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ABSTRACT

From the point of view of vehicle maintenance, one of the most important sys-
tems of urban buses is the cooling system. These vehicles run typically more 
than 80,000 km per year, and the radiator of the system gets fouled due to dust 
and dirt of the cooling air, which produces an increase in water temperature. 
This situation forces to stop the vehicle and perform washing of the radiator. 
This study is focused on the development of a model of the cooling system of 
urban buses based on an artificial neural network (ANN), which is used for 
system diagnosis and engine surveillance. Data are gathered from the CAN-
bus system of every bus, which have allowed the development of a dynamic 
ANN that fits the cooling dynamics.

INTRODUCTION

For urban buses, energy consumption comes from the propulsion system, 
the auxiliaries, and the thermal management. The latter include the electric 
devices, the generator, and the cooling of the internal combustion engine 
(ICE). In this regard, maintenance of radiator takes out from service the bus 
and requires many hours of work and, therefore, is expensive from the main-
tenance point of view. If this issue is considered in a medium city transport 
company as the one of TUSSAM in Seville (Spain), with a fleet of more than 
400 urban buses, the problem highlights because currently there is no proce-
dure able to determine the state of the radiator.
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STATE OF THE ART

From the point of view of energy consumption, thermal management is very 
relevant next to the rest of the energy fluxes inside a propulsion plant. The 
importance of considering thermal management as a procedure to reduce fuel 
consumption in ICE has been demonstrated (Caresana, Bilancia & Bartolini, 
2011), where performance is not only to maximize fuel efficiency but to 
increase system life and reduce the maintenance cost (Bayraktar, 2012).

CONTRIBUTION

Cooling System

ICE has to operate below a temperature limit in order to guarantee perfor-
mance and reliability. For this reason, the cooling system has to be properly 
maintained for the dissipation of the thermal energy generated by the whole 
vehicle. On the other side, the cooling system requires electrical energy for 
its duty. Therefore, the correct maintenance of this system contributes to the 
reduction of the energy consumption of the bus.

The cooling system includes two pumps arranged in series, a turbocharger 
heat exchanger, water radiators, a hydraulic fan, and several valves. Thermal 
energy from ICE (compressor, engine, gearbox, and retarder) is conducted by 
water through radiators, where it is transferred to ambient air by the fan, which 
has a maximum efficiency of roughly 50%. The regulation valve is managed 
by the temperature measured by three thermocouples that set the adequate 
water flow rate for any load, in order to guarantee that the maximum outlet 
temperature is below the limit for any operating condition.

ANN Modeling

ANNs are widely found in fields related to the diagnosis of internal combus-
tion engines and system modeling, concretely for the detection and quantifica-
tion of failures. The main reason is that they can learn the behavior of complex 
systems only from observations. On the other hand, ANN can be used as an 
inverse model (Desbazeille et al., 2010).

In this paper, only one ANN is necessary to determine system fault iden-
tification and its level and engine state, taking into account that the configured 
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network is allowed to reproduce the output temperature of water of the engine 
block, gearbox, and retarder. With this porpoise, an ANN is configured, as well 
as trained and evaluated, in order to obtain a mapping between input variables 
and the corresponding output variables (targets). In this case, the input variables 
are as follows: instantaneous engine speed, ambient temperature, instantaneous 
engine torque, and instantaneous fuel consumption. On the other side, the output 
variables are the instantaneous temperature of the leaving water from the engine 
block, the output temperature of the retarder, and the gearbox.

ANN Architecture and Training Method

Since the relationship between inputs and targets is highly nonlinear, a multi-
layer network has been chosen. The transfer function in the hidden layers is the 
tangent sigmoid function and the function for the output layer is linear. Such 
a network structure is considered a universal function approximator (Hornik, 
Stinchcombe & White, 1989). In this case, the forward function is obtained 
directly from data, so the configured ANN has to learn the inverse relation-
ship. As the number of hidden layers is concerned, one hidden layer has been 
chosen. The number of neurons in this layer is 19 and has been obtained by 
trial and error.

Regarding the training method, the Levenberg–Marquardt algorithm has 
been used. In this kind of training method, early stopping must be taken into 
account to avoid the unwanted overfitting effect. Because of this, the total 
sample data has been divided into three groups: training set (60% of the data), 
test set (20% of the data), and the mentioned validation set (20% of the data).

Input and Target Data

Through the cooling system data gathered of the CAN bus, a set of ANN inputs 
and targets have been specified. Such a set must be a representative sample of 
the engine’s whole load, which includes winter, spring, autumn, and summer 
data. This is important due to the huge change of ambient temperature and the 
engine load that change the thermal load on the cooling system. Holidays have 
also been included because the load of the bus is greatly reduced on these days. 
The performance of the ANN has been evaluated by means of a set of data that 
is not used throughout the training process, that is, the aforementioned valida-
tion set. A useful tool for the ANN validation test is the relationship between 
the targets and outputs. In this case, a linear relationship has been observed, 
which means a regression coefficient close to 1. This means that no overfitting 
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takes place and, as a result, it can be considered that the trained ANN has 
achieved favorable results.

Noise Effect

In order to verify the robustness of the dynamic ANN against noise, random 
noise has been added to the signals coming from the input data. Two different 
noise signals have been considered:

 Noise characterized by mean and standard deviation= =0 1 5. %  

 Noise characterized by mean and standard deviation= =0 3 0. %  

The trained ANN outputs were compared to the targets and a lack of robust-
ness could be observed. However, after a sensitivity analysis, it has been seen 
that the most affected signal was room temperature, having the rest low sensi-
tivity to noise. In this regard, both sensor accuracy and position are considered 
to be relevant for the robust results of the cooling model.

CONCLUSIONS

A complete procedure for modeling the cooling system of an urban bus has 
been developed. The method is based on the integration of instantaneous CAN-
bus data and a multilayer dynamic ANN. The method presents high robustness 
and also showed its capability for diagnosing the health of the engine oriented 
to preventive maintenance and failure diagnosis.

The method will be applied to a fleet of 20 urban buses that belong to 
TUSSAM, where it will be used for monitoring the condition of the cooling 
system. A huge reduction of the fleet out-of-service period is expected due to 
maintenance duties and an increase in fleet availability.
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