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Abstract

In this work we aim to study and better understand the coefficients of the plethystic op-
eration on the symmetric functions. We will try to be as self-contained as possible, beginning
with the basic definitions of symmetric functions and some proven formulas on them. We
give a condition on the positivity of the coefficient [sµ](pn ◦ sλ) of the plethysm between a
power sum function pn and a Schur function sλ, namely, λ ⊆ µ. We then study the coeffi-
cients of the Schur expansion of a plethystic family of functions sn1 ◦ sn2 ◦ ... ◦ snk =

∑
aλsλ

when λ is a partition of the form (α, 2β , 1γ) (hook+column). We completely characterize
the case s2 ◦ sn ◦ sm. Fixing a γ, and letting β vary, we associate a sequence of coefficients
(a0, a1, ..., aβ , ...) to each function f , and prove that f = s2 ◦ s2 ◦ · · · s2 ◦ sn ◦ sm always yields
a symmetric sequence. Finally, we make some remarks and conjectures regarding unimodality
and asymptotic normality of these sequences.

Keywords: symmetric functions, Littlewood-Richardson coefficients, plethysm
MSC: 05E05, 05E18, 05A17

Resumen

En este trabajo pretendemos estudiar y entender la operación pletística sobre las funciones
simétricas. Intentaremos ser autocontenidos, empezando por las definiciones más básicas de
qué es una función simétrica y enunciando resultados conocidos sobre ellas. Damos una condi-
ción de positividad del coeficiente [sµ](pn◦sλ) del pletismo entre una función suma de potencias
pn y una función de Schur sλ, concretamente λ ⊆ µ. Estudiaremos seguidamente la expansión
sobre la base de Schur the una familia pletística de funciones sn1 ◦ sn2 ◦ ... ◦ snk =

∑
aλsλ

para particiones λ de la forma (α, 2β , 1γ) (gancho+columna). Caracterizamos completa-
mente el caso s2 ◦ sn ◦ sm. Fijando un γ y dejando β variar, asociamos una sucesión finita
(a0, a1, ..., aβ , ...) de coeficientes a cada función f , y probamos que f = s2 ◦ s2 ◦ · · · s2 ◦ sn ◦ sm
siempre está asociada a una sucesión simétrica. Finalmente, damos algunos comentarios y
conjeturas sobre la unimodalidad y la normalidad asintótica de dichas sucesiones.

Résumé

Dans ce travail nous avons l’intention d’étudier et de mieux comprendre le pléthysme
des fonctions symétriques. Nous commençons par donner les définitions les plus basiques
des fonctions symétriques, et par énoncer les principaux résultats les concernant, pour en
donner une présentation complète. Nous donnons une condition sur la positivité du coefficient
[sµ](pn◦sλ) du pléthysme d’une fonction symétrique somme de puissances pn avec une fonction
de Schur sλ, plus concrètement, λ ⊆ µ. Puis, nous étudions le développement dans la base
de Schur d’une famille de pléthysmes sn1 ◦ sn2 ◦ ... ◦ snk =

∑
aλsλ quand λ est une partition

de la forme (α, 2β , 1γ) (équerre+colonne). Nous donnons une formule explicite pour le cas
s2 ◦ sn ◦ sm. En fixant γ et en faisant varier β, on peut associer à chaque fonction f une
suite finie (a0, a1, ..., aβ , ...) de ses coefficients. Nous montrons que les suites associées à f =
s2 ◦s2 ◦· · · s2 ◦sn ◦sm sont toujours symétriques. Finalement, nous faisons quelques remarques
sur l’unimodalité et normalité asymptotique de ces suites.
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1 Introduction

Algebraic combinatorics and combinatorial algebra are the fields of mathematics which apply
algebraic methods to problems in combinatorics and vice versa. Perhaps the main link between
the two fields is representation theory. Let us explore a problem in algebraic combinatorics as to
motivate this work.

To a given combinatorial object, one can associate certain algebraic structures. For instance,
consider the set L of leaves of the tree T of Figure 1, together with the inherited structure of the
tree. With the given interpretation of T as a family tree, L is the set of me, my siblings and my
cousins.

L := {leaves of T}

T = GRANDMOTHER

MOTHER AUNT

ME BROTHER SISTER COUSIN 1 COUSIN 2 COUSIN 3

Figure 1: A rooted unlabeled tree T and a possible interpretation as a family tree.

One algebraic structure associated to this tree is the structure-preserving permutation group
on its leaves, which we denote by Aut(L). The word structure-preserving is key. It means that we
can’t shuffle around the leaves as we please. In plain words, there are many legal ways to draw the
family tree – we can swap the node me with the node brother – but not all ways are legal – we
can’t swap the node me with the node grandmother.

We can swap the node mother with the node aunt, if we also move me, my siblings and my
cousins accordingly. The ways of permuting the set {mother, aunt} give us a copy of S2 inside
Aut(L). Inside each of those two clusters of nodes, we now find a copy of S3 (corresponding to
the permutations on {me, brother, sister} and {cousin 1, cousin 2, cousin 3} respectively).
The resulting group is called the wreath product1 of S3 and S2, and denoted by Aut(L) = S3 o S2.

Representation theory of finite groups now associates each element of S3 o S2 to a certain linear
transformation of the vector space C[L] = spanC{l ∈ L}. The vector subspace which is invariant
under all these transformations is a representation of Aut(L), which in this case is S2(S3(C[L])).
The wreath product of symmetric groups is translated to composition of Schur functors Sn when
talking in the language of representations [4, 19, 29, 32].

There exist a class of special representations which are the irreducible representations, {Sλ}λ.
Any given representation can be decomposed into irreducibles. Our goal in this work is to study
the decomposition into irreducibles of the composition of Schur functors. For example, for our
tree, we want to be able to understand the numbers aλ appearing in the following equation:

S2(S3(C[L])) =
⊕
λ

aλS
λ(C[L]).

However, we won’t be working with representations. We will be translating the problem into
the language of symmetric functions. We can do this two ways: via the Frobenius characteristic
map (ch) [1, 27] or via Pólya’s cycle index (Z(·)) [7, 32].

1Pólya called it the Kranz product [7] in [23].
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S3 o S2 S2(S3(C[L]))

s2 ◦ s3

1↑S6
(·)

Z(·)

ch

Either way, what we obtain is called the plethysm of Schur symmetric functions s2 and s3. The
previous equation is translated to

s2 ◦ s3 =
∑
λ

aλsλ.

The coefficients aλ are left unchanged. They are called plethystic coefficients. Although their defi-
nition is rather natural, the understanding and computing of plethystic coefficients is a notoriously
hard problem, featured in Stanley’s list of major open problems in algebraic combinatorics [33].
Plethysm was first introduced in the context of invariant theory [16], and has recently been the
focus of intense investigations [8, 13, 20].

We will be focusing on a particular case of irreducible representation of GL(V ) which is of
central importance in mathematics: Sn(V ), the space of homogeneous polynomials of degree k
in n variables. In this work we investigate the plethystic coefficients appearing in the iterated
plethysm Sn1(Sn2(. . . (Snk(V )))). An instance of this problem is the famous Foulkes’s conjecture
[9]. It claims that for any a ≥ b, the coefficient of Sλ(V ) in Sa(Sb(W )) is always greater than or
equal to its coefficient in Sb(Sa(W )).

In [15], Langley and Remmel studied the decomposition into irreducibles of the representation
Sa(Sb(V )). Since this problem quickly becomes intractable, they restricted the question to a
particular family of partitions that they called n-hook+column partitions. For n = 1, it turns out
that one can naturally index the hook+column partitions by two integers, making it possible to
associate several integer sequences to any representation. The resulting sequences, that we call
hook+column sequences, are the center of this work.

In section 4, we compute explicitly the hook+column sequences of S2(Sa(Sb(V ))), generalizing
the result of Langley and Remmel. We show that the hook+column sequences of S2(S2(. . . (S2(V )))
are symmetric (Theorem 4.28). In order to prove this symmetry, we construct a bijection λ 7→ λR

such that the multiset Dλ of partitions appearing in the expansion of sλ over the Schur basis is
invariant under our bijection. This is reminiscent of a recent work by Grinberg [10].

As a preparation for our work, in section 3 we present some general lemmas that bound the
sizes of the parts of the partitions λ such that the Sλ(V ) appears with positive multiplicity in
Sµ(V ) ⊗ Sν(V ). This follows the spirit of the recently achieved and hightly celebrated result by
Paget and Wildom [22], and improves already known bounds [37]. Thanks to the SXP rule [17, 36],
we get a beautiful lower bound on the partitions λ such that sλ appears in pn ◦ sµ.

We also provide a Sage notebook in which every important result and example from sections
3 and 4 are coded, and which hopefully showcases the importance of fast formulas for plethystic
coefficients, in contrast to the current available computation methods.
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2 Preliminary Concepts
We will introduce the subject of symmetric functions following Stanley’s and Sam’s expositions in
[28, 32]. Let Sn be the symmetric group on n letters. It acts on Z[x1, ..., xn] by

σf(x1, ..., xn) = f(xσ(1), ..., xσ(n)).

We define the ring of symmetric functions on n letters as the fixed subset Λ(n) = {f : σf = f ∀σ}
of Z[x1, ..., xn]. Similarly, let S∞ be the group of permutations on N and R be the ring of formal
series of bounded degree. Hence, elements of R can be infinite sums, but only in a finite number
of degrees. Then, S∞ acts on R in the same way as Sn on Z[x1, ..., xn]. The ring of symmetric
functions is the fixed subset

Λ := {f : σf = f ∀σ} ⊆ R.

One can check that this is a subring of R. In fact, Λ is a (graded) Z-algebra. We will note by
Λd(n) (resp. Λd) the subset of functions of degree d in Λ(n) (resp. Λ). That is, Λ(n) =

⊕
d Λd(n)

and Λ =
⊕

d Λd.

Definition 2.1. Here are some notorious families in Λ. Set p0 = e0 = h0 = 1 and let, for k ≥ 1,

• Power sum symmetric functions: pk =
∑
i≥1 x

k
i .

• Elementary symmetric functions: ek =
∑
i1<i2<···<ik xi1xi2 · · ·xik .

• Completely homogeneous symmetric functions: hk =
∑
i1≤i2≤···≤ik xi1xi2 · · ·xik .

As an exercise, check that h2 = e2 + p2.

2.1 Partitions
A partition λ of n ∈ N is a (weakly) decreasing sequence (λ1, λ2, ...) of natural numbers such that∑
λi = n. Note that it must necessarily stabilize to 0.
Most often, we will omit the trail of zeros, writing (4, 2, 2, 2) instead of (4, 2, 2, 2, 0, 0, ...). Also,

we may write (4, 23) instead of (4, 2, 2, 2). We write λ ` n and say that the size of λ is |λ| = n.
We define the length l(λ) of λ as the number of nonzero entries. Let mi(λ) denote the number of
entries of λ that are equal to i; the multiplicity of i in λ.

Usually, we try to visualize partitions, using what is called a Young diagram (or sometimes
a tabloid or a Ferrers diagram). Using the French convention1, this is a bottom-left justified set of
boxes (cells) in which the lower-most row has λ1 cells, the next one λ2 and so on.

λ = (6, 3, 1) =
R(λ)

Figure 2: An example of a Young diagram of a partition λ and its region.

Starting with the bottom-left corner as (0,0), we will use coordinates to refer to the cells,
following the usual cartesian order of (column, row). We can then consider the subset of N2 made

1The French convention for Young diagrams is to draw bottom-left justified boxes. It is certainly more natural
when using coordinates to refer to the cells. With the English convention, the cells are top-left justified, and the
coordinate system is matrix-like [19].

3



of the points which are the coordinates of some cell of λ. We call this the region of λ, and denote
it by R(λ). Refer to Figure 2 for an example. Note that throughout this work we represent the
region of λ as a subset of the plane in which each integer point in R(λ) is the bottom-left corner
of a 1-by-1 square.

We can also do some basic operations on these diagrams. The first one we will introduce is the
transpose λ′ of λ, which is the result of flipping λ over its main diagonal.

λ = ⇒ λ′ =

Figure 3: The transpose of a partition.

Next, we will define two orderings on the set of partitions: We will say that λ is a subset of
µ, and denote it by λ ⊆ µ, if λi ≤ µi for all i ∈ N. The dominance order will let λ E µ if
λ1 + · · ·+ λi ≤ µ1 + · · ·µi for all i. It will be important to notice that for two partitions µ and λ
of the same size, we have λ E µ if and only if µ′ E λ′ (see [19, 32]).

Define the sum of two partitions λ and µ as the partition λ + µ = (λ1 + µ1, λ2 + µ2, ...). For
a given n ∈ N, let nλ = λ+ λ+ · · ·+ λ (n times). Define the union of two partitions λ and µ as
the partition with rows λ1, λ2, ... and µ1, µ2, ... in descending order.

λ = ; µ = ⇒ λ+ µ = ; λ ∪ µ = .

Figure 4: Sum and union of partitions.

One property that we will use throughout this work is that λ′ + µ′ = (λ ∪ µ)′. As an exercise,
check that this equality does indeed hold.

Note 2.2. We have that λ ⊆ µ if and only if R(λ) ⊆ R(µ). However, please note that λ ∪ µ is
drastically different to the partition whose region is R(λ)∪R(µ), where the union is the usual union
of sets.

We can also generalize the concept of partition to skew partitions [19, 32], which are given
by the “inverse” of a sum: if µ ⊆ λ, then the Young diagram of λ/µ is defined as the diagram of λ
but with the cells of µ removed. Refer to Figure 5, where we let λ and µ be defined as in Figure
4.

µ ⊆ λ+ µ then (λ+ µ)/µ = .

Figure 5: Reading the row sizes of (λ+ µ)/µ, one can recover λ.

Some special types of partitions for this work need to be defined. Classically, a lot of work has
been centered around row partitions (partitions of shape (α)) and column partitions (partitions
of shape (1γ)). The next most complicated type of partition is a hook, which is a partition of
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shape (α, 1γ). Only recently [15], the protagonist partitions of this thesis were studied. They are
called hook+columns, and they are partitions of shape (α, 2β , 1γ). Notice that letting β = γ = 0
we recover a row partition, and the same can be said of column partitions and hooks by letting
β = 0, α = 1 and β = 0 respectively.

2.2 Bases of Λ

Partitions help us encode different bases of the algebra of symmetric functions. Recall from 2.1
the definition of pk, ek and hk. For any partition λ, let pλ be the product pλ1 · · · pλl(λ) . Define eλ
and hλ similarly. We get that {eλ}λ is a basis of Λ as a Z-module, and so is {hλ}λ, whereas {pλ}λ
defines only a basis as a Q-module (see [28] or example 2.4).

But there is another basis of Λ that is far more important to study, Schur functions. Indeed,
even though these functions will be more difficult to define, they are “irreducible” in some sense.
They open a window between the study of symmetric functions and representation theory, thanks
to the Frobenius characteristic map. This bijective map sends the irreducible representations of the
symmetric group to Schur functions. And so, the results on this field shed light on representation
theory. An introduction to said relationship can be found at [1].

To define them, we need to first talk about (Young) tableaux.
A tableau of shape λ is a map T : R(λ) → N, which we represent by writing the number

T (c, r) inside of cell (c, r). A semi standard Young tableau (SSYT) is a tableau of shape λ
such that the entries are weakly increasing going left to right in each row, and strictly increasing
going from bottom to top in each column. The weight of T is the sequence

(
m1(T ),m2(T ), ...

)
where mi(T ) is the number of cells with entry i.

≤< ;
5 5
2 4
1 2 3 3

Figure 6: On the left, the rules of semi standard tableaux. On the right, an example of a SSYT.

The Schur function of shape λ is defined as sλ =
∑
xT where the sum is over all SSYT T of

shape λ, and where xT = x
m1(T )
1 x

m2(T )
2 · · · . Sometimes, xT is also called the weight of T . It is not

clear from the definition that Schur functions are symmetric functions. A proof of this fact can be
found in [27].

Example 2.3. Let us compute an explicit expression for s2,1. There are four distinct types of
tableaux of shape , namely:

3
1 2

2
1 3

2
1 2

2
1 1

s = s2,1 = 2x1x2x3 + x1x
2
2 + x21x2 + · · ·

We sum over the weights of those tableaux and all their possible symmetries.
Example 2.4. Let us compute the expression of s2 over the power sum basis. There are two types
of tableaux of shape , with corresponding weights x21 and x1x2. And thus,

s = s2 = x21 + x1x2 + x22 + x1x3 + x2x3 + · · ·

It is an homogeneous function of degree 2, so only p1,1 and p2 can appear in its expansion. Those
two functions are

p = p1,1 = p1 · p1 = (x1 + x2 + · · · ) · (x1 + x2 + · · · ) = x21 + 2x1x2 + x22 + · · · ;

p = p2 = x21 + x22 + x23 + · · · .
So, we have the equality s2 = 1

2
(p1,1 + p2).
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As announced, {sλ}λ is a Z-algebra basis2 of Λ [27]. Given the inherited importance of decom-
posing symmetric functions into “irreducibles”, we will need to define the support

supp(f) := {λ : [sλ]f 6= 0}

for any symmetric function f , where [sλ]f denotes the coefficient of sλ in the decomposition of f
over the Schur basis. We will usually write [λ]f instead of [sλ]f , in order to simplify our notation.

One can also define the skew Schur functions, {sλ/µ}λ,µ, indexed by skew partitions , as
sλ/µ =

∑
xT , again summing over all SSYT T of shape λ/µ (where the SSYT rules apply to

consecutive cells).
Understanding how all these basis coexist, and how to change a function from one basis to

another, is a core subject in the theory of symmetric functions. We need to state some well-known
results that we will use in this work. See [28] for an in-depth study of basis changes.

Theorem 2.5. Let zν be the number
∏
imi(ν)! · imi(ν). We have the following identities:

hn =
∑
ν`n

pν
zν

; en =
∑
ν`n

(−1)l(ν) pν
zν
.

Theorem 2.6 (Jacobi-Trudi identity). Set hi = 0 = ei if i ≤ 0. Then,

sλ = det(hλi−i+j)
|λ|
i,j = det(eλ′i−i+j)

|λ|
i,j .

2.3 n-core and n-quotient
Another two constructions involving partitions are the n-core and n-quotient. For any n ∈ N,
given the quotient and the core, one can always construct the original partition [19]. That is, they
encode all the information of the partition.

We will construct them two ways. In this section, we will construct them the classical way
(although avoiding the abstractness of the definition in [19]) and in the next section, introducing
the abacus, following [12].

One more definition is needed. Removing a rim hook (or border strip) of length m from a
partition λ is choosing a subset µ of λ such that λ/µ is a connected skew partition of size m and
such that it contains no 2× 2 subdiagram (a 2 by 2 square of cells in the Young diagram).

Definition 2.7 (n-quotient). Given a number n ∈ N, and a partition λ (of any size), the n-
quotient is defined as the n-tuple

λ∗ = (λ(0), λ(1), ..., λ(n−1)),

where λ(i) is made of the cells (k, j) in λ such that ck := λ′k+k+1 ≡ i (n) and rj := λj +j ≡ i (n).

Note that ck only depends on the column and rj on the row.

Definition 2.8 (n-core). Given a number n ∈ N, and a partition λ (of any number), the n-core
is defined as the partition λ̃ which remains after removing (step by step) every rim hook of length
n from λ (in no particular order3).

These definitions of n-quotient and n-core are not exactly the classical ones. However, they
have an advantage: they give us an algorithm to compute them. The algorithm to compute the
n-quotient is the following:

2In particular, the fact that [sλ](sµsν) is an integer comes from Theorem 2.13.
3The order does not matter [19].
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1. Draw the Young diagram of λ.

2. Construct the tableau (k, j) 7→ (k + j) (mod n). In other words, T (k, j) is the orthogonal
distance from (k, j) to the (0, 0) cell, modulo n.

3. Now, rj is the right-most entry in row j, whereas ck is the top-most entry of column k plus
1 and modulo n.

4. Forget the entries of the tableau, and look for all cells with a i = 0 both as its column number
and as its row number. These cells will form a partition, namely λ(0).

5. Repeat the previous step for i = 1, ..., n− 1 to compute λ(1), ..., λ(n−1).

Example 2.9. Let n = 2 and λ = (6, 3, 3, 1). Then,

1
0 1 0
1 0 1
0 1 0 1 0 1

⇒

0 0 1 0 1 0
1

• • 0
• 1
• • 1

⇒ λ∗ =
(
λ(0) = , λ(1) =

)
;

⇒ λ̃ = .

We will take a little detour here, and compute the 2-quotient of an arbitrary hook+column
ν = (α, 2β , 1γ), as we will need it later. In fact, we will only need to consider the case when
N = |ν| is even. This will become apparent in section 4. The first three steps of the discussed
algorithm will result in something resembling Figure 7.

1 0 1 0 1 0
0 0
1 1
0 1 1
1 0 0
0 1 0 1 0 1 1

Figure 7: The first steps of the 2-quotient algorithm performed to ν = (6, 22, 12).

As we supposed N = |ν| to be even, we will have α ≡ γ modulo 2. We are somewhat restricted:
r0 ≡ α+ 1 mod 2,

ri ≡ i+ 1 mod 2 for 1 ≤ i ≤ β,
ri ≡ i mod 2 for β + 1 ≤ i.

;


c0 ≡ α+ β + 1 mod 2,

c1 ≡ β mod 2,

cj ≡ j + 1 mod 2 for 2 ≤ j.

We may now ask ourselves which cells (k, j) verify (ck, rj) = (0, 0) or (1, 1). These cells will form
ν(0) and ν(1) respectively. As everything depends on the parity of two variables (α, β), we are left
with four cases. As to not clutter the page with symbols and operations, we went ahead and record
the results in Table 1.

In particular, when we let γ = 0, then α ≡ 0 modulo 2 and we get

ν∗ =

((
1d

β
2 e
)
,
(N

2
− β, 1b

β
2 c
))

.
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α mod 2 β mod 2 ν(0) ν(1)

0 0
(

1
β
2

) (
α
2 , 1

β+γ
2

)
0 1

(
1
β+γ+1

2

) (
α
2 , 1

β−1
2

)
1 0

(
α+1

2 , 2
β
2 , 1

γ−1
2

)
∅

1 1
(
α−3

2

) (
2
β−1
2 , 1

γ−1
2

)
Table 1: The 2-quotient of a hook+column ν = (α, 2β , γ) of even size.

2.4 Abaci

Another way of computing the n-core and n-quotient requires the notion of a balanced abacus,
which was first introduced in [12]. That the two constructions coincide will be apparent. A
balanced abacus is a function w : Z→ {0, 1} such that

w(n) = 1 for n� 0

w(n) = 0 for n� 0

#{n ≥ 0 : w(n) = 1} = #{n < 0 : w(n) = 0} (balanced criterion)

We will use the word ..., w(n − 1), w(n), w(n + 1), ... to represent the abacus and will mark w(0)
with a bar.

One can easily go from Young diagrams to balanced abaci with the following correspondence:
a 1 in the abacus encodes a vertical line, and a 0 encodes a horizontal one. Reading from left to
right, the abacus spells the outline of the Young diagram. See Figure 8.

µ = (6, 3, 3, 1) =

...
1

1

1

1

1

1

0

0 0

0 0 0

0 0 · · ·

←→ ..., 1, 1, 0, 1, 0, 0, 1̄, 1, 0, 0, 0, 1, 0, 0, ...

Figure 8: The partition µ = (6, 3, 3, 1) and its corresponding abacus.

Note that removing a rim hook of length n in the Young diagram corresponds to swapping a 0
and a 1 that are exactly n letters apart in the word. Refer to Figure 9.

Given w and n ∈ N, we can define the n-runner of the abacus as the n-tuple of abaci
(w0, ..., wn−1) such that wi is made of every ith entry of the original abacus (mod n). For in-
stance, the 2-runner of the running example is{

w0 = ..., 1, 0, 0, 1̄, 0, 0, 0, ...

w1 = ..., 1, 1, 0, 1, 0, 1, 0, ...

The abacus of the n-core of w can be now computed by pushing all the 1s to the left in the n-runner
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0

1

...
1

1

1

1

1

0

0

0 0 0

0 0 · · ·

←→ ..., 1, 1, 0, 1,1, 0, 1̄,0, 0, 0, 0, 1, 0, 0, ...

Figure 9: Removing a rim hook and its effect on the abacus.

as far as they can go, and then reassembling the word back in the same order as before.{
..., 1, 1, 0, 0̄, 0, 0, 0, ...

..., 1, 1, 1, 1, 0, 0, 0, ...
⇒ ..., 1, 1, 0, 1, 0̄, 1, 0, 0, ...←→ µ̃ =

And to compute the n-quotient, simply place the “bar” in each of the n-runner abaci as to make
them balanced.{

w(0) = ..., 1, 0, 0̄, 1, 0, 0, 0, ...

w(1) = ..., 1, 1, 0, 1, 0̄, 1, 0, ...
←→ µ∗ =

(
µ(0) = , µ(1) =

)
This way of computing the n-core an the n-quotient lets itself to the following formula [19, 35]:

|µ| = |µ̃|+ n · |µ∗|,

where |µ∗| = |µ(0)|+ · · ·+ |µ(n−1)|. Indeed, the n-quotient encodes how many positions does each 1
have to move when we “push everything to the left as far as it goes”. And shifting a 1 one position
to the left in the n-runner translates to removing a rim hook of length n. So, in order to compute
the n-core, we are starting with µ and are eliminating n · |µ∗| cells in the process. As |µ̃| cells
remain, we arrive to the announced formula.

2.5 The LR rule
The Littlewood-Richardson rule (LR rule) is used to compute the product of Schur functions. It
is an extremely important theorem in representation theory (and, consequently, in the theory of
symmetric functions). The first published proof of the LR rule, in 1934, was incomplete, and it
lasted unsolved for four decades.

The Littlewood-Richardson rule helped to get men on the moon, but it was not proved
until after they had got there. The first part of this story might be an exaggeration
(Gordon James, 1986, [12] p. 117).

Nowadays, many different proofs of this rule can be found, and in many contexts4. We will
introduce some definitions before the result.

Definition 2.10. A word w is a finite sequence of natural numbers, w = w1w2...wn. Let mi(w)
be the number of wj equal to i, and let

(
m1(w),m2(w), ...

)
be the weight of w. A prefix is

4Here we list some of them: a well-known proof using Jeux de Taquin [27], a classical combinatorial proof by
Remmel and Shimozono [25], a specially short and easy-to-follow proof by Stembridge for both the skew formula and
the product rule [34], and a more implicit proof with another point of view, but equally easy to read, by Knutson,
Tao and Woodward [14].
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a subsequence w1w2...wm(m ≤ n). We say that w is a lattice permutation (on the left)5 if
mi(v) ≥ mi+1(v) for every i and for every prefix v of w.

Definition 2.11. Given a (skew) tableau T , the reverse reading (row) word is the sequence
of entries of T in the following order: start with row 0 and list the entries from right to left, move
on to row 1 and list the entries from right to left, etc.

Example 2.12. The reverse reading word of the following skew tableau is a lattice permutation:

3
2 2

1 2
1 1

; w = 1121223.

Theorem 2.13 (LR rule). We have:

• µ 6⊆ λ implies [sλ](sµ · sν) = 0

• If µ ⊆ λ, then [sλ](sµ · sν) is the number of skew SSYT of shape λ/µ such that the reverse
reading word is a lattice permutation w of weight ν.

Example 2.14. For instance, [s ]s · s is equal to 3, corresponding to the following tableaux:

2
1

1
1

;

1
2

1
1

;

1
1

2
1

.

We define the Littlewood-Richardson coefficients as cλµ,ν := [sλ](sµ ·sν). It is widely known
[27] that these coefficients also verify cλµ,ν := [sν ]sλ/µ, giving us a tool to work with skew Schur
functions.

Define also the generalized LR coefficient cλµ0,µ1,...,µn−1 as the number [λ](sµ0 · sµ1 · · · sµn−1).
In particular, for n = 2, we recover the usual LR coefficient cλµ0,µ1 . Note that, by definition,
cλµ0,µ1,...,µn−1 6= 0 if and only if λ ∈ supp(sµ0 · sµ1 · · · sµn−1).

Immediately from the theorem, we get the following lemma.

Lemma 2.15. If cλµ,ν 6= 0 then µ ∪ ν E λ E µ+ ν. Moreover, both extremes are attained.

Proof. From the LR rule, we can construct λ ∈ supp(sµ · sν) by starting with µ and adding some
cells that can be filled in a particular way. By simple inspection, if any cells are to be added in the
first row, then all of them must be fillable with 1s, of which there are a total of ν1 available. Then,
what is the biggest possible value for λ1? It is µ1 + ν1. A similar argument is used for every other
row. Also, we have constructed µ+ν while verifying the LR conditions, so µ+ν is in supp(sµ ·sν).

For the lower bound, the same analysis column by column reveals that λ′ E µ′ + ν′, which is
equivalent to µ ∪ ν = (µ′ + ν′)′ E λ. �

2.6 Plethysm

Plethysm is an operation in the algebra Λ. Many different definitions can be given in various
different contexts. Here, our definition will be an axiomatic one.

5Similarly, a lattice permutation on the right verifies mi(v) ≥ mi+1(v) for every sufix v of w
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Denote the plethysm of f and g by f ◦ g. The notion of plethysm comes from the composition
of Schur functors (representations of GL(V )). Let’s say that our functions h ∈ Λ are functions in
the variables x1, x2, .... That is, h denotes h(x1, x2, ...).

If g is a sum of monic terms, g = g1 + g2 + · · · then f ◦ g(x1, x2, ...) = f(g1, g2, ...).

Example 2.16. pm is always a sum of monic terms, pm = xm1 + xm2 + · · · . And thus,

pn ◦ pm = pn(xm1 , x
m
2 , ...) = (xm1 )n + (xm2 )n + · · · = pnm.

Example 2.17. Any f ∈ Λ with positive integers as coefficients can be expressed as a sum of
monic terms. For instance,

2p2 = 2x21 + 2x22 + · · · = x21 + x21 + x22 + x22 + · · · .

Consequently,
pn ◦ 2p2 = pn(x21, x

2
1, x

2
2, x

2
2, ...) = 2p2n.

More precisely, we can define the plethysm by means of four axioms.

Definition 2.18. Plethysm, denoted by ◦, is the operation Λ× Λ→ Λ verifying

1. pn ◦ pm = pnm for all n,m ∈ N.

2. For any f ∈ Λ, the map g 7→ g ◦ f is a Z-algebra homomorphism on Λ.

3. For any f ∈ Λ, the equality pn ◦ f = f ◦ pn holds.

This definition give us a set of rules to operate with plethysm. For any f, g, h ∈ Λ, n,m ∈ N and
constants a, b,

1. pn ◦ pm = pnm.

2. (af ± bg) ◦ h = a(f ◦ h)± b(g ◦ h).

3. (af · g) ◦ h = a(f ◦ h) · (g ◦ h).

4. pn ◦ (af ± bg) = a(pn ◦ f)± b(pn ◦ g).

5. pn ◦ (af · g) = a(pn ◦ f) · (pn ◦ g).

6. f ◦ (ag) = a(f ◦ g).

7. pn ◦ f = f ◦ pn.

It is a hard open problem in algebraic combinatorics to understand the resulting coefficients of
the plethystic operation expressed over the Schur basis. Many formulas have been proven for the
simpler cases (for instance, see [15]). But even this next problem remains open:

Problem (Prob. 9 from Stanley’s List [33]). Find a combinatorial interpretation of the
plethystic coefficients [sλ](sa ◦ sb), thereby combinatorially reproving that they are nonnegative.

If this is the first time hearing about plethysm, the reader may wonder why is this a relevant
problem. As briefly announced before, the notion of plethysm comes from invariant theory and
representation theory. Recall that we motivated the introduction of Schur functions by saying
that they are the image of the irreducible representations of a group under a bijection we called
the Frobenius characteristic map. Without entering in too much detail6, if Sλ(V ) and Sµ(V ) are

6An interested reader may read [1, 27].
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two irreducible representations of GL(V ) then they map to sλ and sµ respectively. And their
composition Sλ(Sµ(V )) maps to sλ ◦ sµ. Another natural operation on representations, namely
the tensor product Sλ(V )⊗Sµ(V ), has a nice combinatorial interpretation: it maps to the product
sλ · sµ, and thus the LR rule returns the coefficients in its decomposition into irreducibles. Due to
the success of the LR rule, our long-time goal is to find an analog for our problem.

Another unsolved problem related in nature is to combinatorially understand the Kronecker
product which comes from the restriction to GL(V )×GL(W ) of the representation Sλ(V ⊗W ) of
GL(V ⊗W ).

2.7 The SXP rule
This next rule will be extremely useful for us. Proofs of this proposition can be found in [17, 36].

Theorem 2.19 (SXP rule). For any partitions λ, µ and any n ∈ N,

[µ](pn ◦ sλ) = sgnn(µ) · [λ]
(
sµ(0) · sµ(1) · · · sµ(n−1)

)
,

where ◦ denotes the plethysm, µ∗ =
(
µ(0), µ(1), ..., µ(n−1)

)
is the n-quotient of µ, and the sign

function is defined below.

Example 2.20. Our work will primarily use this rule for hook+columns and for n = 2. We
computed in section 1 the 2-quotient of every hook+column of even size. The SXP rule will be
simplified to equalities of the type[ ] (

p2 ◦ sλ
)

= ±[λ]
(
s · s

)
,

where the right-most product is done by the LR rule.

We have proven, in section 2.4, that |µ| = |µ̃| + n · |µ∗|. Because of this formula, in the SXP
rule, µ̃ needs to be empty. Otherwise, the resulting coefficient would be zero. To see this, let’s
ask which partitions µ can ever appear in supp(pn ◦ sλ), for some λ. By the basic properties of
plethysm, we have |µ| = n · |λ|. And if λ has to be in supp(sµ(0) · · · sµ(n−1)), then the LR rule
imposes |λ| = |µ∗|. So then, |µ| = n · |µ∗|. Therefore, only partitions µ of a multiple of n and of
empty n-core will not vanish.

It remains to define the sign function. For this matter, we will use the Young diagram approach.
For a partition λ ` nk of empty n-core, we can “decompose” the Young diagram in its successive
rim hooks of length n (the ones we remove to compute the n-core). Define the resulting skew
partitions σ1, ..., σk corresponding to the removed rim hooks of length n, in no particular order
(see Figure 10).

1

2
3

⇒


σ1 = / ; l(σ1) = 2

σ2 = / ; l(σ2) = 1

σ3 = ; l(σ3) = 1

Figure 10: Let λ = (22, 12) ` 6 and n = 2. We write i in the cells of the ith removed rim hook.

We define the sign function for such partitions as

sgnn(λ) =

k∏
i=1

(−1)l(σ
i)−1.
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Example 2.21. In the example of Figure 10, sgn2

( )
= (−1)1 · (−1)0 · (−1)0 = −1. Hence, as

the 2-quotient of is ( , ) we get
[ ]

(p2 ◦ s ) = −[ ](s · s ) = −1.

The SXP rule lets us immediately identify some partitions of supp(pn◦sλ), making it extremely
useful. For instance, we get this next lemma.

Lemma 2.22. For any n ∈ N, we have snλ ∈ supp(pn ◦ sλ).

Proof. Let µ = nλ. We are going to prove that the n-core of µ is empty and that λ is an element
of supp(sµ(0) · · · sµ(n−1)), which will yield the result thanks to the SXP rule.

To begin with, we need to visualize µ. Picture its diagram as an stretched version of λ. Any
inner corner7 of λ, when streched, will result in a rim hook of length n. In particular, this shows
that the n-core of µ is empty (by an inductive argument).

For the second part, we will need to compute the n-quotient of µ. Let us follow an example:
let λ = (3, 2, 2) and n = 3. The first steps of the n-quotient algorithm will result in the following
diagram:

0 1 2 0 1 2 1 2 0
2 0 1 2 0 1 1
1 2 0 1 2 0 0
0 1 2 0 1 2 0 1 2 2

As each row is of length a multiple of n, the number rj associated with the jth row is congruent
with j modulo n. And the difference in length of two given rows is also a multiple of n, so we will
find that the numbers ck associated with the columns come in groups of n in which all numbers 0,
1, ..., n− 1 appear exactly once.

And thus,
µ(0) = (λ2, λn+2, λ2n+2...),

µ(1) = (λ3, λn+3, λ2n+3...),

...

µ(n−1) = (λ1, λn+1, λ2n+1...).

From Lemma 2.15, λ = µ(0) ∪ µ(1) ∪ · · · ∪ µ(n−1) ∈ supp(sµ(0) · · · sµ(n−1)), as desired. �

Using similar techniques, one can show the following lemma, which we leave as an exercise.

Lemma 2.23. Given n ∈ N and a partition λ of length l(λ) =: l, define ν as the partition
n · (λ/1(l)) + 1(nl). Then ν ∈ supp(pn ◦ sλ).

Example 2.24. Let us give an example of the construction involved in the lemma: let λ = (3, 2)
and n = 3. Then ν = (7, 4, 1, 1, 1, 1) ∈ supp(p3 ◦ s(3,2)). We obtain ν by eliminating the first
column, then multiplying each row by n, and adding (1(nl)) as the first column:

λ = −→ −→ −→ = ν.

7An inner corner of λ is a cell of λ whose removal leaves a valid partition. Intuitively, the inner corners are the
top-right corners of the diagram.
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Again, in this work, we will primarily deal with hook+column partitions. Hence, we would like to
know how to compute the sign function sgn2(λ) for n = 2 and λ = (α, 2β , 1γ) ` 2k.

If γ ≡ β ≡ 1 (mod 2), then I claim that the 2-core is not empty and thus the sign function is
not defined. Indeed, start by removing the right part of the 2s, using rim hooks of shape . One
cell will remain. Notice that both γ and α are odd (as λ is a partition of an even number). After
the removal of enough rim hooks, the 2-core is guaranteed to be . Refer to Figure 11a. In any
other case,

(a) γ ≡ β ≡ 1 (mod 2) (b) γ ≡ 0 (mod 2) (c) γ ≡ 1, β ≡ 0 (mod 2)

Figure 11: The three distinct cases of sign computations of a hook-column.

• If γ ≡ 0 (mod 2), we can start by taking away the 1s part, and make it so every other rim
hook is of shape , and thus the sign depends on the parity of γ2 . In the example of Figure
11b, γ = 2 and thus sgn2(λ) = (−1)

γ
2 = (−1)1 = −1.

• If γ ≡ 1 (mod 2) and β ≡ 0 (mod 2), then we can start by taking away the right part of the
2s, using β

2 rim hooks of shape . We are left with a hook shape, that will have γ+β+1
2 rim

hooks of shape , and the rest of shape . So the sign will depend on β
2 + γ+β+1

2 (mod 2) ≡
γ+1

2 (mod 2). In the example of Figure 11c, γ = 3 hence sgn2(λ) = (−1)
γ+1
2 = (−1)2 = 1.

Summing up: the 2-sign only depends on γ = m1(λ) modulo 4 (see Table 2).

m1(λ) mod 4 0 1 2 3

sgn2(λ) + − − +

Table 2: The sign function for n = 2 and λ a hook+column of even size, empty 2-core.

2.8 Schur functions evaluations
One of the main tools for discussing plethystic and similar coefficients is the evaluation of sym-
metric functions in different alphabets [15, 26]. For us, an alphabet X will be a collection of
variables x1, x2, ... indexed by a set of letters, {1, 2, ...} ⊆ N (finite or otherwise). Identify Λ
with Q[p1, p2, ...], that is, the Q-algebra spanned by the power sum symmetric functions. Given a
symmetric function f , we will denote by f [X] the evaluation of f in the alphabet X, which is the
image of f under the morphism sending the basis {pk}k to {xk1 +xk2 + ...}k. Up until now, we were
thinking of symmetric functions as evaluated on an alphabet X on infinite letters. We could also
identify X with p1[X] and then f [X] is just f ◦X.

Example 2.25. From the axioms of plethysm, for c ∈ N and two alphabets X,Y , we have

p2[X + Y ] = p2 ◦ (p1[X] + p1[Y ]) = p2(x1, y1, x2, y2, . . .) = x21 + y21 + x22 + y22 + · · · = p2[X] + p2[Y ];
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p2[cX] = p2 ◦ (cp1[X]) = p2(x1, c times. . . , x1, x2, c times. . . , x2, . . .) = cp2[X].

As we can see in the previous example, the evaluation morphism have some linearity properties.
We extend those properties by letting 0 = pk[0] = pk[X −X] = pk[X] + pk[−X], hence pk[−X] =
−pk[X].

Note 2.26. One needs to be careful with the notation. We will sometimes want to evaluate
a function f on the alphabet cx1, cx2, ... for some integer c. For that, we will write f [tX]|t=c.
In general, this will not be equal to pk[cX]. In particular, −pk[X] = pk[−X] 6= pk[tX]|t=−1 =

(−1)kpk[X].

It is key to remark that plethystic calculus is not trivial, and it often gives raise to some unexpected
consequences. We get the following lemma.

Lemma 2.27. Let X be an alphabet. Then, sλ[−X] = (−1)|λ|sλ′ [X].

Proof. Using the Jacobi-Trudi identity from 2.6, we get

sλ[−X] = det(hλi−i+j)
|λ|
i,j=1[−X].

Let’s look at one of these terms. As −X = −p1(x1, x2, ...),

hµ ◦ (−p1) =
∏
i

hµi ◦ (−p1)
2.5
=
∏
i

∑
ν`µi

pν
zν
◦ (−p1)

 =

=
∏
i

∑
ν`µi

(−1)l(ν) pν
zν

 2.5
=
∏
i

(
(−1)l(µi)eµi

)
= (−1)|µ|eµ.

But then, sλ[−X] = (−1)|λ| det(eλi−i+j)
|λ|
i,j=1[X] = (−1)|λ|sλ′ [X] again by Jacobi-Trudi. �

So what does it mean to evaluate a Schur function on a negative alphabet?8 Recall that
sλ =

∑
xT where the sum is over the SSYT T of shape λ. Well, the correct interpretation of

the above lemma is that when we use negative alphabets we switch the rules of the SSYT, to be
weakly increasing in the columns and stricly increasing in the rows. In Figure 12, we list some
valid SSYT. Rather naturally, the following lemma holds.

4

2 3 3

1 1 1 3

;

−1

−4 −3

−5 −4

−5 −4 −2

;

3

−1

−2 2 3

−2 1 1 3

.

Figure 12: Three valid SSYT with positive and/or negative letters.

Lemma 2.28. Let X and Y be two alphabets, λ a partition. Then:
8Questions like this one arise frequently in combinatorics, when something is defined naturally for the positive

integers; and then has a different interpretation in the negative integers. Lemma 2.27 is just another example of
Combinatorial Reciprocity, a phenomenon in which the answer to the above question is always similar. Namely,
strict inequalities are converted to weak inequalities, matrices are transposed, formulas are inverted... See [2, 30]
for a survey on this subject.
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1. sλ[X + Y ] =
∑
µ⊂λ sµ[X] · sλ/µ[Y ] =

∑
µ,ν c

λ
µ,ν sµ[X] · sν [Y ].

2. sλ[X − Y ] =
∑
µ⊂λ(−1)|λ/µ| sµ[X] · s(λ/µ)′ [Y ] =

∑
µ,ν(−1)|ν| cλµ,ν sµ[X] · sν [Y ].

Note 2.29. A more general theorem, for sλ ◦ (f ± g) on two arbitrary symmetric functions, is
stated and proven in [19].

Accordingly, from now on, if X = {xi}i∈I and Y = {yj}j∈J are two alphabets, then

sλ[X − Y ] =
∑

T :R(λ)→I∪−J

xT
+

(−y)T
−
, where

{
xT

+

=
∏
i∈I x

mi(T )
i ,

(−y)T
−

=
∏
j∈J(−yj)m−j(T ),

and where the rules of the tableaux T are those illustrated in Figure 12. For instance, the third
tableau of said figure will yield the monomial −x2

1x2x
3
3y1y

2
2 .

2.9 The Hopf Algebra Structure of Λ

We already work with the Z-algebra structure of Λ. Recall that a Z-algebra is an associative ring
with unit (Λ,+, 0, ·, 1), containing a distinguished copy of Z which commutes with every element,
and with 1 ∈ Z being the algebra unit. In particular, a Z-algebra is also a Z-module.

Consider now the tensor product Λ⊗Λ. In order to distinguish between the first and the second
copy of Λ, we will write every function f ⊗ g in Λ⊗ Λ as f [X]⊗ g[Y ], with X and Y being some
alphabets {xi}i∈N and {yj}j∈N. Note that these alphabets are just placeholders, letting us identify
f [X] with f [Y ]. With this in mind, we write Λ⊗Λ as Λ[X]⊗Λ[Y ]. This is the module of functions
which are symmetric in X and Y separately. Note that we can see the usual product as a function
(·) : Λ[X]⊗Λ[Y ] 3 f [X]⊗ g[Y ] 7→ fg ∈ Λ. Similarly, the unit can be seen as a function 1 : Z→ Λ;
namely the inclusion.

As it turns out, Λ also admits a Z-coalgebra structure. That is, we are able to define a coproduct
∆ : Λ 3 f 7→ f [X + Y ] ∈ Λ[X] ⊗ Λ[Y ] and a counit ε : Λ 3 f 7→ f [0] ∈ Z such that the following
diagrams are commutative:

Λ Λ⊗ Λ

Λ⊗ Λ Λ⊗ Λ⊗ Λ

∆

∆

1⊗∆

∆⊗1

Λ Λ⊗ Λ

Λ⊗ Λ Λ

∆

∆

1⊗ε

ε⊗1

Indeed, with our defined coproduct and counit, for all f in Λ, it is

(1⊗∆)∆(f) = f [X + (Y + Z)] = f [(X + Z) + Y ] = (∆⊗ 1)∆(f),

(ε⊗ 1)∆(f) = f [Y ] = f = f [X] = (1⊗ ε)∆(f),

where we identified Z⊗ Λ[Y ] with Λ and Λ[X]⊗ Z.
Moreover, the Z-algebra structure is compatible with the Z-coalgebra structure, in the sense

that ∆ and ε are Z-algebra morphisms. This is immediate from the second axiom of plethysm. We
say that (Λ, ·,1,∆, ε) is a bialgebra.

Finally, Λ admits an structure of Hopf algebra (Λ, ·,1,∆, ε, ω̄), which is a bialgebra with an
antipode. An antipode is a Z-linear function ω̄ : Λ → Λ such that the following diagram is
commutative:
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Λ⊗ Λ Λ⊗ Λ

Λ Z Λ

Λ⊗ Λ Λ⊗ Λ

ω̄⊗1

(·)∆

∆

ε 1

1⊗ω̄

(·)

In our case, define ω̄ : hµ 7→ (−1)|µ|eµ. As we saw in the proof of 2.27, this is the function
f [X] 7→ f [−X]. And thus, for any power sum function pn, we have

(·)(ω̄⊗ 1)∆(pn) = (·)(pn[−X + Y ]) = (·)(−pn[X] + pn[Y ]) = (·)(−pn ⊗ 1+ 1⊗ pn) = pn − pn = 0.

Similarly, (·)(1 ⊗ ω̄)∆(pn) = 0. In the other hand, 1ε(pn) = 1(pn[0]) = 1(0) = 0. As every
operation is an algebra morphism, proving the properties for pn is enough. For a more detailed
description of the Hopf algebra structure of Λ, see [1].
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3 Some positivity conditions for the plethystic coefficients
The SXP rule allows us to combinatorially compute pn ◦ sλ by means of the well-understood
Littewood-Richardson coefficients. In this section we study conditions that allow us to deduce that
a plethystic coefficient is zero (or that it is positive) in terms of similar results for the Littlewood-
Richardson coefficients. We show that if µ ∈ supp(pn ◦ sλ) then λ ⊆ µ (3.8). On the other hand,
we show that µ is upperly bounded by a pair of partitions (3.10). Our main tool is a determination
of the region where non-vanishing Littewood-Richardson coefficients are located (3.5) that we have
not seen explicitly written, but that appears implicitly in the literature [26, 15], combined with
the SXP rule.

The motivating question behind our tool is, given cλµ,ν 6= 0, what can we say about λ? A
preliminary analysis was already given before (Lemma 2.15). It also follows from the LR rule that
both µ ⊆ λ and ν ⊆ λ. However, this next lemma will let us say much more, by linking the LR
coefficients with Schur functions evaluations.

We will mainly work with finite alphabets. Let Xa denote an alphabet x1, ..., xa in a letters.
We will identify the alphabet Xa + Zb with Xa+b by renaming zi 7→ xa+i.

Lemma 3.1. Let λ be a partition. Then, sλ[Xa+b − Yc+d] 6= 0 if and only if there exist partitions
µ0 and ν0 such that

cλµ0,ν0 6= 0 ; sµ0
[Xa − Yc] 6= 0 ; sν0 [Zb −Wd] 6= 0.

Proof. We know from Lemma 2.28 that

sλ[Xa+b − Yc+d] = sλ[(Xa − Yc) + (Zb −Wd)] =
∑

cλµ,ν sµ[Xa − Yc] · sν [Zb −Wd].

So if sλ[Xa+b − Yc+d] 6= 0 then at least one of the terms in the sum doesn’t vanish.
Conversely, if cλµ0,ν0 sµ0

[Xa − Yc] · sν0 [Zb −Wd] 6= 0, then let us consider the equality

sλ[Xa+b − tYc+d] =
∑

cλµ,ν sµ[Xa − tYc] · sν [Zb − tWd],

where t is a variable as in Note 2.26. Let t = −1. Every monomial in both sides of the equal-
ity is now positive (recall that LR coefficients are positive by the LR rule), so there can’t be
any cancellations. This means in particular that sλ[Xa+b − tYc+d]

∣∣
t=−1

6= 0, and so necessarily
sλ[Xa+b − Yc+d] 6= 0. �

Note 3.2. If both X and Y are infinite, our argument can be thought of as taking the equality
sλ[X + Z − Y −W ] =

∑
cλµ,ν sµ[X − Y ] · sν [Z −W ] and applying the antipode 1 ⊗ ω̄ ⊗ 1 ⊗ ω̄

of Λ[X] ⊗ Λ[Y ] ⊗ Λ[Z] ⊗ Λ[W ] on both sides. Now every monomial is positive, yielding the same
result.

From Lemma 3.1, if cλµ,ν 6= 0 then sλ[Xl(µ)+l(ν)] 6= 0. In particular, l(λ) ≤ l(µ) + l(ν), which
we already knew (Lemma 2.15). Similarly, λ1 ≤ µ1 + ν1 when evaluating on −Yµ1+ν1 . The fun
part comes when we consider an alphabet mixing positive and negative letters.

If sλ[Xr − Yc] 6= 0 then λ does not have a (c, r) cell. (In order to see this, think of what would
be the value of (c, r) in a tableau with r positive letters and c negative letters.) But if λ does
not have a (c, r) cell, then its region R(λ) must fit in an infinite hook-looking region which can be
thought of as the union of r rows and c columns, which we depicted in Figure 13. In the literature,
a partition not containing a (c, r) cell is sometimes called a (c, r)-hook, but the reader is advised
not to use this notation too frequently, as it is already used for other concepts in the theory of
symmetric functions.

But if R(λ) fits in multiple of these regions, we can then take the intersection of them to find
a smaller region for which R(λ) is a subset. 19



c

r

...
...

. . .

. . .
R(λ)

(c, r)

Figure 13: If sλ[Xr − Yc] 6= 0, then λ does not have a (c, r) cell, drawn as a point, and so R(λ) fits
in the depicted “fat-hook” region.

Example 3.3. Suppose that sλ[X3 − Y1] 6= 0. This means that there exists a SSYT of shape λ
and filled with the letters {1, 2, 3,−1}. One can easily see why this implies that there is no (1, 3)
cell in λ. Suppose we also know sλ[X4] 6= 0 and sλ[−Y2] 6= 0. Then there are no (0, 4) or (2, 0) cells
in λ. Therefore, R(λ) must fit inside each of the following regions:

Consequently, R(λ) must also fit inside of R(23, 1), ie, λ ⊆ (23, 1):

In what comes, we will be working with subsets of N2. Some notation is needed. Consider the
partial order in N2 given by (a, b) ≤ (c, d)⇔ a ≤ b and c ≤ d. Let A+B = {a+b : a ∈ A ; b ∈ B},
and (a, b) + (c, d) = (a+ c, b+ d). Let Ā be the complement of A in N2.

Definition 3.4. Let λ be a partition. We say that (c, r) is an outer corner if (c, r) 6∈ λ but
its addition to the diagram produces a valid partition. Let OCλ be the set of outer corners of λ.
Equivalently, OCλ is the set of minima in R(λ) with respect to (≤).

For example, OC = {(0, 3), (1, 2), (3, 0)}. Conversely, a set of points P ⊂ N2 defines a region

Θ(P ) := {q ∈ N2 : ∀ p ∈ P either q ≤ p or q and p are not comparable}.

Moreover, if there is at least a point in P lying in the 0th column and at least one lying in the 0th
row, then Θ(P ) is the region of a partition. Think of it as the biggest partition not containing any
cell of P . Refer to example 3.3 for an illustration of this fact. In particular, Θ(OCµ) = R(µ) for
every partition µ.

Notice that for any given µ, if (c, r) is an exterior corner, then sµ[Xr − Yc] 6= 0. In fact, there
is a “canonical” SSYT of shape µ in those letters, filling the 0th column with −cs, the first column
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with −(c− 1)s, ..., and the (c− 1)th column with −1s; then fill the remaining cells of the 0th row
with 1s, the first with 2s, ..., and the last cells with rs. Refer to Figure 14 for an example.

−3 −2

−3 −2 −1

−3 −2 −1 •
−3 −2 −1 2 2 2

−3 −2 −1 1 1 1 1

Figure 14: The canonical SSYT of shape (7, 6, 32, 2) for the exterior corner (3, 2).

We are now ready to state and prove the desired theorem.

Theorem 3.5. If cλµ,ν 6= 0 then R(µ) +R(ν) ⊆ R(λ). More generally, if cλµ0,µ1,...,µn−1 6= 0 then∑
k

R(µk) ⊆ R(λ).

In other words, if λ ∈ supp(sµ0 · sµ1 · · · sµn−1) then R(λ) ⊆ Θ
(∑

k OCµk
)
.

Note 3.6. We are using a set-wise sum (Minkowski sum).

Let illustrate this theorem before giving the proof.

Example 3.7. Let µ0 = , µ1 = = µ2. We compute the exterior corners of each partition:

µ0 =
•

•
•
⇒ OCµ0 = {(0, 2), (2, 1), (3, 0)}.

Similarly, OCµ1 = {(0, 2), (1, 0)} = OCµ2 . We now add together all possible combinations of exterior
corners of our three partitions, to get 9 unique points of N2,

2∑
k=0

OCµk = {(0, 6), (1, 4), (2, 2), (2, 5), (3, 3), (4, 1), (3, 4), (4, 2), (5, 0)}.

Plot those points in N2 with our system of coordinates. The shape Θ = Θ(
∑2
k=0 OCµk ) arises.

Hence the region of every partition in supp(sµ0sµ1sµ2) must fit inside Θ.

Θ

Proof of 3.5. Let λ ∈ supp(sµ0 · · · sµn−1). Then, there exists νn−2 ∈ supp(sµ0 · · · sµn−2) such that
λ ∈ supp(sνn−2sµn−1). Take now νn−2. By the same analysis, there exists νn−3 ∈ supp(sµ0 · · · sµn−3)
such that νn−2 ∈ supp(sνn−3sµn−2). Iterate this process to obtain a chain of partitions

λ = νn−1, νn−2, ..., ν1, ν0 = µ0.
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Choose two outer corners (c0, r0) ∈ OCµ0 and (c1, r1) ∈ OCµ1 . As the canonical tableau for
a given corner exists, sµ0 [Xr0 − Yc0 ] 6= 0 and sµ1 [Xr1 − Yc1 ] 6= 0. In addition, we know that
ν1 ∈ supp(sν0sµ1) = supp(sµ0sµ1). And thus, by Lemma 3.1, we get sν1 [Xr0+r1 − Yc0+c1 ] 6= 0.

Choose now an outer corner (c2, r2) ∈ OCµ2 . As ν2 ∈ supp(sν1sµ2), we get that sν2 [Xr0+r1+r2−
Yc0+c1+c2 ] 6= 0, again by Lemma 3.1.

By induction, νn−1 = λ and so sλ[XΣri −YΣcj ] 6= 0. This means that
(∑

ci,
∑
rj
)
is not a cell

in R(λ). Choosing any combination of corners from µ0, ..., µn−1 will give a similar result, proving
the theorem. �

Thanks to the SXP rule, we have a close connection between plethysm and LR coefficients. By
means of said rule, we now have a powerful tool to work with plethysm, which follows as a corollary
of our previous theorem. This next result is a refined version of the positivity condition found in
[37], and follows the spirit of similar kind of results which have been recently achieved [22].

Corollary 3.8. If µ ∈ supp(pn ◦ sλ) then λ ⊆ µ.

Proof. Let µ ∈ supp(pn ◦ sλ). By the SXP rule, we have λ ∈ supp
(
sµ(0) · · · sµ(n−1)

)
. Choose an

outer corner (c, r) ∈ OCµ. Hence sµ[Xr − Yc] 6= 0. Let

T : R(µ) −→ {1, 2, ..., r,−1,−2, ...,−c}

be the canonical SSYT of shape µ for said corner.
Compute the n-quotient the usual way, thus having each µ(k) “embedded” inside µ’s diagram.

Considering the corresponding values T (i, j) of the canonical tableaux at those embedded cells,
we obtain a SSYT T k of shape µ(k), which we presume to correspond to the alphabet Xrk − Yck .
Then (ck, rk) is an outer corner of µ(k).

Furthermore, we know that no two partitions of the n-quotient share any common letters, by
construction of T and the n-quotient. Consequently, Xr − Yc = XΣrk − YΣck .

We began by choosing (c, r) ∈ OCµ and we showed (c, r) ∈
∑

OCµ(k) , that is OCµ ⊆
∑

OCµ(k) .
By the previous theorem and the SXP rule, (c, r) is not a cell of λ. The lemma is thus proved:

R(λ) ⊆ Θ

(∑
k

OCµ(k)

)
⊆ Θ

(
OCµ

)
= R(µ). �

Much like Lemma 3.8 offers a lower bound on the partitions µ ∈ supp(pn ◦ sλ), we are able
to find some upper bounds on that set. These kind of results prove to be useful when collecting
computer data. Notice that a partition µ ∈ supp(pn◦sλ) must be of size n|λ|. Hence, the maximum
size of the rth row is

⌊
n|λ|
r

⌋
(this falls from the very definition of a partition). Therefore,

µ ∈ supp(pn ◦ sλ) ⇒ µ ⊆
(
n|λ|,

⌊
n|λ|

2

⌋
,

⌊
n|λ|

3

⌋
, ...

)
,

which is a partition, since only a finite number of terms can be non zero.

Example 3.9. Let λ = , and let n = 2. Let µ ∈ supp(pn ◦ sλ). Then, from 3.8, λ ⊆ µ, and from
our previous analysis, µ ⊆ (10, 5, 3, 2, 2, 1, 1, 1, 1, 1). In other words, the region of µ must satisfy
the following inclusions:
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⊆ R(µ) ⊆

However, we can do better. In our example, we bounded µ1 by 10, when the only partition
of size 10 with the first row equal to 10 is the row partition (10), which clearly does not contain
λ = (3, 2). That is to say, we can optimize the upper bound by having the lower bound in
consideration. More precisely, the bound on µr when λ ⊆ µ ` n|λ| becomes

µr ≤
⌊
n|λ| − |(λr+1, λr+2, ...)|

r

⌋
=: ar.

Similarly, we can bound the columns of µ,

µ′c ≤
⌊
n|λ| − |(λ′c+1, λ

′
c+2, ...)|

c

⌋
=: bc.

In general, the analysis on the columns will not yield the same bounding partition as the analysis
on the rows, meaning that we can combine both bounds to get a more optimized one.

Lemma 3.10. Let µ and λ be two partitions, and let Ξ1 = (a1, a2, ...) and Ξ2 = (b1, b2, ...)
′

with ar and bc defined as before. If µ ∈ supp(pn ◦ sλ) then µ ⊆ Ξ1 and µ ⊆ Ξ2. That is,
R(µ) ⊆ R(Ξ1) ∩R(Ξ2).

Example 3.11. Continuing our previous example, our optimization ensures that the region of µ
actually lives inside the darker shaded region:

⊆ R(µ) ⊆
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4 Hook+column sequences
Following [15], we define a hook+column as a partition (α, 2β , 1γ) for some α, β, γ ∈ N. Equiv-
alently, a partition that does not have a (2, 1) cell, and thus does not vanish when evaluated at
X1 − Y2. Fixing the size N and γ, we can parametrize the family of hook+column partitions with
one only index, β (the multiplicity of 2 in our partition). Let νβ = (N − 2β − γ, 2β , 1γ).

Our goal is to study the coefficient of sνβ when expressing a function sn1
◦ sn2

◦ · · · ◦ snk over
the Schur basis. For a given γ, define

aβ = [νβ ] (sn1 ◦ sn2 ◦ · · · ◦ snk) ,

where the size of νβ is N =
∏
i ni. We say that

(
a0, a1, ..., aN−γ

2

)
is the hook+column sequence

of (sn1
◦ sn2

◦ · · · ◦ snk) for our fixed γ. Refer to Table 3 for some examples. When n = n1 = n2 =
· · · = nk, we introduce the notation s◦kn = sn ◦ sn ◦ · · · ◦ sn (k times).

Function γ Hook+column sequence

s2 ◦ s4 0 (1, 1, 0, 0)

s2 ◦ s3 ◦ s2 0 (1, 2, 3, 3, 2, 1)

s2 ◦ s3 ◦ s2 1 (0, 1, 1, 1, 0)

s◦42 = s2 ◦ s2 ◦ s2 ◦ s2 2 (0, 1, 2, 2, 1, 0, 0)

Table 3: Hook+column sequences associated with some symmetric functions arising from plethysm
and some γs.

Note 4.1. Define a hook+row as a partition ν′ = (1α) + (β2) + (γ), which is the transpose of
the hook+column ν = (α, 2β , 1γ). Equivalently, a partition that does not have a (1, 2) cell. Let
a′β be [ν′β ] (sn1 ◦ sn2 ◦ · · · ◦ snk ) and define a hook+row sequences similarly to the previous case.
There exists a relationship between hook+column sequences and hook+row sequences, via the ω
involution [19]: for two homogeneous symmetric functions,{

ω(f ◦ g) = f ◦ ω(g) if degree(g) is even,
ω(f ◦ g) = ω(f) ◦ ω(g) if degree(g) is odd.

Consequently, if (sn1 ◦ sn2 ◦ · · · ◦ snk )|γhook+col =
∑
β aβsνβ , then applying ω to both sides gives{(

sn1 ◦ · · · ◦ snk−1 ◦ s1nk
)∣∣γ

hook+row =
∑
β aβsν′β if nk is even,

(s1n1 ◦ · · · ◦ s1nk−1 ◦ s1nk )|γhook+row =
∑
β aβsν′β if nk is odd.

That is, studying the hook+row sequences of the left–hand side functions is equivalent to studying
the hook+column sequences of sn1 ◦ sn2 ◦ · · · ◦ snk . And so all our work could be translated to
hook+row sequences.

In this section we will explore hook+column sequences. We start recalling a result of Langley
and Remmel that explicitly describe for the restriction of sa◦sb to hook+columns. For a symmetric
function f =

∑
λ([λ]f) · sλ, let

(f)|hook+col =
∑

λ is hook+column

([λ]f) · sλ and (f)|γhook+col =
∑

λ is hook+column
and m1(λ)=γ

([λ]f) · sλ.
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Theorem 4.2 (Langley and Remmel [15], Thm. 4.8). For any a, b ≥ 2, it is

(sa ◦ sb)|hook+col = (sa ◦ sb)|γ=0
hook+col =

∑
k<a

s(ab−2k,2k).

Note 4.3. With our language in mind, we can rephrase this theorem. It establishes that the
hook+column sequences of sa ◦sb vanish for γ 6= 0 and is (1, a times. . . , 1, 0, . . .) for γ = 0. The formula
barely depends on b. In fact, all that b introduces is a trail of 0s in our hook+column sequence (see
Table 4).

Function γ Hook+column sequence

s3 ◦ s2 0 (1,1,1)

s3 ◦ s3 0 (1,1,1,0)

s3 ◦ s4 0 (1,1,1,0,0,0)

s3 ◦ s5 0 (1,1,1,0,0,0,0)

Table 4: As b increases, the hook+column sequence of s3 ◦ sb for γ = 0 expresses a growing trail
of 0s.

We will prove 4.2 after a handful of lemmas that will help avoid some confusing notation. Our
first proof will use the tools developed originally in [26] and then used in [15], where this theorem
is first proved. However, our exposition will not be identical, hopefully being more accessible for
readers not as familiarized with the theory of symmetric functions.

Let Λ(c) be the algebra of symmetric functions over Z[x1, ..., xc], and let Λn(c) be the Z-
submodule of the (homogeneous) functions of degree n. Our first result roughly states that re-
stricting our functions to hook+columns and evaluating on the alphabet (1−x− y) amount to the
same result in practice.

This has already been proven in [15] for n-hook+columns and n-hook+rows. More generally,
one can show this for (c, r)-hooks, which for us will be defined as those partitions not containing
a (c, r) cell. With heavy use of Hopf algebra notation,

Lemma 4.4. For each n, the family F =
{
sλ[Xr − Yc] : λ ` n is a (c, r)-hook

}
is a basis of the

Z-module Λn[Xr − Yc] := Im
(

(1⊗ ω̄)∆̃
)
.

(1⊗ ω̄)∆̃ : Λn →
⊕
i+j=n

Λi(c)⊗ ω̄Λj(r)

f 7→ f [Xr − Yc]

Proof. To begin with, F is generating because it is the image of a basis; a function
∑
λ cλsλ maps to∑

λ cλsλ[Xr−Yc] and, as seen in section 3, sλ[Xr−Yc] vanishes if and only if λ is not a (c, r)-hook.
Furthermore, suppose by reductio ad absurdum there were some non-trivial dependence rela-

tions, ∑
λ

dλsλ[Xr − Yc] = 0.

Ignoring for now the coefficients dλ, each polynomial sλ[Xr − Yc] will have a smallest monomial
with respect to the lexicographic order, letting · · · < −y2 < −y1 < x1 < x2 < · · · . One can check
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that smallest monomial will be xT where T is the canonical tableau for the (c, r) corner as defined
in section 3. This order on monomials gives, in turn, an order on the partitions λ.

Take the smallest λ such that dλ is non-vanishing. Then the smallest monomial of sλ[Xr − Yc]
appears only once in the whole sum and with coefficient dλ. In particular, it cannot be cancelled
with any other monomial (→←). This shows that there is no non-trivial dependece relation. �

Corollary 4.5. Let f ∈ Λ. Then, (f)|hook+col [1− x− y] = f [1− x− y].
Furthermore, {sλ[1− x− y] : λ ` n is hook+column} is a basis of Λn[1− x− y].

Proof. The first assertion falls from section 3. Take r = 1, c = 2 in the previous theorem and
evaluate on x1 = 1, y1 = x, y2 = y for the second assertion. �

Now we know that every function of Λ evaluated at (1 − x − y) can be expressed as a sum of
hook+columns. And there is in fact one only way of expressing that decomposition in terms of
hook+columns, provided that we are working with an homogeneous function f ∈ Λn.

Lemma 4.6. Let λ = (α, 2β , 1γ) be a hook+column with α ≥ 2. Then,

sλ[1− x− y] = (−1)γ(xy)β(1− x)(1− y)
xγ+1 − yγ+1

x− y
.

Proof. Recall what it meant to evaluate in an alphabet with positive and negative letters: in order
to compute the left-hand side of the equation, we need to construct a SSYT of shape λ with three
letters (fixing an order, let 1 be the letter for the variable 1, −1 for −x, and −2 for −y). We will
then record the weight of every resulting tableau; their sum will yield the desired function.

Notice that we have very little freedom when filling a hook+column with only these three
letters. Our only choices are in the last entries in the first two columns (see Figure 15).

?
...
? ?

−2 −1
...

...
−2 −1

−2 −1 1 · · · 1

Figure 15: Our only choices when filling a hook+column with 1, −1 and −2 are represented by a
question mark.

We can have 0, 1 or 2 entries equal to 1 in these cells. The rest can be filled with various
quantities of −1s and −2s, resulting into weights

(xy − x− y + 1)
∑
i+j=γ

(−1)γxiyj = (−1)γ(1− x)(1− y)
xγ+1 − yγ+1

x− y
.

As there are β instances of −2 −1 , the desired expression arises. �

Lemma 4.7. Let a ∈ N. This equality holds:

sa[1− x− y + xy] =
1− (xy)a

1− xy
(1− x)(1− y).
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Proof. We need to fill a row partition of size a with the four following entries: 1 and 2 of weight 1
and xy respectively, and −1,−2 with weights −x,−y.

−2 −1 1 · · · 1 2 · · · 2

The weights −2 and −1 can appear at most once. After those entries are fixed, we are left with a
choice: we can fill the rest of the row in many ways.

• If neither −2 nor −1 appear, we can have up to a 2s. This results in tableaux of weights

1, xy, (xy)2, ..., (xy)a.

Thus, if neither −2 nor −1 appear, we get the total weight

a∑
i=0

(xy)i =
1− (xy)a+1

1− xy
.

• If −1 appears but −2 doesn’t, we get a total weight of −x 1−(xy)a

1−xy .

• If −2 appears but −1 doesn’t, we get a total weight of −y 1−(xy)a

1−xy .

• If both −1 and −2 appear, we get a total weight of xy 1−(xy)a−1

1−xy .

Adding up these four weights gives us the desired expression. �

We are now ready to prove the theorem.

Proof of 4.2.

(sa ◦ sb)|hook+col [1− x− y]
4.5
= (sa ◦ sb)[1− x− y]

= sa ◦
(
sb[1− x− y]

)
4.6
= sa

[
(1− x)(1− y)

]
4.7
=

1− (xy)a

1− xy
(1− x)(1− y)

=
∑
k<a

(xy)k(1− x)(1− y)

4.6
=
∑
k<a

s(ab−2k,2k)[1− x− y].

As hook+columns indexed Schur functions form a basis of Λab[1 − x − y] from Lemma 4.5, this
ends the proof. �

As an example, we are going to repeat the proof of the theorem but for γ = 0, a = 2. This
will demonstrate our novel approach to the problem, which will lead to a similar formula for the
plethysm s2 ◦ sa ◦ sb and will let us study the properties of s◦k2 ◦ sa ◦ sb in general.

Recall from example 2.4 that s2 = 1
2 (p2 + p1,1). From the properties of the plethysm in the

power sum basis, we can write

2 (s2 ◦ sb)|γ=0
hook+col = (p2 ◦ sb)|γ=0

hook+col +
(
(sb)

2
)∣∣γ=0

hook+col
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for any b ≥ 2.
We will proceed in two steps. First, we will compute p2 ◦ sb using the SXP formula. We will

then be left with a sum of products of Schur functions, which we will compute using the LR rule.
Notice that every resulting partition of (p2 ◦ sb)|hook+col will be of size N = 2b, even. Let νβ be

the hook+column (N − 2β, 2β), as usual. By the SXP rule, Table 2 and the last remark of section
2.3,

[νβ ]
(
p2 ◦ sb

)
= sgn2(νβ) · [sb]

(
s
ν
(0)
β

· s
ν
(1)
β

)
= [sb]

(
s

(1d
β
2
e)
· s

(b−β,1b
β
2
c)

)
.

This formula, in particular, imposes that both ν
(0)
β and ν

(1)
β must be subsets of (b). But this is

only true if bβ2 c = 0, so we can discard every term with β strictly greater than 1. For β = 0 (resp.
1), the skew partition b/ν(1)

β will be ∅ (resp. ). And so there is exactly one tableau with shape

ν
(0)
β = ∅ (resp. ) and verifying the LR conditions. So far, we have

2 (s2 ◦ sb)|γ=0
hook+col = sν0 + sν1 +

(
(sb)

2
)∣∣γ=0

hook+col . (1)

Take the square,
(
(sb)

2
)∣∣γ=0

hook+col =
∑
β [sνβ ]

(
(sb)

2
)
. Again, every term will vanish, unless (b)

is a subset of νβ . That is, unless b ≤ 2b − 2β. The coefficient [sνβ ]
(
(sb)

2
)
will be the number of

skew tableaux of shape νβ/b and whose words are lattice permutation of type (b). Such a tableau
will not exist if any cell of νn/b lives orthogonally below another cell, letting us discard the case
β ≥ 2. In any other case, there is exactly one possibility. We conclude

(
(sb)

2
)∣∣γ=0

hook+col = sν0 +sν1 .

Combining this with equation (1), we have once again shown

(s2 ◦ sb)|γ=0
hook+col = sν0 + sν1 ,

which is what we get letting a = 2 in Theorem 4.2.

In section 4.2, we aim to generalize the theorem of Langley and Remmel to the family of iterated
plethysms s2 ◦ sa ◦ sb (see 4.21). An example that beautifully illustrates our result is the following.

Example 4.8. The hook+column sequence of s2 ◦ s4 ◦ s2 for γ = 0 is (1, 2, 3, 4, 4, 3, 2, 1).

(s2 ◦ s4 ◦ s2)|γ=0
hook+col = 1s +2s +3s +4s +4s +3s +2s +1s .

To simplify our computations, one would hope for this next equation to hold for any γ:

(s2 ◦ sa ◦ sb)|γhook+col =
(
s2 ◦ (sa ◦ sb)|γhook+col

)∣∣γ
hook+col .

Unfortunately, that is not the case, as shown by this next example.

Example 4.9.
(
s◦42
)∣∣γ=0

hook+col is not equal to
(
s2 ◦

(
s◦32
)∣∣γ=0

hook+col

)∣∣∣γ=0

hook+col
:

•
(
s◦42
)∣∣γ=0

hook+col = sν0 + 3sν1 + 8sν2 + 13sν3 + 13sν4 + 8sν5 + 3sν6 + sν7 .

•
(
s2 ◦

(
s◦32
)∣∣γ=0

hook+col

)∣∣∣γ=0

hook+col
= sν0 + 3sν1 + 7sν2 + 10sν3 + 10sν4 + 7sν5 + 3sν6 + sν7 .

However, we can relax the conditions to

(s2 ◦ sa ◦ sb)|hook+col =
(
s2 ◦ (sa ◦ sb)|hook+col

)∣∣
hook+col .

This equality does hold, as does this lemma:
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Lemma 4.10 (Langley and Remmel [15], Thm. 4.2). For any symmetric function f , we
have (s2 ◦ f)|hook+col =

(
s2 ◦ (f)|hook+col

)∣∣
hook+col.

Proof. Decomposing s2 as before, we will have to look at (p2 ◦ f)|hook+col and
(
f2
)∣∣
hook+col sepa-

rately.
For the first part, write f =

∑
aλsλ, and thus (p2 ◦ f)|hook+col =

∑
aλ · (p2 ◦ sλ)|hook+col.

But then, by Corollary 3.8, any λ that doesn’t disappear in that sum must be contained in a
hook+column — hence it must be a hook+column itself —, so

(p2 ◦ f)|hook+col =
∑

λ is hook+col

aλ · (p2 ◦ sλ)|hook+col =
(
p2 ◦ (f)|hook+col

)∣∣
hook+col .

Let us now take a look at
(
f2
)∣∣
hook+col. We ask whether

((
(f)|hook+col

)2)∣∣∣
hook+col

=
(
f2
)∣∣
hook+col.

This boils down to asking what kind of partitions µ, λ verify [νβ ](sµ · sλ) 6= 0 for some β. The first
statement of the LR rule gives us that λ and µ must be subsets of νβ . In particular, they are also
hook+columns. �

Note 4.11. Here the lemma is stated for our particular problem, but one could change “hook+column”
for “n-hook+column” or “n-hook+row” partitions and it would remain true. In [15], it is also proved
in more generality, by considering sµ ◦ f .

With this in mind, as 2s2 = (p2 + p1,1), all we need in order to understand (s2 ◦ f)|γhook+col is
to describe (p2 ◦ f)|γhook+col and (p1,1 ◦ f)|γhook+col. Indeed, from the well–behaving properties of
plethysm over the power sum basis, we get 2 · s2 ◦ f = p2 ◦ f +p1,1 ◦ f for every symmetric function
f .

4.1 The expressions p2 ◦ f and p1,1 ◦ f = f 2

Recall that p1,1 ◦ f = (p1 ◦ f)(p1 ◦ f) = f2. We explore the expressions (p2 ◦ f)|hook+col and
(p1,1 ◦ f)|hook+col =

(
f2
)∣∣
hook+col. More precisely, if f =

∑
λ([λ]f) · sλ, then

(p2 ◦ f)|hook+col =
∑
λ

([λ]f) · (p2 ◦ sλ)|hook+col .

From Lemma 4.10, this simplifies to

(p2 ◦ f)|hook+col =
∑

λ is hook+col

([λ]f) · (p2 ◦ sλ)|hook+col .

Thereby, we only need to compute p2 ◦ f when λ is a hook+column. Similarly,

(p1,1 ◦ f)|hook+col =

( ∑
λ is hook+col

([λ]f) · sλ

)2

,

and so we only need to compute sλ · sµ when both partitions are hook+column.

Let ν = (α, 2β , 1γ). We want to begin decomposing (p2 ◦ sλ)|hook+col, that is, we are asking who
is [ν](p2 ◦sλ). Thanks to the SXP rule, we may equivalently ask, up to sign, who is [λ](sν(0) ·sν(1)).
Much of the work was done in section 2.3.

Looking at Table 1, we can now merge the four cases into two:
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1. If α ≡ 0 modulo 2, we have to multiply a column by a hook. This is particularly simple9.
We leave it to the reader to check that if α ≡ 0 (2), then

supp(sν(0) · sν(1)) =
{
λ : 2λ1=α

m2(λ)≤β/2

}
t
{
λ :

2λ1=α+2
m2(λ)≤ β−1

2

}
.

(We omitted the condition 2|λ| = |ν| for clarity’s sake.)

2. If α ≡ 1 modulo 2, we have to discuss the parity of β. From section 2.7, if β is odd then the
2-core of ν is not empty and the SXP rule states that [λ](sν(0) · sν(1)) = 0. If β is even, then
sν(1) = 1 and so supp(sν(0) · sν(1)) =

{(
α+1

2 , 2
β
2 , 1

γ−1
2

)}
.

This analysis returns λ for a given ν. But we are also interested in knowing ν for a given λ.
Working our way backwards, (and checking Table 2 for the 2-sign function), we get

Lemma 4.12. If λ = (λ1, 2
m2(λ), 1m1(λ)) is a hook+column, then

(p2 ◦ sλ)|hook+col = (−1)m1(λ) ·

 ∑
β≥2m2(λ)

(−1)βs(2λ1,2β ,1•)

− s(2λ1−1,22m2(λ),1•) +
∑

d β2 e≥m2(λ)+1

(−1)β+1s(2λ1−2,2β ,1•)

 .

Note 4.13. For readability reasons, we omitted the multiplicity of the 1s in the previous formula.
It can be recovered from the equation 2|λ| = |ν|. Also, it may seem as if the sign of each term
depends on λ and β. Nonetheless, recall from Table 2 it only depends on the size of the 1’s part in
each term of the sum.

Example 4.14. Let’s look at an example:(
p2 ◦ s(4,23,1)

)∣∣
hook+col

= s(8,27) − s(8,26,12) + s(7,26,13) + s(6,28) − s(6,27,12).

There is a better combinatorial interpretation of the aforementioned coefficients. In their work,
Carré and Leclerc [5] express LR coefficients as the cardinalities of certain sets of “Yamanouchi
domino tableaux”. More precisely, they show that

p2 ◦ sλ =
∑
ν

sgn2(ν)cλν(0)ν(1)sν =
∑
ν

sgn2(ν)#Yam2(ν, λ)sν .

Here, we list some of the definitions needed in order to understand this expression.

Definition 4.15. A domino is a 2 × 1 or 1 × 2 subdiagram of a Young diagram. A domino
diagram of shape ν is a Young diagram of shape ν which is tiled with dominos. Consequently,
a domino tableau is a map T : {dominos of ν} → N which we represent the usual way. Such a
tableau is semi standard (SSDT) if the represented numbers are strictly increasing along each
column and weakly increasing along each row of the original Young diagram. Below, examples of
what is and what isn’t a semi standard domino tableau. Finally, a SSDT is Yamanouchi if the
reverse reading column word is lattice permutation on the right. The weight of the tableau T is
defined as usual, (m1(T ),m2(T ), ...).

The set Yam2(ν, λ) is the set of Yamanouchi SSDT of shape ν and weight λ.
9It is a special case of the LR rule known as Pieri’s formula. See [19].
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Note 4.16. If ν admits a domino tiling, then the 2-core of ν is empty. Also, the sign function
sgn2(ν) is now redefined as (−1)# vertical dominos. The reader may verify these assertions.

Example 4.17. As an illustration of the above definitions, let

T 0 =

1

2

4

2

3

1 1 1

; T 1 =

1 1
2
3

1

; T 2 =
1 1

2
2

.

• T 0 is a Yamanouchi SSDT of shape ν0 = (7, 24, 1), reverse reading column word 42132111
and weight λ0 = (4, 2, 1, 1). It is an element of Yam2(ν0, λ0).

• T 1 is a Yamanouchi SSDT of shape ν1 = (4, 22, 12), reverse reading column word 32111 and
weight λ1 = (3, 1, 1). It is an element of Yam2(ν1, λ1).

• T 2 is not a SSDT, as the second column is not strictly increasing.

Given hook+columns ν and λ, we are very restricted when constructing an element of Yam2(ν, λ).
If m1(ν) is odd, there will only be one domino tiling of ν. Moreover, there is only one way of filling
that tableau in a Yamanouchi way. (See T 0 in our previous example.) If m1(ν) is even, there will
be, in general, multiple ways of tiling ν; but a given domino diagram can only be filled with weight
λ in one way. (See T 1 in our previous example.)

Now, one can derive the formula for (p2 ◦ sλ)|hook+col, and check that we retrieve our previous
computation.

Regarding the expression (p1,1 ◦ f)|hook+col, it remains to compute (sλ · sµ)|hook+col when both
λ and µ are hook+column partitions.

For this matter, we will use the Remmel and Whitney product rule [24], instead of the LR rule.

Theorem 4.18 (Remmel and Whitney, [24]). Given the partitions µ and ν, it’s

sµ · sν =
∑

T∈O(µ∗ν)

sρ(T ),

where O(µ ∗ ν) is the set of skew tableaux of shape

µ ∗ ν = (ν1 + µ1, ν1 + µ2, . . . , ν1 + µl(µ), ν1, ν2, . . . , νl(ν))
/

(ν1,
l(µ) times. . . , ν1)

satisfying the two following conditions:

1. If in the reverse lexicographic filling L of µ ∗ ν we have y x then in T we have y below and
strictly to the right of x

2. If in the reverse lexicographic filling L of µ ∗ ν we have y
x

then in T we have y to the left

and strictly to above of x

Then we can directly compute:

Lemma 4.19. Let µ = (µ1, 2
m2(µ), 1m1(µ)) and ν = (ν1, 2

m2(ν), 1m1(ν)) be hook+columns. Let
α := ν1 + µ1,

m2 := m2(µ) +m2(ν),

m1 := min(m1(µ),m1(ν)).
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Then,

(sµ · sν)|hook+col =

m2+m1∑
β=m2

s(α,2β ,1•)+

+

m2+m1+1∑
β=m2

χβ(µ,ν) · s(α−1,2β ,1•) +

m2+m1+1∑
β=m2+1

s(α−2,2β ,1•),

where χβ(µ,ν) = 1 if β = m2 or β = m2 +m1 + 1 and χβ(µ,ν) = 2 otherwise.

Proof. The reader may convince him/herself just by following an example. For the sake of rig-
urosity, let λ ∈ supp(sν · sµ). Then, if λ1 < α− 2, consider λ/µ and try to fill it with weight ν and
such that the reverse reading word is lattice permutation (following the LR rule). This is clearly
not possible. Similarly, λ1 6> α.

1 1

1
1
1

...
...

11 1 1 2

... ...

Now, case by case, the Remmel and Whitney rule is very restrictive. It is not difficult to see that:

• if λ1 = α, all of the following λ shapes appear once in the support:

, , · · · , .

And so have the subset{(
α, 2β , 1•

)
: m2 ≤ β ≤ m2 +m1

}
⊆ supp(sµsν).

Here, we omitted the 1’s part, which can be computed by letting |λ| = |µ|+ |ν|.

• if ν1 = α− 1, then the possible shapes are:

, · · · , and also , · · · , .

This yields the subset {(
α− 1, 2β , 1•

)
: m2 ≤ β ≤ m2 +m1 + 1

}
.

Note that every partition appears twice in supp(sµsν) except when one of the two equalities
hold.

• finally, if ν1 = α− 2, we get, analogous to the first case:

, · · · , .
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The associated subset is{(
α− 2, 2β , 1•

)
: m2 + 1 ≤ β ≤ m2 +m1 + 1

}
. �

We conclude with a beautiful result. Take µ = ν and compare Lemmas 4.19 and 4.12. In
particular, note that

supp
(

(p2 ◦ sλ)|hook+col

)
⊆ supp

((
s2
µ

)∣∣
hook+col

)
.

Furthermore, if m1(µ) = 0, then the two sets are identical, and so are the multiplicities associated
which each partition.

In fact, there is one more thing to notice; every hook+column ν = (α, 2β , 1γ) such thatm1(ν) =
γ = 0 has a positive 2-sign in the SXP rule. Consequently, we always get the following result:

Lemma 4.20. Let µ = (α, 2β). Then, (p2 ◦ sµ)|γ=0
hook+col = (p1,1 ◦ sµ)|γ=0

hook+col.

4.2 An explicit formula for s2 ◦ sa ◦ sb on hook+columns
Now that we have explicit formulas for computing the plethystic action of p2 and p1,1 on functions
f = (f)|hook+col, we can bring back 4.2 and compute the next iteration, namely, from

(sa ◦ s2)|hook+col = (sa ◦ s2)|γ=0
hook+col =

∑
k<a

s(2a−2k,2k),

we want to look at the following problem: (s2 ◦ sa ◦ sb)|γ=0
hook+col. Note 4.3 guarantees that the

analysis will be identical for any b ≥ 2, so we suppose b = 2 without loss of generality. Decomposing
2 · s2 = p2 + p1,1 as usual, we get

2 · (s2 ◦ sa ◦ s2)|γ=0
hook+col =

∑
k<a

(
p2 ◦ s(2a−2k,2k)

)∣∣γ=0

hook+col

+

(∑
k<a

s(2a−2k,2k)

)2
∣∣∣∣∣∣

γ=0

hook+col

.

(2)

Squaring the second summation gives∑
k<a

s2
(2a−2k,2k) + 2

∑
i<j<a

s(2a−2i,2i) · s(2a−2j,2j).

Lemma 4.20 now allows for a simplification of our original equation,

(s2 ◦ sa ◦ s2)|γ=0
hook+col =

 ∑
i≤j<a

s(2a−2i,2i) · s(2a−2j,2j)

∣∣∣∣∣∣
γ=0

hook+col

.

We already know how to explicitly compute these products from Lemma 4.19. For each term in
the second sum, we get the resulting hook+column partitions λ with m1(λ) = 0 and whose first
row verifies

λ1 ∈ {4a− 2(i+ j), 4a− 2(i+ j + 1)} .
Consequently, the hook+column partitions that will appear in the sum are those whose first row
is in the set {2, 4, 6, ..., 4a}. The question now is how many times does each one appear. Let us
start by giving the answer:
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Lemma 4.21. For any a ≥ 2,

(s2 ◦ sa ◦ s2)|γ=0
hook+col =

2a∑
k=1

min {k, 2a− k + 1} · s(2k,22a−k).

Equivalently, the hook+column sequence of (s2 ◦ sa ◦ s2) for γ = 0 is

(1, 2, ..., a− 1, a, a, a− 1, ..., 2, 1).

Example 4.22. This is a really nice result. Recall example 4.8,

(s2 ◦ s4 ◦ s2)|γ=0
hook+col = 1s +2s +3s +4s +4s +3s +2s +1s .

Proof. Take a ∈ N and k ∈ {1, 2, ..., 2a}. We ask how many integer pairs (i, j) are there in the
polytope ∆ := {0 ≤ i ≤ j < a}, which are solutions to either of these two equations:{

4a− 2(i+ j) = 2k,

4a− 2(i+ j + 1) = 2k,
or, equivalently,

{
i+ j = 2a− k,
i+ j = 2a− k − 1.

(3)

Refer to Figure 16 for a graphical representation.

j

i

i = j

j = a− 1

i+ j = 2a− k − 1

i+ j = 2a− k

Figure 16: We let a = 5 and k = 5. The polytope ∆ is shaded in blue. Each black dot represents
a valid pair. On the right, we illustrate the result of the described projection.

To help count the black dots, we’ll project them orthogonally from one of the lines to the other
one, in such a way that all the black dots remain inside ∆. More precisely, if k ≥ a then project
onto {i+ j = 2a− k} and vice versa.

One can easily see now what the coefficients are going to look like. Noting that the biggest
line is counted twice (because we change the projection mid way), results in the desired integer
sequence. �

If we now want to know which hook+column partitions ν with m1(ν) 6= 0 subsets appear in
(s2 ◦ sa ◦ s2), we have to go back to our previous equation (2).

A close inspection of Lemma 4.19 for the square of a hook+column λ verifying m1(λ) = 0,
reveals that only one such ν emerges, namely (2λ1 − 1, 22m2(λ), 1•). At the same time, this is the
only ν emerging from p2 ◦ sλ, and with a minus sign, cancelling itself in our previous equation.(
p2 ◦ sλ + (sλ)2

)∣∣
hook+col = (· · · )|γ=0

hook+col+s(2λ1−1,22m2(λ),1•)−s(2λ1−1,22m2(λ),1•) = (· · · )|γ=0
hook+col .
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Thereby, we get the following equality

(s2 ◦ sa ◦ s2)|γ 6=0
hook+col =

 ∑
i<j<a

s(2a−2i,2i) · s(2a−2j,2j)

∣∣∣∣∣∣
γ 6=0

hook+col

.

Once again, for each of those products, only one such partition emerges, which is (4a − 2i −
2j − 1, 2i+j , 1). To discuss the multiplicity, we ask, for a given k ∈ {1, 2, ..., 2a}, how many pairs
0 ≤ i < j < a are there such that 4a − 2i − 2j − 1 = 2k − 1 or, equivalently, i + j = 2a − k.
It’s a similar question to the previous one (maybe just half the question), and the answer is
min

{⌊
k−2

2

⌋
,
⌊

2a−k
2

⌋}
. All things considered, we arrive at our final expression:

Theorem 4.23. For any a, b ≥ 2,

(s2 ◦ sa ◦ sb)|hook+col =

2a∑
k=1

min {k, 2a− k + 1} · s(
2(a(b−2)+k), 22a−k

)
+

2a∑
k=1

min

{⌊
k − 2

2

⌋
,

⌊
2a− k

2

⌋}
· s(

2(a(b−2)+k)−1, 22a−k, 1
).

We found another proof of 4.23 that is identical in nature, and albeit it offers less possibilities for
future generalizations, its beauty deserves an honorable mention in this work. We are again letting
b = 2 and asking, for a ∈ N and k ∈ {1, 2, ..., 2a}, how many (i, j) are there in ∆ = {0 ≤ i ≤ j < a}
which are solutions to either of the equations of (3). By a change of variables I = a− i, J = a− j,
we are equivalently looking for pairs (I, J) ∈ {1 ≤ I ≤ J ≤ a} which are solutions to either of
these equations: {

I + J = k,

I + J = k + 1.

Start by placing the points 1, 2, ..., a in a line. Now join any two of those points I and J with
a semicircle over the line if they satisfy the first equation. Similarly, join them with a semicircle
under the line if they satisfy the second equation. Refer to Figure 17 for an example.

1 2 3 4 5 6 7 8

Figure 17: Let a = 8, k = 6. There are
⌊
k
2

⌋
= 3 red semicircles over the line and

⌊
k+1

2

⌋
= 3 blue

semicircles under the line. In total, k = 6 semicircles.

Now count the number of total semicircles. We can now see that the resulting sequence will
be symmetric in k, as the two conditions 1 ≤ I and J ≤ a have a similar effect on the diagram.
Letting k be sufficiently small, we can remove the condition J ≤ a and do the counting. There will
be
⌊
k
2

⌋
semicircles over the line and

⌊
k+1

2

⌋
under the line. Summing up these two values gives k,

and letting k vary yields the sequence (1, 2, ..., a, a, ..., 2, 1).
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A similar argument can be made for the second part of the proof, with semicircles only over
the line and without letting (I, I) be a valid semicircle.

4.3 A symmetry result
As we have seen in the first iterations, the hook+column sequences of s◦k2 (and other similar
functions) appear to have symmetric behaviours. In particular, every previous example show that
the last non-vanishing coefficient coincides with the first non-vanishing coefficient; the second-to-
last non-vanishing coefficient with the second one, and so on.

(s2 ◦ s4 ◦ s2)|γ=0
hook+col = 1s +2s +3s +4s +4s +3s +2s +1s .

In fact, this holds with more generality. In order to prove this phenomenon, we will need to define
some new concepts to precisely state what are we going to show.

Definition 4.24. A brick is a horizontal 1×m subdiagram of a Young diagram. A brick diagram
of shape λ a Young diagram of λ which is tiled with bricks. The partition arising from the ordering
of the brick sizes is called the type.

In particular, every Young diagram is a brick diagram of type (1, ..., 1). Note, however, that
any domino diagram is not a brick diagram of type (2, ..., 2), as we would need some “bricks” to be
vertically placed. A more general example of a brick diagram is given in Figure 18.

;

{
Shape λ = (8, 23, 1),

Type µ = (3, 25, 12).

Figure 18: A brick diagram of a hook+column partition.

Definition 4.25 (r-flip). Let λ = (λ1, 2
β , 1γ) be a hook+column partition. Let r < λ1 − γ be a

fixed natural number, such that λ1− γ− r is even. We define λr (sometimes r(λ)) as the resulting
partition of the following process:

1. Start with the Young diagram for λ.

2. Divide the diagram into bricks such that:

• row one is made of one brick of size r, followed by some bricks of size 2 and exactly γ
bricks of size 1.

• every other row is made of one brick.

3. Collapse every brick into a single cell with a coefficient denoting the size of the brick. We
should now have a (not necessarily semi standard) tableau T .

4. Transpose T .

5. Expand every cell into a brick with size the coefficient of the cell.

6. The shape of our resulting brick diagram is λr.

37



Example 4.26. To illustrate this process, let λ = (8, 23, 1) and let r = 3.

−→

1
2
2
2
3 2 2 1

t−−→
1
2
2
3 2 2 2 1

−→

Then λr is (10, 22, 1).

Definition 4.27 (r-symmetry). Let f ∈ Λn be an homogeneous symmetric function of degree n,
expressed as

∑
dλsλ over the Schur’s basis. We say that f is r-symmetric for a given r if dλ = dλr

for every hook+column partition λ.

In a more general language, we defined f as r-symmetric if the Schur-polynomials (f)|γhook+col are
symmetric every fixed γ. We are now ready to state our theorem:

Theorem 4.28. Let f ∈ Λn be r-symmetric for a fixed r, and such that [µ]f is non-negative for
every hook+column partition µ. Then, s2 ◦ f ∈ Λ2n is R-symmetric for R = 2r − 2, and every
resulting coefficient is non-negative.

Once this theorem is proven, we would have shown that s◦k2 ◦ sa ◦ sb is r-symmetric for every
k, a, b for some r. Indeed, sa ◦ sb is trivially r-symmetric for every a, b from Theorem 4.2, with
r = ab− 2(a− 1), and the previous theorem tells us that s2 preserves this symmetry.

But before giving the proof, let us discuss some notation. As always, express s2 as 1
2 (p1,1 +p2).

From Lemma 4.12, we can derive an explicit formula for [λ](s2 ◦ f). If λ1 is odd, then

[λ](p2 ◦ f) = sgn2(λ) ·
[(
r + δ +

γ − 1

2
, 2

β
2 , 1

γ−1
2

)]
f,

whereas if λ1 is even, then

[λ](p2 ◦ f) =
∑
m2≤ β2

sgn2(λ)
[(
r + δ +

γ

2
− 1, 2m2 , 1β+ γ

2−2m2

)]
f +

+
∑

m2≤ β−1
2

sgn2(λ)
[(
r + δ +

γ

2
, 2m2 , 1β+ γ

2−2m2−1
)]
f.

Here, the multiplicity of the 1s were computed by adjusting the sizes of partitions to be exactly |λ|2 .
Let D2

λ be the multiset of partitions µ such that [λ](p2 ◦ sµ) doesn’t vanish and with multiplicities
[µ]f . Then, the above formulas translate to one simple equation (in terms of one complex multiset),

[λ](p2 ◦ f) = sgn2(λ) ·#D2
λ.

When λ1 is odd, the multiset only has one distinct element, and when λ1 is even, we can split the
multiset into two parts,

D2
λ =

{
µ : 2µ1=λ1

m2(µ)≤β/2

}
∪
{
µ :

2µ1=λ1+2

m2(µ)≤ β−1
2

}
=: 0D2

λ ∪ 2D2
λ.

We omitted the condition |µ| = |λ|
2 for clarity’s sake.
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Similarly, we can achieve some formulas for p1,1, using Lemma 4.19. Letting m2 be m2(µ, ν) =
m2(µ) +m2(ν) and m1 be m1(µ, ν) = min{m1(µ),m1(ν)} for the sake of simplification, we get

[λ](p1,1 ◦ f) =
∑

µ1+ν1=λ1
m2≤β≤m2+m1

[µ]f · [ν]f+

+
∑

µ1+ν1=λ1+1
m2≤β≤1+m2+m1

χβ(µ,ν) · [µ]f · [ν]f +
∑

µ1+ν1=λ1+2
1+m2≤β≤1+m2+m1

[µ]f · [ν]f,

where χβ(µ,ν) is 1 if any extreme on β is attained, and 2 otherwise. Note also that the condition
|µ| + |ν| = |λ| was omitted. This leads to the definition of another multiset, D1,1

λ , made of the
ordered10 pairs (µ, ν) such that [λ](sµsν) doesn’t vanish and with multiplicities [µ]f · [ν]f or χβ(µ,ν) ·
[µ]f · [ν]f accordingly. This time,

[λ](p1,1 ◦ f) = #D1,1
λ ,

and the multiset will be naturally split into three multisets,

D1,1
λ =

{
(µ, ν) : µ1+ν1=λ1

m2≤β≤m2+m1

}
∪
{

(µ, ν) : µ1+ν1=λ1+1
m2≤β≤1+m2+m1

}
∪
{

(µ, ν) : µ1+ν1=λ1+2
1+m2≤β≤1+m2+m1

}
,

which we will call 0D1,1
λ , 1D1,1

λ and 2D1,1
λ respectively.

Note 4.29. These multisets, or rather their underlying sets, can be interpreted as some integer
polytopes in Z6, by identifying a hook+column pair (µ, ν) =

(
(µ1, 2

m2(µ), 1m1(µ)), (ν1, 2
m2(ν), 1m1(ν))

)
with the point

(
µ1,m2(µ),m1(µ), ν1,m2(ν),m1(ν)

)
. Now, the equalities and inequalities that de-

fine our sets are viewed as the restriction to certain hyperplanes and regions of the space. Once
this work is done, the integer points inside the intersection of those hyperplanes and regions form
the announced polytope.

Proof of 4.28. Let (f)|hook+col =
∑

([µ]f) · sµ and s2 ◦ (f)|hook+col =
∑
dλsλ. By hypothesis,

[µ]f = [µr]f for every µ. We want to show that dλ = dλR for any fixed λ = (λ1, 2
β , 1γ) ` 2n,

where R = 2r− 2. I claim11 we can find a δ ≥ 0 such that λ1 = R+ 2δ+ γ. We now have a direct
way of expressing the R-flip on λ — we think of it as interchanging β and δ (see Figure 19).

As usual, we will express s2 in the powersum base, to get

2dλ = [λ](p2 ◦ f)︸ ︷︷ ︸
sgn2(λ)#D2λ

+ [λ](p1,1 ◦ f)︸ ︷︷ ︸
#D1,1λ

; 2dλR = [λR](p2 ◦ f)︸ ︷︷ ︸
sgn2(λR)#D2

λR

+ [λR](p1,1 ◦ f)︸ ︷︷ ︸
#D1,1

λR

.

Now, the non-negativity of the resulting coefficients will fall from 4.30, as any given coefficient is
either product and sum of positive coefficients, or a number of type ([µ]f)2 − [µ]f , or a number of
type 2([µ]f)2 − [µ]f . In any case, it is a non-negative integer.

Also, recall from its definition that the sign depends solely on the size of the 1’s part of our
partitions, which is invariant under the r-flip. So proving D2

λ = D2
λR and D1,1

λ = D1,1
λR

will suffice to
prove r-symmetry. We will let the followings lemmas contain all the technical details:

10That is, if µ 6= ν, then both (µ, ν) and (ν, µ) are in the set with the same multiplicity. If we were to consider
the unordered pairs, then (µ, ν) appears with multiplicity 2 · [µ]f · [ν]f .

11As Lemma 4.30 establishes, we can suppose that the λ arises from the product of µ and ν. By hypothesis, the
r-flip must be defined for µ, ν, and thus r < µ1 −m1(µ), r < ν1 −m1(ν). Adding up these two inequalities, we get
R < (µ1 + ν1 − 2)− (m1(µ) +m1(ν)) ≤ λ1 − γ, from a close inspection of Lemma 4.19.

The parity of 2n,R, and γ gives λ1 −R− γ even.
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λ = (R+ 2δ + γ, 2β , 1γ)
R-flip−−−−−→ λR = (R+ 2β + γ, 2δ, 1γ)

R

2 · δ γ

β

γ

R-flip−−−−−→

R

2 · β γ

δ

γ

Figure 19: A direct way of expressing the R-flip on λ.

• If λ1 is odd, then D2
λ = D2

λR by 4.31.

• If λ1 is even, then 0D2
λ = 2D2

λR by 4.32. Relabelling λ for λR gives 0D2
λR = 2D2

λ.

• By 4.33, 0D1,1
λ = 2D1,1

λR
, and relabelling λ for λR gives 0D1,1

λR
= 2D1,1

λ .

• Finally, 1D1,1
λ = 1D1,1

λR
by 4.34.

And thus D2
λ = D2

λR and D1,1
λ = D1,1

λR
, proving that r-symmetry is preserved under (s2 ◦ ·). �

Lemma 4.30. Under the hypotheses and notations of 4.28, µ ∈ D2
λ implies (µ, µ) ∈ D1,1

λ .

Proof. First of all, if λ1 is odd then D2
λ has only one element, namely µ =

(
λ1+1

2 , 2
β
2 , 1

γ−1
2

)
. One

can easily verify that µ does indeed verify the equations

2µ1 = λ1 + 1 ; 2m2(µ) ≤ β ≤ 2m2(µ) +m1(µ),

and thus µ ∈ D1,1
λ .

If now λ1 is even, suppose that µ verifies

µ1 =
λ1

2
; m2(µ) ≤ β

2
.

We get 2µ1 = λ1 and 2m2(µ) ≤ β. It remains to show that β ≤ 2m2(µ) + m1(µ). But by
contradiction, if β > 2m2(µ) +m1(µ), then from the equality

2n = λ1 + 2β + γ = 2µ1 + 4m2(µ) + 2m1(µ) = 2 · n,

we conclude
λ1 + γ < 2µ1 = λ1.

This is obviously a contradiction. If now µ verifies the other set of equations, that is

µ1 =
λ1

2
+ 1 ; m2(µ) ≤ β − 1

2
,

then 2µ1 = λ1 + 2 and 2m2(µ) + 1 ≤ β. It remains to show β ≤ 2m2(µ) +m1(µ) + 1, which we do
similarly to the previous case. �

Lemma 4.31. Under the hypotheses and notations of 4.28, if λ1 is odd then D2
λ = D2

λR .
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Proof. If λ1 = R+ 2δ + γ is odd, then so is λR1 = R+ 2β + γ. The only element in D2
λ is

µ =

(
r + δ +

γ − 1

2
, 2

β
2 , 1

γ−1
2

)
.

Under the r-flip, the image of said partition is(
r + β +

γ − 1

2
, 2

δ
2 , 1

γ−1
2

)
= µr.

This is the only partition appearing in D2
λR . By hypotheses, both these partitions appear with the

same multiplicity [µ]f = [µr]f in their corresponding multisets. This ends the proof. �

The rest of lemmas will follow the same spirit as the previous one, but will not be as trivial to
prove.

Lemma 4.32. Under the hypotheses and notations of 4.28, if λ1 is even then 0D2
λ = 2D2

λR .

Proof. If λ1 is now even, then

D2
λ =

{
µ : 2µ1=λ1

m2(µ)≤β/2

}
∪
{
µ :

2µ1=λ1+2

m2(µ)≤ β−1
2

}
=: 0D2

λ ∪ 2D2
λ.

Explicitly, we can write (up to multiplicity)

0D2
λ =

{(
r + δ +

γ

2
− 1, 2m2 , 1β+ γ

2−2m2

)
: m2 ≤

β

2

}
,

where the size of the 1’s part is computed adjusting the size of the partitions to be n = |λ|
2 .

Similarly,
2D2
λR =

{(
r + β +

γ

2
, 2m

′
2 , 1•

)
: m′2 ≤

δ − 1

2

}
.

We will now apply the r-flip on every element of 0D2
λ. Following the r-flip algorithm, the first part

of said partitions are made of one r-brick, some 2-bricks and β + γ
2 − 2m2 extra 1-bricks. So we

can solve for the number of 2-bricks which is m′2 := δ+2m2−β−1
2 . And thus applying the r-flip on

the multisets yields

r(0D2
λ) =

{(
r + β +

γ

2
, 2m

′
2 , 1β+ γ

2−2m2

)
: m2 ≤

β

2

}
.

We aim to identify r(0D2
λ) with 2D2

λR . The only thing that remains to show is that

m2 ≤
β

2
⇔ m′2 ≤

δ − 1

2
.

From the expression of m′2, the inequality m′2 ≤ δ−1
2 simplifies to δ−1+2m2−β

2 ≤ δ−1
2 , and it is now

clear that this is equivalent to the inequality m2 ≤ β
2 . �

Lemma 4.33. Under the hypotheses and notations of 4.28, we get 0D1,1
λ = 2D1,1

λR
.
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Proof. Note that the first parts of µ and ν sum to the first part of λ if and only if the rest of µ
and ν sum to the rest of λ. This is expressed as

2m2(µ) +m1(µ) + 2m2(ν) +m1(ν) = 2β + γ.

Adding R = 2r − 2 to both sides of the equation gives

r + 2m2(µ) +m1(µ)︸ ︷︷ ︸
µr1

+ r + 2m2(ν) +m1(ν)︸ ︷︷ ︸
νr1

−2 = R+ 2β + γ︸ ︷︷ ︸
λR1

.

So µ1 + ν1 = λ1 if and only if µr1 + νr1 = λR1 + 2.
On the other hand, immediately from the Remmel and Whitney product rule [24], we can say

similar things about the presented inequalities. More precisely, m2 ≤ β if and only if m1(µ) +
m1(ν) ≥ γ, as β is “made of” cells coming from m2(µ), m2(ν), m1(µ) and m1(ν), with the “excess”
cells forming γ.

Knowing that µ1 + ν1 = λ1, we write(
r + 2m2(µr) +m1(µ)

)
+
(
r + 2m2(νr) +m1(ν)

)
= R+ 2δ + γ = 2r − 2 + 2δ + γ.

And so,
m2 ≤ β ⇔ m1(µ) +m1(ν) ≥ γ ⇔ m2(µr) +m2(νr)︸ ︷︷ ︸

=: m′2

+1 ≤ δ.

In a similar fashion, one can show

β ≤ m2 +m1 ⇔ γ ≥ |m1(µ)−m1(ν)| ⇔

⇔ δ ≤ m′2 + 1 +
1

2

(
m1(µ) +m1(ν)− |m1(µ)−m1(ν)|

)
︸ ︷︷ ︸

= min{m1(µ),m1(ν)} = m1 = m′1

= m′2 + 1 +m′1.

Summing up, we have proved that a pair (µ, ν) is in 0D1,1
λ if and only if (µr, νr) is in 2D1,1

λR
, and

thus 0D1,1
λ = 2D1,1

λR
by r-symmetry hypothesis on f . �

Lemma 4.34. Under the hypotheses and notations of 4.28, we get 1D1,1
λ = 1D1,1

λR
.

Proof. Quite similarly to the previous lemma, one can proof

µ1 + ν1 = λ1 + 1 ⇔ µr1 + νr1 = λR1 + 1.

For the second part, the Remmel and Whitney product rule says that

m2(µ) +m2(ν) ≤ β ⇔ m1(µ) +m1(ν) ≥ γ − 1,

and following the same scheme of proof, we convert that second inequality to m′2(µ) +m′2(ν) ≤ δ.
The last inequality comes once again from the Remmel and Whitney rule, which now tells us that

β ≤ 1 +m2(µ) +m2(ν) + min{m1(µ),m1(ν)} ⇔ γ + 1 ≥ |m1(µ)−m1(ν)|,

from where the result arises. Following in each steps the case in which the equalities are attained,
we also proved that χβ(µ,ν) = χδ(µr,νr). �
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5 Final remarks on some experimental results

In the previous section, we showed that the hook+column sequences of s◦k2 ◦ sa ◦ sb are always
symmetric for any γ. Judging from our recollected data, it seems that this is true for any function of
the form sn1 ◦sn2 ◦ · · · ◦snk . We establish the first of three conjectures about structural behaviours
of the forementioned sequences:

Conjecture 1. The hook+column sequences of sn1
◦ sn2

◦ · · · ◦ snk for any fixed γ are symmetric.

An avid reader might have already spotted some additional structures in the example sequences
discussed in section 4. A finite sequence is said to be unimodal (or concave, monotonic) if it is
weakly increasing until a certain point, and weakly decreasing from there on. That is, if we can
write the sequence as follows: a0 ≤ a1 ≤ · · · ≤ ak−1 ≤ ak ≥ ak+1 ≥ · · · ≥ an−1 ≥ an. Theorem
4.23 is a prime example of unimodality. Recall the example that illustrated said result:

Example 5.1. The hook+column sequence of s2 ◦ s4 ◦ s2 for γ = 0 is (1, 2, 3, 4, 4, 3, 2, 1).

The available data would imply the following:

Conjecture 2. The hook+column sequences of sn1 ◦ sn2 ◦ · · · ◦ snk for any fixed γ are unimodal.

We haven’t found a proof of this yet, but we would like to briefly showcase the progress we
have made.

Many different methods can be used to prove unimodality in combinatorial sequences [31].
However, no single method appears to be successful in a general setting. This makes proving such
phenomenon an arduous task, and there are many instances of sequences which were believed to
be unimodal for ages, but were only recently proved to be so. Thankfully, it seems as if symmetric
sequences are easier to work with, so hopefully showing that s◦k2 ◦ sa ◦ sb is unimodal is a more
achievable goal, given that we have already proven Theorem 4.28. Other structural behaviours
also help simplify the problem. For instance, if certain polynomials arising from the sequences
are real-rooted, then the sequences are log-concave12, which in turn implies unimodality. This
approach13 fails to hold generality in our case (one can check that s◦52 and γ = 0 do not give a
log-concave sequence).

Perhaps the most naive way of proving unimodality of symmetric combinatorial sequences (that
is, sequences of number which count combinatorial objects) would be to establish an injective map
from the set of objects counted by aβ−1 to the set of objects counted by aβ provided that both
numbers are in the increasing part of the sequence. For our case — that is, the functions s◦k2 ◦sa◦sb
—, that would mean establishing an injection from Dνβ−1

to Dνβ provided that β E βR. Even though
(νθ, νπ) 7→ (νθ+1, νπ) appears to be such injection, we have checked that it does not work well in
the extreme cases, and does not lead us in the correct direction.

Another obvious — although not necessarily easy — approach to proving unimodality of combi-
natorial sequences is to work with the object themselves and try and understand why there would
be less or more of one type than another type. This is ultimately the goal of a pure combinato-
rialist. However, the nature of our work does not let us work in this manner, as a combinatorial
interpretation of plethysm is indeed the question we want to some day answer. Relatively recently,
a very celebrated proof of this kind was found by Kathleen O’Hara of the unimodality of q-binomial

12A finite sequence is said to be log-concave if a2i ≥ ai−1ai+1 for every i.
13Two examples of this approach are found in [6, 11]. One shall note, however, that the ultimate goal of those

articles is not to show unimodality, but asymptotic normality, which we will later discuss.
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coefficients [21]. We are very thankful to Emmanuel Briand for pointing out that this problem is
related to ours. From Corollary 4.5 and Lemma 4.6, our problem is reduced to studying whether

sn1
◦ sn2

◦ · · · ◦ snk [1− x− y] · (x− y)

(−1)γ(1− x)(1− y)(xγ+1yγ+1)
=
∑
β

aβ(xy)β

is a unimodal polynomial — a polynomial whose coefficients form an unimodal sequence — in the
variable (xy) for every fixed γ. The following equality,

(sa ◦ sb)[1 + q] = sa[(b+ 1)q] =

(
a+ b

a

)
q

=
∑
m

bmq
m,

where (n)q is the q-analogue of n and
(
n
k

)
q
is the q-binomial coefficient, indicates that the famous

proof by O’Hara can be rephrased in a similar manner; whether (sa ◦ sb)[1 + q] is a unimodal
polynomial in the variable q.

Asymptotic normality is another structural phenomenon commonly found in combinatorial
sequences. Experimental evidence suggest that the hook+column sequences of (s2)◦k for any fixed
γ are asymptotically normal when letting k tend to infinity, as Figure 20 illustrates.

Function γ Hook+column sequence

s◦22 0 (1, 1)

s◦32 0 (1, 2, 2, 1)

s◦42 0 (1, 3, 8, 13, 13, 8, 3, 1)

s◦52 0 (1, 4, 20, 72, 205, 446, 756, 986, 986, 756, 446, 205, 72, 20, 4, 1)

Figure 20: On top, a table showing the hook+column sequence of s◦k2 for γ = 0 up to k = 5.
Below, plots of the aforementioned sequences, the x axis being β, and represented as the normalized
histogram whose frequencies read (a0, a1, ..., aβ , ...). They appear overlaid with Gaussian curves of
adjusted mean and variance.

Moreover, a χ2 normality test returns the p-values shown in Table 5, which are extremely big14,
indicating that the Gaussian curve perfectly fits our sequences, even for small values of k.

Conjecture 3. For each fixed γ, the hook+column sequence of s◦k2 is asymptotically normal, in
the sense that their relative sums approach a Gaussian curve when k tends to infinity.

See [3, 6, 11] for more details in asymptotic normality of combinatorial integer sequences. As
previously mentioned, the methods presented in [6, 11] cannot be used to solve our problem, as
our sequences are not always log-concave.

14We adopt the usual convention of accepting our sequence as normal if the p-value is bigger than 0.05.

44



γ = 0 1 2 3 4 5 6 7

s◦22 1

s◦32 1 1

s◦42 1 0.92 1 1

s◦52 1 1 1 0.99 0.98 1 1 1

Table 5: The p-values resulting from the χ2 normality test on the hook+column sequences of s◦k2
up to k = 5 and for every possible γ.

We have used sagemath to compute some data supporting these conjectures. For instance, our
data for fn,m := sn ◦ sm ◦ s2 suggest that both the limit when n tends to infinity and the limit
when m tends to infinity of fn,m yields asymptotic normality of the corresponding hook+column
sequences (see Figure 21).

Figure 21: In order, the histogram plots for the hook+column sequences associated to s9 ◦ s2 ◦ s2,
s6 ◦ s3 ◦ s2, s5 ◦ s4 ◦ s2 and s4 ◦ s5 ◦ s2, always for γ = 0. They appear overlaid with Gaussian
curves of adjusted mean and variance.

Furthermore, we were able to make some reasonable guesses about what the hook+column
sequences of fn,m approach to.

• Let m = 2. The hook+column sequence for fn,2 = sn ◦ s2 ◦ s2, γ = 0 seems to be

(1, 2, 4, 7, . . . , 1 + Tn, 1 + Tn, . . . , 7, 4, 2, 1) ,

where Tn is the nth triangular number (OEIS A000124, A000217). This has been verified
until n = 9.

• Let m = 3. The hook+column sequences of fn,3 = sn ◦ s3 ◦ s2 and γ = 0 up to n = 6 are
shown in Table 6.

Unlike the previous examples, each sequence is not simply a longer version of the previous
ones. However, they tend to stabilize. Their stable limits seems to be

(1, 2, 5, 10, 19, 33, 57, 92, 147, 227, . . .),

the number of partitions with two kinds of 1s, 2s, and 3s (OEIS A000098).
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Function γ Hook+column sequence

s1 ◦ s3 ◦ s2 0 (1, 1, 1)

s2 ◦ s3 ◦ s2 0 (1, 2, 3, 3, 2, 1)

s3 ◦ s3 ◦ s2 0 (1, 2, 5, 7, 8, 7, 5, 2, 1)

s4 ◦ s3 ◦ s2 0 (1, 2, 5, 10, 15, 18, 18, 15, 10, 5, 2, 1)

s5 ◦ s3 ◦ s2 0 (1, 2, 5, 10, 15, 19, 28, 36, 38, 36, 28, 19, 10, 5, 2, 1)

s6 ◦ s3 ◦ s2 0 (1, 2, 5, 10, 19, 33, 49, 63, 72, 72, 63, 49, 33, 19, 10, 5, 2, 1)

Table 6: The hook+column sequence for sn ◦ s3 ◦ s2 and γ = 0, up to n = 6.

• Let m = 4. The hook+column sequences of fn,4 = sn ◦ s4 ◦ s2 and γ = 0 up to n = 5 are
shown in Table 7.

Function γ Hook+column sequence

s1 ◦ s4 ◦ s2 0 (1, 1, 1, 1)

s2 ◦ s4 ◦ s2 0 (1, 2, 3, 4, 4, 3, 2, 1)

s3 ◦ s4 ◦ s2 0 (1, 2, 5, 8, 11, 13, 13, 11, 8, 5, 2, 1)

s4 ◦ s4 ◦ s2 0 (1, 2, 5, 11, 18, 26, 34, 38, 38, 34, 26, 18, 11, 5, 2, 1)

s5 ◦ s4 ◦ s2 0 (1, 2, 5, 11, 22, 36, 55, 74, 90, 100, 100, 90, 74, 55, 36, 22, 11, 5, 2, 1)

s6 ◦ s4 ◦ s2 0 (1, 2, 5, 11, 22, 41, 68, 103, 144, 184, 217, 236, 236, 217, 184, 144, 103, 68, 41, 22, 11, 5, 2, 1)

Table 7: The hook+column sequence for sn ◦ s4 ◦ s2 and γ = 0, up to n = 6.

Again, the coefficients tend to stabilize. This time, their stable limits seems to be

(1, 2, 5, 11, 22, 42, 77, 135, 231...),

the number of partitions of 2n (OEIS A058696).
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