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Abstract

Knowing the mechanical properties of human adipose tissue is key to simulate surgeries such as liposuction, mammo-

plasty and many plastic surgeries in which the subcutaneous fat is present. One of the most important surgeries, for

its incidence, is the breast reconstruction surgery that follows a mastectomy. In this case, achieving a deformed shape

similar to the healthy breast is crucial. The reconstruction is most commonly made using autologous tissue, taken

from the patient’s abdomen. The amount of autologous tissue and its mechanical properties have a strong influence

on the shape of the reconstructed breast. In this work, the viscoelastic mechanical properties of the human adipose

tissue have been studied. Uniaxial compression stress relaxation tests were performed in adipose tissue specimens

extracted from the human abdomen. Two different viscoelastic models were used to fit to the experimental tests: a

quasi-linear viscoelastic (QLV) model and an internal variables viscoelastic (IVV) model; each one with four different

hyperelastic strain energy density functions to characterise the elastic response: a 5-terms polynomial function, a first

order Ogden function, an isotropic Gasser-Ogden-Holzapfel function and a combination of a neo-Hookean and an

exponential function. The IVV model with the Ogden function was the best combination to fit the experimental tests.

The viscoelastic properties are not important in the simulation of the static deformed shape of the breast, but they are

needed in a relaxation test performed under finite strain rate, particularly, to derive the long-term behaviour (as time

tends to infinity), needed to estimate the static deformed shape of the breast. The so obtained stiffness was compared

with previous results given in the literature for adipose tissue of different regions, which exhibited a wide dispersion.
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1. Introduction

The adipose tissue is involved in many surgeries. For instance, in plastic surgery, in which fat is always present as

subcutaneous adipose tissue or in liposuction, in which the aim is to eliminate it. In other cases, the adipose tissue is

removed from one anatomical site to be implanted in a different one. This is the case of breast reconstruction with

autologous tissue, such as for example the deep inferior epigastric artery perforator flap surgery (DIEAP). In this

surgery, after a mastectomy is performed in the women breast due to cancer, the breast is reconstructed using tissue

from the patient’s abdomen. The advantage of this technique against prosthetic breast reconstruction is that the risk

of rejection is minimized. Although DIEAP surgery is more expensive and needs a longer surgical time than breast

tissue expander and prostheses surgeries, recent studies have showed that the former is cost-effective in comparison

to the latter [33, 36]. One aim of the reconstruction is mimicking the deformed shape of the healthy breast and that

is influenced by the amount of implanted tissue and its mechanical properties. Therefore, the assessment of these

properties is key in Finite Element (FE) simulations of the surgery, which may help in pre-operative planning.

Many examples of these FE simulations can be found in the literature: to predict the location of a tumour [2, 43];

to simulate the compression of the breast between two plates, like in a mammography [2, 24, 41, 43, 49]; for image

registration, normally performing also a compression [23, 28–30, 38, 46, 47, 52]; to simulate the deformed shape

under gravity loads in standing position [18, 21, 42, 44, 45, 60]; to simulate a prosthesis insertion for augmentation

mammoplasty [35], etc. Moreover, some FE models addressing the mechanical properties of the fat of other anatom-

ical sites, like the calcaneal fat pad [37, 40], can be found in the literature. Probably, the main limitation of these

studies is the lack of a solid knowledge of the mechanical properties of the adipose tissue.

The adipose tissue is a loose connective tissue in which adipocytes are the main cellular component. Adipocytes

are separated and supported by connective tissue septa. The adipose tissue plays a fundamental role in energy home-

ostasis, but it also has a structural function, serving as a padding to protect other organs.

Most authors have considered the adipose tissue as isotropic, in computational simulations [2, 18, 23, 28–30, 35,

41–47, 49, 52, 60] as well as fitting experimental tests [9–11, 39, 48, 50, 51, 53, 55, 57]. Recently, Sommer et al.

[56] considered it as an anisotropic material with one family of fibres, by identifying a preferential direction in the

connective tissue that surrounds the adipocytes. However, those authors gave no reason to consider only one family of

fibres. Furthermore, they did not determine the fibre direction through histological studies, but in a phenomenological

way. Therefore, it is difficult to use this fibred model in a FE simulation. All the previously cited works considered

adipose tissue as an incompressible material. Finally, there are some studies in which the viscoelastic behaviour of

the adipose tissue has been clearly identified and described [56].

As stated above, there is not much information in the literature about the mechanical properties of the adipose tis-
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sue, let alone for the human adipose tissue. The most studied animal tissue has been porcine subdermal fat. Geerligs et

al. [20] performed shear tests on this tissue with a special focus on its viscoelastic behaviour. In the linear viscoelastic

regime, they analysed the storage and loss modulus and its dependency on temperature and frequency. They also

introduced a power law function to describe the frequency dependent behaviour and the stress relaxation behaviour.

Comley and Fleck [10, 11] performed shear and uniaxial compression tests in a wide range of strain rates. They

fitted a first order Ogden model to the experimental results. These authors also studied the toughness of this tissue

[12]. Sims et al. [55] performed indentation tests, fitting a neo-Hookean model with Prony series to model the time

dependent behaviour. Few authors have studied human adipose tissue. Bennett and Ker [3] carried out indentation

tests on the heel pad from amputated limbs, showing the force-displacement relation but not providing any model

to fit the experimental results. Miller-Young et al. [39] performed quasi-static and relaxation compression tests on

human cadaveric heel pads. They fitted the results using a Mooney-Rivlin model and an exponential decay to account

for the change in the material constants over time. Samani et al. performed indentation tests on human breast fat,

modelling it as a linear elastic material [48, 51] and as a hyperelastic material, modelled with a 5-terms polynomial

strain energy density (SED) function [50]. Chen and Weiland [9] carried out uniaxial tension tests on the orbital fat

of pigs and humans. They fitted the results with a linear elastic model. Then et al. [57] performed in vivo cyclic

indentation and relaxation tests in human gluteal tissue. They used a computational simulation to fit a quasi-linear

viscoelastic (QLV) model to the skin and fat (considered as a unique material) and the muscle (only the passive state).

Sommer et al. [56] carried out biaxial and shear tests on human abdominal adipose tissue and fitted the results using

the Gasser-Ogden-Holzapfel (GOH) hyperelastic model with one family of fibres.

As can be seen in those works, there are not many studies about human adipose tissue. Most of them were carried

out on the heel pad and only one in the abdominal fat, which is key for the breast reconstruction. Concerning the

viscoelastic properties, although some authors has highlighted the viscous behaviour of the adipose tissue, few works

have studied such properties. Therefore, there is little knowledge about the viscoelastic properties of human adipose

tissue, despite their importance in breast reconstruction.

The global objective of the project this study belongs to is to characterize the viscoelastic behaviour of the human

adipose tissue. The present work is a pilot study in which a model is proposed to simulate that behaviour: using

two different viscoelastic models and several SED functions for the elastic part of the response, in order to choose

the most adequate combination of models (visco and elastic). To the author’s knowledge, this is the first work that

investigates the viscoelastic properties of the human abdominal adipose tissue. These properties will aid to improve

the FE simulations of process in which this tissue is involved, for example, breast reconstruction with autologous

tissue.
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2. Materials and methods

2.1. Test protocol

2.1.1. Preparation of specimens

The adipose tissue samples were extracted from the abdomen of a 57 years old female patient subjected to a DIEAP

surgery. Specifically, they were extracted from a piece of adipose tissue removed from the abdomen (see figure 1), but

not eventually needed for the reconstruction.

The pieces were transported from the hospital to the laboratory in a cool-box with dry ice right after the surgery.

In less than 30 minutes the pieces were in the laboratory where the skin and the most superficial fat layer were

removed by cutting a slice of tissue (or flap) of approximately 5 mm in depth (see figure 1), ensuring that the piece

had approximately parallel faces. Depending on the thickness of the extracted abdominal flap, the height of the tested

specimens ranged from 5 to 10 mm, which is equal or lower than that used by Miller-Young et al. [39], and was limited

to that range to prevent specimens from buckling during the compression tests. The adipose tissue is very soft at room

temperature and, consequently, it was difficult to obtain a slice of parallel faces by cutting it at that temperature. Thus,

the slice was cut while the tissue was thawing.

The reconstruction surgery is quite long and, consequently, the mechanical test could not be performed on the

same day of extraction. Thus, the slice was frozen to avoid degradation of the tissue. It was wrapped in saline-soaked

gauze (saline solution: 0.9% w/v of NaCl); wrapped in a plastic film and introduced in hermetic vials to prevent

dehydration; and finally frozen at −20◦C until the following day, when the tests were carried out.

The mechanical tests were performed in cylindrical specimens, extracted from the slice by slowly pushing a

hollow punch of 19 mm in diameter against the slice. This extraction had to be done while the slice was frozen.

Otherwise, the final shape of the specimens was irregular and far from cylindrical, because the tissue was largely

deformed by the punch. A specimen with the final cylindrical shape can be seen in figure 2. Next, the specimen

was submerged in saline solution at room temperature and allowed to thaw. Then, it was digitally photographed

to measure its cross-sectional area through computerised image analysis. Placing ex-vivo adipose tissue specimens

under physiological temperature often leads to a significant change in specimen geometry, which may render the

measurement very difficult and inaccurate. Nonetheless, this was not the case in this study due to the small size of the

specimens.

2.1.2. Relaxation test

The specimens were subjected to a relaxation test under unconfined uniaxial compression between two platens. A

servo-hydraulic testing machine (858 Mini Bionix II, MTS, Eden Prairie, USA) was used to apply the compression.
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To ensure that the test was performed under physiologic conditions of humidity and temperature, the experimental

setup, shown in figure 3, included a methacrylate recipient filled with saline solution, that was kept at 37 ± 1 ◦C by

means of a heater and thermostat. This experimental setup was already used in a previous study in which the same

test was performed on temporomandibular articular discs [13].

The following procedure was followed to perform the tests. First, both platens of the testing machine were brought

into contact with the specimen’s top and bottom surface and at this point the displacement was zeroed. Then, the upper

platen was moved upward and some vaseline was spread on the surface of both platens to reduce friction and facilitate

the sliding of the specimens. Once the specimen was thawed, it was placed at the center of the inferior platen of the

testing machine. Unlike the previous work referred to above [13], here the specimen was not glued to the inferior

platen to prevent it from slipping off. In this case, gluing was not necessary to keep the specimens between the platens

and, besides, this allowed to get a stress state closer to uniaxial [14]. Next, the upper platen was moved downwards,

slowly approaching the sample, and visually positioned in contact with the top surface of the sample, as made in [39].

That allowed to measure the thickness of the specimen and to define the starting point of the test.

A preconditioning load was applied to each sample consisting in 20 cycles from 0% to 10% strain at 1 Hz, like

in [1]. This was followed by a ramp from 0% to 50% strain, like in [13, 39]. This final strain was maintained for 15

minutes, allowing for stress relaxation (see figure 4). The strain level used here corresponds to the breast compression

reported by some authors [24, 47]. Different strain rates were applied for the loading ramp: 50%, 60% and 70%/s.

The strain rate was limited to that range for practical reasons. The stresses were extremely sensitive to the strain rate

and particularly outside that range. To be precise, the specimens were severely damaged using faster rates, while the

resulting stresses were very small for slower rates. In order to keep a low measurement uncertainty for those slower

rates, a different procedure or equipment should have been used, but then the measurement uncertainty would have

appeared for the higher strain rates. So, to be able to measure the stresses using a single procedure/equipment, the

strain rates were limited to the range referred to above, which in turn was the range used by other authors [39].

The applied force, F(t), and the displacement of the upper platen u(t) were continuously recorded during the test.

The lower platen was fixed. From these data, the experimental Cauchy stress, σ, was estimated assuming uniaxial

compression and incompressibility, through:

σ(t) =
F(t) λ(t)

A0
(1)

where A0 is the initial cross-sectional area of the sample and λ(t) is the principal stretch in the loading direction, given

by:

λ(t) = 1 +
u(t)
L0

(2)
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being L0 the initial length of the specimen. In the case of compression u(t) < 0 and λ(t) < 1.The experimental stress

record was fitted using two different viscoelastic models described hereunder.

2.2. Data fitting algorithm: quasi-linear viscoelastic model

The quasi-linear viscoelastic (QLV) model has been widely used to model the behaviour of soft tissues [7, 13, 16, 17,

59]. For a general stretch history, λ = λ(t), the temporal evolution of stress is given by equation (3). Here, the stretch

history is given in figure 4, but it must be noted that the preconditioning cycles were dismissed from the stress record

(the finally fitted region is indicated in figure 4).

σ(t) =
∫ t

0
G(t − τ)

dT e(λ)
dλ

dλ(τ)
dτ

dτ (3)

The reduced stress relaxation function G(t) is given by a five-terms Prony series like in [34]:

G(t) = g∞ +
5∑

i=1

gi e−t/τi (4)

normalized such that:

G(0) = g∞ +
5∑

i=1

gi = 1 (5)

The relaxation time constants were fixed a priori to ensure the uniqueness of the fitted function G(t) [58]. Partic-

ularly, they were taken in decades: τ1 = 0.01 s, τ2 = 0.1 s, τ3 = 1 s, τ4 = 10 s and τ5 = 100 s as in [32]. This allows

a better understanding of the progress of relaxation through the different time scales.1

The elastic response function, T e(λ), provides the instantaneous stress response to a step increase in the uniaxial

stretch λ and was formulated here using fully incompressible hyperelastic models. Four SED functions were tried: a

polynomial function with 5 terms2,Ψpol, the first order Ogden model,ΨOg, the GOH model [19],ΨGOH, in its isotropic

version, and a combination of a neo-Hookean model and an exponential one, Ψexp (see table 1).

As explained in [13], the raw stress record, σ, was treated in two steps:

1. At the beginning of the test, the upper platen might not be in full contact with the sample, causing a zero or

even a positive initial slope in the stress-stretch curve of some samples, thus resulting in a spurious toe region.

This produced certain numerical problems in the fitting of the experimental stress. Therefore, this spurious toe

region was eliminated, with an iterative algorithm designed in [13]. Please refer to that work for further details.

1It must be noted that gi is approximately the proportion of stress relaxed between τi−1 and τi.
2It includes polynomial functions with less number of terms if any fitted constant is zero.
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Table 1: SED functions and the corresponding elastic response functions.

SED Elastic response function

Ψpol = C10(I1 − 3) +C01(I2 − 3)+ T e
pol = 2C10 (λ2 − 1

λ
) + 2C01 (λ − 1

λ2 ) + 6C11 (λ3 − λ2 − λ+

+C11(I1 − 3)(I2 − 3)+ + 1
λ
+ 1
λ2 −

1
λ3 ) + 4C20 (λ4 − 3λ2 + λ + 3

λ
− 2
λ2 )+

+C20(I1 − 3)2 +C02(I2 − 3)2 +4C02 (2λ2 − 3λ − 1
λ
+ 3
λ2 −

1
λ4 )

ΨOg =
µ

α
(λα1 + λ

α
2 + λ

α
3 − 3) T e

Og = µ (λα − 1

λ
α
2

)

ΨGOH = C10(I1 − 3) + k1
2k2

[ek2(I1−3)2
− 1] T e

GOH = 2(C10 + k1(λ2 + 2
λ
− 3) ek2(λ2+ 2

λ −3)2
) (λ2 − 1

λ
)

Ψexp = C10(I1 − 3) + k1
k2

[ek2(I1−3) − 1] T e
exp = 2(C10 + k1 ek2(λ2+ 2

λ −3)2
) (λ2 − 1

λ
)

2. The record was filtered using a moving average filter to improve the shape of the curve.

The resulting stress record, named here σ̃, was fitted to the analytical stress record, σ, given through equation (3)

by using a least squares method that minimizes the following quadratic error:

e =
N∑

i=1

(
σ̃(ti) − σ(ti)

)2
(6)

where N is the total number of points recorded during the relaxation test and ti is the time elapsed since the beginning

of the test at point i. As explained in [13], this least squares method is sensitive to the initial guess in nonlinear

problems like this. For this reason, the optimization was performed in two steps. First a genetic algorithm was used

to find a minimum of the quadratic error, e, which was used as the initial guess in the second step: the least squares

optimization. The genetic algorithm guarantees that the minimum is searched in the entire domain, not only locally

around the initial guess. However, genetic algorithms are heuristic methods and the minimum does not necessarily

fulfill the optimality condition. This condition was met in the second step, which was a local search around the

minimum found in the first step. The Trust Region Reflective algorithm implemented in Matlab was used for this

local search. The goodness of the least squares fitting was evaluated by means of the coefficient of variation, CV:

CV(%) =

√∑N
i=1

(
σ(ti) − σ̃(ti)

)2

N
µσ̃

× 100 (7)

where µσ̃ is the mean value of the temporal record σ̃(ti).
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2.3. Data fitting algorithm: internal variables viscoelastic (IVV) model

With the internal variables viscoelastic (IVV) model, the structure of the algorithm is the same that in the previous

section, though with different equations. This formulation was proposed in [25] and has been used to model isotropic

materials, along with an extension, proposed to model fibre-reinforced materials [26]. In the isotropic version [25],

the SED is decomposed in three terms:

ΨIVV = Ψ
∞
vol(J) + Ψ∞iso(C̄) +

m∑
j=1

Υ j (C̄,Γ j) (8)

describing the first two terms, respectively, the volumetric elastic response and the isochoric elastic response as t → ∞

or in sufficiently slow processes. The summation is the dissipative potential, responsible for the viscoelastic behaviour,

and depends on the isochoric deformation through the modified right Cauchy-Green tensor, C̄ = F̄T F̄, being F̄ =

J−1/3F the modified deformation gradient tensor, F the deformation gradient tensor and J the volume ratio. Thus, the

volumetric response remains fully elastic, with no contribution in the dissipative term. Γ j are the strain-like internal

variables. The well-known relation S = 2 ∂ΨIVV
∂C provides the second Piola-Kirchhoff stress tensor, which takes the

form:

S = S∞vol + S∞iso +

m∑
j=1

Q j (9)

with S∞vol and S∞iso the fully elastic volumetric and isochoric contributions to the second Piola-Kirchhoff stress tensor

respectively, and Q j the non-equilibrium stresses, whose evolution is given by:

Q̇ j +
Q j

τ j
= Ṡiso j (10)

where τ j is the j relaxation time, which plays the same role as τi in the QLV model, and Siso j is the isochoric second

Piola-Kirchhoff stress tensor, corresponding to the isochoric strain energy function Ψiso j and responsible for the j

relaxation process. The solution of the differential equation (10) for t ∈ (0,T ] is:

Q j = e−T/τ j Q j 0+ +

∫ t=T

t=0+
e−(T−t)/τ j Ṡiso j(t) dt (11)

where Q j 0+ is the instantaneous stress response appearing at t = 0+. The tensors Siso j are defined next. If the

viscoelastic medium is composed of identical polymer chains (or collagen fibres in the case of adipose tissue), Ψiso j

is replaceable by the strain energy function Ψ∞iso [25], by assuming:
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Ψiso j(C̄) = β∞j Ψ
∞
iso(C̄) (12)

or equivalently

Siso j = β
∞
j S∞iso(C̄) (13)

The β∞j constants are dimensionless strain energy factors, which play the same role as gi in the QLV model. S∞iso

can be obtained in two different ways, depending on the structure of the SED function. If this is expressed in terms of

the invariants of the modified Cauchy-Green tensors, Īi with i = 1, 2, 3 (polynomial, exponential and GOH), then:

S∞iso = J−2/3P : S̄∞ (14)

where P = I − 1/3 C−1 ⊗ C is the projection tensor, I is the fourth-order unit tensor, and S̄∞ is the fictitious second

Piola-Kirchhoff stress tensor, given by:

S̄∞ = 2
(
∂Ψ∞iso

∂Ī1
+ Ī1
∂Ψ∞iso

∂Ī2

)
I − 2

∂Ψ∞iso

∂Ī2
C̄ (15)

In case the SED function depends on the modified principal stretches, λ̄a, S∞iso can be directly calculated as:

S∞iso =
∑
a=1

1
λa

∂Ψ∞iso(λ̄a)
∂λa

N̂a ⊗ N̂a (16)

being N̂a the direction of the principal stretches.

The Cauchy stress tensor is finally obtained from equation (9), by using the relation σ = J−1FSFT :

σ = σ∞vol + σ
∞
iso +

m∑
j=1

J−1FQ jFT = σ∞ +
m∑

j=1

J−1FQ jFT (17)

The formulation presented above is intended for the general treatment of compressible materials. For incompress-

ible materials, as assumed here, J = 1, the modified tensors are equal to the original ones (F̄ = F, C̄ = C) and the

volumetric SED is equal to zero. In these terms, σ∞vol is replaced by a hydrostatic pressure, which must be worked out

from the boundary conditions. Under these premises, σ∞ turns out to be:
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σ∞ =


0 0 0

0 0 0

0 0 T e(λ)

 (18)

if the load is applied in direction 3, with T e(λ) the same function given in table 1 for the different SED functions.

For the non-equilibrium forces Q j, 5 terms were selected as in the QLV model (i.e. j = 1, ..., 5). As previously,

the relaxation time constants, τ j, were fixed a priori to ensure the uniqueness of the fitted set of constants and taken

in the same decades: τ1 = 0.01 s, τ2 = 0.1 s, τ3 = 1 s, τ4 = 10 s and τ5 = 100 s.

Also, the same four SED functions used with the QLV model were used with the IVV model. With the stretch

temporal evolution, λ = λ(t), given by Eq. (2), σ∞ can be calculated through Eq. (18). Additionally, using Eqs.

(13)-(16) Siso j can be calculated to be used in Eq. (11). The derivative and integral in (11) were obtained following

the algorithm presented in [25] (pages 290-293).

The preconditioning cycles were not considered in the fitting algorithm. For the implementation of these equations,

the algorithm proposed in [27] has been followed. Please refer to that work for further details.

The treatment of the experimental stress record (elimination of the spurious toe region and filtering of the record),

the least squares fitting method and the evaluation of the fitting goodness through the CV were exactly the same that

with the QLV model.

2.4. Performed tests

Following the test protocol and the fitting algorithm presented before, the viscoelastic properties of the human ab-

dominal fat were determined. The number of specimens used for each strain rate was: 47 for 50%/s, 45 for 60%/s

and 46 for 70%/s.

First, the four proposed SED functions were compared to check which one fitted best the experimental curves for

each viscoelastic model. The goodness of fit was assessed through CV (eq.(7)) and the mean CV was calculated for

each SED function using the whole set of specimens (47+45+46). The lowest CV determines the best SED function.

Then, the best model was validated by randomly selecting 10% of the specimens of each strain rate (5+4+5), to make

up three subsets called validation subsets. The constants fitted for each of these subsets were compared with the

medians and interquartile ranges (IQR) of the constants fitted for the remaining 90% of the corresponding strain rate,

or control subset.

The validity of both viscoelastic schemes, QLV and IVV, was then verified, again for the best SED function. This

validity is based on the independence of the fitted material constants with the strain rate. So, the different sets of
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constants for each strain rate were compared using a statistical test to detect significant differences. The whole set of

specimens was used in this comparison.

3. Results

3.1. Goodness of fit of the hyperelastic models with the QLV model

Figure 5 compares a typical experimental stress record, σ̃, with the fitting curves for each of the proposed SED

functions. In figure 6 a detail of the experimental and fitted stresses obtained during the loading ramp can be seen.

The mean of the CV s, obtained for the whole set of specimens is presented in table 2 for each SED function. The

CV s were evaluated for the whole test and for the loading ramp separately.

The polynomial one is a general hyperelastic model, in the sense that it can lead to other models, differently

named in the literature, for example, the Mooney-Rivlin model if C11 = C20 = C02 = 0. The fit with the polynomial

model was carried out without imposing restrictions to the material constants. For this reason, some of those con-

stants resulted zero for certain specimens. Besides, those zero constants were not systematically the same for all the

specimens. Thus, the average model resulted in a five terms polynomial model, but the individual models for each

specimen could be different. Some of them were better modelled with the Mooney-Rivlin scheme or other particular

forms of the polynomial model. In other words, the five terms polynomial model does not represent the behaviour of

all the specimens on a general basis and can be considered inconsistent, despite producing the lowest CV .

The same occurred to the isotropic GOH model. In many specimens, the fit led to k2 = 0. In the limit:

lim
k2→0
ΨGOH = C10(I1 − 3) +

k1

2
(I1 − 3)2 (19)

which is a particular case of the 5 terms polynomial SED function. This is the reason why the GOH and the polynomial

models fitted the experimental curves very similarly. Thus, the isotropic GOH model was also considered inconsistent

to model the adipose tissue. In view of the foregoing and the average CV , the Ogden model was selected as the best

one (most consistent) to represent the behaviour of the adipose tissue from those ones chosen a priori.

Table 2: Coefficient of variation of the fitting with the QLV model and the different SED functions.

Model Whole test CV (%) Loading ramp CV (%)

Exponential 4.16 19.88

Ogden 4.05 18.70

GOH 3.06 11.49

Polynomial 2.92 10.67
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Table 3: Median and IQR of the QLV constants for the different groups, using the Ogden model and the control subsets (90% of the specimens of
each group).

Strain rate Quartile µ (kPa) α g1 g2 g3 g4 g5 g∞ CVQ1 or Q3 (%)

50% /s
Q1 3.260 7.632 0.533 0.190 0.039 0.017 0.017 0.013 69.2%

Median 4.780 8.485 0.654 0.222 0.049 0.024 0.023 0.018 —–
Q3 9.308 9.625 0.719 0.316 0.071 0.034 0.033 0.022 229.3%

60% /s
Q1 2.721 7.358 0.558 0.176 0.038 0.018 0.017 0.013 84.7%

Median 6.529 8.361 0.674 0.218 0.049 0.023 0.024 0.017 —–
Q3 10.467 9.382 0.730 0.316 0.063 0.031 0.030 0.023 229.8%

70% /s
Q1 3.093 7.456 0.545 0.195 0.042 0.021 0.020 0.014 66.2%

Median 4.546 8.437 0.616 0.242 0.049 0.026 0.025 0.018 —–
Q3 8.544 9.501 0.708 0.285 0.067 0.038 0.036 0.027 324.4%

3.2. Validity of the QLV model. Part I

The combination QLV+Ogden was validated in two ways. In this section, the specimens of the validation subsets were

compared with those of the control subsets. Table 3 shows the medians and IQRs of each constant corresponding to

these control subsets. It was found that 52% of the constants fitted for the validation subsets lied in the IQRs presented

in the table. This result is logical, since, theoretically, 50% of the specimens should lie within the IQR.

Next, it was checked whether the medians given in table 3 fit well the results of the validation subsets. Each

strain rate group was checked separately. So, the constants of each median were used in equation (3) to provide the

stress evolution σmed(t), which should represent an average stress evolution at a certain strain rate. This evolution was

compared at every instant ti with the experimental stress record of specimen j of the validation subset, σ̃ j, to give the

following coefficient of variation:

CV j (%) =

√∑N
i=1

(
σmed(ti) − σ̃ j(ti)

)2

N
µσ̃

× 100 (20)

The mean of CV j for all the specimens of the validation subsets (including the three strain rates altogether) was

85.9%. This value is so high due to the wide scattering of the results. To estimate this dispersion let us define the

following coefficient of variation:

CVQ1(%) =

√∑N
i=1

(
σQ1(ti) − σmed(ti)

)2

N
µσmed

× 100 (21)

where the stress evolution obtained by using the set of constants Q1, σQ1, is again compared with σmed(t), like in
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(20). An analogous expression is used to define CVQ3. The values of these coefficients are shown in table 3 for each

strain rate. It can be noted that CVQ3 is especially high, which is due to some abnormally rigid specimens. However,

the mean of CV j of the validation subsets (85.9%) is very close to CVQ1, and lies within the normal dispersion of the

mechanical properties of living tissues.

3.3. Validity of the QLV model. Part II

In this section, the validity of the viscoelastic formulation was proved by checking if the fitted constants were

independent of the strain rate. For this purpose, the whole set of specimens were used in a multivariate analysis of

variance. The categorical independent variable (IV) was the strain rate with three levels: 50%/s, 60%/s and 70%/s.

The dependent continuous variables (DVs) were the seven QLV constants: µ, α, of the Ogden model; and g1, g2,

g3, g4 and g5 of the Prony series. The constant g∞ was not included in the statistical analysis because it is a linear

combination of the other Prony constants, gi, due to the normalization condition (5).

To check if the material constants were independent of the strain rate, a non parametric MANOVA (NMANOVA)

test was performed, given that the stress does not vary linearly with the constant α1. Moreover, to apply a parametric

MANOVA some assumptions, such as multinormality, need to be checked beforehand. This multinormality was

checked for each independent group using the test developed by Cardoso de Oliveira and Ferreira [6]. This test was

not significant for the 50% /s group (p = .098) and 60% /s group (p = .160), but it was for the 70% /s group (p < .001)

and, thus, multinormality was violated, making it necessary to perform a non-parametric MANOVA (NMANOVA).

The NMANOVA test performed in this work is a multivariate extension of the Kruskal-Wallis test, developed

by Katz and McSweeney [31]. Initially, the test was carried out for the 7 aforementioned DVs. No significant

differences were found for the three groups compared (p = .819). Nonetheless, some authors state that the MANOVA

type tests are only indicated if the dependent variables are correlated, but not so strongly correlated (|R| > .85) that

multicollinearity may exist [15, 22]. In this case, constants g1 and g2 were strongly correlated and the same occurred

to g3, g4 and g5 (Spearman |R| > .85 in both cases). So, to be sure of the previous conclusion, the test was repeated

after eliminating the correlated variables, that is, for the following 4 DVs: µ, α, g1 and g3. The conclusion was the

same: there were no statistical differences between the groups (p = .997). Therefore, the material constants of the

QLV model can be considered independent of the strain rate.

3.4. Goodness of fit of the hyperelastic models with the IVV model

The same analysis presented before was repeated for the IVV model. Figure 7 compares one of the experimental

stress record, σ̃, the same shown in figures 5 and 6, with the fitting curves for each of the proposed SED functions. In

1For this reason, the median of α represents the sample better than the mean.

13



Table 4: Coefficient of variation of the fitting with the IVV model and the different SED functions.

Model Whole curve CV (%) Loading ramp CV (%)

Exponential 3.81 17.66

Ogden 3.77 16.99

GOH 3.04 11.36

Polynomial 3.14 12.27

figure 8 a detail of the experimental and fitted stresses obtained during the loading ramp can be seen.

The mean of the CV s obtained for the whole set of specimens is presented in table 4 for each SED function.

Again, the CV was evaluated for the whole test and for the loading ramp separately.

As in the QLV model, the fit with the polynomial and the isotropic GOH SED functions produced some zero

constants in certain specimens. For the same reason discussed before, the Ogden model was selected as the best one

to represent the behaviour of the adipose tissue from those chosen a priori.

3.5. Validity of the IVV model. Part I

As in sections 3.2 and 3.3, the combination IVV+Ogden was validated in two ways. First, by comparing the constants

fitted for the validation subsets with those of the control subsets, whose medians and IQRs are presented in table 5.

Now, 46% of the constants fitted for the validation subsets lied within the IQRs presented in the table.

The coefficients CVQ1 and CVQ3 defined in section 3.2 are also given in table 5 for this model. The average of

CV j for the validation subsets was 94.7% in this case, a little higher than the values of CVQ1.

3.6. Validity of the IVV model. Part II

In this section, the validity of the viscoelastic model was proved by checking if the fitted constants were inde-

pendent of the strain rate. Again, the whole set of specimens were used in a multivariate analysis of variance. A

NMANOVA test was also carried out since the stress does not vary linearly with the constant α. Moreover, multi-

normality was checked for each independent group using the test developed by Cardoso de Oliveira and Ferreira [6].

This test was not significant for the 50% /s group (p = .534) and 70% /s group (p = .205), but it was for the 60% /s

group (p = .003) and, thus, multinormality was violated, making it necessary to perform a non-parametric MANOVA

(NMANOVA). The strain rate was the categorical IV, with three levels (50%/s, 60%/s and 70%/s); and 7 DVs: µ, α,

β∞1 , β∞2 , β∞3 , β∞4 and β∞5 . The correlation between the DVs was checked, but they were not highly correlated (Spearman

|R| < .85), so that all of them were considered in the analysis.

The NMANOVA test developed by Katz and McSweeney [31] showed no significant differences between the three

groups compared (p = .314). Therefore, the material constants could be considered independent of the strain rate.
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Table 5: Median and IQR of the IVV constants for the different groups, using the Ogden model and the control subsets (90% of the specimens of
each group)

Strain rate Quartile µ (kPa) α β∞
1

β∞
2

β∞
3

β∞
4

β∞
5

CVQ1 or Q3 (%)

50% /s
Q1 0.067 7.345 39.216 9.966 3.170 1.682 1.715 63.3 %

Median 0.102 8.467 69.022 13.221 3.939 1.993 1.910 —–
Q3 0.162 9.527 106.125 20.079 4.947 2.491 2.178 168.1 %

60% /s
Q1 0.066 6.964 43.159 9.702 3.278 1.672 1.746 71.8 %

Median 0.119 8.252 67.712 12.734 3.837 1.957 1.940 —–
Q3 0.197 9.424 101.241 18.395 4.933 2.383 2.237 191.0 %

70% /s
Q1 0.069 7.110 43.140 8.543 3.208 1.689 1.791 68.1 %

Median 0.121 8.218 62.563 11.315 3.688 2.024 1.965 —–
Q3 0.169 9.293 94.787 17.984 4.247 2.539 2.296 137.0 %

4. Discussion

The presence of a toe region, typical of soft tissues; can be observed in the experimental curves of figures 5 and 6. In

normal toe regions the slope of the stress record is initially very small and increases very slightly, for example, in the

articular discs of the temporomandibular joint [13]. However, in the present case, the toe region was not very wide

and the loading ramp was quickly noticed by an increase in the compression stress. The relaxation was very quick,

with a high percentage (around 70%) of the stress relaxed just a few seconds after the peak and more than 90% of the

peak stress relaxed after 15 minutes. Comparing these stress relaxation curves with those obtained by Miller-Young

et al. [39], who tested specimens of the human calcaneal fat pad in compression, the peak stress of the present work

was of the same order of magnitude and, in both, 75% of the stress was relaxed within the first minute.

It has also been observed, as pointed out by Carniel et al. [8], that the influence of the strain rate on the ratio

between the peak stress and the non-relaxed stress (the stress remaining as t → ∞) is very important. The higher the

strain rate, the faster the loading ramp and, therefore, the larger is the difference between those two stresses. These

authors also emphasised the importance of relaxation during the loading ramp, and the error that can be committed by

assuming that the test is an ideal relaxation test (strain applied in a step increase) and fitting only the relaxation phase,

after the peak stress is reached. The whole test, including the ramp and the relaxation therein, must be accounted for

in the fit, as done in the present study.

It can be seen in figures 5 and 6, that the fit with the QLV model was quite accurate for the selected specimen. In

fact, it was equally accurate for all the specimens and very similar for the four SED functions. It can be also noticed

that the isotropic GOH and the 5 terms polynomial models fit the experimental curve slightly better than the Ogden

and exponential functios, although not too much.
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For the QLV model, the best SED function in terms of goodness of fit, CV , was the polynomial one, closely

followed by the GOH function, and a bit farther by the Ogden and exponential functions, in this order (see table 2).

In all cases, the CV was quite low for the fit of the complete stress record. Nonetheless, as discussed before, the

polynomial and GOH SED functions were dismissed since they failed to fit all the specimens with the same general

equation. For that reason, the Ogden model was eventually selected as the best SED function from those tried in this

work.

The high values obtained for the median of g1 and g2 (see table 3), corresponding to the relaxation times τ1 = 0.01

and τ2 = 0.1, highlight the fast relaxation of the specimens. The sum of both (around 90%) represents the percentage

of the peak stress relaxed up to tenths of a second.

Regarding the IVV model, it can be seen in figures 7 and 8 that the fit was also very accurate for the selected

specimen, which was representative of the general trend. Though not shown, it was equally accurate for all the

specimens. The four SED functions produced similar results, but the best fitting was achieved with the GOH function,

closely followed by the polynomial function and a bit farther away by the Ogden and exponential ones, in this order,

as can be deduced from CV (see Table 4).

The goodness of the fit, in terms of CV , was slightly better with the IVV model than with the QLV model for

all the SED functions, except for the polynomial model, in which case it was only slightly worse (compare Tables 2

and 4). As in the QLV model, both the polynomial and GOH functions failed to fit all the specimens with the same

general equation and, thus, the Ogden model was finally selected as the best (most consistent) SED function for the

IVV model, from those tried in this work.

The parameters β∞j are analogous to the Prony constants g j in the IVV model and are related to the percentage of

stress relaxed up to the relaxation time τ j. It can be seen in table 5 how the median of β∞j decrease with j, e.g. the

relaxation occurred very quickly as was also deduced from the QLV model.

The validity of both schemes, QLV and IVV, in combination with the Ogden model was proven in two ways. First,

by randomly selecting 10% of the specimens of each strain rate (validation subsets) and comparing their constants

with those of the remaining 90% of the corresponding strain rate (control subsets). So, it was found that around 50%

of the former constants were within the IQR of the latter ones, as expected.

Moreover, the median set of constants obtained for the control subset of each strain rate was used to define

an average stress evolution, σmed, which was compared with the experimental stress records of the corresponding

validation subset. The individual difference between those stress records was measured by a coefficient of variation

CV j (see Eq. (20)), which was around 90% in average. This high value is only partially explained by the intrinsic

dispersion of the mechanical properties of living tissues. In fact, it is so high due to the presence of some abnormally

16



Table 6: Median and interquartile range of the IVV constants for the human abdominal adipose tissue using the Ogden model and the whole set of
specimens.

Quartile µ (kPa) α β∞
1

β∞
2

β∞
3

β∞
4

β∞
5

Q1 0.069 7.105 43.995 8.993 3.221 1.681 1.732
Median 0.115 8.215 66.663 12.761 3.836 1.988 1.950

Q3 0.176 9.437 99.0763 18.872 4.790 2.447 2.238

rigid specimens in the validation subsets, being the stresses in those specimens considerably higher than in the median

stress record.

The presence of abnormally rigid specimens was not exclusive to the validation subsets and could also be seen in

the control subsets, whose dispersion was very wide, as demonstrated by the high values of CVQ3. The explanation for

the existence of these rigid specimens is unknown and it should be further investigated whether it is due to a particular

composition or microstructure.

The second way to validate the viscoelastic models consisted in checking that the material constants were inde-

pendent of the strain rate applied in the test. Given that the IVV model produced a slightly better fitting than QLV

model, it can be concluded that the IVV model with an Ogden SED function for the elastic response was the best

choice to characterise the abdominal adipose tissue, from the models tried in this work. Therefore, and due to the

independence of the strain rate, the median and IQR of each constant were calculated for the whole set of specimens

and are presented in table 6.

The goodness of fit of the IVV model was just slightly better, but it has other conceptual advantages with respect

to the QLV model that need to be mentioned. First, it is a fully non-linear model, while QLV is quasi-linear, in the

sense that it assumes the validity of the Boltzmann superposition principle [17], not needed in the IVV model. Second,

it is valid for three dimensional load cases, while the QLV model, in the version used here, is only valid for uniaxial

stress states. Some 3D extensions have been proposed (see [54] for example), but they involved a great number of

constants. Apart from this, both models uncouple the viscous and elastic parts of the behaviour; the QLV model with

a multiplicative decomposition of the stress and the IVV model with an additive decomposition of the SED function,

with a specific term for the energy dissipation, which is more meaningful from a physical point of view.

In view of the values obtained for g∞, the length of experiments, 15 minutes, seems enough to capture the stress

relaxation of the specimens. g∞ can be interpreted as the proportion of stress that remains to be relaxed after the last

relaxation time, τ5 = 100 s in this case. Table 3 shows that g∞ is around 0.02, so that only 2% of the stresses remain

to be relaxed after the first minutes.

As stated in section 2.1 the specimens were frozen during 1 day at most. Freezing of tissues may damage their
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microstructure under certain circumstances, compromising their structural integrity and altering the measured me-

chanical properties. The influence of freezing storage time at −20◦C on the viscoelastic behaviour of the articular

disc has been recently analyzed [5] to find that it has no effect if the storage time is shorter than one month. To the

authors’ knowledge, no similar study has been performed on adipose tissue, which could have a different sensitivity

to freezing. However, the storage time is so much shorter in this case that no influence is expected.

The analyzed specimens were extracted from the same patient and this is a limitation of the study, but it was justi-

fied in a pilot study like the present one for the following reason. In a previous work [4], the viscoelastic properties of

the adipose tissue of two patients were compared, finding significant differences between them. That result highlights

the specificity of the mechanical properties of the adipose tissue of each individual. The main objective of the present

study was validating the use of certain viscoelastic models, which implied comparing the material constants fitted

for different strain rates. So, the only variable whose effect was of interest was the strain rate and other sources of

scattering, such as inter-individual differences, should be eliminated from the statistical analysis, otherwise they could

have hidden the main effect of the strain rate.

Those inter-individual differences might be due to multiple factors, such as age, collagen content, body mass

index, etc., which might also have an influence on the validity of the proposed model. The origin of inter-individual

differences is still unknown and that complicates the design of experiments. Thus, future studies must tackle two

different topics for a complete characterization of the viscoelastic behaviour of the adipose tissue: 1) to prove the

validity of the present model on a general basis, by proving the independence of the constants with the strain rate for

a significantly larger sample of individuals and 2) to identify the origin of inter-individual differences.

Finally, it is important to note the limited relevance of knowing the viscoelastic properties of the adipose tissue

in clinical situations. In most of the applications where this tissue is involved and particularly in the deformation

of the reconstructed breast, the dynamic effects are normally irrelevant. The hyperelastic function is the key part of

the model, because it determines the organ shape under static loads, while the viscoelastic part only affects dynamic

behaviour, in vibrations or impacts, for example. Notwithstanding the foregoing, the viscoelastic part is important

in experimental tests, since they are performed under finite strain rates to reduce the experimentation time. In other

words, the viscoelastic behaviour must be taken into account in the experimental tests, but mainly to be able to extract

the long-term behaviour, given by the hyperelastic function, which is what matters from a clinical point of view.

5. Conclusion

In the present work, the viscoelastic behaviour of the human adipose tissue has been investigated. Stress relaxation

tests at different strain rates were carried out and fitted with two different models, the quasi-linear viscoelastic and
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the internal variables viscoelastic models. The same four SED functions were used to describe the elastic response in

both cases. It was found that all of them provided a good fit of the experimental results, being the internal variables

viscoelastic model with an Ogden SED function the most consistent option. Moreover, the validity of both viscoelastic

models was checked by statistically comparing the constants fitted for different strain rates and finding no significant

differences between those fitted constants.
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[42] A. Pérez del Palomar, B. Calvo, J. Herrero, and et al. A finite element model to accurately predict real deformations of the breast. Physics in

Medicine and Biology, 30:1089–1097, 2008.

[43] S. Pianigiani, L. Ruggiero, and B. Innocenti. An anthropometric-based subject-specific finite element model for the human breast for predict-

ing large deformations. Frontiers in Bioengineering and Biotechnology, 3(201):1–9, 2015.

[44] V. Rajagopal, A. Lee, J. H. Chung, and et al. Towards tracking breast cancer across medical images using subject-specific biomechanical

models. Medical Image Computing and Computer Assisted Intervention, Part I, LNCS 4791:651–658, 2007.

[45] V. Rajagopal, A. Lee, J. H. Chung, and et al. Creating individual-specific biomechanical models of the breast for medical image analysis.

Academic Radiology, 15:1425–1436, 2008.

[46] N. Ruiter, T. Muller, R. Stotzka, and et al. Automatic image matching for breast cancer diagnostics by a 3-D deformation of the mamma.

Biomedizinische Technik, 47:644–647, 2002.

[47] N. Ruiter, R. Stotzka, T. Muller, and et al. Model-based registration of X-ray mammograms and MR images of the female breast. IEEE

transactions on nuclear science, 53:204–211, 2006.

[48] A. Samani, J. Bishop, C. Luginbuhl, and et al. Measuring the elastic modulus of ex vivo small tissue samples. Physics in Medicine and

Biology, 48:2183–2198, 2003.

[49] A. Samani, J. Bishop, M. J. Yaffe, and et al. Biomechanical 3-D finite element modelling of the human breast using MRI data. IEEE

Transactions on Medical Imaging, 20:271–279, 2001.

21



[50] A. Samani and D. Plewes. A method to measure the hyperelastic parameters of ex vivo breast tissue samples. Physics in Medicine and

Biology, 49:4395–4405, 2004.

[51] A. Samani, J. Zubovits, and D. Plewes. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based

investigation of 169 samples. Physics in Medicine and Biology, 52:1565–1576, 2007.

[52] J. A. Schnabel, C. Tanner, A. D. Castellano-Smith, and et al. Validation of nonrigid image registration using finite-element methods: appli-

cation to breast MR images. IEEE Transactions on Medical Imaging, 22:238–247, 2003.

[53] B. Seyfi, N. Fatouraee, and A. Samani. A novel micro-to-macro structural approach for mechanical characterization of adipose tissue

extracellular matrix. Journal of the Mechanical Behaviour of Biomedical Materials, 77:140–147, 2018.

[54] P. A. Shoemaker, D. Scheider, M. C. Lee, and Y. C. Fung. A constitutive model for two-dimensional soft tissues and its application to

experimental data. Journal of Biomechanics, 19 (6):695–702, 1986.

[55] A. M. Sims, T. Stait-Gardner, L. Fong, and et al. Elastic and viscoelastic properties of porcine subdermal fat using MRI and inverse FEA.

Biomechanics and Modeling in Mechanobiology, 9:703–711, 2010.

[56] G. Sommer, M. Eder, L. Kovacs, and et al. Multiaxial mechanical properties and constitutive modeling of human adipose tissue: a basis for

preoperative simulations in plastic and reconstructive surgery. Acta Biomaterialia, 9 (11):9036–9048, 2013.

[57] C. Then, T. J. Vogl, and G. Silber. Method for characterizing viscoelasticity of human gluteal tissue. Journal of Biomechanics, 45:1252–1258,

2012.

[58] K. L. Troyer, D. J. Estep, and C. M. Puttlitz. Viscoelastic effects during loading play an integral role in soft tissue mechanics. Acta

Biomaterialia, 8:234–243, 2012.

[59] S. L-Y. Woo, B.R. Simon, S. C. Kuej, and et al. Quasi-linear viscoelastic properties of normal cartilage. Journal of Biomechanical Engineer-

ing, 102:85–90, 1980.

[60] M. Zain-Ul-Abdein, F. Morestin, L. Bouten, and et al. Numerical simulation of breast deformation under static conditions. Computer Methods

in Biomechanics and Biomedical Enginnering, 16(S1):50–51, 2013.

22



Figure 1: Piece of abdominal adipose tissue from which the specimens were extracted. The most superficial layer (in light red) was
removed to obtain a sample with parallel faces.

Figure 2: Cylindrical specimen, top and lateral view.

Figure 3: Scheme of the experimental setup: (1) loading cell, (2) sample, (3) upper platen, (4) temperature controller, (5) acquisition
system.
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Figure 4: Scheme of the evolution of the stretch with time in the relaxation test.
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Figure 5: Example of an experimental stress record fitted with the QLV model and different SED functions for the elastic response.
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Figure 6: Detail of figure 5 corresponding to the the loading ramp.
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Figure 7: Example of an experimental stress record fitted with the IVV model and different SED functions for the elastic response.
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Figure 8: Detail of figure 7 corresponding to the the loading ramp.
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