
Test Coverage Criteria for RESTful Web APIs
Alberto Martin-Lopez

amarlop@us.es
University of Seville

Seville, Spain

Sergio Segura
sergiosegura@us.es
University of Seville

Seville, Spain

Antonio Ruiz-Cortés
aruiz@us.es

University of Seville
Seville, Spain

ABSTRACT

Web APIs following the REST architectural style (so-called RESTful 
web APIs) have become the de-facto standard for software inte-
gration. As RESTful APIs gain momentum, so does the testing of 
them. However, there is a lack of mechanisms to assess the ade-
quacy of testing approaches in this context, which makes it difficult 
to automatically measure and compare their effectiveness. In this 
paper, we first present a set of ten coverage criteria that allow to 
determine the degree to which a test suite exercises the different 
inputs (i.e. requests) and outputs (i.e. responses) of a RESTful API. 
We then arrange the proposed criteria into eight Test Coverage 
Levels (TCLs), where TCL0 represents the weakest coverage level 
and TCL7 represents the strongest one. This enables the automated 
assessment and comparison of testing techniques according to the 
overall coverage and TCL achieved by their generated test suites. 
Our evaluation results on two open-source APIs with real bugs 
show that the proposed coverage levels nicely correlate with code 
coverage and fault detection measurements.

KEYWORDS:

REST,

 testing,

 web services,

 coverage criteria

1 INTRODUCTION
Web Application Programming Interfaces (APIs) are key in the de-
velopment of distributed architectures, as they enable the seamless 
integration of heterogeneous systems. This has, in turn, fostered the 
emergence of new consumption models such as mobile, social and 
cloud applications. The increasing use of web APIs is reflected in

the size of popular API directories such as ProgrammableWeb [11]
and RapidAPI [12], which currently index over 21K and 8K web
APIs, respectively. Contemporary web APIs usually follow the REp-
resentational State Transfer (REST) architectural style [7], being
referred to as RESTful web APIs. RESTful web APIs provide uniform
interfaces to interact with resources (e.g. a song in the Spotify API)
via create, read, update and delete (CRUD) operations, generally
through HTTP interactions. RESTful APIs are commonly described
using languages such as the OpenAPI Specification (OAS), which
provides a structured way to describe a RESTful API in a both
human and machine-readable way, making it possible to automati-
cally generate, for example, documentation, source code (clients and
servers) and tests. In what follows, we will use the terms RESTful
web API, web API, or simply API interchangeably.

RESTful APIs can be tested using black-box [2, 6, 14] and white-
box [1] approaches. The former are usually based on the API spec-
ification and try to cover all elements and features defined in it,
while the latter typically focus on source code or mutation coverage
measures. While white-box approaches can be easily compared in
terms of source code coverage, no standardized coverage criteria
exist for black-box. This lack of criteria impedes the comparison of
testing techniques and hinders the development of new ones, since
there is no automated nor easy way to evaluate their effectiveness.

In this paper, we present a catalogue of ten test coverage criteria
for RESTful web APIs. Each coverage criterion measures how many
elements of an API are covered by a test suite, both in terms of test
inputs (i.e. API requests) and outputs (i.e. API responses). To this
end, we took inspiration on the OAS language, which allows to
describe the functionality of an API in a straightforward manner.
We propose to arrange the coverage criteria into eight Test Coverage
Levels (TCLs), where TCL0 represents the weakest coverage level
and TCL7 represents the strongest one. These levels constitute a
common framework for the assessment and comparison of testing
techniques for RESTful APIs, called the Test CoverageModel (TCM).
This framework aims at fully automating the evaluation of testing
approaches in this context, based on the overall coverage and TCL
achieved by their generated test suites. For the evaluation of our
approach, we performed experiments on two open-source APIs with
real bugs. The results show that the proposed coverage levels nicely
correlate with code coverage and fault detection measurements,
i.e. the higher the TCL that a test suite complies with, the more
chances to find faults and the more code will be covered.

The remaining of the paper is organized as follows: Section 2
introduces the basic concepts regarding RESTful web APIs. Section
3 presents our proposal of test coverage criteria in the context of
REST. In Section 4, a set of coverage levels is laid out. Section 5
exposes the results on the case study performed to validate our
proposal. The related work is discussed in Section 6. Finally, Section
7 draws the conclusions and presents future lines of research.

https://doi.org/10.1145/3340433.3342822
https://doi.org/10.1145/3340433.3342822


2 RESTFUL WEB APIS
RESTful web APIs are usually decomposed into multiple RESTful 
web services [9, 13], each of which implements one or more create, 
read, update or delete (CRUD) operations over a specific resource. 
These operations are usually mapped to the HTTP methods POST, 
GET, PUT and DELETE, respectively. Figure 1 depicts an excerpt 
of an OpenAPI specification from a sample API called MyMusic, 
containing seven operations. As illustrated, an OpenAPI Specifi-
cation document describes an API in terms of paths, operations, 
resources, request parameters and responses. A resource is any type 
of information that can be exposed to the Web (e.g. a photo, a HTML 
document, information about a book) and it is addressable by a 
unique Uniform Resource Identifier (URI). The API described in 
Figure 1 provides operations for handling two resources: Songs and 
Playlists. A path (also called route or endpoint) represents a resource 
over which operations can be performed (e.g. /songs). The term 
operation refers to the use of a HTTP method over a specific path. 
Below there are some examples of operations on the MyMusic API.
GET /songs?q=rhapsody&type=cover Retrieve all covers that 
contain the keyword ‘rhapsody’ in its name.
POST /playlists Create a new playlist.
PUT /playlists/{playlistId} Update an existing playlist, iden-
tified by the playlistId field.
DELETE /playlists/{playlistId} Remove a playlist.
Operations accept parameters. A parameter is a piece of infor-

mation that can be passed together with the request for several
purposes, such as filtering and sorting results (e.g. q and type in
the GET operation shown above). For every operation, several ex-
pected responses can be specified. A response is identified by the
returned status code and can optionally include a body. The status
code determines the result of the operation (e.g. successful or not)
and the response body includes additional information (e.g. a re-
quested resource). For instance, GET /songs in the previous example
could return a 400 status code if the required parameter q was not
included in the request, or a 200 together with a set of results in
the response body if there were no errors in the API call.

3 TEST COVERAGE CRITERIA
In this section, we present a catalogue of coverage criteria for
RESTful web APIs. These criteria are divided into two types: input
criteria (those related to the API requests) and output criteria (those
related to the API responses). It is worth noting that the proposed
criteria can be applied at different levels. Hence, for example, we
could measure the coverage achieved by a test suite in a whole API,
a certain path, or a specific operation. In what follows, we present
each coverage criterion. For the sake of understandability, we will
make reference to the test suite shown in Table 1. It is composed
of seven test cases (TCs) for the MyMusic API (Figure 1). Each TC
is composed of some inputs (i.e. one or more API calls) and one
expected output (i.e. the last API response obtained).

3.1 Input Coverage Criteria
This type of criteria measure the degree to which test cases cover
elements related to API requests.

Figure 1: Excerpt of an OpenAPI specification in YAML.

Path coverage. This criterion measures the coverage of a test
suite according to the paths it exercises. The coverage is computed
as the number of paths executed divided by the total number of
paths of the API. To achieve 100% path coverage, at least one re-
quest must address each path of the API. For instance, the MyMu-
sic API exposes four paths (/songs, /songs/{songId}, /playlists and
/playlists/{playlistId}), so four HTTP requests are needed, one per
path, to reach 100% path coverage. There are multiple ways to meet



Table 1: Test suite for the API MyMusic.
TC Request Expected response

#1 GET /songs?q=rhapsody&type=original&year=1975

Accept: application/json

Status code: 200
Response body: array of Song objects
Content-type: JSON

#2 GET /songs?q=happier&type=all

Accept: application/xml

Status code: 200
Response body: array of Song objects
Content-type: XML

#3 GET /songs?q=pwbglauypw&type=cover&year=2020

Accept: application/json

Status code: 404
Response body: Error object
Content-type: JSON

#4 GET /songs?type=remix

Accept: application/json

Status code: 400
Response body: Error object
Content-type: JSON

#5 GET /songs/1

Accept: application/json

Status code: 200
Response body: Song object
Content-type: JSON

#6 GET /songs/99999999

Accept: application/xml

Status code: 404
Response body: Error object
Content-type: XML

#7

1. POST /playlists (body containing JSON object)
Content-type: application/json

2. GET /playlists/1

Accept: application/json

Status code: 200
Response body: Playlist object
Content-type: JSON

this criterion in the MyMusic API, for instance, with TCs #1, #5 and
#7. Likewise, TCs #4, #6 and #7 cover all the paths as well.

Operation coverage. This criterion measures the coverage of a
test suite according to the operations executed. The coverage is
computed as the number of operations executed divided by the
total number of operations of the API. To achieve 100% operation
coverage, every path must be sent one request per allowed HTTP
verb (GET, POST, PUT or DELETE). Notice that this criterion can
be applied to the entire API or to a specific path. For example, TCs
#1, #5 and #7 reach 57% operation coverage in the MyMusic API,
since they execute 4 out of the 7 operations of the API. At the same
time, TC #1 on its own achieves 100% operation coverage on the
/songs path, since only one operation can be performed on it.

Parameter coverage. This criterion measures the coverage of a
test suite according to the operation parameters it uses. The cover-
age is computed as the number of parameters used divided by the
total number of parameters in the API. To achieve 100% parameter
coverage, all input parameters of every operation must be used
at least once. Exercising different combinations of parameters is
desirable, but not strictly necessary to achieve 100% of coverage
under this criterion. The reason for excluding combinatorial cover-
age criteria (e.g. t-wise [4]) is to ease the development of coverage
analysis tools. This criterion can also be considered for specific
subsets of the API. As an example, TC #1 achieves 100% parameter
coverage for the /songs path, since all parameters are used once.
Overall, however, the test suite reaches 60% parameter coverage
on the entire API, given that 4 out of 10 parameters are not used,
because these parameters belong to the three operations not exe-
cuted by the test suite (the query parameter in the operation GET
/playlists, the body and path parameter in PUT /playlists/{playlistId}
and the path parameter in DELETE /playlists/{playlistId}).

Parameter value coverage. This criterion measures the coverage
of a test suite according to the parameter values exercised. This
criterion applies only to parameters with a finite number of possible
values, namely, booleans and enums. The coverage is computed as
the number of different values that parameters are given divided by
the total number of possible values that all parameters can take. To
achieve 100% parameter value coverage, every boolean and enum
parametermust take all possible values. Nevertheless, it is suggested
to test multiple values with other types of parameters such as strings
and integers. There is only one enum parameter in the MyMusic
API: the parameter type in the GET /songs operation. TCs #1, #2,
#3 and #4 cover the four values that it accepts (‘original’, ‘all’,
‘cover’ and ‘remix’), and therefore they achieve 100% coverage
under this criterion in the whole API.

Content-type coverage. This criterion measures the coverage of a
test suite according to the input content-types used in API requests.
This criterion applies only to operations that accept data in the
request body (i.e. POST, PUT and DELETE). The coverage is com-
puted as the number of input content-types used divided by the total
number of input content-types across all API operations. To achieve
100% input content-type coverage, for every operation that accepts
a request body, all data formats (e.g. JSON and XHTML) must be
tested. This criterion can be applied to each operation individually.
As an example, the MyMusic API has only two operations that
accept a body, namely POST /playlists and PUT /playlists/{playlistId};
each of these can process JSON and XML, therefore at least four
requests are needed to achieve 100% input content-type coverage
on the entire API. TC #7 reaches 50% coverage of this criterion
for the POST /playlists operation, since the JSON content-type is
covered but XML is not.

Operation flow coverage. This criterion measures the coverage
of a test suite according to the sequences of operations it executes.



(a) GET /songs/0001 (b) GET /songs/0002

Figure 2: API responses including optional and required properties.

The definition of full coverage of this criterion highly depends on
the API under test. Several proposals exist in the literature about
the operation flows that should be tested [1, 2, 8, 16], but none of
them is widely accepted and used in industry. For this reason, and
for the sake of simplicity, we propose to use a simplified version of
the flows defined by Arcuri in [1]: for every resource that can be
created, at most four operation flows must be tested, namely those
related to its reading (one or several), updating and deletion after
its creation. If the resource is a sub-resource of another one, the
creation of the parent resource must be included in the operation
flow. In the MyMusic API, four operation flows can be executed: i)
create playlist→ read one playlist; ii) create playlist→ read several
playlists; iii) create playlist → update playlist; iv) create playlist →
delete playlist. TC #7 executes the first flow (individual read), so
this criterion is 25% covered.

3.2 Output Coverage Criteria
This type of criteria measure the degree to which test cases cover
elements related to API responses.

Status code class coverage. This criterion measures the cover-
age of a test suite according to its ability to produce both correct
and erroneous responses in the API under test. These responses
are typically identified by 2XX and 4XX status codes respectively,
however, this may vary depending on the API, therefore the tester
must define the meaning of correct and erroneous for their particular
case. It is assumed that every operation should at least return one
successful response, therefore, to achieve 100% coverage of this
criterion, at least one test case per API operation is needed; if every
operation can return both correct and erroneous status codes, two
test cases per operation are needed to reach 100% status code class
coverage. The coverage is computed as the number of classes of
status codes obtained in API responses (maximum two per opera-
tion) divided by the total number of classes of status codes in the
whole API. In the MyMusic API, the seven operations can return
correct and erroneous responses, therefore fourteen test cases are
needed to fully cover this criterion. Overall, the test suite achieves
36% status code class coverage (5 out of 14 classes covered). At the
same time, TCs #1 and #3 suffice to fulfill this criterion for the GET
/songs operation.

Status code coverage. This criterion extends the previous one by
considering status codes instead of simply classes of status codes.
Therefore, to achieve 100% coverage, all status codes of all opera-
tions must be obtained. TCs #1, #3 and #4 achieve 100% coverage
for the GET /songs operation of the MyMusic API, and also for the
/songs path, since it has no more operations.

Response body properties coverage. This criterion measures
the coverage of a test suite according to its ability to produce re-
sponses containing all properties of resources. Figure 2 shows two
API responses containing a Song resource, which is composed of
multiple properties such as the name of the song. The coverage
of this criterion is computed as the number of properties obtained
divided by the total number of all properties from all objects that
can be obtained in API responses. To achieve 100% coverage of
this criterion, all properties from all response objects must be ob-
tained. As an example, take the two responses to the request GET
/songs/{songId} shown in Figure 2. Retrieving a single1 (left-hand
side) does not achieve full coverage, since the property album is
not present in the response. Retrieving a song that is part of an
album (right-hand side), by contrast, meets this criterion for this
specific response body, since it includes all properties of the Song
object. Intuitively, this criterion can be applied to specific responses
individually, like in the MyMusic API, where TC #1 covers this
criterion for the successful response to the GET /songs operation,
since the response will surely include the same object depicted in
the right-hand side of the previous figure.

Content-type coverage. This criterion has the same meaning as
the input content-type criterion, but in this case the coverage is
measured on the output data formats obtained in API responses.
TCs #5 and #6 achieve 100% coverage of this criterion for the GET
/songs/{songId} operation, since all content-types are obtained in
the responses, i.e. JSON and XML.

4 TEST COVERAGE MODEL
Inspired by the REST Maturity Model of Richardson [13], we pro-
pose to arrange the previous coverage criteria into eight different
Test Coverage Levels (TCLs), constituting a common framework for
the assessment and comparison of test suites addressing RESTful
APIs, called the Test Coverage Model (TCM). The goal is to rank test
suites based on the TCL they can reach, where TCL0 represents
the weakest coverage level and TCL7 the strongest one. In order to
reach a specific TCL, all criteria belonging to previous levels must
have been met. This does not mean that criteria from higher levels
subsume those from lower levels. Figure 3 illustrates the aforemen-
tioned levels and the test coverage criteria they are comprised of (as
described in the previous section). Note that a distinction is made
between input and output coverage criteria.

Level 0 represents a test suite where no coverage criterion is
fully met. Any test suite, therefore, has TCL0 by default. Level 1 is
the easiest to achieve and the most naive, as it only requires paths

1A single refers to a song that is released on its own, not as part of an album.



to be covered. A test suite reaching only level 1 can be thought of 
as very weak. In Level 2, all operations must be covered. Level 3 
requires that all content-types for every operation are tested, both 
input and output. The next three levels mainly focus on parameters 
and output criteria. Level 4 requires parameters and status code 
classes to be covered. In Level 5, the criteria that must be fulfilled 
are parameter values and status codes. In Level 6, it is required that 
the response body properties criterion be covered. It is suggested to 
cover different combinations of parameters in levels 4, 5 and 6, as 
well as new parameter values in levels 5 and 6. Level 7 constitutes 
the last stage of the TCM and the hardest to reach. It focuses on 
the coverage of operation flows.

As an example, consider the test suite from Table 1 and the TCL 
it achieves depending on the elements of the API considered:

Entire API: TCL1. All the four paths are exercised by the test 
cases but three out of the seven operations are not executed (GET 
/playlists, PUT /playlists/{playlistId} and DELETE /playlists/{playlistId}).

Path /songs: TCL6. All operations are covered by the test cases 
and, for every operation, all their sub-elements are covered as well 
(input and output content-types, parameters, parameter values, 
status codes and response body properties).

Operation GET /songs: TCL6. All elements of the operation are 
covered: parameters (q, type and year), parameter values (‘all’, 
‘original’, ‘cover’ and ‘remix’ for the type parameter), input 
and output content-types (JSON and XML), status codes (200, 400 
and 404) and response body properties (id, name, artist, album, 
type and releaseYear).

Operation GET /playlists: TCL1. This operation is not executed 
by the test cases, so the test suite reaches only level 1, since the 
path is actually covered by TC #7.

Operation GET /songs/{songId}: TCL4. Both content-types (JSON 
and XML) are covered, all parameters are used at least once (songId) 
and both classes of status codes are covered (one test case gets a 
200 status code in the response and the other obtains a 404).

5 CASE STUDY
We performed a case study with two open-source APIs to validate 
our proposal of test coverage criteria for RESTful APIs. To this 
end, we designed seven test suites for each API, each complying 
with every TCL defined in the TCM, i.e. fully covering the criteria 
included in every TCL. In doing so, we aim to validate the following 
hypothesis: The TCL of a test suite is correlated to the number of bugs 
it is able to detect and the code coverage it achieves.

5.1 Subject APIs
We decided to use the same APIs of Arcuri [1] for the empirical 
study, so that we could compare our work with a recent, novel 
technique of RESTful APIs testing. We selected two of the five APIs 
analysed in his work, named scout-api2 and features-service3. The 
scout-api API allows to search for suitable activities for boys and 
girls scouts, and the features-service API allows to manage product

2https://github.com/mikaelsvensson/scout-api
3https://github.com/JavierMF/features-service

Figure 3: Test Coverage Model: Levels & Criteria.

feature models. We selected these APIs because they have medium
sizes and they differ sufficiently from each other, e.g. the first uses
a wide range of path, query and JSON object parameters whereas
the second mostly uses a small range of path parameters.

The information about the APIs is summarized in Table 2. The
last column shows the number of real errors identified by Arcuri [1].
An error is considered as an operation returning at least one 5XX
status code as a result of a test case.

Table 2: Subject APIs.

Name Classes LoC Operations Errors

scout-api 75 7479 49 33
features-service 23 1247 18 14

5.2 Setup
Before going in depth into the results obtained, it is necessary to
bear inmind a number of considerations. For the evaluation of TCL4,
and as recommended in most guidelines for the design of RESTful
APIs [9, 13], we defined correct responses as those returning 2XX
status codes, and erroneous as those returning 4XX or 5XX status
codes. On the other hand, we designed the test suites such that
they contained the minimum number of test cases possible to meet
the criteria of the corresponding TCL. To this end, we did not test
special combinations of parameters in TCLs 4, 5 and 6, and we did
not add extra test cases to test more than one value per parameter
in TCLs 5 and 6, even though the guidelines of the TCM encourage
to do the opposite. By doing this, we intentionally assessed the
validity of the TCM in a worst case scenario.

Regarding the experiments performed, the test cases were man-
ually written in Java, using the JUnit framework and the REST
Assured library. The tests were run in the IDE IntelliJ IDEA, which
allowed us to automatically measure the failures detected and the
code coverage achieved by the test suites.

5.3 Results
Table 3 shows the results of our evaluation and a comparison with
Arcuri’s and the test suite provided with each API, for which we

https://github.com/mikaelsvensson/scout-api
https://github.com/JavierMF/features-service


Table 3: Evaluation results and comparison between test suites of the TCM, Arcuri and the API developers.

API Test Coverage Model (TCM) Arcuri Existing test suite
TCL Test cases Code coverage Errors Test cases Code coverage Errors Test cases Code coverage Errors

1 21 18% 3
2 49 20% 21
3 49 20% 21

scout-api 4 98 34% 23 177 38% 33 19 41% 0
5 224 35% 29
6 232 40% 33
7 232 40% 33

1 11 35% 7
2 18 39% 13
3 18 39% 13

features-service 4 36 75% 13 50 64% 14 22 78% 2
5 37 76% 13
6 37 76% 13
7 37 74% 13

only considered test cases making HTTP calls to the API, as Arcuri
did [1]. Values in bold represent the highest values achieved among
our approach, Arcuri’s and the API’s existing test suites.

It can be clearly appreciated how the TCL of a test suite does
have an effect on the bugs found and the code covered. Whereas
fault finding gradually increases in one of the APIs, code coverage
increases in both of them for most levels. There is one exception:
the decrement in the code covered by TCL7 in the features-service
API, although it is only 2% less. This is because the operation flows
defined in Section 3.1 do not suffice to put the system in the same
state as when populating the database as desired, which proves
that the operation flows that should be tested are API-dependant.
We tested more complex sequences of operations and were able to
cover the same code as with the previous level, but these were not
considered for the case study, in order to conform to the minimum
requirements to fulfill the operation flows criterion.

In terms of code coverage, TCL7 achieves better results than
those of Arcuri and similar results to the existing test suites in
both APIs. TCL4 is clearly a turning point, since it achieves the
greatest improvement in comparison with the previous level. This
highlights the importance of testing all operation parameters and
obtaining both classes of status codes, correct and erroneous.

In terms of fault finding, TCL7 reveals many more bugs than the
existing test suites of the APIs (33 vs 0 in scout-api, and 13 vs 2 in
features-service), and almost the same as Arcuri (33 vs 33, and 13
vs 14). There is only one bug that our approach was not able to
find, which may be explained by the fact that we did not test many
parameter values, aiming to assess the validity of the TCMwith test
suites complying with the minimum requirements for each level.
Especially significant is the case of the TCL2-compliant test suite
of the features-service API, which detects the same number of faults
as one of TCL7. This highlights the importance of testing all API
operations, despite not using all operation parameters.

Overall, TCL7 achieves more than twice code coverage than
TCL1 in both APIs, and uncovers between 2 and 11 times more
bugs. This supports the idea that, by systematically covering all
criteria defined in our catalogue, it is possible to obtain sound
coverage and fault detection results.

5.4 Discussion
The results of this case study reflect the potential of the TCM using
the minimum number of test cases needed to comply with every
TCL. We also conducted an exploratory experiment to evaluate
the TCM following a stronger approach regarding the use of pa-
rameter values, namely, testing between 1 and 3 values for each
parameter in TCL6, and obtained higher code coverage for both
APIs (41% in scout-api, and 79% in features-service), which suggests
that parameter values are key in the efficacy of the TCM.

In order to obtain significant results when following the TCM
approach, it is required that the system database is properly popu-
lated, containing all kinds of resources. We noticed that the results
obtained (especially in terms of code coverage) were poorer when
it was empty, since some operations would not work as expected
(e.g. retrieving a resource that does not exist). To this end, it may
be necessary to manually populate the database accordingly to the
needs of each test case (as we did). However, there may also be cases
where this is not possible, for example when performing black-box
testing on an industrial web API. In this scenario, operation flows
play a key role in the design of valid test cases, since they allow to
put the system in the desired state prior to a specific API call.

It is worth mentioning that the tests from the API’s existing
test suite are more complex than those of our work and Arcuri’s.
For example, we only check the status codes and test a specific
CRUD operation per test case, while the API’s existing test cases
may check multiple aspects such as response body properties and
perform multiple CRUD operations on a single test case. This is
why the existing test suites contain notably less test cases than ours
and Arcuri’s.

As a final remark, the TCM approach does not guarantee good
fault finding statistics on its own (similarly to what happens with
other traditional coverage criteria such as statement coverage),
since this depends on the assertions (test oracles) used in the test
cases. High TCLs do guarantee high code coverage, but these need
to be accompanied by meaningful assertions and oracles in order
to increase the chances of finding bugs. For our experiments, we
only checked the response status codes and yet were able to find a



significant amount of bugs. Had we used smarter approaches like 
metamorphic testing [14], we might have been able to discover 
more and more complex faults.

6 RELATED WORK
Our work is related to black-box testing approaches for web services. 
Some of these works make an effort to measure, up to a certain de-
gree, the elements of the web services under test covered by the test 
cases generated by their techniques. Ed-douibi et al. [6] automati-
cally generated 951 test cases for 91 RESTful APIs based on their 
OAS specifications, and measured the coverage achieved in terms 
of inputs, namely: paths, operations, parameters and OAS object 
definitions. Other authors have proposed test coverage criteria for 
web services based on their specifications such as the Web Services 
Description Language (WSDL) [5]. In this regard, Bartolini et al. [3] 
enunciated three coverage criteria, namely operation coverage (as 
defined in the WSDL file), message coverage (input messages de-
clared in the WSDL specification) and schema coverage (the parts 
composing each message), used for measuring the thoroughness 
with which their tool could test a service. Bai et al. [16] also used 
WSDL to analyse the test coverage achieved by test cases according 
to four types of elements: parameters, messages (input and output), 
operations and operation flows. Lastly, Jokhio et al. [10] used the 
Web Service Modelling Ontology (WSMO) framework to gener-
ate test cases and measure the coverage with two specific criteria: 
boundary coverage, referred to boundary conditions such as min-
imum and maximum values for parameters, and transition rules 
path coverage, referred to the different execution paths that the 
program may follow when receiving a given request. In comparison 
with these papers, our work constitutes the first and most complete 
framework to measure black-box coverage in RESTful web services. 
Furthermore, the validity of this framework has been demonstrated 
with two real RESTful web APIs and several testing techniques.

Regarding the tools available in the market, ReadyAPI [15] is the 
only one that provides meaningful information about the coverage 
achieved by a test suite in terms of the functionality covered. Given 
a Web Application Description Language (WADL) or OAS docu-
ment and a test suite created in ReadyAPI, the program is able to 
run the test suite and compute coverage statistics on the elements 
covered in the API. However, it supports only 6 out of the 10 criteria 
proposed in this paper: on the one hand, the coverage is computed 
in terms of the sub-elements of each operation, and therefore does 
not provide information regarding path or operation coverage; on 
the other hand, it lacks support for the criteria of parameter values 
and operation flows. Lastly, the tool does not offer any general 
overview of the thoroughness of the test suite, as opposed to the 
TCM approach presented in this paper.

7 CONCLUSIONS AND FUTURE WORK
In this paper, we presented a catalogue of test coverage criteria 
for RESTful APIs and proposed a framework for the evaluation of 
testing approaches in this context. To the best of our knowledge, 
this is the first attempt to establish a common framework for the 
comparison of testing techniques, by providing an easy and auto-
matic way of measuring the thoroughness of test suites addressing

RESTful web APIs, based on the criteria they cover and the cov-
erage level they reach. Furthermore, we evaluated the validity of
our proposal with two real-world APIs and found that the TCLs
nicely represent the potential of test suites, where the lowest TCLs
usually get low code coverage and find few faults and the highest
TCLs cover as much code and find as many faults as traditional
and modern testing techniques. We trust that the results of our
work pave the way for the automated assessment and comparison
of testing approaches for RESTful APIs.

Several challenges remain for future work. It is desirable to per-
form further evaluations of the proposed criteria and the TCM with
other APIs and test generation techniques, so as to ascertain the
validity of the results obtained. We aim to provide tool support that
allows to analyse test suites and find out their maximum TCL. We
also plan to elaborate on the definition of the operation flows crite-
rion, since it is not fully formalised and there is no agreement in the
literature about the operation flows that should be tested [1, 2, 8, 16].
Lastly, our approach opens new promising research opportunities
in terms of test automation. For example, search-based techniques
could be used to generate test suites that maximise API coverage.

ACKNOWLEDGEMENTS
This work has been partially supported by the European Com-
mission (FEDER) and Spanish Government under projects BELI
(TIN2015-70560-R) and HORATIO (RTI2018-101204-B-C21), and
the FPU scholarship program, granted by the Spanish Ministry of
Education and Vocational Training (FPU17/04077).

REFERENCES
[1] A. Arcuri. 2019. RESTful API Automated Test Case Generation with EvoMaster.

ACM Trans. on Software Engineering and Methodology 28, 1 (2019), 3.
[2] V. Atlidakis, P. Godefroid, andM. Polishchuk. 2018. REST-ler: Automatic Intelligent

REST API Fuzzing. Technical Report.
[3] C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini. 2009. WS-TAXI: A WSDL-

based Testing Tool for Web Services. In Intern. Conference on Software Testing
Verification and Validation. 326–335.

[4] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. 1997. The AETG
System: An Approach to Testing Based on Combinatorial Design. IEEE Trans. on
Software Engineering 23, 7 (1997).

[5] WWW Consortium. 2007. Web Services Description Language (WSDL) Version 2.0.
Retrieved May 2019 from https://www.w3.org/TR/wsdl20/

[6] H. Ed-douibi, J.L.C. Izquierdo, and J. Cabot. 2018. Automatic Generation of
Test Cases for REST APIs: A Specification-Based Approach. In IEEE 22nd Intern.
Enterprise Distributed Object Computing Conference. 181–190.

[7] R. T. Fielding. 2000. Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. Dissertation.

[8] A. Ivanchikj, C. Pautasso, and S. Schreier. 2018. Visual modeling of RESTful
conversations with RESTalk. Journal of Software & Systems Modeling 17, 3 (2018),
1031–1051.

[9] D. Jacobson, G. Brail, and D. Woods. 2011. APIs: A Strategy Guide. O’Reilly Media,
Inc.

[10] M. S. Jokhio, G. Dobbie, and J. Sun. 2009. Towards Specification Based Testing for
Semantic Web Services. In Australian Software Engineering Conference. 54–63.

[11] ProgrammableWeb. 2019. RapidAPI API Directory. Retrieved March 2019 from
http://www.programmableweb.com/

[12] RapidAPI. 2019. RapidAPI API Directory. Retrieved March 2019 from https:
//rapidapi.com

[13] L. Richardson, M. Amundsen, and S. Ruby. 2013. RESTful Web APIs. O’Reilly
Media, Inc.

[14] S. Segura, J.A. Parejo, J. Troya, and A. Ruiz-Cortés. 2018. Metamorphic Testing of
RESTful Web APIs. IEEE Trans. on Software Engineering 44, 11 (2018), 1083–1099.

[15] SmartBear. 2019. ReadyAPI. Retrieved March 2019 from https://smartbear.com/
product/ready-api/overview/

[16] X. Bai, W. Dong, W.-T. Tsai, and Y. Chen. 2005. WSDL-based Automatic Test Case
Generation forWeb Services Testing. In IEEE Intern. Workshop on Service-Oriented
System Engineering. 207–212.

https://www.w3.org/TR/wsdl20/
http://www.programmableweb.com/
https://rapidapi.com
https://rapidapi.com
https://smartbear.com/product/ready-api/overview/
https://smartbear.com/product/ready-api/overview/

	Abstract
	1 Introduction
	2 RESTful web APIs
	3 Test coverage criteria
	3.1 Input Coverage Criteria
	3.2 Output coverage criteria

	4 Test Coverage Model
	5 Case study
	5.1 Subject APIs
	5.2 Setup
	5.3 Results
	5.4 Discussion

	6 Related work
	7 Conclusions and future work
	References



