Towards the Definition of Test Coverage Criteria
for RESTful Web APIs

Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés

Department of Computer Languages and Systems
Universidad de Sevilla, Spain
{amarlop,sergiosegura,aruiz}@us.es

Abstract. Web APIs following the REST architectural style (so-called
RESTful Web APIs) have become the de-facto standard for software
integration. As RESTful APIs gain momentum, so does the testing of
them. However, there is a lack of mechanisms to assess the adequacy
of testing approaches in this context, which makes it difficult to mea-
sure and compare the effectiveness of different testing techniques. In this
work-in-progress paper, we take a step forward towards a framework for
the assessment and comparison of testing approaches for RESTful Web
APIs. To that end, we propose a preliminary catalogue of test coverage
criteria. These criteria measure the adequacy of test suites based on the
degree to which they exercise the different input and output elements of
RESTful Web services. To the best of our knowledge, this is the first at-
tempt to measure the adequacy of testing approaches for RESTful Web
APIs.

Keywords: REST - testing - web services - coverage criteria.

1 Introduction

REpresentational State Transfer (REST) has become the preferred architectural
style for developing Web Application Programming Interfaces (APIs), so-called
RESTful APIs. Most testing approaches for RESTful Web APIs and tools follow
a black-box approach, where test cases are derived from the specification of the
Web services that compose the API [1, 3,5]. However, to the best of our knowl-
edge, there is no standard way to assess the adequacy of these types of black-box
approaches, and so it is hard to measure and compare the effectiveness of differ-
ent test suites and techniques. Previous works have addressed the formalisation
of black-box coverage criteria as a means to validate their testing techniques,
but none of them have proposed a common framework for the assessment and
comparison of multiple approaches.

In this paper, we take a first step towards the definition of a framework for
the assessment and comparison of testing approaches for RESTful Web APIs.
In particular, we propose a preliminary catalogue of test coverage criteria for
RESTful APIs divided into two groups: inputs (i.e. service request) and outputs



2 A. Martin-Lopez et al.

(i.e. service response). To this end, we took inspiration from the OpenAPI Spec-
ification (OAS) [4] and previous works which have made an effort to somehow
evaluate the efficacy of their black-box testing approaches [2, 3]. This catalogue
aims to serve as a starting point for the definition of a test coverage model,
where the proposed criteria will be arranged into different levels. This will yield
a framework for the assessment and comparison of testing approaches for REST-
ful APIs based on the coverage levels that they can reach.

2 RESTful Web APIs

A RESTful API is composed of several Web services, each of them implementing
one or more create, read, update and delete (CRUD) operations over a specific
resource. These operations are usually mapped to the HTTP methods POST,
GET, PUT and DELETE, respectively. A resource is any type of information
that can be exposed to the Web (e.g. a photo, a HTML document, information
about a book); for instance, a playlist is a resource in the Spotify API [6].
Resources are addressable by a unique Uniform Resource Identifier (URI). A
path (also called route or endpoint) represents a resource over which operations
can be performed. The term operation itself refers to the use of one of the four
HTTP verbs over a specific path. Below there are some examples of operations
on different resources of the Spotify API.

GET /search?g=rhapsody&type=track Search for songs with rhapsody.

POST /users/{user_id}/playlists Create a playlist.
PUT /playlists/{playlist_id} Update an existing playlist.

DELETE /playlists/{playlist_id}/tracks Remove tracks from a playlist.

Furthermore, operations accept parameters. A parameter is a piece of infor-
mation that can be passed together with the request for several purposes, such
as filtering and sorting results (e.g. q and type in the first operation).

Several expected responses can be specified for every operation (i.e. request).
A response is identified by the returned status code and can optionally include a
body. The status code determines the result of the operation (e.g. whether it has
been successful or not) and the response body includes additional information
(e.g. when retrieving a given resource). For instance, “Search for songs” in the
previous example could return a 404 status code if no results were found or a 200
together with a set of results in the response body, matching the filters passed
in the request.

3 Test coverage criteria

We propose classifying the coverage criteria into two types: input (those address-
ing API requests) and output (API responses). All criteria described here can be
applied to measure test coverage on the whole API or subsets of it. For instance,
it is possible to measure how many parameters have been covered on a single
operation, on all operations of a single path, or on all paths, that is, the entire
APL



Towards the Definition of Test Coverage Criteria for RESTful Web APIs 3

3.1 Input coverage criteria

Path coverage. This criterion refers to the coverage of the API’s paths. In the
case of the Spotify API, it has 53 paths, so at least 53 test cases (i.e. requests)
are needed to reach 100% coverage.

Operation coverage. It measures the coverage of the HT'TP methods that
can be applied on each path. This criterion can be applied to a single path
or to the whole API. For instance, to fully cover this criterion on the path
/playlists/{playlist_id}/tracks, three test cases must be executed, since
this path accepts three methods: GET, PUT and DELETE.

Parameter coverage. All operation parameters are liable to be used when
testing the API. This criterion measures the percentage of parameters covered by
a test suite. Consider, for example, the GET /search operation from the Spotify
API: it accepts seven parameters, therefore all of them must be submitted at
least once in order to fulfill this criterion. Stricter criteria could require certain
combinations of parameters to be tested.

Parameter value coverage. It concerns the testing of multiple values for every
parameter, mainly for booleans and enums, that is, those with a finite set of
values. Nevertheless, testing as many values as possible with the other types, e.g.
strings, integers and so on, is something worth considering. This criterion can be
applied to a single parameter or to the whole API. For the type parameter from
the previous operation, it accepts four possible values (album, artist, playlist
and track), so all them should be tested to reach 100% coverage of this criterion
on that specific parameter.

Content-type coverage. All allowed input data formats such as JSON and
XML must be tested for all operations that accept a request body (e.g. POST
operations). This criterion measures the percentage of input data formats cov-
ered by a test suite. The Spotify API consumes only JSON, therefore no other
data formats need to be tested.

3.2 Output coverage criteria

Status code class coverage. It refers to the coverage of faulty (4XX) and
correct (2XX) status codes. This criterion can be applied to every operation
separately. For the GET /search operation from the Spotify API, for instance,
both a successful response (e.g. one including a set of results) and a faulty one
(e.g. due to a missing mandatory parameter) should be obtained.

Status code coverage. It makes reference to obtaining API responses with all
the status codes that are defined in the specification. This criterion can also be
applied to every operation separately. In Spotify, the GET /search operation
can return a 200 upon success, or a set of faulty status codes when an error
occurs, namely 400, 401, 403, 404 and 429. To achieve 100% coverage of this
criterion in this example, all these six status codes should be obtained.
Response body properties coverage. For API responses including a body, it
should be checked that it contains all response properties defined in the specifi-
cation. This criterion can be considered for a single response. The GET /search



4 A. Martin-Lopez et al.

operation in the Spotify API returns an array containing up to three different
types of objects: artists, albums and tracks; to achieve full coverage, a search of
all three types of results should be performed.

Content-type coverage. The same way that RESTful Web APIs can accept
data in several formats, they can also return it. This criterion measures the
percentage of response data formats covered by a test suite. The Spotify API
produces only JSON, therefore no other data formats need to be obtained.

4 Future work

We are currently developing a prototype tool to automatically measure the de-
gree of coverage reached by a test suite based on the proposed criteria. Once
completed, we will evaluate the feasibility of each criterion, refining them as re-
quired. Our next step will focus on the definition of an assessment framework,
where the selected criteria will be conveniently arranged into different levels. For
example, level 0 could require path coverage, level 1 could require the fulfillment
of level 0 plus the coverage of operations, and so on. The final goal is to assess the
effectiveness of test suites based on the coverage level they reach, which in turn
will depend on the input and output elements covered, as described in Section 3.
Hopefully, this will result in a widely-accepted method for the assessment and
comparison of testing approaches for RESTful Web APIs.

Acknowledgements

This work has been partially supported by the European Commission (FEDER)
and Spanish Government under projects BELI (TIN2015-70560-R) and HOR-
ATIO (RTI2018-101204-B-C21), and the FPU scholarship program, granted by
the Spanish Ministry of Education and Vocational Training (FPU17/04077).

References

1. Atlidakis, V., Godefroid, P., Polishchuk, M.: REST-ler: Automatic Intelligent REST
API Fuzzing. Tech. rep., Microsoft Research (2018)

2. Bartolini, C., Bertolino, A., Marchetti, E., Polini, A.: WS-TAXI: A WSDL-based
Testing Tool for Web Services. In: Intern. Conference on Software Testing Verifica-
tion and Validation. pp. 326-335 (2009)

3. Ed-Douibi, H., Canovas Izquierdo, J., Cabot, J.: Automatic generation of test cases
for REST APIs: A specification-based approach. In: Intern. Enterprise Distributed
Object Computing Conference. pp. 181-190 (2018)

4. OpenAPI Specification, https://github.com/OAI/OpenAPI-Specification, accessed
June 2019

5. Segura, S., Parejo, J., Troya, J., Ruiz-Cortes, A.: Metamorphic testing of RESTful
Web APIs. IEEE Transactions on Software Engineering 44(11), 1083-1099 (2018)

6. Spotify API, https://developer.spotify.com/documentation/web-api/reference/, ac-
cessed March 2019



