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Abstract. Microarray techniques have motivated the develop of differ-
ent methods to extract useful information from a biological point of view.
Biclustering algorithms obtain a set of genes with the same behaviour
over a group of experimental conditions from gene expression data. In
order to evaluate the quality of a bicluster, it is useful to identify specific
tendencies represented by patterns on data. These patterns describe the
behaviour of a bicluster obtained previously by an adequate bicluster-
ing technique from gene expression data. In this paper a new measure
for evaluating biclusters is proposed. This measure captures a special
kind of patterns with scaling trends which represents quality patterns.
They are not contemplated with the previous evaluating measure ac-
cepted in the literature. This work is a first step to investigate methods
that search biclusters based on the concept of shift and scale invariance.
Experimental results based on the yeast cell cycle and the human B-cell
lymphoma datasets are reported. Finally, the performance of the pro-
posed technique is compared with an optimization method based on the
Nelder-Mead Simplex search algorithm.

Keywords: Gene expression data, biclustering, shifting and scaling pat-
terns, unconstrained optimization.

1 Introduction

In the last few years microarrays techniques have generated a great amount of 
biological information. Microarray data can be represented by a numerical matrix 
with its columns corresponding to experimental conditions and rows associated 
with genes. Thus the element (i, j) is the expression level of the gene i under 
the specific condition j. Data mining techniques have been successfully applied 
to gene expression data in order to discover subtypes of diseases, identification 
of functional grouping of genes, etc. Clustering techniques have been applied 
to microarray data [1] in order to identify groups of genes that show similar 
expression patterns. Most of clustering models have been focused on discovering



clusters embedded in a subset of dimensions, because relevant genes are not
necessary related to every condition [2]. This problem is known as biclustering
or subspace clustering. Thus, the goal of biclustering techniques is to extract
subgroups of genes with similar behavior under specific subgroups of conditions
[3]. This is a vital task from a biomedical point of view, since it is the first step
in order to discover networks of genes interaction.

Biclustering problem is a NP-hard problem [4], therefore different techniques
use heuristics approaches in order to find biclusters, for example evolutionary
algorithms [5,6,7]. These methods are based on a measure to evaluate the qual-
ity of biclusters, with the Mean Squared Residue (MSR) [8] the most important
measure for assessing the quality of biclusters. For this reason, bicluster evalu-
ation is a vital task for searching patterns in biological data. MSR evaluation
measure is based on computing the arithmetic means of the values in each row,
column, and the full matrix, and the numerical differences among the data. How-
ever, it have been proved that MSR is effective for recognizing biclusters with
shifting patterns but not some patterns with scaling trends, in spite of repre-
senting quality patterns [9]. A bicluster has a shifting pattern when its values
vary in the addition of a constant value, and scaling pattern when its values
vary in the multiplication of a constant value. A perfect bicluster is considered
as the one which follows exactly a perfect shifting and scaling pattern [4]. Con-
sequently, it is interesting to study the behavior or tendencies in a bicluster in
order to establish a new quality measure through the degree of similarity with
its corresponding perfect bicluster.

This fact represents the main motivation of this work where a new measure for
evaluating biclusters is proposed. We apply a classical optimization method to
solve a least squared statistical estimation problem in order to build the perfect
bicluster of a bicluster. After that, the value of the optimization function in the
convergence point is the value for the measure of it. If a bicluster presents perfect
shifting and scaling patterns, it will be a perfect bicluster itself and its measure
will be zero. Although the main task about biclustering problem is to find good
biclusters from a microarray, this work is relevant in order to investigate methods
that search biclusters based on the concept of shift and scale invariance. First,
the problem is formulated from a mathematical point of view leading to an
unconstrained nonlinear optimization problem. Later, the problem is solved by
a classical Quasi-Newton method. Finally, experimental results obtained from
biclusters on the yeast cell cycle and the human B-cell lymphoma datasets are
reported. The performance of the proposed method is compared with a search
technique based on the Nelder-Mead Simplex algorithm.

The paper is organized as follows: Section 2 presents basic concepts on pat-
terns from gene expression data. A brief overview on unconstrained optimization
techniques is shown in Section 3. The formulation of the problem is described in
Section 4. Section 5 reports some results obtained from the application of two
techniques to two real datasets. Finally, the main conclusions of the paper are
outlined.



2 Shifting and Scaling Patterns

Given a bicluster, the shifting and scaling patterns can be formally defined. A
microarray M is a real matrix composed by N genes and M conditions. The
element (i, j) of the matrix is represented by vi,j . A bicluster B is a submatrix
of M composed by n ≤ N rows and m ≤ M columns. The element (i, j) of the
bicluster B is represented by wi,j .

A group of genes has a shifting pattern when the values wi,j vary in the
addition of a value βi. Analogously, a bicluster has a scaling pattern when the
values wi,j vary in the multiplication of a value αi. The values βi and αi are
fixed for all the genes. Formally, a bicluster shows a shifting or scaling pattern
respectively when it follows the expressions (1) or (2) respectively:

wi,j = πj + βi (1)
wi,j = πj × αi (2)

where πj is a typical value for the gene j and fixed for all the conditions.
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Fig. 1. Bicluster with a) shifting patterns, b) scaling patterns

Figure 1a) presents a bicluster that contains a shifting pattern. Shifting pat-
terns represent related genes that show the same shape and slope. It can be
observed that the genes start with different initial values. Thus, shapes of the
graphs are similar, but values are not equal. Figure 1b) presents a bicluster that
contains a scaling pattern. In this case, scaling patterns represent related genes
showing the same shape, but different slopes. It can be noted that changes more
abrupt for one gene than for the other are shown.



In a general case, an element of a bicluster showing both types of patterns
can be defined as:

wi,j = αi × πj + βi + εi,j (3)

where εi,j is the error that the patterns have for the value wi,j of the bicluster
considered.

A bicluster is a perfect bicluster when the value of εi,j is equal to zero for all
values wi,j of the bicluster.

3 Unconstrained Optimization Techniques

Unconstrained optimization techniques are used to search local minima in op-
timization problems whose objective function is not subject to equality and
inequality constraints.

An unconstrained optimization problem can be defined as:

min f(x)

where x ∈ R
n is a vector of real variables and f : R

n �→ R is a linear or nonlinear
scalar function.

There is a great number of methods to solve unconstrained optimization prob-
lems. Nowadays, unconstrained optimization problems can be classified in two
groups: search methods and gradient methods. Search methods [10] use only
function evaluations and these approaches are most suitable for problems that
are very nonlinear or have a great number of discontinuities. Simplex search
methods are based on searching the local minima inside a particular region or
simplex. A simplex in n-dimension space is characterized by n + 1 distinct vec-
tors that are its vertices. At each iteration, the objective function is evaluated
in a new point generated inside the simplex, which is compared with value of
the function at vertices of the simplex. One of the vertices could be replaced by
the new point. The process is repeated until the diameter of the simplex is less
than a specified tolerance.

Gradient methods [11] are generally more efficient when the first derivative of
the objective function is continuous. The search direction to locate the minimum
is proportional to the gradient of the objective function as follows 1:

xk+1 = xk − αk · ∇f(xk) (4)

where αk is the step–length parameter and xk is the variable x at iteration k.
The parameter αk is obtained by a line–search method. The line–search ap-

proach consists in solving a minimization problem in one dimension. This prob-
lem can be formulated as follows:

min φ(α)

where α ∈ R and φ(α) = f(xk + α · ∇f(xk)) with xk and ∇f(xk) fixed.
1 ∇f(xk) is the value of gradient of function f in xk point.

∇f(xk) = ( ∂f
∂x1

, . . . , ∂f
∂xn

), ∂f
∂xi

represents the derivative of f respect xi variable.



Newton methods are higher order gradient methods. This is due to the use
of second order information. These methods are only really suitable when the
second order information is readily and easily calculated, because calculation
of such is computationally expensive. In this case, the search direction can be
written as follows:

xk+1 = xk − αk · H−1
k · ∇f(xk) (5)

where H−1
k is the inverse of the Hessian matrix at point xk.

Quasi-Newton methods are Newton methods, which use an approximation to
the inverse of the matrix Hk as an alternative to calculate it directly. Different
Quasi-Newton methods are based on different approximations of the inverse of
the matrix Hk [12,13].

4 Formulation of the Problem

The objective of the problem is to determine the shifting and scaling patterns
of a certain bicluster. It is supposed that biclusters are obtained previously by
appropriate biclustering techniques.

The objective function is defined by the mean squared error (MSE) as follows:

MSE =
1

n · m

n∑

i=1

m∑

j=1

ε2
i,j (6)

where εi,j is defined in Eq. 3. It can be noted that the error εi,j depends on the
shifting patterns βi, scaling patterns αi and the typical value for each gene πj .

Thus, the problem can be formulated as the following unconstrained opti-
mization problem:

min f(−→α ,
−→
β , −→π ) (7)

where −→α = (α1, . . . , αn) ∈ R
n, −→

β = (β1, . . . , βn) ∈ R
n, −→π = (π1, . . . , πm) ∈ R

m

and f : R
2n+m �−→ R is defined by the MSE (Eq. 6).

The result of this optimization problem is the optimal point and the value of
the function on it. Shifting and scaling patterns for the bicluster are built with
−→α ,−→β and −→π values. The quality of the bicluster is established with the value of
the objective function on the solution.

This unconstrained optimization problem has been solved by using a Quasi–
Newton method. The Hessian matrix has been approximated by using the for-
mula of Shanno [13] and the step-length parameter has been determined by a
line–search technique. Also, this optimization problem has been solved by using
the Nelder-Mead Simplex search algorithm in order to establish a comparison.

5 Experiments

An unconstrained optimization technique based on the Quasi-Newton method
has been applied to solve the proposal problem. Shifting and scaling patterns,
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Fig. 2. a), b) Two yeast bicluster leading to the worst and best patterns respectively,
c), d) patterns obtained with Quasi-Newton method and e), f) patterns obtained with
Nelder-Mead Simplex algorithm

that is to say, the perfect bicluster which approximates the original bicluster,
and the value of objective function like a quality measure are obtained for each
bicluster.

Original biclusters have been obtained from the work recently published in
[5]. These biclusters have been built from a biclustering technique based on an
evolutionary algorithm applied to two well-known datasets: yeast Saccharomyces
cerevisiae cell cycle expression dataset [14]; and the human B-cells expression
data [15]. The Yeast dataset contains 2884 genes and 17 experimental conditions
and the Human dataset consists of 4026 genes and 96 conditions. The proposed



technique has been applied over the one hundred biclusters obtained in [5]. Re-
sults obtained for the biclusters leading to the worst and the best shifting and
scaling patterns in both datasets are reported.

Figures 2a) and 2b) present two biclusters from Yeast dataset leading to the
worst and the best shifting and scaling patterns obtained by the Quasi-Newton
optimization method (Figures 2c) and 2d)), in the sense of the highest and the
lowest value for the evaluation function. These two biclusters are composed by
14 and 3 genes and 61 and 16 conditions, respectively. Notice that the expression
values for several genes over certain conditions are the same (black thick lines).
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Fig. 3. a), b)Two human bicluster, leading to the worst and best patterns respectively,
c), d) patterns obtained with Quasi-Newton method and e), f) patterns obtained with
Nelder-Mead Simplex algorithm



Table 1. Comparison between two optimization methods used to build shifting and
scaling patterns in biclusters: Quasi–Newton method and Nelder-Mead Simplex algo-
rithm

number of iterations time in seconds obj. function
Yeast Human Yeast Human Yeast Human

Quasi-Newton method 67,59 193,67 5,08 83,73 13,31 30,52
N-M Simplex algorithm 49264,20 50000 69,15 226,06 66,431 35,05

Its corresponding shifting and scaling patterns are shown in Figures 2c) and 2d).
The final value of the error function defined by the MSE (Eq. 6) is equal to 14.51
for bicluster on the left and 7.16 for bicluster on the right, respectively. A good
quality of the discovered patterns can be observed in both biclusters. Figures
2e) and 2f) show the patterns obtained by the optimization method based on
the Nelder-Mead Simplex algorithm for two biclusters. Notice that these shifting
and scaling patterns obtained are worst than the first ones, in the sense that they
adjust the shape of the original bicluster in a worst way.

Figures 3a) and 3b) present two biclusters from Human dataset leading to
the worst and the best shifting and scaling patterns, left and right respectively.
These biclusters are constituted for 17 genes and 57 conditions and 3 genes and
72 conditions, respectively. A bad quality of the built patterns can be observed
in the Figure 3d), in spite of the bicluster leads to the best patterns. It is due
to the low number of genes and the irregular behaviour of this bicluster. Obvi-
ously, biclusters with an uniform behaviour provide better shifting and scaling
patterns than those with no inherent tendency. Figures 3e) and 3f) present the
patterns obtained from the application of the Nelder-Mead Simplex method for
two biclusters. These patterns have 17 and 3 genes, as original bicluster, but
expression values for genes over all the conditions are the same, as only a black
thick line can be distinguished. Obviously, these shifting and scaling patterns
are worst than the previous ones obtained with the proposed method based on
the Quasi-Newton method.

Finally, in Table 1 a comparison is made between the two used techniques,
Quasi–Newton algorithm and Nelder-Mead Simplex search method. Table 1 shows
the most representative parameters of optimization process for two datasets. It
can be observed the average of the iterations number, the CPU time and the value
of the objective function on one hundred biclusters obtained from yeast cell cycle
microarray and one hundred biclusters from human B-cells microarray. Notice the
highest cost in time (in seconds) and in number of iterations and the worst pat-
terns are obtained by Nelder-Mead Simplex search approach.

6 Conclusions

An unconstrained optimization technique has been applied in order to build
shifting and scaling patterns from biclusters. The method has been tested over
biclusters obtained from two different real datasets: yeast cell cycle and human



B-cells. Results have shown that the proposed approach has a good performance
for finding shifting and scaling patterns of a given bicluster. The proposed tech-
nique has been compared with an optimization method based on the Nelder-
Mead Simplex algorithm showing better results with regarding to the patterns
found and the CPU time.

Future works will be focused on the comparison between different biclustering
algorithms using the proposal measure in order to establish which one is the best.
Some more actual microarrays taken from PNAS journal will be used. Biclusters
obtained by others biclustering algorithms such as Cheng-Church, ISA, OPSM,
etc, will be also used for this proposal. On the other hand, we will also study
the possibility of new biclustering tecniques based on the concept of shift and
scale invariance.
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