
1 Introduction

The huge amount of data produced by the biotechnol-
ogy techniques has grown exponentially in recent years
[14]. Nowadays, the invention and application of High-
throughput technologies offers scientists from biology and
biomedicine the opportunity to gain a better understand-
ing on the behaviour of genes such as the identification
of novel gene-gene association, gene expression patterns or
gene candidates in disease [19]. The microarray technology
has the capacity to monitor changes in RNA1 abundance
for thousands of genes simultaneously, which can be rep-
resented as a numerical matrix after preprocessing steps
well known as low-level microarray data analysis [28]. In
this matrix, the rows correspond to genes, the columns to
experimental conditions, and a value in the matrix is the
expression value of a gene under a condition. In the field of
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gene expression data analysis, novel strategies are required
to handle the huge amount data and to infer knowledge as
gene regulatory networks.

To infer gene regulatory networks, the first step is
to extract direct regulatory relationships between genes,
i.e., gene-gene associations. The inference of gene-
gene associations is based on the concept of guilt-by-
association: gene co-expression implies gene co-regulation,
i.e., groups of genes that show similar expression profiles
also show the same regulatory regime or functionality.
Coexpression networks are typically generated using
coexpression methods, where each pair of genes is analyzed
using correlation statistics as pairwise similarity measures.
However, the assumption of guilt-by-association is being
reformulated because the co-expression of a group of genes
may be the result of an independent activation with respect
to the same experimental condition and not due to the
same regulatory regime [29]. The REGNET methodology
infers gene-gene associations between genes with a
similar expression profile under a subset of conditions.
REGNET differs from pairwise measures-based methods in
that the relationship between one gene and the remaining
genes are calculated simultaneously using model trees.

High-throughput technologies have characterised genes
by means of multiple functionalities that are stored in pub-
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Cristina Rubio-Escudero1

Abstract
Traditional computational techniques are recently being improved with the use of prior biological knowledge from open-
access repositories in the area of gene expression data analysis. In this work, we propose the use of prior knowledge 
as heuristic in an inference method of gene-gene associations from gene expression profiles. In this paper, we use Gene 
Ontology, which is an open-access ontology where genes are annotated using their biological functionality, as a source of 
prior knowledge together with a gene pairwise Gene-Ontology-based measure. The performance of our proposal has been 
compared to other benchmark methods for the inference of gene networks, outperforming in some cases and obtaining 
similar and competitive results in others, but with the advantage of providing simple and interpretable models, which is a 
desired feature for the Artificial Intelligence Health related models as stated by the European Union.

Keywords Gene-gene association networks · Ontology · Semantic similarity measure · Information fusion ·
Microarray data analysis

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-020-01705-4&domain=pdf
mailto: inepomuceno@us.es


lic databases and open-access data repositories such as the
Gene Ontology project (GO) or Kyoto Encyclopedia of
Genes and Genomes (KEGG). GO is an ontology which
provides a hierarchical structure with three domains: molec-
ular function, biological process and cellular component. A
GO annotation is a term in the ontology or vocabulary which
is linked to a group of genes. Genes are related to a set
of GO annotations with different levels of specificity. GO
is freely available for community use in the annotation of
genes, gene products and sequences. Many organism model
databases and genome annotation groups use the GO and
contribute their annotation sets to the GO resource [2]. In
the context of gene expression data analysis, GO has been
used to validate the quality of computational results from a
biological view point [39].

In this paper, we present a novel methodology named
PRIORREGNET to obtain gene-gene association networks
by integrating prior knowledge from GO. PRIORREGNET is
based on the methodology REGNET [31] to infer gene
networks and the fusion of information is made by means
of functional annotation files extracted from GO. The
biological information is included in REGNET with a GO-
based measure that calculates the overlapping among the
annotated terms of a pair of genes proposed in [27]. The
motivation of our work is to provide a new approach to infer
gene-gene associations using prior knowledge, taking the
2-fold advantage of REGNET. First, gene-gene associations
are detected favouring more localised similarities over
global similarities following the reformulated guilt-by-
association assumption. Second, the a priori biological
knowledge is used to drive the process and also to generate
a simple and explainable model.

The remainder of this paper is organized as follows.
In section Related work, the benchmark methods and the
similarity measures are shown. In Section Methodology,
a detailed explanation of the proposal is presented. In
Section Experiments, a blind test is shown as a framework
to validate the proposal. Finally, Section Conclusions
summarizes the most relevant conclusions and future
research directions.

2 Related work

The approach used in this work makes use of a well-known
method to infer a gene network. The method used in the
inference of gene-gene associations is REGNET. It is a
model tree-based method to infer gene-gene associations
favouring local similarities between genes, i.e., that share
the same behaviour under a subset of samples in gene
expression data, following the reformulation of the concept
of guilt-by-association mentioned before. The idea behind
this work is to integrate prior knowledge extracted from GO,

i.e., to integrate prior knowledge consists on choosing the
pair of genes in the network that are functionally coherent.
To this aim, we used Gene pairwise GO semantic similarity
measures, that can be defined as a distance among genes
according to their information stored in GO. The goal of this
type of measures is to report a value for each pair of genes
which establishes their functional similarity [30].

In this section, a short state-of-the-art is described in two
fields: the benchmark network inference methods and the
GO semantic similarity measures.

2.1 Inference of gene-gene associations
frommicroarray data

Inferring gene-gene associations from gene expression data
or microarray data is a relevant task since this is the first
step to infer gene regulatory networks from several type of
sources. There are several methods, see [11] and [45].

2.1.1 Methods based on similarity measures:

These methods are based on the use of statistical measures
to extract pairs of genes which have similar expression
profiles under the set of experimental conditions. These
methods are also known as co-expression networks or
dependency networks. Examples of these methods are the
proposals presented in [23, 25] and [15]. In these proposals
several statistical measures are used as correlation, partial
correlation and mutual information measures. The partial
correlation methods are also known as Gaussian Graphical
Models and it is a full conditional independence model. On
the other hand, clustering algorithms represent one of the
first methods to infer gene-gene associations networks [13].
Clustering algorithms are distance-based methods.

2.1.2 Bayesian networks:

These methods are probabilistic and the most relevant work
is presented by Friedman et al. in [16]. This method is
based on the Sparse Candidate algorithm, which selects in
an iterative way the set of candidate genes that are related
with the target gene maximizing the evaluation function.
Other relevant approaches are [40, 43] and [7]. In [40]
the authors use an Expectation Maximization algorithm
and regression trees to build networks to be maximized
using Bayesian punctuation. Finally, [7] uses a classical
probabilistic graphical model.

2.1.3 Tree-basedmethods:

The work presented by Soinov et al. in [41] is a reference
method based on the use of decision trees. In this work,
the C4.5 algorithm developed by Ross Quinlan in [37] is



used to build the decision trees. This algorithm is based on
the concept of entropy and how this measure is adjusted
between different partitioning of the search space.

The method named REGNET is based on model trees or
regression trees, i.e., in the linear similarity between pair of
genes under a subspace of the search space. This strongly
favours localised similarities over more global similarities,
i.e., under a subset of experimental conditions instead of
the whole set of experimental conditions. This method was
published in [31], the software tool is provided in [33] and
it has been used in [32] and [38].

Lastly, GENIE3, presented in [20], uses random-forest
regression in combination with transcription factor data to
predict the expression of each gene in the dataset. Then,
when the expression of genes is predicted, the different
models measure the relationship or relevance between each
transcription factor and the prediction of each target gene,
in order to derive weights that will then be used to establish
relationships between genes. This method has been used in
[3] and implemented in [1].

2.1.4 Other methods:

A multi-objective evolutionary algorithm for mining quanti-
tative association rules is developed to deal with the problem
of network inference in [26]. This work presents the method
named GarNet. Finally, Ponzoni et al. present in [36] the
method GRNCOP and GRNCOP2, which are combinatorial
optimization algorithms.

Furthermore, MFR is a SVM-based method to infer gene
networks using prior knowledge [44]. However, the repro-
ducibility is difficult and the comparison with our proposal
is not possible because the method used different prior
knowledge (COXPRESdb, KEGG and TRRUST databases).

2.2 Semantic similarity measures

Gene Ontology is an ontology where genes are annotated
using their biological functionality. This ontology is an
open-access repository widely used in the gene expression
data analysis and Bioinformatics area. GO is an ontology
with a hierarchical structure with three roots or domains[2]:

Cellular Component: the parts of a cell or its extracellular
environment.

Biological Process: operations or sets of molecular events
with a defined beginning and end.
These operations are related to the
functioning of integrated living units:
cells, tissues, organs, and organisms.

Molecular Function: the elemental activities of a gene
product at the molecular level, such
as binding or catalysis.

The GO ontology is structured as a directed acyclic
graph, and each term has defined relationships to one or
more other terms in the same domain, and sometimes to
other domains. Each gene is annotated to a set of GO
terms with different levels of specificity. And each gene is
annotated to a term under an evidence code denoting the
type of evidence upon which the annotation is based.

The semantic similarity measures allow obtaining numer-
ical values to show the closeness between a pair of terms in
ontology. Every gene is related to a set of GO terms, there-
fore several gene pairwise GO-based measures have been
proposed in the literature. These measures can be classified
in: measures based on the node of the graph [10]; measures
based on the associations between the terms of the graph
[35]; and hybrid measures [35]. Other survey as [17] state
a big classification into five categories: methods based on
semantic distance, methods based on information content,
methods based on properties of terms, methods based on
ontology hierarchy, and hybrid methods.

As Pesquita et. al. stated in [34], the hybrid measures
obtain good results. Among them, SIMGIC measures obtain
better results in general applications. SIMGIC measures can
be defined as:

simGIC(A, B) =
∑

t∈{GO(A)∩GO(B))} IC(t)
∑

t∈{GO(A)∪GO(B))} IC(t)
(1)

where A and B are the genes under studied, IC is the
information content, GO(A) is the GO terms where A is
annotated, GO(B) is the GO terms where B is annotated,
t ∈ {GO(A) ∩ GO(B))} and t ∈ {GO(A) ∪ GO(B))} are
the terms obtained from the intersection or union between
the GO terms of A and B.

The tool GOSSTO [8] (the Gene Ontology Semantic Sim-
ilarity Tool) implements several gene pairwise GO-based
measures. GOSSTO provides a SIMGIC measure together
with other five different semantic similarity measures. This
can be used as a command line tool or can be integrated with
other software packages due to the huge API documentation
provided by authors. Furthermore, one of the biggest advan-
tages of GOSSTO is the usability of the tool because other
measures can be integrated in an easy manner.

3Methodology

In this work, we propose the integration of prior knowledge
into a method to infer gene-gene association networks.
Specifically, we extend the REGNET methodology to
include prior knowledge based on the gene pairwise GO-
based measure SIMGIC. We integrate the GOSSTO tool into
the REGNET methodology.

The method named REGNET is based on model trees or
regression trees, i.e., in the linear similarity between pair of



Fig. 1 The method
REGNET strongly favours
localised similarities over more
global similarities. TG can be
estimated by GR1 and GR2
using the linear models under a
subspace of the search space,
i.e., under a subset of conditions
of the input dataset [31]

variables (genes) under a subspace of the search space , i.e.,
under a subspace of experimental conditions. In Fig. 1 we
can see an example of regression tree. Let M be a microarray
dataset consists of 20 experimental conditions and 3 genes
or variables called target gene (TG) and genes R1 and R2.
It can be observed that the target gene and the gene GR1
are not correlated, but they have a linear dependency under
the subset of experimental conditions where the expression
value of GR1 is greater than 10. The linear dependency is
T̂ G = 0.5 ∗ GR1 + 1 and can be observed in a orange
line (estimated line). In a similar way, the TG and GR2
have a linear dependency when the expression value of
GR1 is less than 10 and the expression value of GR2 is
greater than 10. The regression tree in this case would be
a tree rooted on GR1 as the tree on Fig. 2. The method
REGNET is based on the existence of linear dependencies
between the target gene and several genes under a subspace
of the search space. REGNET has three different steps. First,
the model trees are built building a forest of model trees, one
model tree is build using the M5’ algorithm [46] for each
gene. Second, the forest of trees is pruned and the linear
dependencies are extracted as hypothetical dependencies.
Finally, a statistical method described in [5] is applied to
reduce the false discovery rate.

The new approach is based on incorporating the semantic
similarity heuristic over the tree-based method REGNET.
The use of semantic similarity as heuristic for inferring gene
association networks allows for the direct search of relation-
ships based on real evidence, which are contrasted in bio-
logical databases such as Gene Ontology. The methodology
is divided into four phases clearly differentiated, as we can
observe in Fig. 3:

Step 1. Building a forest of trees: The first step has as input
the microarray dataset and this is an iterative process. In
each iteration, a gene is considered as the target gene and the
remaining genes are used as input to build a model tree using
the M5’ algorithm. The M5’ algorithm has been proposed
by Witten et al. in [46]. The implementation of the M5’
algorithm provided by the Weka software package is used.
Only the tree with a relative error less than a threshold value
θ is taken into account by the method to build the forest of
trees.

Step 2. Dependencies extraction: During this phase the
dependencies between the target genes and the genes
involved in the linear models are extracted from the forest
of trees. From the leaves of each tree, the linear models

Fig. 2 Regression tree based on
data on Fig. 1



Fig. 3 Steps in PRIORREGNET

methodology

are studied and the genes involved in it are extracted and
considered as an hypothetical gene dependency with the
target gene. Linear dependencies between pair of genes
imply that they work in the same regulatory regime [31].
The linear models generated by the M5’ algorithm follow
the next equation:

ML : gx =
∑

i

λigyi
(2)

where gx is the target gene and the set of gy are a subset of
genes from the remaining genes in the input dataset.

Step 3. Semantic similarity measure: In this phase, the
fusion of information is made taking as input the set
of hypothetical gene-gene dependencies that formed the
network and the GO annotation file. The prior knowledge
is based on the gene pairwise GO-based measure named
SIMGIC. In this phase, GOSSTO tool is used to generate
the semantic similarity value named σ between each gene-
gene dependency from the network. If this value is greater
than a threshold the dependency is maintained to the
hypothetical set of gene-gene dependencies. If this value
is less than a threshold the dependency is removed from
the hypothetical set of gene-gene associations. To use this
semantic similarity measure, the GO graph structure is
needed as input to compute the IC together with the gene
annotation file.

Step 4. Controlling the false discovery rate: In the last
phase, a statistical procedure to control the false discovery
rate is applied to the reduced set of hypothetical dependen-
cies. The aim of this step is to control the type I error. The
applied procedure is the Benjamini y Yekutieli method [5].
In this method, let H 1

0 , H 2
0 , ..., Hm

0 be the set of null hypoth-
esis and letp1, p2, ..., pm be the p-values from the m null
hypothesis. Let p(1) ≤ p(2) ≤ ... ≤ p(m) be the sorted list of
p-values. The Benjamini-Yekutieli procedure defined the K

value to reject the hypothesis H 1
0 , H 2

0 , ..., Hk
0 . The K-value

is calculated as follows:

k = max{i : p(i)

m

i

m∑

k=1

1

k
≤ α} (3)

The hypothesis will not be rejected if there is not an i that
satisfies the above equation. A gene-gene dependency will
be identified as an edge in the network if and only if there
is not any significant monotonic relationship between the
two variables, i.e., H0 : ρxy ≈ 0 (where ρ is a correlation
measure), taking into account the subspace of the input data
identified by the leaf of the linear model in the M5’ tree.
To test whether a significant monotonic relationship exists,
we use the Kendall’s Tau as non-parametric measure of
association.

4 Experiments

The results of the methodology are compared to other works
in the area of gene network inference . The measures for the
performance assessment of gene networks, the experimental
design and the results are shown in the following subsections.

4.1 Measures for the performance assessment
of gene networks

The work [26] is used as a context of comparison together
with several measures. These measures are based on a
contingency matrix where the gene network provided by
the model is compared against a true network or reference
network. The TP, FP, TN and FN are defined as follow
building the contingency matrix:

– TP: is the number of gene–gene associations obtained
by the proposal that also appear in the gene networks
used as a true network in the test.



Table 1 Input parameters of GOSSTO

GO ontology: Biological Process

GO evidences: EXP, IDA, IPI, IMP, IGI, IEP, TAS, IC, ISS, ISO, ISA, ISM, IGC, IBA, IBD, IKR, IRD, RCA, NAS, ND, IEA

GO relations: is a, part of, regulates, positively regulates, negatively regulates, has part

– FP: is the number of gene–gene associations obtained
by the proposal that do not appear in the gene networks
used as a true network in the test.

– TN: is the number of gene–gene associations not
obtained by the proposal that do not appear in the gene
networks used as a true network in the test.

– FN: is the number of gene–gene associations not
obtained by the method that appear in the gene networks
used as a true network in the test.

Based on this contingency matrix, these measures can be
defined as follow:

Definition 1 Network Accuracy: The accuracy of a network
is the proportion of true results (both true positives and true
negatives) over the total number of sample cases.

Definition 2 Network Precision: is defined as the propor-
tion of the true positives against all the positive results (true
positives and false positives).

Definition 3 Network Sensitivity: it measures the propor-
tion of true positives which are correctly identified.

Definition 4 Network Specificity: The specificity of a gene
network measures the proportion of true negative which are
correctly identified.

Definition 5 F1-Score: F1-Score is the harmonic mean of
the precision and sensitivity.

Definition 6 Number of associations: it is the number of
edges of the graph which model the gene network, that is the
number of gene–gene associations detected by the method
in the resulted gene network.

4.2 Data set and experimental design

We used the well-known, in the area of gene expression
analysis, microarray dataset of Spellman [42] and Cho et al.
[9] for the budding yeast (Saccharomyces cerevisiae) cell
cycle. The datasets cdc15, cdc28 and alpha-factors were
obtained for yeast cell cultures that were synchronized by
three different methods and the datasets were defined as
statistically independent. Our approach has been trained
using a subset of 20 well-described genes which encode
important proteins for cell-cycle regulation as Soinov et al.
use in their work [41], where the 20 genes are enumerated.
This subset of genes are used to compare to several works
as established in [26].

We used YeastNet [22], GO [12] and Co-citation [21] as
ground truth or true networks as is established in [26]. We
use the networks in a blind performance test to compare
the output of PRIORREGNET against the true networks,
to compare PRIORREGNET against the approach without
the information fusion phase (REGNET method) and to
compare also against other benchmark methods as shown
in [26]. YeastNet is a network structure report with 102803
potential gene–gene associations among 5483 yeast genes.
This network was built mainly from two resources: GO
annotation downloaded from the Saccharomyces cerevisiae
Genome Database (SGD) and over 29000 Medline abstract
that included the word Saccharomyces cerevisiae for perfect
matches to each gene pairs in the network. The difference
between these networks is that YeastNet is the global
network and it can be divided into associations extracted
from genes annotated in the Gene Ontology (GO network)
or associations that are published in the previous literature
Co-citation network. As true network we considerer the
subnetwork formed by the 20 well-known genes due to

Table 2 Average values for the gene networks metrics achieved by the proposal

ID θ σ α Accuracy Precision Sensitivity Specificity

1 [0-100] [0.10-0.15] 0.05 59.30% 44.24% 5.35% 95.26%

2 [0-100] [0.16-0.20] 0.05 59.21% 43.08% 5.10% 95.29%

3 [0-100] [0.21-0.25] 0.05 59.24% 43.06% 5.10% 95.33%

4 [0-100] [0.26-0.30] 0.05 59.34% 43.90% 4.84% 95.68%



Table 3 Performance of PRIORREGNET and REGNET

Soinov et al. BLS GRNCOP2 GarNet GENIE3 RegNet Prior RegNet

YeastNet Precision 50,00 88,89 93,33 93,75 40,00 100,00 66,67

Accuracy 48,41 52,09 55,27 55,79 75,00 52,11 61,05

Sensitivity 3,06 8,19 14,29 15,31 1,00 7,14 5,26

Specificity 96,74 98,91 98,91 98,91 70,00 100,00 98,25

F1-Score 5,77 15,00 24,79 26,32 1,95 13,33 9,75

Co-Citation Precision 50,00 88,89 93,33 93,75 43,00 100,00 100,00

Accuracy 56,29 60,00 63,16 63,68 76,00 58,42 59,47

Sensitivity 3,61 9,64 16,87 18,07 1,00 8,13 7,23

Specificity 97,20 99,07 99,07 99,07 71,00 100,00 100,00

F1-Score 6,73 17,39 28,57 30,30 1,95 15,04 13,49

GO Precision 50,00 55,56 73,33 75,00 45,26 71,43 60,00

Accuracy 54,75 55,24 58,42 58,95 77,00 56,32 55,26

Sensitivity 3,49 5,81 12,79 13,95 1,00 5,81 3,49

Specificity 97,12 96,15 96,15 96,16 72,00 98,08 98,08

F1-Score 6,52 10,52 21,78 23,52 1,96 10,75 6,60

the fact that if we take into account the whole network
the number of false negative increases substantially. In the
comparison, the metrics described above are measured:
accuracy, precision, sensitivity, specificity and F-measure.

In Table 1, the parameter settings used by the semantic
similarity measure SIMGIC in the information fusion phase
is described. The Obo File and the Goa File are the GO
graph structured and gene annotation file, respectively.

In Table 2, the parameter setting used to analyse
the performance of our approach is shown. The main
parameters are: the threshold value of the relative error
from the generated trees, this value varies from 0 to
100 in increments of 10; the threshold value of the
semantic similarity measure which varies from 0.1 to 0.3
in increments of 0.1; a level alpha=0.05 is fixed for
the statistical procedure. Finally, the columns accuracy,
precision, specificity and sensibility show the average
values of these measures. The SIMGIC measure is fixed
from 0.1 to 0.3 after visualizing the arithmetic mean and

mode of the SIMGIC measure between all the gene pairs
from the dataset. The higher frequency distribution is found
under the interval [0.1, 0.3] where more than 80% of pairs
of genes have this SIMGIC measure.

4.3 Results

In Table 3, the performance of PRIORREGNET and
REGNET can be observed. Furthermore, the proposal
is compared against others benchmark methods for the
inference of gene networks in a similar way that is
established in [26], where the association rule-based
method named GarNet, the GRNCOP method [36], the
decision tree-based methods [41] and the first order-
based method [7] are used as benchmark methods. The
contribution in [3] has been added as a more current method.
The results have been carried out using YeastNet, Cocitation
and GO as reference network in the blind test using the
performance measures described on Section 4.1.

Fig. 4 Gene-gene association
network obtained by
PRIORREGNET



Table 4 GO enrichment
analysis to determine whether
the subset of genes obtained by
PRIORREGNET still maintains
common biological behaviour

N attrib ID attrib name

7 GO:0000079 regulation of cyclin-dependent protein serine/threonine kinase activity

3 GO:0010696 positive regulation of spindle pole body separation

7 GO:1904029 regulation of cyclin-dependent protein kinase activity

7 GO:0016538 cyclin-dependent protein serine/threonine kinase regulator activity

3 GO:0010695 regulation of spindle pole body separation

5 GO:0000086 G2/M transition of mitotic cell cycle

5 GO:0044839 cell cycle G2/M phase transition

5 GO:0000082 G1/S transition of mitotic cell cycle

5 GO:0044843 cell cycle G1/S phase transition

7 GO:0044770 cell cycle phase transition

7 GO:0044772 mitotic cell cycle phase transition

7 GO:0071900 regulation of protein serine/threonine kinase activity

7 GO:0019887 protein kinase regulator activity

7 GO:0019207 kinase regulator activity

6 GO:0090068 positive regulation of cell cycle process

6 GO:0045787 positive regulation of cell cycle

7 GO:0045859 regulation of protein kinase activity

7 GO:0043549 regulation of kinase activity

8 GO:0051338 regulation of transferase activity

10 GO:1903047 mitotic cell cycle process

7 GO:0001932 regulation of protein phosphorylation

11 GO:0022402 cell cycle process

7 GO:0042325 regulation of phosphorylation

9 GO:0051726 regulation of cell cycle

8 GO:0031399 regulation of protein modification process

7 GO:0019220 regulation of phosphate metabolic process

7 GO:0051174 regulation of phosphorus metabolic process

8 GO:0051301 cell division

9 GO:0032268 regulation of cellular protein metabolic process

8 GO:0030234 enzyme regulator activity

9 GO:0051246 regulation of protein metabolic process

7 GO:0010564 regulation of cell cycle process

8 GO:0098772 molecular function regulator

First column is the number of genes in the network from Fig. 4 with this GO attribute, second and third are
the code and name of GO attribute respectively

In Fig. 4, the network of gene-gene associations con-
structed using the best configuration of PRIORREGNET for
the Spellman dataset is shown. Furthermore, the set of genes
from this network is used as input of the FuncAssociate tool
[6] to report an enrichment analysis as we can see in Table 4.
The enrichment analysis determine whether the subset of
genes obtained by PRIORREGNET still maintains common
biological behaviour and related with cell-cycle regulation.
In Table 4, the Gene Ontology attributes report by FuncAs-
sociate is shown. The first column N represents the number
of genes in the network from Fig. 4 with this GO attribute,
the second and third column are the code and name of the
GO attribute.

5 Discussions

To the right of the 6 sub-figures of the Fig. 5, the perfor-
mance of PRIORREGNET and REGNET can be observed.
Furthermore, the performance of PRIORREGNET and REG-
NET can be observed in the two last columns of Table 3. The
methodology with prior knowledge obtains better results in
the case of accuracy and having YeastNet and Cocitation
as reference networks. In the case of GO as reference net-
work the accuracy is comparable with the results obtained
by the methodology without prior knowledge. Furthermore,
the proposal is compared against others benchmark meth-
ods for the inference of gene networks in a similar way that



Fig. 5 Experimental results

is established in [26] and the results can be observed from
first to second column to seventh column of the Table 3. In
the case of YeastNet as true network, the accuracy obtained
by the proposal is better than the others except for the
GENIE3 algorithm where the results are comparable. In the
case of Cocitation and GO the accuracy is not the best but
are comparable to the rest of the methods. The precision,
sensitivity, specificity and F1-Score measure are shown to
remark that the methodology with prior knowledge is better
or comparable to the rest of the approaches.

In Fig. 4, the network of gene-gene association con-
structed using the best configuration of PRIORREGNET for
the Spellman dataset is shown. The network is a graph-
ical representation of the information comprised in the
extracted model trees. Every node in this graph represents a
gene and every arc indicates the association between genes.
From these associations, CLB1-SIC1, SWI5-CLB2, CLB5-
CLN2, CLN2-CLB2 and CDC20-CLN1 are in common
with Soinov’s network. Finally, the resulting genes are func-
tionally enriched for GO attributes and the great majority
of these GO attributes are related, under a p-value less than
0.05, with regulator activity of cell cycle and cell division.
Thus getting fewer nodes does not means losing biological
information. All the enriched-GO terms can be observed in

Table 4, where the set of genes from this network is used as
input of the FuncAssociate tool [6] to report an enrichment
analysis. The enrichment analysis determines whether the
subset of genes obtained by PRIORREGNET still maintains
common biological behaviour related to cell-cycle regula-
tion. In Table 4, the Gene Ontology attributes reported by
the FuncAssociate are shown. The first column N represents
the number of genes in the network from Fig. 4 with this
GO attribute, the second and third column are the code and
name of the GO attribute respectively.

6 Conclusions

The integration of prior knowledge into a method to
infer gene-gene association networks has been proposed
in this work. The proposal is named PRIORREGNET .
The integration of prior knowledge is based on the use
of a semantic similarity measure applied to gene products
annotated with Gene Ontology terms named SIMGIC .

We used YeastNet, GO and Co-citation as ground truth or
true networks as it has already been established. We use the
networks in a blind performance test to compare the output
networks against the true networks.



The performance of the proposal has been studied
against the same method without prior knowledge named
REGNET , against a current random forest-based method
named GENIE3 and against benchmark methods in the
area of the inference networks as is established in [26].
The benchmark methods are a random forest-based method
named GENIE3, a multi-objective evolutionary algorithm
named Garnet, combinatorial optimization learning method
named GRNCOP, a probabilistic graphical model named
Bulashevska and a decision-tree-based method named
Soinov. It is worth mention that with the expception of
Soinov and PriorRegNet and RegNet, the rest of the
methods provide blackbox models.

The use of prior knowledge in our proposal PRIORREG-
NET against REGNET improves the accuracy measure of
the proposed algorithm regarding the case of YeastNet and
Cocitation (see Table 3). In the case of GO as true net-
work, the accuracy is comparable to the results obtained by
the methodology without prior knowledge. In the case of
comparison against Soinov, PRIORREGNET improves the
performance of all measures. Finally, in the case of compar-
ison against the rest of the methods, the proposal improves
the accuracy for YeastNet and the rest of the measures the
results are similar amongst all the approaches.

It is worth to mention that our proposal is based on
a deterministic model tree-based method which provides
glass-box models, i.e., our proposal provides a simple and
explainable model. Our proposal, in comparison to methods
that provide simple and explainable model as Soinov or
RegNet improve the performance. And in all other cases
it provides similar behaviour in performance measures but
with the advantage of providing simple models, which is
very remarkable as stated in the Joint Research Center’s
report from 2018 (European Commission) about the
interpretability as a requisite of machine learning systems
[24].

Future work will be focused on the study of other biolog-
ical measures to handle other known open-access repository
to integrate biological information. The experimentation
will be increased with these other measures and others
benchmark methods based on the use of prior knowledge.
In the first case we could extend using, as for example,
Gene Network Coherence from [18] which is a valuable
reference to consider as a novel measure to rate the coher-
ence of the dependencies according to different biological
databases or IntelliGO from [4]. We take into account it for
further research in future work. Finally, we are working on
building a Cytoscape App to offer a guided user interface
software.
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Aguilar-Ruiz AE (2015) Building transcriptional asso-
ciation networks in cytoscape with regnetc. IEEE/ACM
Trans Comput Biology Bioinform 12(4):823–824.
https://doi.org/10.1109/TCBB.2014.2385702

34. Pesquita C, Faria D, Bastos H, Ferreira A, Falcao A, Couto
F (2008) Metrics for go based protein semantic similar-
ity: a systematic evaluation. BMC Bioinformatics 9(Suppl
5):S4. https://doi.org/10.1186/1471-2105-9-S5-S4. http://www.
biomedcentral.com/1471-2105/9/S5/S4

35. Pesquita C, Faria D, Falcão AO, Lord P, Couto FM (2009)
Semantic similarity in biomedical ontologies. PLoS Comput
Biol 5(7):12. https://doi.org/10.1371/journal.pcbi.1000443. http://
www.ncbi.nlm.nih.gov/pubmed/19649320

36. Ponzoni I, Azuaje F, Augusto J, Glass D Inferring adap-
tive regulation thresholds and association rules from gene
expression data through combinatorial optimization learning.
https://doi.org/10.1109/tcbb.2007.1049. http://www.ncbi.nlm.nih.
gov/pubmed/17975273

37. Quinlan JR (1993) C4.5: Programs for machine learning
38. Rodius S, Nazarov P, Nepomuceno-Chamorro I, Jeanty C,

Gonzalez-Rosa J, Ibberson M, da Costa RM, Xenarios I,
Mercader N, Azuaje F (2014) Transcriptional response to
cardiac injury in the zebrafish: systematic identification of genes
with highly concordant activity across in vivo models. BMC
Genomics 15(1):852. https://doi.org/10.1186/1471-2164-15-852.
http://www.biomedcentral.com/1471-2164/15/852

39. Romero-Zaliz RC, Rubio-Escudero C, Cobb JP, Herrera
F, Cordón O, Zwir I (2008) A multiobjective evolution-
ary conceptual clustering methodology for gene annotation
within structural databases: a case of study on the gene
ontology database. IEEE Trans Evol Comput 12(6):679–701.
https://doi.org/10.1109/TEVC.2008.915995

40. Segal E, SMRA, Pe’er D, Botstein D, Koller D, Friedman N
(2003) Module networks: identifying regulatory modules and their
condition-specific regulators from gene expression data. Nature
Genet 34:166–176. https://doi.org/10.1038/ng1165

41. Soinov LA, Krestyaninova MA, Brazma A (2003) Towards recon-
struction of gene networks from expression data by supervised
learning Genome biology. https://doi.org/10.1186/gb-2003-4-1-r6

42. Spellman P, Sherlock G, Zhang M et al (1998) Comprehensive
identification of cell cycle–regulated genes of the yeast saccha-
romyces cerevisiae by microarray hybridization. Mol Biol Cell
9(12):3273–3297. https://doi.org/10.1091/mbc.9.12.3273

43. Steele E, Tucker A, ’T Hoen PAC, Schuemie MJ
(2009) Literature-based priors for gene regulatory net-
works. Bioinformatics (Oxford, England) 25(14):1768–74.
https://doi.org/10.1093/bioinformatics/btp277

44. Wang Y, Yang S, Zhao J, Du W, Liang Y, Wang C, Zhou F, Tian
Y, Ma Q (2019) Using machine learning to measure relatedness
between genes: a multi-features model. Scientific reports 9(1):1–
15

45. Wang YR, Huang H (2014) Review on statistical methods for
gene network reconstruction using expression data. J Theoret Biol
362:53–61. https://doi.org/10.1016/j.jtbi.2014.03.040

46. Witten IH, Frank E, Trigg L, Hall M, Holmes G, Cunningham SJ
(1999) Weka: Practicalmachine learning tools and techniques with
java implementations

https://doi.org/10.1126/science.1094068
http://www.ncbi.nlm.nih.gov/pubmed/14764868
http://www.ncbi.nlm.nih.gov/pubmed/14764868
https://doi.org/10.1016/j.neucom.2013.03.061
https://doi.org/10.1371/journal.pone.0012776
https://doi.org/10.1126/science.1099511
https://doi.org/10.1371/journal.pone.0000988
https://doi.org/10.1186/1471-2105-7-S1-S7
http://www.ncbi.nlm.nih.gov/pubmed/16723010
http://www.ncbi.nlm.nih.gov/pubmed/16723010
https://ec.europa.eu/jrc/communities/en/node/1162/article/interpretability-ai-and-its-relation-fairness-transparency-reliability-and-trust
https://ec.europa.eu/jrc/communities/en/node/1162/article/interpretability-ai-and-its-relation-fairness-transparency-reliability-and-trust
https://ec.europa.eu/jrc/communities/en/node/1162/article/interpretability-ai-and-its-relation-fairness-transparency-reliability-and-trust
https://doi.org/10.1186/1471-2105-8-S6-S5
http://www.ncbi.nlm.nih.gov/pubmed/17903286
http://www.ncbi.nlm.nih.gov/pubmed/17903286
https://doi.org/10.1016/j.jcss.2013.03.010
https://doi.org/10.1186/1471-2105-9-327
http://www.biomedcentral.com/1471-2105/9/327
http://www.biomedcentral.com/1471-2105/9/327
https://doi.org/10.1186/1756-0381-4-3
https://doi.org/10.1016/j.cmpb.2015.02.010
https://doi.org/10.1186/1471-2105-11-517
http://www.biomedcentral.com/1471-2105/11/517
http://iwbbio.ugr.es/papers/iwbbio_008.pdf
https://doi.org/10.1109/TCBB.2014.2385702
https://doi.org/10.1186/1471-2105-9-S5-S4
http://www.biomedcentral.com/1471-2105/9/S5/S4
http://www.biomedcentral.com/1471-2105/9/S5/S4
https://doi.org/10.1371/journal.pcbi.1000443
http://www.ncbi.nlm.nih.gov/pubmed/19649320
http://www.ncbi.nlm.nih.gov/pubmed/19649320
https://doi.org/10.1109/tcbb.2007.1049
http://www.ncbi.nlm.nih.gov/pubmed/17975273
http://www.ncbi.nlm.nih.gov/pubmed/17975273
https://doi.org/10.1186/1471-2164-15-852
http://www.biomedcentral.com/1471-2164/15/852
https://doi.org/10.1109/TEVC.2008.915995
https://doi.org/10.1038/ng1165
https://doi.org/10.1186/gb-2003-4-1-r6
https://doi.org/10.1091/mbc.9.12.3273
https://doi.org/10.1093/bioinformatics/btp277
https://doi.org/10.1016/j.jtbi.2014.03.040

	Using prior knowledge in the inference of gene association networks
	Abstract
	Introduction
	Related work
	Inference of gene-gene associations from microarray data
	Methods based on similarity measures:
	Bayesian networks: 
	Tree-based methods: 
	Other methods: 

	Semantic similarity measures

	Methodology
	Step 1. Building a forest of trees: 
	Step 2. Dependencies extraction:
	Step 3. Semantic similarity measure:
	Step 4. Controlling the false discovery rate:



	Experiments
	Measures for the performance assessment of gene networks
	Data set and experimental design
	Results

	Discussions
	Conclusions
	References




