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Transient complexes, with a lifetime ranging between microseconds and seconds, are essential for
biochemical reactions requiring a fast turnover. That is the case of the interactions between proteins
engaged in electron transfer reactions, which are involved in relevant physiological processes such
as respiration and photosynthesis. In the latter, the copper protein plastocyanin acts as a soluble
carrier transferring electrons between the two membrane-embedded complexes cytochrome b6f
and photosystem I. Here we review the combination of experimental efforts in the literature to
unveil the functional and structural features of the complex between cytochrome f and plastocya-
nin, which have widely been used as a suitable model for analyzing transient redox interactions.
� 2011 Federation of European Biochemical Societies. Published by Elsevier B.V.
1. Introduction

Protein–protein interactions are key processes in the proper
operation of living cells. Different kinds of interactions can be dis-
tinguished on the basis of protein binding affinities. Complexes
characterized by low binding affinities occur in transient pro-
tein–protein interactions, which display high dissociation equilib-
rium constants ðKDÞ, within the range of lM–mM, or lifetimes in
the order of milliseconds [1,2].

Transient complexes are typical of physiological processes that
require a compromise between binding specificity and turnover to
run at an appropriate rate [3]. On the basis of a two-step model [4],
the formation of a final complex first entails a primary unspecific
cal Societies. Published by Elsevier
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recognition as an encounter that can be transiently stabilized to
yield a productive complex as an outcome.

Electron transfer (ET) reactions are excellent examples of tran-
sient complexes. In fact, soluble proteins mediate redox exchange
between large membrane complexes in the photosynthetic and
respiratory electron transport chains via short-lived interactions.
For instance, in oxygenic photosynthesis there is a soluble metal-
loprotein that shuttles electrons from cytochrome f (Cf), which is
a component of the membrane-embedded cytochrome b6f (Cb6f)
complex, to P700, which is the special chlorophyll pair of Photo-
system I (PSI) [5–7]. Either plastocyanin (Pc) or cytochrome c6

(Cc6) can play such a role of electron carrier between Cf and
PSI. Higher plants only contain Pc, whereas most cyanobacteria
and green algae synthesize either Pc or Cc6 depending on the rel-
ative availability of copper and iron, their respective cofactor
metals [8,9].

Cf is anchored to the thylakoid membrane, within the Cb6f
complex, by a C-terminal transmembrane helix leaving a 28-kDa
N-terminal soluble portion exposed to the lumen with a clear
two-domain structure. The large domain harbors the heme group,
and the small domain possesses a patch of charged residues. Cf is
considered an unusual c-type cytochrome because of its b-
sheet-based structure, elongated form and particular heme axial
B.V. Open access under CC BY-NC-ND license.
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coordination with the N-terminus Tyr1 [10,11]. Pc, in its turn, is an
11-kDa cupredoxin with a b-barrel structure formed by eight b-
strands and a small a-helix, along with a copper centre coordinated
by two histidines, one methionine and one cysteine [12].

The overall structures of both Cf and Pc are highly conserved
from cyanobacteria to higher plants [13–15], but striking differ-
ences occur in some of their physical properties. The surface near
the heme moiety in Cf is mainly hydrophobic for all organisms.
However, a remarkable basic ridge is found in the small domain
for higher plants and green algae turning to acidic in cyanobacte-
ria. On the other hand, Pc relies on two functional sites: a hydro-
phobic patch surrounding the solvent-accessible histidine copper
ligand, or the so-called ‘‘site 1’’, and an electrostatically charged
surface area, the so-called ‘‘site 2’’, whose nature varies from one
organism to another. Actually, site 2 is mainly acidic in plants
and green algae, whereas it ranges from acidic to basic in cyano-
bacteria. This feature is a key for the dynamics of the complex
and is thus herein reviewed.

The Cf–Pc complex has extensively been studied in the last
years as a model to understand the nature of protein–protein inter-
actions in ET chains. The main goal of this article is to briefly re-
view not only our current understanding of the mechanism of ET
in transient complexes [16], but also the different techniques used
to analyze the structural features of such complexes [17] in an am-
ple set of prokaryotic and eukaryotic organisms.

2. Kinetics within the Cf–Pc complex

Kinetic analyses provide information about the ET reaction
mechanism, namely the limiting step and the nature of the partner
interactions. Some years ago, our group proposed three different
kinetic mechanisms to analyze the well-related interactions of
PSI with Pc and Cc6 from a wide range of photosynthetic organ-
isms [18–20]. These kinetic models can also be applied to the redox
interactions between Cf and the two soluble carriers Pc and Cc6

[21–23]. Some of the currently available experimental data for
the interaction between Cf and Pc are summarized in Table 1,
where the values for the following constants are presented: bimo-
lecular rate constant for complex formation ðk2Þ, equilibrium con-
stant for association between partners ðKAÞ, and effective electron
transfer rate constant ðk0etÞ. The interaction between Cf and Cc6

cannot be analyzed because of spectral overlapping of the two
heme proteins.

Electrostatics determines the kinetics of the Cf–Pc reaction. In
plants, such effect on the ET rate was mainly established by analyz-
ing the interactions of lysine mutants at the basic ridge of turnip Cf
with spinach and pea Pc [21]. Those charged residues at the basic
Table 1
Kinetic data for the redox reaction between WT and mutant forms of Cf and Pc.

Cf Pc k2 (107 M�1 s�1)

Turnip WT Spinach WT 17.6 ± 2.2
Turnip K187E Spinach WT 2.5 ± 0.3
Turnip WT Pea WT 17.5 ± 0.3
Turnip K65Q Pea WT 3.5 ± 0.1
Phormidium WT Phormidium WT 4.7b

Phormidium WT Phormidium D44A 6.0b

Phormidium WT Phormidium R93E 1.0b

Phormidium D63A Phormidium WT 3.1b

Nostoc WT Nostoc WT –
Nostoc WT Nostoc D54K –
Nostoc WT Nostoc R93E –
Nostoc D64A Nostoc WT –
Phormidium WT Nostoc WT –
Prochlorothrix WT Prochlorothrix WT �20

k2, bimolecular rate constant for complex formation; KA, equilibrium constant for assoc
a French bean Pc was employed.
b The overall error of k2 with all Phormidium variants is estimated to be 65%.
Cf patch are crucial for the in vitro interaction with Pc. Lysines
58, 65 and 187 of Cf directly interact with acidic residues at site
2 of Pc. The electrostatic attraction between the two partners re-
sults in a bell-shaped reaction rate dependence on ionic strength
[16] (Fig. 1, upper panel). This behavior has been explained by
assuming that the complex gets ‘locked’ in a non-productive elec-
trostatic orientation at low ionic strength. As the ionic strength in-
creases, the rearrangement of both proteins into the complex takes
place in order to achieve a well-oriented and productive complex,
which corresponds to the maximum of the bell. Further increase in
ionic strength leads to complex dissociation [6]. It has recently
been proposed that the expression ‘locked complex’ should be
avoided as such a non-productive state at low ionic strength could
rather correspond to a set of non-productive orientations slightly
different in energy [4].

In vitro kinetic analyses of the interaction between Cf and Pc in
cyanobacteria have mainly been addressed in the mesophilic
Nostoc [22,24] and thermophilic Phormidium [23,25,26] species.
The electron transfer rate constant between the two Nostoc pro-
teins monotonically decreases with increasing ionic strength
(Fig. 1, middle panel). The charge mutations at site 2 reduce the
ability of Pc to oxidize Cf [22], whereas the mutations at the hydro-
phobic patch decrease its reactivity towards the heme protein. It is
worth to mention that the charge mutation of Arg93 – a residue of
Pc located at the interface between sites 1 and 2 – drastically
diminishes the reaction rate, so revealing the crucial role of such
amino acid in ET within the complex (Table 1). In contrast, the
charge replacements at the small domain of Cf hardly affect the
interaction with Pc [24] (Table 1), thereby suggesting that
the specificity in the Cf–Pc interaction is mostly determined by
the cupredoxin. This has been corroborated by NMR studies
of the mixed Cf–Pc complexes between Nostoc and Phormidium
cyanobacterial proteins [27].

The ET rate constant between the wild-type (WT) forms of the
two Phormidium proteins slightly depends on ionic strength
(Fig. 1, lower panel), but site-directed mutagenesis of certain
charged residues of both proteins revealed a clear influence over
the reaction rate (Table 1) [23,25]. Actually, a deeper analysis of
the Cf–Pc complex by continuum electrostatics shows that net cou-
lombic forces between protein charges are slightly repulsive [28].
Assuming a diffusion controlled reaction, the electrostatic forces
do influence encounter complex formation. The process also in-
volves specific hydrophobic interactions of aromatic residues in
the N-terminal peptide of Cf [26].

Altogether, the major contribution to k2 in higher plants and
Nostoc cyanobacterium is electrostatics, which leads to the
encounter between proteins and to the formation of a well-defined
k0et (10�3 s�1) KA (103 M�1) References

�3a – [21,22]
– – [21]
– 6.9 ± 0.18 [21]
– 0.55 ± 0.38 [21]
– �0.3 [23,39]
– – [23]
– – [23]
– – [25]
13.4 26 ± 1 [22,27]
25.5 – [22]
1.8 – [22]
13.3 – [24]
– 12 ± 1 [27]
– 25 ± 2 [40]

iation between partners; k0et, effective electron transfer rate constant.



Fig. 1. Comparison of Cf–Pc complexes from different organisms. Right, Superpo-
sition of the average structure, with the lowest energy value, calculated from the 10
best NMR structures of each complex. Left, profile of the ionic strength dependence
of the observed rate constant in each case. Upper, poplar [36]; middle, Nostoc
[22,38]; and lower, Phormidium [25,39]. Cf and Pc ribbons are in red and blue,
respectively. The heme porphyrin ring is depicted in green sticks, whereas the
copper and iron atoms are grey spheres.
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functional complex. The opposite is valid for the thermophilic Pho-
rmidium cyanobacterium, in which non-polar interactions play the
main role because of the small net contribution of electrostatics
[23,26,28]. Nevertheless, the hydrophobic interactions are essen-
tial for ET in all complexes, since the reorganization of water mol-
ecules at the interface should impair the charge transfer process. In
fact, the exclusion of water molecules yields a productive complex
within which the ET takes place. Intriguingly, the reaction rates
reach similar values under physiological salt concentration and
temperature ðk2 � 108 M�1 s�1Þ despite the apparent differences
among organisms [23].

In vivo approaches are quite scarce. In the alga Chlamydomonas
reinhardtii [29,30], neutralization of Cf basic ridge has a negligible
effect on the rate of protein re-oxidation, suggesting that electro-
static interactions within the Cf–Pc complex are not so relevant
in vivo in this organism. Experimental conditions mimicking vis-
cosity, macromolecular crowding and temperature have also been
explored, but no relevant conclusions can be reached [31].

3. Defining the relative orientation between Cf and Pc

The structure of the Cf–Pc complex, as well as that of the Cf–Cc6

one, has been analyzed by nuclear magnetic resonance (NMR)
spectroscopy [17,32] by using the chemical and pseudo-contact
shifts (PCS) experienced by the Pc signals as restraints for rigid-
body docking calculations. Diamagnetic, chemical-shift perturba-
tions (CSP) are caused by changes in the chemical environment
suffered by the atoms located at the binding interface. Structural
restrains derived from CSP do not provide precise geometrical
information about angles and distances between the two partners.
However, measuring PCS renders geometrical restraints that may
be sufficient to define the relative orientation of both proteins.
PCS restraints are provided by the intrinsic paramagnetic probe
of Cf, which supplies the oxidized iron atom (Fe3+) from the heme
phorphyrin ring. PCS depend on the axial and rhombic components
of the magnetic susceptibility tensor and the angles that the vector
joining the heme Fe atom of Cf to the target amide proton in Pc
forms with them. Moreover, PCS are inversely proportional to the
cubed distance between any particular nucleus of Pc and the para-
magnetic center. Structure elucidation of the Cf–Pc complex for dif-
ferent organisms shown in this section fits well with the
orientation of Cf within the Cb6f complex as determined by X-ray
crystallography [11,33].

Some similar structural features, like interface areas of ca. 600–
850 Å2 per protein, are shared by the Cf–Pc complexes from pro-
karyotic and eukaryotic organisms. All the cases studied show that
Cu-ligand His87 in Pc is close to iron-coordinating Tyr1 in Cf, there-
by providing an efficient electron transfer pathway [34]. However,
remarkable differences are found not only when comparing the
structures of plant and cyanobacterial complexes, but also when
the comparisons are made between complexes from cyanobacteria
(Fig. 1).

Plant heterologous complexes between Cf from turnip and Pc
from several other sources like spinach, parsley or poplar have
been solved [35–37]. Their overall structures show a binding mode
named side-on (Fig. 1, upper panel) in which the hydrophobic
patches of the two proteins keep in close contact with each other
and the complementary charged regions are juxtaposed. In other
words, both Pc sites 1 and 2 are involved in the binding interface.
The Fe–Cu distance varies from 10.9 Å in spinach to 13.9 Å in pop-
lar and 13.0 Å in parsley. Actually, poplar and parsley Pc are
slightly tilted with regard to the position of spinach Pc [36]. Within
the poplar Cf–Pc complex, the approach of the side-chain of His87
from Pc to the heme ring at Cf is restricted by the loop containing
this copper ligand. In contrast, the parsley Cf–Pc model shows a
rotation of Pc, with respect to the spinach, in a direction opposite
to that in poplar complex [37].

The cyanobacterial complexes have been analyzed using both
Pc and Cf from the same source. The structure of the Cf–Pc complex
from Nostoc [38] shows a relative orientation that resembles the
plant side-on fashion, but with the charges reversed. Actually, the
positive charged residues at site 2 of Nostoc Pc – which indeed
are determinant in the isoelectric point (pI) of 8.4 for the whole
protein – are keeping salt bridges with negative residues at the
hinge and small domain of Cf. However, the pI of plant Pc is ca.
4.0 and its negatively charged site 2 interacts with the positive
charged residues of Cf. The hydrophobic interactions involving
the two metal centers of both proteins are also present (Fig. 1, mid-
dle panel). In contrast, Pc in the Phormidium complex is oriented in
a head-on manner relative to Cf, with only site 1 (hydrophobic
patch) making contact to Cf (Fig. 1, lower panel). In Phormidium,
Cf lacks the typical basic ridge, whereas Pc has fewer charged res-
idues at site 2 [39] than Pc from plants and shows a dipole moment
aligned with the main molecule axis. This results in the attraction
of the copper site towards Cf and repulsion of site 2. The resulting
net coulombic term between the two proteins is repulsive, but is
mostly compensated by solvent polarization phenomena to yield
a small ionic strength effect [28]. The Phormidium complex shows
a highly dynamic nature that could explain the lower precision of
the solved structure – with an RMSD of 3.7 Å – compared with
other Cf–Pc models. It could also be explained by differences in



Fig. 2. Distortion of the copper geometry of Pc upon Cf binding in Phormidium.
Upper, EXAFS spectra at the Cu K-edge of oxidized Pc upon binding to oxidized Cf
(black) and fitting in the k space either considering that the contribution of
Sd(Met97) is negligible (red, v2: 16.97) or taking it into account (blue, v2: 11.3).
Middle, Fourier Transform modules of free Pc (blue) and Pc-bound to Cf (red), both
in the reduced state. The best fits for the data are depicted in dotted lines following
the same color-code. The contribution of the Sd(Met97) atom is considered for the
fit in R space. Lower, XANES region of the Cu K-edge XAS spectra for free Pc (blue)
and Pc-bound to Cf, both in the oxidized state (red).
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the dynamic behavior of the complexes, a fact that is especially sig-
nificant in those organisms that inhabit niches at high
temperatures.

Crossed complexes between proteins from Nostoc and Phormidi-
um revealed that it must be a low net electrostatic contribution in
the latter complex [27], in agreement with results on ET kinetics.
Although early NMR data [39] suggested the absence of electro-
static interactions, several transient conformations involving elec-
trostatics could remain invisible by NMR, at least in the absence of
paramagnetic relaxation enhancement measurements (PRE).
Therefore, only the long-life conformation into the complex is
detectable. In addition, studies of such mixed complexes show that
the differences in interactions are mainly attributable to the sur-
face properties of Pc [27]. The NMR analyses (PCS measurements)
show that the Cf–Pc complex from Prochlorothrix hollandica, unlike
the Nostoc Cf–Pc complex, exhibits a side-on orientation, in which
Pc site 2 is not interacting with the small domain of Cf, thereby
suggesting a dynamic nature that resembles the Phormidium com-
plex [40].

An overall view of structural features for the well-defined ori-
ented Cf–Pc complexes postulates a predominant side-on confor-
mation highly dependent on electrostatics. As the electrostatic
contribution becomes lower, the orientation of Pc relative to Cf
shifts from side-on to head-on. All these observations are also in
agreement with the ET proposed kinetic mechanisms.

4. Metal cofactors within the Cf–Pc complex

Although there are a lot of experimental data on the interaction
between the two redox partners, the information on the effect of
binding on the metal cofactors and their properties is rather scarce.
In fact, the redox potential of Pc decreases in 30 mV upon binding
to Cf [41]. Noteworthy, the way on how metal sites can adapt to
changes in the protein matrix and modulate the ET reaction highly
contributes to understand the transient complexes involved in this
kind of processes.

The cyanobacterial Nostoc Cf–Pc complex has been analyzed by
X-ray absorption spectroscopy (XAS). Both Fe and Cu K-edge XAS
measurements of free and bound redox proteins have been studied
in solution, using either the oxidized or reduced species [42,43].

In Cf, the Fe atom of the heme group is axially coordinated by
two nitrogen atoms belonging to Tyr1 (N) and His26 (N�2). Such
atypical coordination geometry involves the N-terminal tyrosine,
which also takes part in hydrophobic interactions with Pc, accord-
ing to the structural elucidations of this transient complex [38].
XAS measurements reveal that the Fe coordination geometry re-
mains unaltered upon binding to Pc. Getting a deeper insight into
the data, a slight distortion of the metal (Fe2þ) center geometry
seems to happen when reduced Cf binds to reduced Pc. The result-
ing geometry is closer to that of oxidized Cf, either free or bound to
oxidized Pc. Because of the smaller size of Fe3þ compared to Fe2þ,
the first fits better than the second into the heme group as Fe2þ is
slightly out of the plane [44]. However, Fe2þ could be driven back
to the ring upon complex formation. Iron-N-terminus nitrogen
bond in Cf is strong enough to prevent distortions over the coordi-
nation geometry of the metal center, so facilitating a stable binding
site to Pc and enhancing ET.

The copper atom in Pc is coordinated by two nitrogen atoms
from His39 and His92, as well as by two sulphur atoms from
Cys89 and Met97. All of them are well-conserved residues placed
at a protein loop that is at the interface with Cf [35,38,39]. Cu–K
edge XAS shows a remarkable distortion in the trigonal pyramidal
geometry of the copper coordination sphere upon binding to Cf,
regardless of its redox state (Fig. 2, upper and middle panel). The
main evidence for such a distortion is the contribution of the Sd
atom from Met97 to the extended X-ray absorption fine structure
(EXAFS) wave, indicating that the mobility of this side-chain is sub-
stantially restrained upon binding of Pc to Cf. Actually, the result-
ing tetrahedral structure of the copper center within the Cf–Pc
complex exhibits a shorter Cu–Sd(Met97) distance with respect
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to the crystallographic structure of free Pc [45]. Noteworthy, the
Cu–Sd(Met97) distance of Cf–bound Pc by EXAFS resembles that
of the crystal structure of oxidized nitrite reductase (NIR) [46],
which belongs to the so-called ‘‘perturbed’’ copper centers. In addi-
tion, the electronic density around the copper atom increases when
Pc binds to Cf in their oxidized states, according to the data from
the X-ray absorption near edge structure (XANES) region (Fig. 2,
lower panel). In fact, the redox potential of Pc becomes more nega-
tive upon binding to Cf [41]. As a result, the driving force for ET be-
tween both metalloproteins is significantly decreased by the Cf–Pc
interaction. In addition, the observed geometrical changes in the
first coordination sphere of copper within the Cf–Pc complex mod-
ulate the electron coupling along the different ET pathways and
hence the redox reaction.

5. Theoretical approaches

The resulting data from analyzing the weak Cf–Pc complex by
means of theoretical methods add useful information to our cur-
rent knowledge of transient interactions.
Fig. 3. Molecular dynamics of the Phormidium Cf–Pc complex. (A) Drift of Pc around C
trajectories of iron from Cf (brown dots), copper (blue dots) and center of mass of Pc (gr
domain of Cf. (B) Interaction of the copper site and Arg93 in Pc with negative residues of C
gold. The side chains of charged residues and the heme porphyrin ring are depicted in stic
corresponding to the Cf–Pc complex obtained after aligning main chain atoms of the larg
are shown in blue, whereas negative are in red. (D) Analysis of continuum electrostatics
The insert summarizes the thermodynamic cycle used in the computation of the diffe
distorting the free monomers to get the conformation they adopt in the complex, DGele-str

white bars; DGele-strain by red-filled bars; DGele-rigid bars are colored in grey.
The Cf–Pc complexes of a wide range of organisms, from cyano-
bacteria to plants, have been studied by Brownian Dynamics (BD)
simulations using crystal or NMR structures. The role of electro-
static interactions in higher plant and algal complexes has been
confirmed by BD simulations that are in good agreement with
the k2 values for ET reactions previously reported [21,23,25]. The
complex between turnip Cf and spinach Pc [47] and that between
Cf and Pc from the green alga Chlamydomonas reinhardtii [48] have
both been studied by performing systematic mutations of charged
residues at the protein interfaces. These data support the model of
an electrostatically driven encounter complex as a previous step of
a final productive complex wherein efficient ET occurs. BD analyses
with Phormidium Cf and Pc from different sources [49] show con-
siderable variations in electrostatic forces, a finding that highlights
the key role of a few charged residues close to His92 (His87 in
plants and algae) for the complex interface. However, the compu-
tational studies show that Pc is highly mobile in all these com-
plexes, opposite to its behavior in plant complexes. Still,
hydrophobic interactions remain highly significant in all
organisms.
f along the MD trajectory in Ref. [28]. The dihedral first angle projections of the
ey dots) are represented with respect to the main axes and mass center of the large
f upon approaching of the two partners. Pc and copper center are in purple, and Cf in
ks following the same color-pattern. (C) Coordinate covariance matrix of a trajectory
e domain of Cf. Residues 1–105 correspond to Pc, and 106–354 to Cf Positive values
averaged along different time intervals of a MD computation of the Cf–Pc complex.

rent terms in which DGele-bind stands for the sum of free energies that account for
ain, and their subsequent rigid-body association, DGele-rigid. DGele-bind is represented by



I. Cruz-Gallardo et al. / FEBS Letters 586 (2012) 646–652 651
BD analyses are quite sensitive to small changes in conforma-
tion of the proteins that are being modeled. For instance, the Cf–
Pc complex with spinach Pc adopted two different conformations
when using distinct structural data sources [50]. On the basis of
such finding, it was suggested that Pc may assume distinct confor-
mations in solution so as to yield a productive ET complex.

BD and other docking approaches treat proteins as rigid bodies
[40], whereas Molecular Dynamics (MD) calculations provide addi-
tional information about internal protein motions. Despite all the
kinetic, structural and theoretical studies performed on the Pho-
rmidium Cf–Pc complex, there is certain controversy regarding
NMR and functional data. Hence, MD simulations combined to con-
tinuum electrostatic calculations on this particular interaction [28]
try to harmonize the two sets of data. The MD trajectories reveal
that Pc tilts towards the small domain of Cf approaching site 2 to
the heme protein (Fig. 3A). This involves the interaction of the po-
sitive charges of the copper site and Arg93 with the negatively
charged residues at the loop of Cf surrounding the heme group
(Fig. 3B). Thus, the relative orientation of Pc respect to Cf in the
Phormidium complex can be redefined as a tilted head-on confor-
mation (see Fig. 1, lower panel). However, the repulsive forces make
both proteins swing in an opposite but concerted manner within
the transient Cf–Pc complex, as inferred from the negative covari-
ance between motions of Pc and those of the small domain of Cf
(Fig. 3C). Interestingly, the conformation of Cf is strained upon
binding of its partner and relaxes upon release. Although there
are no direct contacts between Pc and the small domain of Cf, con-
tinuum electrostatic calculations indicate that the long-range elec-
trostatic interactions between them are responsible for straining
the conformation of the partners (Fig. 3D). The thermodynamic cy-
cle shown in Fig. 3D reveals that DGele-bind can be split in two terms
if any one of the partners changes within the complex. The first
term is the ‘‘strain energy’’ ðDGele-strainÞ, which accounts for the cost
of structural changes needed for docking; the second one is the ‘‘ri-
gid binding’’ ðDGele-rigidÞ component, which represents the binding
energy of the strained partners. Fig. 3D also shows that the time
intervals corresponding to the two major ensembles of conforma-
tions (from 0 to 3.7 ns, and from 7 to 13 ns) are characterized by a
positive DGele-strain term and by large strain energy values
(DGele-bind). However, DGele-bind becomes negative, with a concomi-
tant drop in DGele-strain, in the time interval from 4 to 6 ns corre-
sponding to the transition between these two major populations.
An explanation for this binding energy decrease comes from the
reaction field term that accounts for solvent polarization phenom-
ena. In addition, the electrostatic strain may play a key role in
breaking the complex off after the attraction between the copper
surroundings and Cf is weakened upon charge transfer.
6. Conclusion and outlook

A multidisciplinary effort has been made in the last years to
understand the behavior of transient ET complexes and, in partic-
ular, of the short-lived Cf–Pc complex from different organisms. In
most cases, the functional and structural approaches coincide in
postulating the relevance of long-range electrostatic interactions
in vitro. The existence of an encounter complex may indeed play
an important role in the Cf–Pc complexes, a finding that should
be further explored in detail. Some controversy still exists over
experimental data interpretation in the cyanobacterial model sys-
tem from Phormidium, but theoretical simulations are providing
valuable information to conciliate them. Actually, recent modeling
developments could help to widen the scope of this subject. The
bottleneck is to unveil the relevance of these data in vivo. Specifi-
cally, the role played by electrostatics on the ET process inside
crowded cells needs further research.
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