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Abstract
Background and objective: The major difficulty of the analysis of the input gene

expression data in a microarray-based approach for an automated diagnosis of can-

cer is the large number of genes (high dimensionality) with many irrelevant genes

(noise) compared to the very small number of samples. This research study tackles

the dimensionality reduction challenge in this area.

Methods: This research study introduces a dimension-reduction technique termed

graph coloring approach (GCA) for microarray data-based cancer classification based

on analyzing the absolute correlation between gene–gene pairs and partitioning genes

into several hubs using graph coloring. GCA starts by a gene-selection step in which

top relevant genes are selected using a biserial correlation. Each time, a gene from

an ordered list of top relevant genes is selected as the hub gene (representative) and

redundant genes are added to its group; the process is repeated recursively for the

remaining genes. A gene is considered redundant if its absolute correlation with the

hub gene is greater than a controlling threshold. A suitable range for the threshold

is estimated by computing a percentage graph for the absolute correlation between

gene–gene pairs. Each value in the estimated range for the threshold can efficiently

produce a new feature subset.

Results: GCA achieved significant improvement over several existing techniques in

terms of higher accuracy and a smaller number of features. Also, genes selected

by this method are relevant genes according to the information stored in scientific

repositories.

Conclusions: The proposed dimension-reduction technique can help biologists accu-

rately predict cancer in several areas of the body.
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1 INTRODUCTION

Huge amounts of microarray data acquired by DNA microar-

ray technology raises the need for specific data-mining algo-

rithms to extract useful patterns. These data are usually high

dimensional, subject to noise, sometimes imbalanced, and

usually having missing values. Microarray data-based cancer

classification is one of many computational methods that try

to deal with huge gene expressions output from microarrays

experiments to study different biological processes at the

gene-expression level. Another early approach for automated

diagnostic systems for cancer diagnosis is the texture analysis-

based approach (Yuan, Curtis, Caldas, & Markowetz, 2012),

colon cancer detection (Jiao, Chen, Li, & Xu, 2013), and other
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areas of the body (Bauer et al., 2013). Statistical methods for

reducing the dimensionality, which are based on orthogonal

projection, such as principal component analysis (PCA), are

widely used to reduce the high dimensionality of image data

in this approach. Such methods suit an application in which

the meaning of the reduced set or selected features is not

important. In dealing with gene-expression data, the selected

features need to be of clear biological meaning (Silva et al.,

2005). However, statistical methods such as partial least

squares, sliced inverse regression, and PCA are sometimes

used to extract features from microarray data (Dai, Lieu, &

Rocke, 2006; Khan et al., 2001; Silva et al., 2005).

The high dimensionality of gene-expression data raises the

issue of how best to extract and select features from this data.

The dimension reduction is an important step prior to classi-

fication to remove redundant and noisy gene expressions. The

goal is to keep only the meaningful gene expressions to be

input to the classification models to reduce the classification

time, improve the accuracy of the model, and to allow moni-

toring of target disease. In microarray data-based cancer clas-

sification, the main objective of the dimension-reduction step

is to formulate a reduced feature vector for every sample. A

feature vector is required to be reduced as much as possible,

while at the same time it should contain discriminative fea-

tures (genes) called “marker” genes, which are necessary to

classify given samples into their corresponding classes with

high accuracy.

There are two main categories of commonly used tech-

niques for reducing the high dimensionality of microarray

data: filters (Kohavi & John, 1997) and wrappers (Langley,

1994). Filter methods prioritize genes according to one or

more predefined measures and select the top-ranked genes.

For example, a t-test (Welsh et al., 2001), signal-to-noise ratio

(Golub et al., 1999; Li, Tang, & Li, 2005), and Wilcoxon rank-

sum test (Yan, Deng, Fung, & Qian, 2005) are typical filter

methods. Filter methods are easy to understand and imple-

ment. However, they ignore the interrelation of genes that

may lead to losing important information. In addition, the

classification accuracy of the feature genes selected by fil-

ter methods may be lower because the top-ranked k-genes are

not guaranteed to be the best among all subsets of k-genes.

Wrapper methods have also been widely used to select fea-

ture genes from microarray data (Alizadeh et al., 2000; Alon

et al., 1999; Li et al., 2005; Li, Weinberg, Darden, & Peder-

sen, 2001; Xiong et al., 2001). They evaluate alternative fea-

ture gene subsets using classification accuracy and select the

feature gene subset with the highest classification accuracy.

The feature genes selected by wrapper methods usually have

higher classification accuracy in comparison with the feature

genes selected by filter methods.

There are several studies for microarray-based cancer

classification that work with feature selection techniques to

discover discriminating genes from the initial gene pool (Alon

et al., 1999; Grade et al., 2007; Kim et al., 2008). Genetic

algorithm (GA) with the k-nearest neighbors (KNN) (Backert

et al., 1999). Other research studies that use an ensemble

of KNN classifiers as a gene selector are found in Okun &

Priisalu (2009) and Bay (1999). Feature subsets are selected

randomly in Bay (1999), while in Okun and Priisalu (2009),

subsets with lower complexity are chosen using bolstered

resubstitution error. In both techniques, improving classifica-

tion accuracy is the main goal. Neural network techniques are

also successfully applied to cancer diagnosis as in Kulkarni,

Kumar, Ravi, & Murthy (2011), Lee, Man, Wang, & Cao

(2013), Shon et al. (2009), Venkatesh, Thangaraj, & Chitra

(2011). Wavelet transformation (Shon et al., 2009) is used for

reduction of feature space along with the probabilistic neural

network to classify colon cancer data. In Chen and Li (2007),

multiple kernel of support vector machines (SVMs) are used

to transform the problem of feature selection into a multiple

parameter learning problem; then a tree-like algorithm is used

to extract the classification rules from the obtained support

vectors. Other approaches for cancer diagnosis are based on

computing, distinguishing gene–gene pairs using correlation

coefficients as in the TC-VGC algorithm (Shin, Yoon, Ahn,

& Park, 2011), or by computing distinguishing biclusters as

in the RBG-CD algorithm (Mahfouz, 2016). Both TC-VGC

and RBG-CD are sensitive to their input parameters and

require extensive parameter tuning, but they do not require

the dimension-reduction step. The general conclusion is

that no single classifier outperforms in all kinds of data sets

and the dimension-reduction step plays an important role in

cancer diagnosis.

An efficient and effective algorithm is necessary to extract

and select features from microarray data to improve the per-

formance of cancer data classification. This requirement moti-

vates us to propose a feature selection method that groups

the sets of genes into several information gene hubs in which

the hub gene is the representative of each hub. The hub gene

is highly relevant to the target label vector and, at the same

time, genes in its group have an absolute correlation with it

greater than a threshold. A suitable range for the controlling

threshold is estimated by analyzing the gene–gene pair abso-

lute correlation. The representatives of the produced groups

are updated according to a computed score. A score is com-

puted for each candidate representative as the total of its rele-

vancy to the target label vector: compactness, separation, and

overlapping of its group, if it is chosen as the hub gene. The

proposed approach is a multivariate filter approach; however,

it can also work as a wrapper technique by varying the con-

trolling threshold. Many high-quality feature subsets can be

efficiently computed and fed to a KNN classifier as in Okun

and Priisalu (2009) and Bay (1999).

The remainder of this paper is organized as follows. Sec-

tion 2 presents the proposed technique along with supporting

material. In Section 3, the experimental environment is



presented. In Section 4, experimental results and their bio-

logical relevance are discussed. Finally, Section 5 concludes

the paper and highlights future research directions.

2 MATERIALS AND METHODS

The next sections explain the proposed technique in detail.

Commonly used abbreviations and symbols are listed in

Table 1 to help the reader to better understand the proposed

algorithm.

2.1 Similarity measures
The input data of the algorithm are basically a labeled gene-

expression matrix. The gene-expression matrix is composed

of labeled samples with their gene-expression profiles that are

represented in rows and columns, respectively. Each sample in

the input data set is labeled as malignant or normal in the case

of binary class or otherwise is given a cancer grade. One gene

expression means one feature value in the feature vector.

The most common similarity measures between rows or

columns of the gene-expression matrix are similarity mea-

sures related to the correlation coefficient. Most of them have

corresponding dissimilarity measures. The Pearson correla-

tion coefficient of two random variables x and y is formally

defined as follows:

𝑠(𝑥, 𝑦) = 1
𝑛

𝑛∑
𝑖=1

(
𝑥𝑖 − 𝑥

𝑠𝑥

)(
𝑦𝑖 − 𝑦

𝑠𝑦

)
(1)

where𝑋, 𝑌 are the sample mean of x and y, respectively, while

σx, σy are the sample standard deviations of x and y. It is a

measure for how well a straight line can be fitted to a scatter

plot of x and y.

When one of the two vectors represents a categorical

attribute, the square of the point biserial correlation coefficient

(Glass & Hopkins, 1970) can be used to measure the correla-

tion between them. In the proposed approach, Equation (2)

is used to compute the relevancy between a feature vector

(gene) gi and the target label T, which is a binary attribute.

The relevancy score between gene gj and target label vector T

is termed as bi (gj,T), and it is defined as follows: If we divide

the values in the column of gene gj into two groups named

GP and GN, where GP contains values in gj that received the

value “+1” on T, and GN contains values in gj that received

the value “−1” on T. The squared point biserial correlation

coefficient is calculated as follows:

𝑏𝑖(𝑔𝑗, 𝑇 ) =
(μ𝑝 − μ𝑛)2∑𝑛

𝑖=1 (𝑥𝑖𝑗 − μ)2

(
𝑐𝑝𝑐𝑛

𝑐𝑝 + 𝑐𝑛

)
(2)

where μp is the average of the values in group GP and μn is

the average of the values in group GN. Further, cp is the

count of data points in group GP and cn is the count of data

points in group GN. μ is the average of the values in both

group GP and GN. bi(gj, T) measures the relevancy of fea-

ture values of gj to the target label T and takes values between

0 (minimum relevancy score) and 1 (maximum relevancy

score).

2.2 Description of the proposed technique
As shown in Table 2, GCA starts by computing the rel-

evancy with target labels of all genes using the biserial

correlation with the target label vector T, as defined in Equa-

tion (2). Then, the set of v top relevant genes are selected

T A B L E 1 Abbreviation and symbols used in the text

Symbol Description
GCA The proposed graph coloring approach for dimension reduction

ACA A competitive algorithm termed as ACA and entitled: Attribute clustering for grouping, selection, and classification of

gene-expression data

X Data set comprising n samples × m genes

T Target label vector T = {t1,t2,…,tn} corresponding to n samples in X;

Xt Data set comprising nt samples of class t in X
I(gi,gj) Absolute Pearson correlation between feature vectors representing expressions of genes gi and gj

xij jth feature value of the ith sample in the data set X
α Threshold on absolute correlation used by GCA, the corresponding percentage is prcnt
α0 Initial value for the threshold α, the corresponding percentage is prcnt0
bi(gj, T) The square of the point biserial correlation coefficient (Glass & Hopkins, 1970) of gene gi and target label vector T

ti A relevance of a gene gi based on t-statistics

KI(fi, fj) The Kuncheva index (Kuncheva, 2004); a stability index between fi and fj
stot, σtot Mean and standard deviation of the computed Kuncheva index for all pairs of generated feature sets

Test 1, Test 2 Randomization tests



T A B L E 2 The proposed dimension-reduction technique (GCA)

Input X: Data set of size n samples × m genes

T: Target label vector {t1,t2,…,tS} corresponding to S samples in X
prcnt0: Underestimated value of a threshold, which is used in computing a degree for each gene. Default 10%

Output R: list of selected genes in descending order according to computed score

Begin (GCA)

1. Compute Relevancy_Score (gh) = for h = 1,2,…m as shown in Equation (2)

2. Select the list of v top relevant genes V

3. Normalize the input data set

4. Compute percentage graph (Figure 1) for gene–gene absolute correlation (v × m pairs)

5. Select α0, which corresponds to prcnt0, using the computed percentage graph above and use it to compute degree D(gi) for each gene

gi ϵ V using Equation (6)

6. Sort the genes in descending order according to their values of D(gi) where gi ϵ V.

7. Compute representatives and fill groups. Several values for prcnt may be tried. Default between 0.05% and 10%:

Select a value α that corresponds to a value prcnt (prcnt0 > prcnt > 0) from the percentage graph of step 4

Let C0 be the ordered list of all genes, which is computed in step 6

i = 0; R = {} //i the index of current set, R the set of representative genes initially ф

Let G be the set of all genes

while C0 ≠ {}

Move the top element of C0 to the set of representative R as ri

i = i + 1

Ci = {ri}

Delete ri from G
for each gene gj ϵ G such that I(ri,gj) ≥ α begin

Move gj from C0 to Ci

Delete gj from G
End

Endwhile

8. Move each remaining gene gj ϵ G to Ci where i = argmax
𝑖

I(ri,gj)

9. For each gene gh ϵ Ci, i = 1,2,….….|R| // compute score for each representative

Separation_Score (Ci) = 1 − 1|𝑅|−1
∑

𝑗≠𝑖
𝐼(𝑔ℎ, 𝑟𝑗 )//average correlation with other representatives

Compactness_ Score (Ci) = //Average correlations with other members

Overlap Score (𝐶𝑖) = 1 − |{ 𝑟𝑗∈𝑅−{ 𝑟𝑖 } and 𝐼(𝑔ℎ,𝑟𝑗 )>=α) }||𝑅|−1
Total_Score (gh) = bi(gh,T) + Separation_Score (Ci) + Compactness_Score (Ci) + Overlap_Score (Ci)

If (Total_Score (gh) > Total_Score (ri)) Then begin select gh as the new representative for Ci end

end

10. Output R in descending order according to Total_Score (ri)

End (GCA)

and termed as V in step 2. A cutting point for the top rele-

vant genes can be selected by sorting the genes according to

their relevancy to the target label and identifying the gene,

which has much lower relevancy compared to its predecessor,

then the predecessor of the gene is selected as the top relevant

gene. Selecting the top relevant gene is an optional step; the

sorted list of all genes based on their relevancy can be used.

However, experimental results showed that selecting top rel-

evant genes is much more efficient and produce better results

in terms of a smaller number of features and higher accuracy.

For a two-class application, gene selection can be based on

the simple t-statistic (Nguyen & Rocke, 2002). A relevance

of a gene gi based on t-statistics termed ti is computed as

follows:



𝑡𝑖 =
𝑥1
𝑖
− 𝑥2

𝑖√(
𝑠1
𝑖

)2
𝑛1

+
(
𝑠2
𝑖

)2
𝑛2

(3)

where the nk, 𝑥
𝑘

𝑖
, 𝑠𝑘

𝑖
column is the size, mean, and sample

standard deviation of the vector of values on the 𝑖th column

(corresponds to the gene number i) of the input data matrix X

that belong to the class k for k = 1,2. Using this formula,

t-scores can be computed for all genes. A score for a gene may

be computed by employing a linear transformation. Using

Equation (3), a score of gene gi is computed in Nguyen &

Rocke (2002) as follows:

score(𝑔𝑖) = (𝑡𝑖 − min
𝑖

𝑡𝑖)∕(max
𝑖

𝑡𝑖 − min
𝑖

𝑡𝑖) (4)

The list of ordered top v genes with the best scores can be

used in the next steps instead of the biserial correlation above.

In step 3, the input data matrix is normalized to reduce the

computations required for computing gene–gene correlations

in the next steps. The normalization is done by computing μ𝑗
and σ𝑗 of each column (gene) j, then each entry xij is replaced

by (𝑥𝑖𝑗 − μ𝑗)∕σ𝑗 for i = 1,2,3,…n and j = 1,2,3,…m.
The computation of the absolute Pearson correlation is

reduced to Equation (5) for the normalized matrix.

𝐼(𝑥, 𝑦) =
|||||
1
𝑛

𝑛∑
𝑖=1

𝑥𝑖 𝑦𝑖

||||| (5)

The absolute Pearson correlation coefficient is used as a

measure for redundancy between gene–gene pairs in the pro-

posed technique, assuming both high positive and high nega-

tive correlation mean redundancy, and thus take the absolute

value of correlations.

In step 4, a percentage graph is computed in which each

bin represents the percentage of gene–gene pairs having an

absolute correlation greater than a value between 0 and 1. Any

value close to the upper end of this graph may be assigned to

the threshold in step 4. Each value for the input parameter

prcnt0 corresponds to a value for the threshold.

An experimental study shows that the start of the right

tail of the graph where the percentage equal 10% is a good

choice for prcnt0. The corresponding correlation value α0 for

prcnt0 is depicted from a computed percentage graph as will

be explained in Section 2.4.

A degree for each gene is computed in step 5 as the count

of genes having absolute correlation with that gene greater

than the initially underestimated threshold α0 (possible values

between 0 and 1).

𝐷(𝑔𝑗) = |{(𝑔𝑖, 𝑔𝑗) ∶ 𝐼(𝑔𝑖, 𝑔𝑗) > α0} 𝑓𝑜𝑟 𝑔𝑗ϵ𝑉 𝑎𝑛𝑑 𝑔𝑖ϵ𝐺 (6)

The degree of a gene here refers to the number of nonad-

jacent nodes of that gene in a graph of m nodes. Each node

represents a gene where there is an edge between two genes if

they have an absolute correlation less than α0.

The list of genes is sorted descending according to their

degrees in step 6. In step 7, C0 initially contains the ordered

list of top relevant genes. Again, selecting the top relevant

genes is an optional step (i.e., all genes can participate; C0

starts with the ordered list of all relevant genes). In each iter-

ation i of step 7, the top of C0 is moved to a new set Ci as a

representative for Ci. Then, any following gene in the sorted

list that has an absolute correlation greater than a threshold α
≥ α0 is moved to Ci. Further, all elements of Ci are removed

from the total set of genes. The value of α is computed from

the percentage graph using the selected value of prcnt. Possi-

ble values for prcnt are chosen between 0.05% and 10%. The

lower the value of prcnt, the higher the new value of α.
Grouping highly correlated genes in this step turns into

a coloring problem on this graph. A simple procedure for

doing this is used in step 7, but any coloring algorithm such

as recursive-large-first (RLF) (Galinier & Hertz, 2006) can

be used. The coloring step tries to minimize the number of

groups such that the absolute correlation between the hub

gene (representative) and other genes in its group are kept

above a threshold. If we reach the end of the ordered list of

top relevant genes in step 7 before assigning all genes to a

group, then remaining genes are redistributed in step 8 such

that a gene is moved to the group to which it has a maxi-

mum correlation with its representative. Step 9 selects one

of the members of each group as a new representative if it

achieves a total score greater than the current representative.

The total score is computed as the sum of four scores: rel-

evancy, separation, compactness, and overlapping score. An

overlapping score gives a higher score for a gene, which was

less probable to join another group in the reduction step. The

proposed algorithm has an advantage in that only steps 8–9

need to be recomputed to try several new possible values

of α. By varying the value of prcnt between 0 and prcnt0,

at step 7, a corresponding value for α will be between α0

and 1.

2.3 Illustrative example
Let the set of genes to be reduced be g1, g2, g3, g4, and the

target vector is T with absolute correlation between them, as

shown in Table 3, columns 1–5. The total number of distinct

gene pairs = m(m-1)/2 = 6 where m = number of genes = 4.

After step 5, D(gi) will be computed for each gene. Values in

column 6 are computed with a value of prcnt0 = 0.85, which

results in the value of α0 being 0.4. Two entries out of six have

absolute correlation ≥ 0.7 so if we choose prcnt = 0.35, the

new value of α will be 0.7. After step 6, the ordered list of

genes will be C0 = {g2, g3, g1, g4} (as shown in column 7).

After the first iteration of step 7, C0 = {g3, g1} and C1 = {g2,

g4} with g2 representing C1. Similarly, after a second iteration



T A B L E 3 Illustrative example for the steps of the proposed dimension reduction technique (GCA)

g1 g2 g3 g4 D(gi) Order Ci

Rep.
ri Total score (gi)

New
rep.

Overlap
genes

New
sep.

Total
score Ci

g1 – 0.5 0.7 0.1 2 3 C2 N 0.7 + 0.9 + 0.7 Y N 0.9 2.3 + 0

g2 0.5 – 0.4 0.8 3 1 C1 Y 0.4 + 0.6 + 0.8 N N – –

g3 0.7 0.4 – 0.5 3 2 C2 Y 0.6 + 0.5 + 0.7 N N – –

g4 0.1 0.8 0.2 – 1 4 C1 N 0.8 + 1 + 0.8 Y N 0.9 2.5 + 0

T 0.7 0.4 0.6 0.8 – – – – – – – – –

of step 7, C0 = ϕ and G = ϕ, C1 = {g2, g4} and C2 = {g3, g1}

with g3 as the representative for C2 (as shown in columns 8

and 9). After step 6, total score is computed for each gene (as

shown in column 10) as follows:

Relevancy Score (g1) = I(g1,T) = 0.7

Separation Score (g1) = 1−I(g1,g4) = 0.9 since g4 is the

previously computed representative for C1

Compactness Score (g1) = I(g1,g3) = 0.7

Total Score (g1) = I(g1,g3) = 2.3

Similarly scores of g2, g3, g4 are computed with respect to

currently identified representatives. The new representatives

according to computed scores are shown in column 11. Since

no genes gi in C1 such that I(gi,g4) > = 0.7 and no genes gi
in C2 such that I(gi,g1) > = 0.7, the overlap score of both C1

and C2 is zero (as shown in column 12).

New separation score is recomputed for each representative

(as shown in column 13) as follows:

Separation Score (g1) = Separation Score (g4) = 1 −
I(g1,g4) = 1 − 0.1 = 0.9

Total Score of C1 = Total Score (g4) + Overlap Score

(C1) = (0.8 + 0.9 + 0.8) + 0 = 2.5

Total Score of C2 = Total Score (g1) + Overlap Score

(C2) = (0.7 + 0.9 + 0.7) + 0 = 2.3

The representatives (reduced set of genes) are output in the

following order: g4, g1, respectively.

2.4 Estimating a proper range for values of
the thresholds 𝛂0 and 𝛂
To estimate a proper range for values of the threshold α0 and

α, a percentage graph is computed for each data set based on

relative frequencies (the proportion of distinct gene pairs hav-

ing absolute correlation greater than a certain value between

0 and 1). As shown in Figures 1 and 2, there is a small pro-

portion of gene pairs in the extreme at the upper ends of the

graph. A proper value for α0 is the beginning of the positive

(right) tail as shown in Table 4. The value of the threshold α,

which is used in step 7 of the algorithm can be set between α0

and 1. A corresponding absolute correlation threshold for sev-

eral values of percentage (10, 5, 1, 0.1, 0.05)% for each data

set are shown in Table 4. The number of bins (intervals) is set

to twice the cube root of the number of observations (number

of distinct gene pairs (m2 – m)/2) as recommended by the Rice

rule. For example, in the Kent Ridge data set, the number of

genes (m) = 2000, so the number of bins equals to 251 bins

using the Rice rule.

Figure 1 shows a suitable range for the threshold α that can

be depicted from a graph that represents the percentage of

gene–gene pairs, which have an absolute correlation greater

than or equal to α. For example, in the Kent Ridge data set,

10% of gene–gene pairs have an absolute correlation greater

than or equal to 0.7, as shown in Table 4. In our experiments,

we found that the first parameter prcnt0, which is used in com-

puting the degree of top relevant genes in steps 5, can be accu-

rately estimated from the percentage graph as the start of the

right tail. Also, the optimal value for prcnt can be estimated

for each data set using grid search with cross-validation as

explained in Section 3.3.

Data set complexity (Okun & Priisalu, 2009) can be

depicted from the graphs in Figures 1 and 2. The shorter the

right tail of the graph representing the data set is, the more

complex it is; furthermore, the harder to tune the threshold α.

Prostate-I in Figure 2 was the most complex data set among

the six data sets studied in Okun and Priisalu (2009).

2.5 Computational complexity of GCA
Computing relevancy with the target label vector is O(n.m)

where n is the number of samples and m is the number of

genes. Selecting the top relevant genes costs O(n - v + vlogv).

Normalization step costs O(n.m). After normalization, com-

puting the absolute correlation between two genes costs O(n)

so the total cost of computing the degrees (step 5) is O(v.m.n),

where v is the number of top relevant genes and m is the total

number of genes. The cost of sorting genes based on their

degrees is O(v.logv). The interesting property of the proposed

approach is that different values for new α can be retried with-

out the need for doing steps 1 to 6. The remaining steps 7 to

10 is O (m.n.r), where r is the number of representatives.

3 EXPERIMENTAL ENVIRONMENT

The proposed scheme for evaluation and comparison with

other dimension-reduction techniques can be outlined as

follows:



F I G U R E 1 Percentage graph showing a suitable

range of values for the threshold α (a) Kentridge. (b)

GDS3257. [Colour figure can be viewed at

wileyonlinelibrary.com]

• Evaluating the predictive performance of selected genes

• Evaluating the stability of selected genes

• Assessing the sensitivity of the proposed algorithm to its

input parameters

• Testing the significance of selected genes using permuta-

tion tests and randomization tests

• Studying the biological relevance of selected genes

3.1 Input data
The proposed algorithm has been applied to the six standard

data sets in Table 4, to evaluate its performance. Table 5

shows additional properties for these data sets. It is clear

from their properties that the analysis of this input data faces

several challenges such as the large number of genes (high

dimensionality) compared to a very small number of sam-

ples. Also, the data set is usually unbalanced. The origi-

nal GDS3257 (lung) data set has been processed using a

babelomic tool (Al-Shahrour, Minguez, Vaquerizas, Conde,

& Dopazo, 2005) and, after filtering the steps, it is com-

posed of 2,517 genes before applying the dimension-reduction

step.

3.2 Tools and libraries
The proposed algorithm is implemented using C# on win-

dows 7, a 64-bit environment having a machine configura-

tion of core I3, 2.4 GHz, 1 MB cache, and 4 GB of RAM.

The MATLAB Toolbox for Dimensionality Reduction (ver-

sion 0.8.1b) (van der Maaten, 2016) is used for comparing

GCA with traditional feature-selection methods. Also, the

ACCORD machine learning library (Souza, 2014) is used in

experimenting with SVM. The babelomic tool (Al-Shahrour

et al., 2005) is used in preprocessing the input data sets. The

Cytoscape Agilent Literature Search (Lopes et al., 2010) is

used in studying the biological relevance of the selected genes.

3.3 Scheme for evaluating the predictive
performance of selected genes
To solve a prediction problem, the resulting prediction model

should be able to generalize to an independent data set

(unknown samples) (i.e., accurately perform in practice).

The prediction model is usually validated by partitioning

the input data into two partitions (e.g., 70% for training

and 30% for testing). However, in our problem, the number

of samples is usually very small and there are not enough



F I G U R E 2 Data set complexity. (a) Histogram for

Prostat-I. (b) Percentage for Prostate-I. narrow range for

alpha means high complexity [Colour figure can be

viewed at wileyonlinelibrary.com]

T A B L E 4 Histogram data for the input gene-expression data sets

Corresponding 𝛂 for different percentage of pairs
having I > 𝛂 that may represent suitable range for the
threshold 𝛂

Data set Ref. No. genes
No. bins
(rice rule) Peak start

10%
Tail start 5% %1 0.1%

0. 05%
Tail end

Kent Ridge Alon et al., 1999 2,000 251 0.692 0.701 0.765 0.852 0.914 0.928

GDS3257 Landi et al., 2008 2,516 370 0.008 0.542 0.624 0.751 0.862 0.883

Notterman Notterman et al., 2001 7,547 763 0.0 0.375 0.443 0.577 0.725 0.763

Leukemia Golub et al., 1999 7,129 740 0.0 0.374 0.456 0.601 0.732 0.762

CNS Pomeroy et al., 2002 7,110 740 0.0 0.415 0.496 0.636 0.772 0.801

Prostate-I Singh et al., 2002 12,600 859 0.0 0.890 0.883 0.936 0.964 0.968

T A B L E 5 Properties of the input gene-expression data sets

Data set name Type High grade or malignant Low grade or normal Total samples No. genes
Kent Ridge Colon 40 22 62 2,000

GDS3257 Lung 49 58 107 2,517

Notterman Colon 18 18 36 7,457

Leukemia Blood 47 25 72 7,129

CNS CNS 39 21 60 7,110

Prostate-I Prostate 52 50 102 12,600



samples available to partition them into separate training and

test sets without losing significant modeling or testing capa-

bility. In this work, a k-fold cross-validation scheme (Al-

Shahrour et al., 2005) has been applied in testing the pro-

posed models. The input data set is divided into k partitions

(folds). k−1 partitions participate in training, and the classes

of the instances belonging to the remaining partition are pre-

dicted by the decision model based on the training performed

on k−1 training partitions. This process is repeated k times

to form a complete cross-validation round after which the

class of each sample is identified. Each time a training set

Xlearning and a testing set Xtesting are selected using 10-fold

cross-validation, the proposed dimension-reduction technique

is applied on Xlearning to produce the reduced training set

Xlearning* having the same number of samples as Xlearning

but with a reduced set of genes. The classifier is trained using

Xlearning*. The model output by the classifier is used to clas-

sify the unseen object in Xtesting. For each complete round of

cross-validation, the performance measures are computed.

The usefulness of the proposed algorithm has been evalu-

ated by measuring the increase in the effectiveness of exist-

ing classifiers using well-known performance measures such

as accuracy and AUC (area under the ROC curve) (Hassan,

Chaudhry, Khan, & Kim, 2012) when GCA is used as the

dimension-reduction step compared to other existing tech-

niques. The calculation of these measures involves a num-

ber of true positive (TP), false positive (FP), true negative

(TN), and false negative (FN). True negative and true posi-

tive are the number of correctly classified negative and pos-

itive samples, respectively. False negative and false positive

are the number of positive and negative samples, which are

incorrectly classified, respectively. Accuracy is a measure of

overall effectiveness of the classification scheme. It can be cal-

culated as

Accuracy = TP + TN
TP + FP + TN + FN

(7)

Sensitivity is used to measure the ability of a classifier to

recognize patterns of positive class. It can be obtained using

the following equation.

Sensitivity = TP
TP + FN

(8)

Specificity is calculated to measure the ability of a clas-

sifier to recognize patterns of negative class. The following

equation is used to calculate specificity:

Specificity = TN
TN + FP

(9)

In cancer diagnosis, sensitivity is more important than

specificity as it shows how much a classifier can correctly

identify all patients with a cancer that may be treatable at this

time, but not later (e.g., cervical cancer). A good classifier

should have both a low false positive rate and low false neg-

ative rate. The definition of high accuracy means low (FP +
FN)/n so when there is a big difference between the opera-

tional FP and FN misclassification costs, or between the oper-

ational class frequencies compared to those in the training

sample, then sensitivity and specificity together are a better

indicator for the performance than accuracy. In our experi-

ments, a well-balanced sensitivity and specificity are shown.

3.4 Scheme for evaluating the stability
of selected genes
Stability of a marker selection algorithm means that small

changes in the training set should not result in big changes

in the set of finally selected markers (i.e., adding or deleting

a few samples from the training set should not significantly

modify the feature set selected by the algorithm).

To measure the stability, we take a similarity-based

approach presented in Abeel, Helleputte, Van de Peer,

Dupont, & Saeys (2009). In this approach, selected feature

stability is measured by computing the similarity between the

feature sets selected from k randomly drawn samples from the

input data set. The more similar all feature sets are, the higher

the stability measure will be. The overall stability stot can then

be defined as the average overall pairwise similarity compar-

isons between all features sets on the k subsampling.

𝑠tot =
2
∑𝑘

𝑖=1
∑𝑘

𝑗=𝑖+1 KI(𝑓𝑖, 𝑓𝑗)
𝑘(𝑘 − 1)

(10)

where fi represents the feature set obtained by the selection

method on subsampling i (1 ≤ I ≤ k), and KI (fi,fj) is the

Kuncheva index (Kuncheva, 2004); a stability index between

fi and fj, is defined as follows:

KI(𝑓𝑖, 𝑓𝑗) =
𝑟 − (𝑠2∕𝑚)
𝑠 − (𝑠2∕𝑚)

(11)

where s = |fi | = |fj| and r is the number of common elements

in both fi and fj. The s2/m term in Equation (11) corrects a bias

because of the chance of randomly selecting common features

among two feature sets.

The Kuncheva index is greater than −1 and less than or

equal to 1. The greater the value of KI(fi, fj), the larger the

number of commonly selected features in fi and fj.
In our experiments for tuning the input parameters, both

the predictive performance and the stability can be measured

for different values of α in the estimated range, as discussed

in Section 2.4. While the predictive performance is measured

for the complete k-folds cross-validation round, the calcula-

tion of stot can be updated by the resulting feature set using

the remaining k−1 folds for training. If we use 10-folds cross-

validation and 50 runs for each value of α, then for each value

of α we have 500 different random samples of the input data



sets, each of them 90% of the input data size. Initially, stot is

set to 0, then it is updated by the generation of a new feature

set fi as follows:

𝑠tot (𝑖) = ((𝑖 − 2) × 𝑠tot (𝑖 − 1) + 1
𝑖 − 1

∑𝑖−1

𝑗=1
KI(𝑓𝑖, 𝑓𝑗))∕(𝑖 − 1) (12)

Let avgKI (fi) be the average Kuncheva index of a feature set fi
with all generated feature subsets.

a𝑣𝑔𝐾𝐼(𝑓𝑖) =
1

𝑘 − 1
∑

𝑖1𝑗
KI(𝑓𝑖, 𝑓𝑗). (13)

The standard deviation σtot can be computed as follows:

σtot =

√√√√ 1
𝑘 − 1

𝑘∑
𝑖=1

(avgKI(𝑓𝑖) − 𝑠tot )2 (14)

stot and σtot are the two measures used to study the stability of

the proposed algorithm.

In the same experiments, if we evaluate the predictive per-

formance of the generated feature subsets, we can study the

sensitivity of the proposed algorithm regarding the number of

features to include, which is controlled by the input parame-

ter (i.e., the sensitivity of the proposed algorithm to its input

parameter can be also shown).

3.5 Randomization tests
To study the significance of the results of the proposed

algorithm, the framework of permutation-based p-values,

which are explored in Ojala and Garriga (2010) is followed.

Two randomization tests are performed, namely, Test 1 and

Test 2.

In Test 1, 1,000 randomized versions of the training data set

are produced by permutations of the class labels of the orig-

inal data set. In the cross-validation rounds, the permutation

is done on the training set (i.e., on the data represented by the

k-1 folds chosen for training) while the remaining fold (testing

fold) is kept with its original labels. The classification for the

testing fold is done by applying the selected classifier on the

selected genes from the permuted-labels training folds. 100

cross-validation rounds are done to produce the 1,000 random

samples.

In Test 2, the 1,000 randomized versions of the training data

set are produced by applying independent permutations to

the columns of the original data set within each class. The

same procedure in Test 1 is followed for evaluating the predic-

tive performance of the classifier on the selected genes from

the generated randomized versions.

The p-value is computed as the fraction of randomized

samples where the classifier performed better in the random

data than in the original data (i.e., it estimates how likely the

observed accuracy would be obtained by chance). The lower

the p-values computed in Test 1 or Test 2, the higher the sig-

nificance of the proposed technique.

A very small value of p-value (i.e., < = 0.05) for a test is

enough to reject its corresponding null hypothesis. The null

hypothesis of Test 1 is that the features and the labels are inde-

pendent, while for Test 2, the features are independent within

class.

4 EXPERIMENTAL RESULTS

4.1 Tuning input parameters
To find an optimal set of gene expressions, we have experi-

mented with different values for α, which resulted in several

multiple sets (varying in size) of genes, and analyzed their

effect on the classification accuracy achieved by a decision

model (classifier). Table 6 reveals the corresponding results

on the GDS3257 data set. Also, the same experiments are

carried out with different values of top relevant genes v and

lie in the range of 200–1,000 with increments of 100 genes,

and we found that for all six data sets, increasing v more than

500 genes increases the computational complexity without

any gain in the performance in terms of accuracy. In all of

the next experiments, v is set to 500 and prcnt0, which cor-

responds to α0 and is also set to 10% in all experiments. For

GDS3257, prcnt0 = 10% corresponds to α0 = 0.542. While

prcnt0 is fixed in all experiments, α0 will vary depending on

the input data set.

KNN achieves the highest classification accuracy for

prcnt = 5%, which corresponds to a value of 0.624 for α and

results in the selection of 34 genes. Our sample sizes do not

allow splitting the data into training, validation, and testing

data sets. We used 10-fold cross-validation in optimizing the

value of α. KNN is used as the classifier. The samples on the

testing fold are classified using the feature subset obtained

from the remaining 9 folds by GCA. The average accuracy of

100 cross-validation rounds are computed for each possible

value of prcnt. Feature subsets obtained by varying the value

of prcnt between 0 and prcnt0, in step 7, is shown in Table 6.

They are sorted according to their accuracy first; second, for

the individuals having the same accuracy, individuals with a

small number of features are ranked in front.

4.2 Comparing the estimated discriminative
genes produced by GCA with other techniques
To compare the number of genes estimated by the proposed

techniques with those estimated by other related techniques,

the MATLAB Toolbox for Dimensionality Reduction (ver-

sion 0.8.1b) (van der Maaten, 2016) is used. A number of

discriminative genes are estimated using several techniques:

eigenvalue-based estimation, maximum likelihood estima-

tor (MLE), and estimator based on a correlation dimen-

sion. These techniques fail to estimate the proper number of

genes. For example, the estimated number of genes for Kent



T A B L E 6 Number of genes selected using different values of prcnt for gds3257 data set with v = 500, the row with bold text represents the

best number of genes

Stability
Selected genes prcnt % 𝛂

Prediction
accuracy of KNN stot 𝛔tot

14 25 0.392 0.851 0.556 0.047

18 20 0.435 0.842 0.574 0.053

20 16 0472 0.834 0.589 0.044

22 10 0.542 0.892 0.612 0.055

34 6 0.604 0.937 0.634 0.042

34 5 0.624 0.937 0.653 0.048
40 3 0.670 0.924 0.678 0.069

47 2 0.703 0.916 0.671 0.067

65 1 0.751 0.902 0.693 0.073

91 0.5 0.792 0.864 0.631 0.081

162 0.1 0.862 0.846 0.677 0.079

T A B L E 7 Number of gene expressions selected by various feature selection strategies and estimation techniques for different data sets

Estimated no. of features using (van der
Maaten, 2016) DR toolbox

No. features selected in Abeel et al. (2009) by different
techniques

Data set MLE GMST EigValue PCA mRMR F-score Chi-square GCA
Kent Ridge 16 19 6 28 50 26 135 19

Notterman 25 20 15 33 120 95 185 14

Leukemia 32 93 8 97 180 135 220 68

CNS 30 45 12 96 175 165 180 84

Ridge using MLE was eight; however, the number of genes

that achieved the best performance in the literature for Kent

Ridge was much higher than eight. Furthermore, as shown

in Table 7, the number of selected genes by GCA is lower

than the number of genes that are selected by PCA, F-score,

mRMR, and Chi-square for the four data sets as reported in

Abeel et al. (2009).

4.3 Performance of existing classifiers
on selected genes
The results obtained by applying traditional KNN on both

Kent Ridge and Leukemia data sets after reducing their

dimensionality using several dimension-reduction techniques

are given in Tables 8 and 9. The selected gene pools by GCA

were fed to the KNN classifier. The results obtained by using

the proposed dimension-reduction technique of GCA is com-

pared to the results reported in Au, Chan, Wong, & Wang

(2005) for other related techniques.

The experimental results in Table 8 for Kent Ridge data

set show that GCA is superior to the other six gene-selection

methods for reduced set sizes 14 to 35. As revealed by the

classification results, average classification accuracy (ACA)

was able to select a better small set (seven) of discrimi-

native genes in the Kent Ridge data set than the others.

However, GCA gives better results in terms of classification

accuracy for other reduced set sizes of 14 to 35. Also, the per-

formance of GCA was comparable to other methods for differ-

ent numbers of selected genes. In Tables 8 and 9, there were

a number of genes that were not feasible to be generated by

varying the value of prcnt, and their corresponding accuracies

were calculated using linear interpolation. Other advanced

gene-selection techniques have been proposed (Rajapakse &

Mundra, 2013), but it is not used in comparison because it is

not fully established.

The classification results on the Leukemia data set are

given in Table 9. Also, ACA slightly outperforms GCA

for a small number of genes up to 30, then GCA outper-

forms other techniques for other numbers of selected genes.

Tables 10 and 11 show the performance of several exist-

ing classifiers on Leukemia and Kent Ridge, respectively.

The predictive performance of the classifiers on the reduced

set of the proposed technique is compared to the results

reported in Au et al. (2005) for the best reduced set by

ACA. Also, the results of the classifiers on the original

data set without reduction is reported in Au et al. (2005).

Both GCA and ACA show a much higher accuracy than the

without-reduction case. The performance with a reduced set

of GCA on Kent Ridge was higher than ACA for all clas-

sifiers while with Leukemia, the neural networks and the

naïve Bayes classifiers were higher with the reduced data sets

of ACA.



T A B L E 8 The performance of KNN on the top genes selected by different techniques on Kent Ridge Data set

Classification accuracy
No. genes selected ACA t-value k-means SOM Biclustering mRMR GCA
7 83.9 80.6 58.1 50.0 69.4 64.5 83.4

14 82.3 80.6 69.4 59.7 62.9 56.5 82.6

21 82.3 80.6 64.5 59.7 53.2 61.3 87.8

28 82.3 79.0 61.8 58.1 64.5 67.7 86.5

35 80.6 75.8 62.9 54.8 53.2 72.6 84.9

T A B L E 9 The performance of KNN on the top genes selected by different techniques on Leukemia data set

Classification accuracy
No. genes selected ACA t-value k-means SOM Biclustering mRMR GCA
10 91.2 82.4 50.0 50.0 52.9 61.8 83.7

20 91.2 88.2 44.1 61.8 52.9 70.6 88.1

30 91.2 88.2 44.1 67.6 58.8 67.6 88.5

40 91.2 88.2 47.1 70.6 58.8 70.6 91.9

50 91.2 82.4 47.1 67.6 52.9 70.6 92.3

T A B L E 1 0 The performance of different classification algorithms on Leukemia data set

Classification Accuracy Accuracy Accuracy without
algorithm using ACA using GCA dimension reduction
Decision trees 94.1 95.3 91.2

Neural networks 97.1 96.2 91.2

Naïve Bayes 82.4 68.6 41.2

Nearest neighbors 91.2 92.3 82.4

T A B L E 1 1 The performance of different classification algorithms on Kent Ridge data set

Classification Accuracy Accuracy Accuracy without
algorithm using ACA using GCA dimension reduction
Decision trees 91.9 93.1 82.3

Neural networks 90.3 92.3 83.9

Naïve Bayes 67.7 71.6 35.5

Nearest neighbors 83.9 87.8 79.0

T A B L E 1 2 The performance of SVM (sigmoid) on the top genes selected by GCA compared to different reduction techniques

GCA
Data set

mRMR
acc./nof.

F-score
acc./nof.

Chi-square
acc./nof.

PCA
acc./nof. acc./nof. Sens. Spec.

Kent Ridge 93.54/050 95.16/026 93.55/135 85.48/28 94.88/19 0.94 0.96

GDS3257 97.79/280 – – – 98.10/34 0.99 0.97

Notterman 91.67/120 94.44/095 88.89/185 86.11/33 95.73/14 0.96 0.94

Leukemia – 97.22/135 – – 96.86/68 0.95 0.97

CNS – 95.00/165 – – 96.34/84 0.95 0.98

Table 12 shows the performance of SVM with sigmoid as

the kernel function. The best possible accuracy along with the

number of top genes reported by Rathore, Hussain, & Khan

(2014) are shown for F-score, mRMR, Chi-square, and PCA

for five input data sets. The accuracy achieved using GCA

as the dimension-reduction technique, respectively, are 0.3%,

1.3%, and 1.4%, slightly higher for GDS3257, Notterman, and

central nervous system (CNS) data sets compared to individu-

als best achieved by using the other techniques. Also, the accu-

racy achieved using GCA are 0.2% and 0.3%, slightly lower

for Kent Ridge and Leukemia data sets compared to indi-

viduals best achieved by using the other techniques. Results

demonstrate that GCA was comparable to other techniques

and at the same time it can select a much lower number of

marker genes. Also, the results show that besides the high

accuracy, there is a well-balanced sensitivity and specificity.



The better performance of GCA may be attributed to the char-

acteristics of the underlying data set such as the case with

GDS3257, which has a percentage graph with a long right tail

that allows better tuning for α. In addition, the search for an

optimal reduced set of genes is guided by the percentage graph

in GCA.

Table 13 shows the average runtime of the proposed

dimension-reduction technique. To further reduce the compu-

tational complexity, random sampling can be used to estimate

the degree for each gene and the distribution of the correla-

tion between pairs of genes by computing the histogram on a

sample of pairs. However, in this research study, we compute

the exact degree and compute an accurate histogram. Table 13

shows the details of the runtime of GCA. The total runtime is

the sum of the normalization step, computing degrees (pair-

wise correlation), sorting genes, and reduction time. Sorting

time is negligible compared to others, while reduction time

dominates other parts. The reduction is the only step that is

required for trying other values for the threshold α. The run-

time is less than 1.2 s for all the data sets. The higher the

dimension of the data set, the higher the runtime is.

Table 14 shows the results of the two randomization tests

described in Section 3.5 on GDS3257 and Prostate-I. The

reported p-values are 0.001 for both tests and both data sets.

This means that on none of the randomized samples did the

KNN classifier perform better than on the original data in

terms of accuracy.

4.4 Comparing with embedded future
selection techniques
In this experimental study, the performance of GCA along

with a selected classifier is compared to two embedded

feature-selection techniques (Yang et al., 2010), in which the

feature selection is included in their procedure for classifica-

tion. As shown in Table 15, the performance of GCA com-

bined with an SVM (sigmoid) classifier is higher than the best

reported results in Yang et al. (2010) for the two embedded

future selection techniques, namely, SVM-RFE and TSVM-

RFE in terms of accuracy. Additionally, the proposed tech-

nique along with SVM has an advantage in that the gene selec-

tion is not a classifier-dependent selection as is the case with

these methods.

Another two algorithms in which the process of reducing

the dimensionality is combined with the classification task are

RBG-CD (Mahfouz, 2016) and TC-VGC (Shin et al., 2011).

TC-VGC and RBG-CD are based on computing distinguish-

ing gene pairs and distinguishing biclusters, respectively. As

shown in Table 16, the reported results in Mahfouz (2016) for

TC-VGC and RBG-CD for GDS325 and prostate-I are com-

pared to GCA combined with KNN. GCA shows a higher

accuracy compared to TC-VGC and RBG-CD on Prostate-I.

Also, the reported values for RBG-CD and TC-VGC are the

average values for different values of their two input param-

eters. TC-VGC and RBG-CD have a slightly higher accuracy

than KNN combined with GCA on Kent Ridge. Furthermore,

both RBG-CD and TC-VGC are sensitive to their two input

parameters, while CGA has only one parameter and it can be

easily tuned as shown in Section 4.1.

4.5 Biological discussion
The lung cancer data set with code GDS3257 (Landi) acces-

sible at the NCBI GEO database (Edgar, Domrachev, & Lash,

2002) has been biologically studied. These data were gen-

erated in a study related with a kind of lung cancer called

adenocarcinoma (Landi et al., 2008). Different samples were

analyzed to study several tumor stages in a population of

smokers and nonsmoking people. Adenocarcinoma is the

most common type of cancer that starts in the lung. It is

T A B L E 1 3 Details of runtime for the proposed dimension reduction technique

Data set
No.
features

Norm.
step 1
(ms)

Comp.
degrees
(ms)

Sort.
genes
(ms)

Reduct.
time
(ms)

Total
time
(ms)

Avg.
score

Best no.
features

Best
score

Accuracy
using KNN

Kent Ridge 14–37 57 126 0.27 84 267 0.44 21 0.49 87.8 ± 1.68

GDS3257 10–95 92 151 0.29 134 377 0.37 34 0.46 93.7 ± 1.39

Notterman 15–100 184 361 0.79 393 938 0.35 55 0.36 79.1 ± 2.07

Leukemia 13–105 164 180 0.72 268 612 0.33 50 0.41 92.3 ± 2.29

CNS 16–99 166 252 0.72 275 693 0.31 84 0.33 76.2 ± 2.53

Prostate-I 18–156 276 542 0.81 353 1171 0.29 33 0.31 93.15 ± 2.93

T A B L E 1 4 Average accuracy and p-value (100 randomized samples) for Test 1 and Test 2 when using the KNN classifier

Original data Test 1 Test 2
Algorithm accuracy accuracy p-value accuracy p-value
GDS3257 93.7 ± 1.39 0.54 ± 0.09 0.001 0.48 ± 0.09 0.001

Prostate-I 93.1 ± 2.93 0.48 ± 0.09 0.001 0.39 ± 0.13 0.001



T A B L E 1 5 Comparison with embedded future selection algorithms

Accuracy
Algorithm Kent Ridge Leukemia
TSVM-RFE 91.25 96.32

SVM-RFE 91.25 96.03

SVM (sigmoid) combined with GCA 94.88 96.86

T A B L E 1 6 Comparison with classifiers that are based on distinguishing pairs or biclusters

Accuracy
Algorithm Prostate-I GDS3257
TC-VGC (distinguishing pairs of genes) 91.05 95.8

RBG-CD (distinguishing biclusters) 92.30 93.9

KNN combined with GCA 93.15 93.7

usually found in lung outer areas such as the lining of the

airways.

The proposed algorithm reported 34 marker genes as rel-

evant genes, 18 of them differentially expressed in normal

samples and 16 in tumor samples. The aim of the discussion

is to study the biological relevance of these genes (Dupuy &

Simon, 2007). They are reported in Table 17, where the first

column presents their gene symbols and the second their cor-

responding label in accordance with the proposed algorithm.

They are alphabetically ordered in the first column accord-

ing to their names. A network has been built by a literature

search using the Cytoscape Agilent Literature Search (Lopes

et al., 2010). The tags “human” and “adenocarcinoma,” jointly

the marker genes, have been used as input to build it. Every

edge in the generated network is built by associations in public

scientific repositories such as PubMed. This network has 250

nodes and 516 edges, where 23 of the nodes are the marker

genes reported by the proposed algorithm. Several compo-

nents form this network where the biggest component has 139

genes, the second one 24, and the third 11.

The complete network and especially the marker genes

have been topologically analyzed. Table 17 shows the degree,

betweenness, and closeness centrality measures, jointly the

clustering coefficient, for each marker gene in the network.

The degree shows the number of input edges for each node.

The betweenness and closeness centrality measures indicate

whether the node is a central node from the number of paths or

from the distance to other nodes’ point of view, respectively.

Moreover, the (local) clustering coefficient informs about

whether the node works as an attractor respective of their

neighboring nodes and whether they constitute a homoge-

neous group. Note that there is not any information in Table 17

for those marker genes not captured by the network. These

genes are precisely interesting genes to consider as undiscov-

ered biomarkers to focus on in future studies. However, the

goal of this discussion is to study whether the reported marker

genes are relevant genes or not.

These marker genes reported by the proposed algorithm

are used as borders to capture the data set information.

Therefore, they should play a pertinent role in related biolog-

ical processes. The gene with the highest degree, the major

number of edges, is ABCB1 (see the first row in Table 17). It

has a degree equal to 17 and its label is “tumor,” which means

that it is differentially expressed in tumor samples. Figure 3a

shows the second- and the third-biggest components; the

ABCB1 gene can be observed in the middle on the right. This

gene is a central gene and most of the paths are related to it.

Note that its value for betweenness, closeness, and the

clustering coefficient are 0.24, 0.28, and 0.21, respectively,

which are high values. Moreover, a well-defined cluster of

genes as a pentagon can be observed on the left of the figure.

This group of genes is related with ABCB1 because they are

connected to the rest of the network through it. This group

of six genes, the pentagon structure with a gene connected

to ATM, has been studied using FuncAssociate (Berriz,

King, Bryant, Sander, & Roth, 2003). Two GO terms with

functionality related to the response to ionization and gamma

radiation are overrepresented for these genes. In the same

component, PPP2R3C is also a key gene with a degree equal

to 3 with the label “tumor.” In Figure 3a, it can be observed

that the third component where the marker gene IFI35 has

the highest value of the degree is equal to 5. Figure 3b shows

a view of a part of the biggest component of the network.

This component has 139 genes, NPTX1 and LIF genes, with a

degree of 17 and 15, respectively. They are the genes with the

highest degree and they are precisely marker genes reported

by the proposed algorithm. These are central genes that can

be seen in Table 17; they have high values for centrality mea-

sures. NPTX1 has a “tumor” label and gene LIF “normal.”

It can be observed in Figure 3 that a group of six genes (the

hexagon structure) are clearly connected with NPTX1.

These genes have been also studied with FuncAssociate and

a GO term related with the regulation of cell proliferation has

been found. It can be said that NPTX1 plays a role in the cancer



T A B L E 1 7 Selected marker genes with labels and the details of their relevance in the generated network

Gene symbol Label Degree Betweenness centrality Closeness centrality Clustering coefficient
ABCB1 Tumor 17 0.24 0.28 0.21

ANG Tumor 7 0.11 0.23 0.14

ANPEP Tumor 8 0.03 0.19 0.28

AV764378 Normal – – – –

CXCL5 Normal 7 0.09 0.19 0.33

DEFB1 Normal 4 0.01 0.21 0.5

ECHDC3 Tumor – – – –

EFHD1 Tumor 2 1 1 0

GALNT12 Normal 1 0 1 0

GJA1 Normal 5 0.8 1 0.2

GPR171 Normal – – – –

HLA-DRB4 Tumor – – – –

IFI35 Normal 6 0.64 0.66 0.13

IGF2BP2 Normal 7 0.09 0.27 0.23

IGLV4-60 Tumor – – – –

IL37 Tumor – – – –

KMO Normal 5 0.06 0.26 0.4

LECT1 Normal 2 1 1 0

LIF Normal 15 0.24 0.3 0.28

LIPG Tumor – – – –

LOX Normal 5 0.02 0.26 0.4

LUC7L3 Tumor – – – –

NPTX1 Tumor 17 0.23 0.28 0.21

NR1D2 Tumor – – – –

PPP2R3C Tumor 3 0 0.47 1

PTPRZ1 Normal 4 0.8 0.83 0.16

RERGL Normal 1 0 1 0

RPL26L1 Tumor – – – –

RYR1 Normal 3 0.03 0.22 0

SH3YL1 Normal 4 0.03 0.23 0.16

SLC38A1 Tumor 9 0.08 0.26 0.78

SLC44A4 Normal 5 0.28 0.5 0.4

USP9Y Tumor – – – –

XIST Tumor 4 0.6 0.55 0.16

214110-s-at Normal – – – –

process. Note that this gene is selected by the algorithm as a

border gene to capture the data set information. Moreover, a

similar situation has been analyzed for LIF, a marker gene not

presented in the figure, and GO terms related with stem cell

population maintenance and maintenance of cell number have

been found (GO:0010628 and GO:0098727 terms). It must be

also commented that marker genes CXCL5 and DEFB1, with

label “normal” and a degree of 7 and 4, can be observed in

Figure 3b in the same component.

To test the significance of the biological relevance of

selected genes, 100,000 groups of genes of average size

34 genes are selected randomly from the 2,517 genes of

GDS3257 with replacements. Then, for the 34 genes selected

by GCA and for each of the random groups, a score is

computed.

The score of a selected group (randomly or using GCA) is

computed as follows:

Group Score (gi) = (TP + TN)/m, where m is the total num-

ber of genes in the data set,where

TP = how many of the selected 250 literature-mined genes

do pop up in the selected group of genes

FP = the size of the group – TP



F I G U R E 3 (a) Third component of the marker gene IFI35 with the highest value, equal to 5, in this component. (b) View of a part of the

biggest component of the network [Colour figure can be viewed at wileyonlinelibrary.com]



FN = how many genes in the whole set of genes (2,517

genes for GDS3257) minus the set of genes in the group that

are in the selected 250 literature-mined genes

TN = the total number of genes – (FP + TP) – FN

For example, the score of selected genes by GCA = (23 +
(2517 – 34 − (250−23)))/2517 = 0.905.

The ratio between a number of randomly selected groups

that achieve a higher score than the selected group by the pro-

posed algorithm (GCA) and the total number of groups under

study (i.e., 100,000) is computed and termed as a p-value. The

lower the p-value, the higher the significance of selected genes

by GCA. Experiments with GDS3257 showed a p-value equal

to 0.00001.

5 CONCLUSION AND FUTURE
WORK

In summary, this research study proposes an algorithm to

reduce the expected high dimension of cancer data sets and it

is compared to several existing algorithms. The experiments

have been conducted on six standard cancer data sets. Anal-

ysis reveals that genes selected by the proposed dimension-

reduction technique are better able to accurately classify dif-

ferent data sets compared to the genes selected by other

techniques. Additionally, the genes selected by the proposed

dimension-reduction technique have been biologically stud-

ied. It has been shown that they are relevant genes accord-

ing the information stored in scientific repositories such as

PubMed. Therefore, we can reasonably conclude that the pro-

posed GCA can help biologists in accurately predicting cancer

in several areas of the body.

The analysis of the proposed scheme in this paper suggests

several directions for future work:

• Integrating gene-expression data and protein-interaction

data for gene prioritization (Ma, Lee, Wang, & Sun, 2007)

in GCA.

• Using an ensemble of KNN as a gene selector similar to

Okun and Priisalu (2009). The feature subsets that are gen-

erated by varying the controlling thresholds are fed to the

ensemble.
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