈
|φe〉 and the internal states are not influenced by |φe〉. As the noise of the field can be classically
measured without altering the ion, its effect can be reversed in artificial noise.

On the other hand, a high-temperature phase reservoir Hamiltonian is

HPR =
~
2
aa†
∑
i

Γib
†
i + H.c. (153)

This case cannot change the energy of the harmonic oscillator and it is used for modeling
quantum non-destructive measurements [35]. It is studied tuning properly the trap frequency
altering the phase evolution of the harmonic movement. Besides, a uniform Gaussian noise is
applied below a frequency threshold smaller than the trap frequency (to avoid energy transfer-
ence processes).
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6 Conclusions
In this work, we have given an introduction to the quantum computing field. First of all, we
have presented the mathematical formalism, including the most important quantum logic gates
and an example of quantum algorithm.

Thereafter, we have described fundamentals of ion traps, a physical system where qubits
can be implemented. More specifically, we have explained how ions behave inside the trap, its
Hamiltonian and a way to precool the system in order to start computing at a known state with
a high probability. The manipulation of ions inside the trap is made with laser pulses. For the
purpose of quantum computing, the system must be inside Lamb-Dicke regime to decouple in-
ternal and motional states properly. The creation of quantum logic gates is achieved choosing an
appropriate detuning to address ions. Single-qubit gates can be created with diverse sequences
of laser field pulses. Two-qubit gates are formed in a similar way. To read the information, after
the manipulation, we have to use one of the many methods proposed to recover the informa-
tion of motional ions states. Experimentally, these processes are not ideal. The environment,
among other things, e.g., imperfect detuning, has an important role in fluctuations which trigger
decoherence phenomena (sources of error).

Nowadays, ion-trap quantum computers with 40 operating qubits have been achieved.
However, the ultimate scope of this field is the creation of completely operative quantum com-
puters. This poses many challenges to scientists due to the requirements of controlling and
manipulating systems with high number of particles. Quantum computing in general, and with
trapped ions in particular, may bring new tools for solving unaffordable problems at the moment
like chemistry or engineering ab initio as well as the creation of new ”unbreakable” quantum
cryptography models. Only the future can tell which developments the field will finally produce.

43



44



7 References

[1] SHOR, P.W., 1994. Algorithms for quantum computation: discrete logarithms and fac-
toring. Proceedings 35th Annual Symposium on Foundations of Computer Science, 124.

[2] DIVINCENZO, DAVID P., 2000. The Physical Implementation of Quantum Computation
Fortschritte der Physik 48, 771-783.

[3] ASFAW A., CORCOLES A., BELLO L. AND BEN-HAIM Y. et al.. Learn Quantum Com-
putation Using Qiskit, 2020. http://community.qiskit.org/textbook

[4] Bloch sphere, 2009. https://en.wikipedia.org/wiki/Bloch_sphere#
/media/File:Bloch_sphere.svg (last accessed: June 12, 2021)

[5] NIELSEN, MICHAEL A. AND CHUANG, ISAAC L.. Quantum Computation and Quan-
tum Information. Cambridge University Press, 2000.

[6] Physics with Trapped Charged Particles, 2015. https://indico.cern.ch/
event/315947/sessions/61194/attachments/606588/834751/
Paul_traps_until_page_79.pdf (last accessed: June 12, 2021)

[7] COOK, RICHARD J., SHANKLAND, DONN G. AND WELLS, ANN L., 1985. Quantum
theory of particle motion in a rapidly oscillating field. Phys. Rev. A 31, 564.

[8] MAJOR, FOUAD G, GHEORGHE, VIORICA N AND WERTH, GÜNTHER. Charged par-
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