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Abstract- The results of feature selection methods have a great 
influence on the success of data mining processes, especially 
when the data sets have high dimensionality. In order to find 
the optimal result from feature selection methods, we should 
check each possible subset of features to obtain the precision 
on classification, i.e., an exhaustive search through the search 
space. However, it is an unfeasible task due to its computational 
complexity. In this paper we propose a novel method of feature 
selection based on bootstrapping techniques. Our approach shows 
that it is not necessary to try every subset of features, but 
only a very small subset of combinations to achieve the same 
performance as the exhaustive approach. The experiments have 
been carried out using very high--dimensional datasets (thousands 
of features) and they show that it is possible to maintain 
the precision at the same time that the complexity is reduced 
substantially. 

l. INTRODUCTION

Toe success of the application of data mining algorithms is 
due to different factors. Toe quality of input data, for example, 
is one of these factors, in such a way that if data contain 
irrelevant or redundant information, or incorporate noise, then 
the learning process will be more difficult throughout the 
search space. 

Feature selection methods allow to identify and eliminate 
part of the irrelevant or redundant information. This type of 
process lies in selecting a subset of optimum features, from 
input data, which maximizes the efficiency of data mining 
algorithm over the initial information. 

A feature selection process is divided into four steps [l]: 
determining the possible features subset to carry out the prob­
lem representation, evaluating the features subset generated in 
previous step, checking if selected subset satisfies the search 
stopping criteria, and verifying the quality of features subset 
selected. 

These processes can be classified in different ways depend­
ing on the step. If we analyze the selection function (second 
step), feature selection processes can be classified into three 
categories [2]: filters, wrappers [3], [4] and hybrid models 
[5]. In the filter model the selection procedure is fulfilled 
independently of the evaluation function (classification). The 
filter methods usually employ one of the following evaluation 
measures: distance, information, dependency and consistency. 
Examples of systems using these measures are: ReliefS [6], 
DTM [7], POE&AAC [8] and SOAP [9]. Toe wrapper model 
combines the search in the feature space with the learning 
algorithm, evaluating feature subsets and selecting the most 
appropriate one. They are costlier than the filters [3], although 

they usually obtain better results. The hybrid model attempts to 
take advantage of the two models by exploiting their different 
evaluation criteria in different search stages. 

Independently of the evaluation function, the feature se­
lection methods must carry out a search among the different 
candidates of features subsets. Toe search can be [2]: complete 
[10], sequential [11] or random. Toe complete search (or 
exhaustive) guarantees to find the optimum result according 
to the evaluation criterion. In contrast, it is computationally 
expensive (8(2n)), which makes that it is unapproachable 
when the number of features (n) is large. The sequential 
search, with cost 8(n2), is not complete and might not find 
the optimal subsets, because it is based on previous ranking, 
which has been produced by other techniques([7], [9], etc.). 
The random search, which does not assure the optimal either, 
starts with a randomly selected subset and proceeds with a 
sequential search (i.e., random-start [10]) or generating the 
next subset in a completely random manner (for example, Las 
Vegas algorithm [12]). 

Toe bootstrap [13], in the context of classification, lies in 
replaying the whole classification experiment a large number 
of times and estimating the prediction accuracy from these 
replicated experiments. Thus, to estimate the error rate from 
few samples, a large number B of bootstrap replicated samples 
are created, each sample being a replication (randomly chosen) 
of the original sample. That is, a random sample of size m is 
taken from the original sample by sampling with replacement. 
Sampling with replacement means that sorne data points might 
be omitted. In addition, sorne data points will appear more than 
once in the bootstrap sample. Each bootstrap sample is used 
to build a classification rule which is then used to predict the 
classes of those original data that were unused in the training 
set. This gives one an estimate of the error rate for each 
bootstrap sample. The average error rate over all bootstrap 
samples are then combined to provide an estimated error rate 
for the original rule. 

Toe exhaustive search is unfeasible in those cases in which 
the input data contain a large number of attributes. Thus, to 
compare our approach with the exhaustive one, we are going to 
limit the complete search according to the number of features 
which take part at each step, i.e., instead of analysing each 
possible combination of features, we are going to generate 
those combinations whose size (number of features involved) 
is not greater than a parameter value (K). 

In this work, we propase a novel feature selection method 
that classifies the features in descending order according to 
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Fig. l. Feature Selection Process Proposed. 

their relevances. Our approach is based on the idea of reducing 
the cost of an exhaustive approach without compromising the 

precision of classification. With this aim, our method uses a 
random search based on the bootstrapping technique (sampling 

with replacement). 

In broad outlines, the reminder of the paper is organized 

as follows. In Section 11, the characteristics of our approach 
are described in detail. Later, in Section III, we discuss the 

results of our experiments and compare them to the exhaustive 
method (until size 3). At last, the conclusions are summarized 

in Section IV. 

11. DESCRIPTION

Toe feature selection process presented in this paper can 

be divided into four steps: generating of features subset 
(generation), evaluating of each subset (evaluation), updating 
the weight of each feature (update) and ordering the features 

by their weights (arder). In Figure 1 these steps are depicted 
over an artificial dataset with five features. 

In the first step, the different subsets of features are gen­
erated. Each subset contains a maximum number of features 

which are randomly selected. They are chosen in such a way 

that the same attribute is not twice in the subset. Each subset 
will be generated independently, so it is possible to find two 

identical subsets. Toe number of generated subsets (Ne) and 

the maximum number of features in this (Na) are provided 

by the user. In Figure 1, these values are 6 subsets and 4 
attributes as maximum, respectively. Toe three first subsets 

generated have been the following: an initial with two features 

(attribute2 and attribute4), with one (attributel), and with three 

(attributel, attribute3 and attribute5). 

Toe evaluation step lies in classifying the original data with 
each feature subset generated in the previous step. The goal is 

to assign a value of merit to each subset, which is the average 

percentage of the classifications. As a result of this step, a 
goodness of 80 has been assigned to the first subset in Figure 

1. The highest goodness generated have been 95 to the last
subset, while the minimum, with value 75, is shared by the

second and fourth subsets.

Feature weights are assigned in the update step. The weight 
of a feature f (P1 ) is the average prediction accuracy of those 

subsets which contain f. For example, the attributel in Figurel 

is present in the second, third, fifth and sixth subsets, so its 
weight is: Fa, = b2+b3!b5+b6 = 86.25, where bi denotes the
goodness of subset í. 

Toe last step consists in ranking all the features in descend­

ing order according to their weights. Toe final ranking in the 

example ofFigure 1 has been: attribute5, attribute2, attributel, 

attribute4 and attribute3. 

Toe main difference presented in the proposed method with 
respect to the exhaustive one resides in the first step. For 

example, an exhaustive method with K = l must generate 

one subset for each feature in the original data set. However, 
if we choose a value K = 2, it should generate a subset by 

each possible pair of features. So, the first step depends on 

the value of K for exhaustive methods, whereas the random 

methods only depends on the number of experiments we wish 

to do and the maximum number of features we wish to include 
in. 

Toe overall approach is illustrated in Figure 2. The al­

gorithm is divided into two functions. The first, Gener­

ate_Ranking, is the main function and it has the following 
input parameters: the classification method which will be used 

to evaluate each selected subset of features U; the subset of 

features X; the number of experiments to carry out Ne and 

the maximum number of features that will take part in each 
experiment Na. The only output parameter is a list L that 

corresponds to the feature ranking to be returned. In this way, 

Generate_Ranking classifies the features in descending order 

according to their weights. To calculate the weight of value, for 
each feature f, the average of correct classification ( U) over 

those subsets containing f is calculated. These subsets of fea­

tures are generated with the Generate_Combination_Attributes 

function (stepl). According to the methodology described 
above, we could classify our approach into ranking techniques 
based on wrapper models. 

111. EXPERIMENTS

In order to show the performance of our approach with 
respect to the exhaustive method, we have selected four 

very high dimensional datasets (thousands of features). Toe 
characteristics of these datasets, which comprise gene expres­
sion data, are shown in Table l. Features represent genes, 

and examples represent conditions, so that, in each pair 



Function Generate_Ranking 
Inputs: 

U: Evaluation Criteria; 
X: Attributes; 
Ne: num. Experiments; 
Na: num. Attributes 

Output: 
L: Attribute List ( ranking) 

begin 
S := Generate_Combination_Attributes(X, Ne, Na) 
foreach subset of attributes Si E S 

C := Evaluate(Si, U) 
Attribute_Update(Si, C) 

end foreach 
L = Sort(X) 

end Generate_Ranking 

Function Generate_ Combination_Attributes 
Inputs: 

X: Attributes; 
Ne: Num. Experiments; 
Na: maximum Num. Attributes 

Output: 
L: List of subsets of attributes 

begin 
for i = 1 to Ne 

n := Generate_Index_Randomly(l, Na) 
Si := Choose_Attributes(X, n) 
L := L+Si 

end for 

end Geuerate Combiuatiou Attributes 

Fig. 2. Algorithm to generate the ranking of attributes. 

(genei,condítíonj ), genei expression level is stored under 
condítíonj. 

Ref 

Dataset_C [14] 

Colon [15] 

Leukemia [16] 

Lymphoma [17] 

TABLE I 

DATA SETS. 

Acronym 

dsc 

col 

leuk 

lym 

Characteristics 

nºEx nºAtt classes 
60 7129 2 

62 2000 2 

38 7129 2 

96 4026 9 

After generating the ranking for a dataset, we need to 
evaluate how good is that ranking. This evaluation is based on 
the concept of area under the learning curve (AUC). In general 
terms, each point of the curve (x, y) is calculated by looking 
at the number of features that take part in the classification of 
the original data set, where 'x' means the number of features 
and 'y' means the classification rate. The number of features 
selected for the calculation of each point is gradually increased 
by one until the given number of features. 

Toe algorithm to evaluate the ranking is depicted in Figure 
3. It is composed by just a function called Evaluate_Ranking.
This function has three input parameters: feature ranking to
be evaluated (La), classification method that will be used ( U),
and the whole number of features (Na). Toe output parameter
is a list (Le) which contains at each position the value of
the learning curve, i.e., the percentage of correct classification
(using the criterion U). Toe number of features begins with

Function Evaluate_Ranking 
Inputs: 

La: List of features(ranking to be evaluated); 
U: Evaluation Criteria; 
Nae: nº Features to evaluate 

Output: 
Le: List of evaluations 

begin 

ListAux := {} 
Le:={} 
for i = 1 until Nae 

at := feature i of L 
ListAux := ListAux + {att} 
C := Classify(ListAux, U) 
Le(i) := C 

end for 
end Evaluate_Ranking 

Fig. 3. Algorithm to evaluate the ranking. 

value one and ends with a given number (Nae). Features are 
selected according to the order indicated in the ranking (La). 

When those values are calculated, the curve is represented, 
so that, X-axis represents the number of features and Y -axis 
represents the evaluation of the classification obtained for that 
number of features. As the learning curve is used to calculate 
the area under it, this will be normalized, i.e., the values in the 
X-axis are normalized using linear normalization in [0,1]. In
this way, a ranking is better than another one when its AUC
is greater than that of the other one.

Toe AUCs, result of evaluating the first one hundred features 
of rankings generated using our approach and exhaustive 
methods (with K = l and K = 2) over data set mentioned 
in Table 1, are shown in Table 11. The configuration in the 
generation process and in the ranking evaluation has been 3-
NN ([18]) as the method of classification and 5-fold cross­
validation, as the validation criteria. Toe value of Na has been 
limited to 0.4 % for the random method, what provides a range 
between 8 and 28, depending on the dataset. Toe exhaustive 
method is run three times, all of them using the mentioned 
configuration, but with a different number of experiments: 
equivalent to the number of features in data (M) for the first 
execution (1 x M); double for the second one (2 x M); and 
triple for the third one (3 x M). 

In Table 11, as well as showing the results of evaluating the 
ranking generated by different methods, it is also presented 
the number of steps needed for each one of them. In addition, 
the best AUC obtained for each data set is highlighted in bold 
type. For example, for data set dsc (nervous system tumor), 
the exhaustive method K = l has needed 7129 steps to 
obtain a 67.5% of classification success; whereas for the next 
value (K = 2), it has needed 25407756 steps to achieve a 
classification rate of 83.39. If we pay attention to the results 
obtained by the proposed method, we can observe that using 
the same number of steps than K = l we get a value (81.83) 
much better than to the one obtained by it (67.5) and very close 
to the value returned by K = 2 (83.39). It has been necessary 
14258 steps to get a value greater than or equal to the last one, 
providing an excellent result 83.73%. In short, only 0.056% of 



TABLE II 

EXPERIMENTAL RESULTS. 

Exhaustive Search 

K=l K=2 

BD n°Step AUC n°Step AUC 

dsc 7129 67.5 25407756 83.39 

col 2000 82.77 1999000 84.23 

leuk 7129 95.02 25407756 95.53 

lym 4026 78.84 8102325 78.82 

experiments has been necessary. The best result for the data set 
dsc has been 84.1 which was produced by the method based 
on random search (3 x M), using 21387 steps. Comparing 

the results obtained by the proposed method to the exhaustive 
method, it is obvious that the more steps are run, the better 
results are achieved. Toe 3 x M method has obtained the best 
result for each data set, except for col. Toe best result obtained 
with the last data set has been provided by K = 2. To explain 
the reason of this result, we must study the dependencies that 
our method has, with its only two input parameters (number 
of steps to do and maximum number of features at each step ). 
Anyway, note that K=2 has needed 1999000 steps to produce 
84.23, whereas 3 x M has obtained a very similar value (84.06) 
with only 0.3% of the steps. 

With the intention of studying the dependencies of our 
method with its input parameters, different experiments on 
data sets enumerated in Table I have been carried out. Toe 

configuration for the evaluation and for the ranking generation 
has been the same that the one used in previous experiments, 

although in this case, the maximum number of features in 
each case has been ranged between 1 and 5, increasing by 0.1. 
The number of steps has increased up to 6085200 ((1 +2+3)* 

numFeatures for each dataset x 50 "different Na values") as a 
result of having applied the study three times per each data set, 
changing the number of experiments done for 1 x M, 2 x M 

and 3 x M. Since we have used 5-fold cross-validation, the 
total number of models has been 3042000 (5 folds x number 

of experiments). 

In short, 600 different rankings, evaluated by the algorithm 
depicted in Figure 3, have been obtained. The evaluation 
results are represented in Figure 4 which is divided into four 

graphs, each of them belongs to a different data set. These 
results are shown by ranking evaluation tendencies obtained 
for the Na variations, so that the maximum number of features 
used by the method is indicated in the X-axis and the AUC 
obtained after evaluating the ranking is plotted in the Y -axis. 

The study of these tendencies has been divided according to 

the numbers of experiments done by the proposed method, so 
that for each one of the graphs, there are three curves related 
to the method tendencies, with 1 x M, 2 x M and 3 x M 

experiments, respectively. 

Besides those curves, in order to compare our method with 

the exhaustive one, in each graph AUC, the tendencies are also 
represented as a result of evaluating the rankings obtained by 
the exhaustive method with K = l and K = 2. Note that the 

rankings generated by the exhaustive method do not depend 

Raudom Search 

l*M 2*M 3*M 

n°Step AUC n°Step AUC n°Step AUC 

7129 81.83 14258 83.73 21387 84.1 

2000 83.05 4000 83.87 6000 84.06 

7129 96.22 14258 96.48 21387 96.69 

4026 84.98 8052 86.43 12078 87.47 

on Na and, therefore, their tendencies will be represented by 
a O slope straight lines, whose values are shown in Table 11, 

in columns "K=l" and K=2" for each data set. 

We must indicate that the tendency with K = l for DataSet­
C has not been represented for the sake of clarity. From those 
graphs we can see that depending on the chosen data set, 

the tendencies are increasing or decreasing. Toe correlation 
degree among the dataset features will partially determine 

the slope, which will be descending or ascending. From this 

reasoning the value of Na should be inversely proportional to 

the correlation degree. Observing the other input value of our 
method (Ne), we can say that the bigger it is, the better result 
we will get. This is so as the values of our method tendencies 
increase as more steps are taken into account. 

Toe efficiency of both the exhaustive method and our 
approach is also compared. For Leukemia and Lymphoma, 

our approach improves the exhaustive method, whereas for 
the rest, the result depends on the number of features chosen 

(Na). However for DataSet-C, we can observe that in case 
of choosing a number of experiments equal to 3 x M, and 
setting Na lower than 1.3%, our approach will perform better. 

On the contrary, for Colon dataset, we should use a value 
for Na greater than 2.8%, independently of the number of 
experiments. In case of choosing Ne = 3 * M, then Na could 

take values over 0.9%. 

Figure 5 is presented to demonstrate that from the tenden­
cies of the different methods, the efficiency can be compared. 
The AUCs are shown as a result of applying the evaluation 

algorithm ( depicted in Figure 3) o ver the rankings generated 
by the different methods (random with 1 x M, 2 x M and 3 x M 

and exhaustive one with K = l and K = 2) to DataSet-C. The 

number of selected features (according to the order indicated 
in the ranking to be evaluated) is found in the X-axis and 

classification rate is depicted in the Y -axis. 

In Figure 5 are shown two graphs, whose configuration 
about those methods only differs in the value of Na, the rest 
of that configuration is the same as the one used in previous 
experiments. Toe selected values for Na have been those 
that make the learning curve of method 3 x M inferior and 

superior to K = 2, in particular, 0.4 and 4.3, respectively. 
Therefore, it is possible to appreciate that the classification 
of the first 100 features are evaluated in comparison with the 
classification obtained by K = 2, and they agree with the 
tendencies because they are superior in case of Na = 0.4 
(from 30 attributes) and lower in the other case (the curve for 
3 x M is completely under the curve K = 2). 
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Fig. 4. Tendencies. 
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Fig. 5. DataSet-C. Delimiting curves. 

In summary, attending to comparisons done between boot­

strapping based method and exhaustive one, we can state 

that the proposed method generates features rankings whose 

evaluation is similar (and even improves) to those generated 

by the exhaustive method, however using much less number 

of steps. 

IV. CüNCLUSIONS 

In this paper we introduce a new feature selection algorithm 

to reduce the computational cost of an exhaustive feature 

selection method without compromising its efficiency. The 

search is based on the bootstrapping technique, which carries 

out a random selection with replacement. 

After analizing our approach using four very high di­

mensional datasets, we conclude that our approach produces 

similar results to the exhaustive one with very low number 



of steps. This reduction ranges around the ratio 1 : 100000, 

that is, per each 100000 iterations of the exhaustive method, 

our method needs only one to achieve the same performance, 

which is an important improvement on the computational cost. 
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