
RESTest: Black-Box Constraint-Based Testing of
RESTful Web APIs

Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés

Smart Computer Systems Research and Engineering Lab (SCORE), Research
Institute of Computer Engineering (I3US)

Universidad de Sevilla, Spain
{alberto.martin,sergiosegura,aruiz}@us.es

Abstract. Automated testing approaches for RESTful web APIs typi-
cally follow a black-box strategy, where test cases are derived from the
API specification. These techniques show promising results, but they
neglect constraints among input parameters (so-called inter-parameter
dependencies), as these cannot be formally described in current API
specification languages. As a result, black-box tools rely on brute force
to generate valid test cases, i.e., those satisfying all the input constraints.
This is not only extremely inefficient, but it is also unlikely to work for
most real-world services, where inter-parameter dependencies are com-
plex and pervasive. In this paper, we present RESTest, a framework for
automated black-box testing of RESTful APIs. Among its key features,
RESTest supports the specification and automated analysis of inter-
parameter dependencies, enabling the use of constraint solvers for the
automated generation of valid test cases. This allows to detect more
faults, and faster, through a deeper evaluation of valid and invalid input
parameters’ combinations and the use of novel test oracles. Evaluation
results on 6 commercial APIs show that RESTest can efficiently generate
up to 99% more valid test cases than random testing techniques, 60% on
average. More importantly, RESTest revealed 2K failures undetected by
random testing, uncovering bugs in all the services under test.

Keywords: REST · Black-box testing · Constraint-based testing · Web
services

1 Introduction

Web APIs allow systems to interact over the network, typically using web services
[18]. Modern web APIs typically adhere to the REpresentational State Transfer
(REST) architectural style [5], being referred to as RESTful web APIs. RESTful
web APIs are comprised of one or more RESTful web services, each of which
implements one or more create, read, update, or delete (CRUD) operations to
access and manipulate a resource, e.g., a video in the YouTube API. RESTful
APIs are commonly described using languages like the OpenAPI Specification
(OAS) [15], originally created as a part of the Swagger tool suite [22]. OAS is
designed to provide a structured description of a RESTful web API that allows



2 A. Martin-Lopez et al.

both humans and computers to discover and understand the capabilities of a
service without requiring access to the source code or additional documentation.

Web APIs often impose dependency constraints that restrict the way in which
two or more input parameters can be combined to form valid calls to the ser-
vice, these are often called inter-parameter dependencies (or simply dependencies
henceforth). For example, in the Google Maps API, when searching for places,
if the location parameter is set, then the radius parameter must be set too,
otherwise a 400 status code (“bad request”) is returned. In a recent study, we
reviewed more than 2.5K operations from 40 industrial APIs and found that de-
pendencies are extremely common and pervasive—they appear in 4 out of every 5
APIs across all application domains and types of operations [11]. Unfortunately,
current API specification languages like OAS provide no support for the formal
description of this type of dependencies, despite being a highly demanded feature
by practitioners1. Instead, users are encouraged to describe dependencies among
input parameters informally, using natural language, which leads to ambiguities
and makes it hardly possible to interact with services without human interven-
tion2. To address this problem, in previous work we proposed a domain-specific
language for the formal specification of dependencies, called Inter-parameter De-
pendency Language (IDL), and a tool suite for the automated analysis of IDL
using constraint programming [12] (c.f. Section 2). In this paper, we show the
potential of IDL and its tool suite in the context of testing RESTful APIs.

The validation of RESTful web APIs is critical as they play a key role in
modern software integration. A faulty API can have a huge impact in the many
applications using it. The automated detection of bugs in RESTful web APIs is
an active research topic [2–4, 9, 19, 23]. Most contributions in this context follow
a black-box strategy, where the specification of the API under test (described
using the OAS language) is used to drive the generation of test cases [3, 4, 9, 23].
Essentially, these approaches exercise the API under test using (pseudo) random
test data. Test data generation strategies include using default values [4], input
data dictionaries [3], test data generators [9] and data observed in previous calls
to the API [23]. Failures are detected when the observed output deviates from
the specification, e.g., unexpected HTTP status codes.

Problem: Current black-box testing approaches for RESTful web APIs do
not support inter-parameter dependencies since, as previously mentioned, these
are not formally described in the API specification used as input. As a result,
existing approaches simply ignore dependencies and resort to brute force to
generate valid test cases, i.e., those satisfying all input constraints. This is not
only extremely inefficient, but it is also unlikely to work for most real-world
services, where inter-parameter dependencies are complex and pervasive. For
example, the search operation in the YouTube API has 31 input parameters,
out of which 25 are involved in at least one dependency: trying to generate valid

1 This is reflected in an open feature request in OAS entitled “Support interdepen-
dencies between query parameters”, with over 290 votes and 55 comments from 33
participants. https://github.com/OAI/OpenAPI-Specification/issues/256

2 https://swagger.io/docs/specification/describing-parameters/



RESTest: Black-Box Constraint-Based Testing of RESTful Web APIs 3

test cases randomly is like hitting a wall. This was confirmed in our evaluation,
where 98 out of every 100 random test cases for the YouTube search operation
violated one or more inter-parameter dependencies (c.f. Section 4.3).

Contribution: In this paper, we present RESTest, an open-source and black-
box automated testing framework for RESTful web APIs. RESTest follows a
model-based approach enabling its integration with different test case genera-
tors and testing frameworks. As its most distinctive feature, RESTest supports
the specification and automated analysis of inter-parameter dependencies using
the IDL tool suite. This allows to exploit constraint solving as a part of the test
generation process, a testing technique generally known as constraint-based test-
ing [8]. Constraint-based testing enables a better coverage of the program under
test through the systematic generation of valid and invalid input combinations,
as well as the use of novel output assertions, i.e., test oracles. For the evaluation
of RESTest, we tested 9 operations from 6 commercial APIs, including Tum-
blr, GitHub and YouTube. Specifically, we compared random testing—state-of-
the-art technique for black-box testing of RESTful APIs—and constraint-based
testing. As expected, random testing struggled to generate valid test cases: 60%
of the generated test cases violated inter-parameter dependencies (about 99% in
the APIs of Stripe and YouTube). In contrast, constraint-based testing gener-
ated 100% valid test cases for all the services under test, keeping the test case
generation time in milliseconds. More importantly, constraint-based testing de-
tected more failures than random testing (4K vs 3K), in more services (9 vs 5),
showing the potential of RESTest in practice.

This work includes the following original contributions in the context of au-
tomated testing of RESTful web APIs:

1. An open-source and model-based framework for automated black-box test
case generation and execution.

2. A new constraint-based approach for improving test case generation tech-
niques, including two novel automated test oracles.

3. Experimental evidence on the limits of using random testing in real-world
services with inter-parameter dependencies.

4. A comparison of random testing and constraint-based testing on 6 commer-
cial APIs, showing the potential of both techniques, and especially constraint-
based testing, to uncover real bugs.

The remainder of the paper is organised as follows: Section 2 introduces the
IDL tool suite, used for the automated analysis of inter-parameter dependencies
in RESTful web APIs. Section 3 presents RESTest, our testing framework for
RESTful APIs. Section 4 explains the evaluation performed and the results ob-
tained. Section 5 outlines threats to validity. Section 6 describes related work.
Finally, Section 7 draws conclusions and discusses future lines of research.

2 IDL Tool Suite

RESTest relies on the IDL tool suite for the automated management of inter-
parameter dependencies in RESTful APIs [12]. Inter-parameter Dependency Lan-



4 A. Martin-Lopez et al.

guage (IDL) [21] is a domain-specific language for the specification of inter-
parameter dependencies in web APIs. It is based on a thorough study of more
than 2.5K operations in 40 real-world APIs [11]. Specifically, it provides support
for eight different types of dependencies among input parameters consistently
found in practice. Listing 1 shows an example of each type of dependency taken
from commercial APIs. The syntax is self-explanatory. For example, the Requires
dependency in line 1, observed in the API of YouTube, states that, when using
the parameter videoDefinition, the parameter type must be set to ‘video’.
IDL specifications can be integrated into OAS documents using the IDL4OAS
extension [12]. This allows to enrich API specifications with an accurate, not
ambiguous and machine-readable description of the dependencies among input
parameters. We refer the reader to the supplementary material of the paper
for examples of API specifications using the OAS language and the IDL4OAS
extension [21].

1 IF videoDefinition THEN type=='video '; // Requires
2 Or(query , type); // Or
3 ZeroOrOne(radius , rankby =='distance '); // ZeroOrOne
4 AllOrNone(location , radius); // AllOrNone
5 OnlyOne(amount_off , percent_off); // OnlyOne
6 publishedAfter >= publishedBefore; // Relational
7 limit + offset <= 1000; // Arithmetic
8 IF intent =='browse ' THEN OnlyOne(ll AND radius , sw AND ne); // Complex

Listing 1: Examples of IDL dependencies from real-world APIs.

IDLReasoner [21] is an open-source Java library for the automated analysis
of IDL specifications [12]. Given an OAS specification and a set of IDL depen-
dencies (e.g., using IDL4OAS), the tool translates them into a constraint satis-
faction problem (CSP) expressed in MiniZinc [14], a constraint solving language
designed for modelling optimisation problems in a high-level, solver-independent
way. Then, several analysis operations can be invoked on the resulting CSP, for
instance, to know whether a given API request satisfies all the inter-parameter
dependencies. Section 3.2 describes the analysis operations used to support test
case generation in RESTest.

3 RESTest

In this section, we present RESTest, our framework for automated black-box
testing of RESTful web APIs. RESTest follows a model-based approach, where
test cases are automatically derived from the specification of the API under test.
No access to the source code is required, which makes it possible to test APIs
written in any programming language, running in local or remote servers.

Figure 1 shows how RESTest works. It takes as input the OAS specification
of the API under test, considered the system model. The specification can op-
tionally describe inter-parameter dependencies using the IDL4OAS extension.
Then, a so-called test model is automatically generated from the system model
including test-specific configuration data. The default test model can be manu-
ally enriched with fine-grained configuration details such as test data generation



RESTest: Black-Box Constraint-Based Testing of RESTful Web APIs 5

Fig. 1: Test case generation and execution in RESTest.

settings. Then, both the system and the test models are leveraged for the gener-
ation of abstract test cases following user-defined test case generation strategies
such as random testing. In parallel, inter-parameter dependencies, if any, are fed
into the tool IDLReasoner, providing support for their automated analysis dur-
ing test case generation, for instance, to check whether an API call satisfies all
the inter-parameter dependencies defined in the specification. Finally, abstract
test cases are transformed into platform-specific executable test cases and they
are executed. In the following sections, we detail the main steps of the process.

3.1 Default Test Model Generation

RESTest takes as input the specification of the API under test, i.e., system
model. Specifications described using the OAS language—arguably considered
the industry-standard and used in related approaches [2–4, 9, 23]—are supported,
but other API specification languages could be integrated into the framework
using available converters, e.g., RAML to OAS [15]. As a distinctive feature,
RESTest supports the specification of inter-parameter dependencies within the
OAS document using the IDL4OAS extension [12] (c.f. Section 2).

Test case generation in RESTest is driven by the system and the test models.
The test model includes all test-related configuration settings for the API under
test. A default test model, formatted in YAML (i.e., same language used in OAS),
is automatically generated from the input API specification (system model).
Such test model might be enough to generate effective test cases in some APIs.
However, in practice, some manual tuning is often necessary, for example, to
generate input values hardly inferred from the specification such as identifiers
or codes. In particular, RESTest supports the following configuration settings:

– Operations under test. It is possible to specify the subset of the API opera-
tions to be tested. Specific test configuration settings can be defined for each
operation under test.



6 A. Martin-Lopez et al.

– Authentication data. This includes the API keys or tokens required to call
secured APIs.

– Test data generators. This allows to customise the data values used for each
input parameter. Test data generators in RESTest include random value
generators, regular expression generators, boundary-value generators, and
data dictionaries, among others. Default generators are configured according
to the type of the input parameters, e.g., English words for string parameters.

– Weights. Testers might be interested in testing some parameters more thor-
oughly than others, for example, those more used in practice. Weights allow
to do so. A weight is a real number in the range [0,1]. The higher the weight
of a parameter, the more frequently it will be used in test cases. By default,
all parameters have a weight of 0.5.

3.2 Automated Analysis of Inter-Parameter Dependencies

API specifications including inter-parameter dependencies in IDL are provided
as input to IDLReasoner [12]. This tool transforms the specification into a CSP
and automatically checks for inconsistencies in the specification, informing the
user about any errors, e.g., parameters that cannot be selected. Once the speci-
fication is validated, IDLReasoner provides test case generators with a catalogue
of helpful analysis operations. Among these, three analysis operations stand out
as particularly helpful during test case generation, namely:

– isValidRequest. This operation takes as input an API specification (including
inter-parameter dependencies) and a service request (i.e., a list of parameters
and their values), and returns a Boolean indicating whether the request is
valid or not. A service request is valid if it satisfies all the inter-parameter
dependencies defined in the specification.

– getRandomValidRequest. This operation receives the API specification of an
API operation, and returns a random valid request for the operation, that
is, a random assignment of values to input parameters satisfying all the
dependencies of the specification.

– getRandomInvalidRequest. Contrary to the previous operation, this operation
returns a random request violating one or more dependencies.

The use of the IDL tool suite allows to decouple the automated management
of dependencies from the specific test case generation approach used. This makes
RESTest highly generic and easy to maintain. Furthermore, it eases the use of
different CSP solvers and the development of new analysis operations.

3.3 Abstract Test Case Generation

Test cases can be derived from the system and test models using one or more test
case generation techniques. These test cases are abstract or platform-independent,
meaning that they can be later transformed into executable test cases for spe-
cific testing frameworks and programming languages. RESTest currently sup-
ports random and constraint-based test case generation, but other techniques



RESTest: Black-Box Constraint-Based Testing of RESTful Web APIs 7

(e.g., search-based generation) could be easily integrated extending the right
interfaces. Abstract test cases comprise test inputs, expected outputs (test ora-
cles), and the required information to build the API request, e.g., the endpoint.
RESTest currently supports testing at the operation-level, that is, each test case
performs a single API request.

RESTest generates both nominal and faulty test cases. Nominal test cases
aim to test the API with valid inputs, i.e., those conforming to the API speci-
fication. In practice, it is not always possible to guarantee that a nominal test
case represents a valid call to the API since it could violate some inter-parameter
dependency, for example. Therefore, nominal test cases can be regarded as po-
tentially valid test cases aimed at obtaining successful responses from the API
(i.e., 2XX status codes). Faulty test cases check the ability of the API to handle
invalid inputs, and therefore they expect a client error as a response (i.e., 4XX
status codes). Faulty test cases are generated by creating faulty variants (i.e.,
mutants) of nominal test cases. For example, RESTest supports the automated
generation of faulty test cases by excluding mandatory parameters, using out-
of-range values (e.g., assigning a string to an integer parameter), and violating
the JSON schema of the request body, among others. Additionally, as a novel
feature of RESTest, the framework supports the automated generation of invalid
requests violating inter-parameter dependencies using IDLReasoner.

Test case generation techniques mostly focus on generating test inputs, how-
ever, half of the challenge in testing lies on test oracles, that is, how to distinguish
correct outputs from incorrect ones. RESTest supports the five test oracles de-
scribed below, where the last two are novel as they rely on the automated analysis
of inter-parameter dependencies.

– 5XX. The status code must be lower than 500 (server error).

– OAS. The response must conform to the OAS schema.

– 2XXP. If the request violates the specification of individual parameters (e.g.,
a mandatory parameter is missing), the status code must not be 2XX (suc-
cessful response).

– 2XXD. If the request violates one or more inter-parameter dependencies, the
status code must not be 2XX.

– 4XX. If the request is valid according to the API specification, the status
code must not be 4XX (client error response).

Oracles 2XXD and 4XX are novel contributions of our work. Both of them
reveal failures undetectable by current state-of-the-art test oracles. It is worth
noting that oracle 4XX is particularly helpful as it allows to detect critical bugs:
those making the API return a client error response (4XX status code) with a
valid API call. Detecting this kind of failures is only possible thanks to the auto-
mated analysis of inter-parameter dependencies, which allows to automatically
determine whether a request is valid before calling the actual API (assuming that
the specification is correct and that the right test data generators are used).



8 A. Martin-Lopez et al.

3.4 Test Case Generation and Execution

The last step is concerned with test execution. Abstract test cases are instan-
tiated into executable test cases using specific testing frameworks and libraries.
RESTest currently supports the generation of executable test cases using REST
Assured [17], a Java library for testing RESTful services, developed as a JU-
nit extension. However, other frameworks and programming languages could be
easily supported by implementing specific test writers.

Test execution can be done either offline or online. In offline testing, test case
generation and execution are independent tasks. This has certain benefits. For
example, test cases can be generated once, and then be executed many times
as a part of regression testing. Also, test generation and test execution can be
performed on different machines and at different times. In online testing, test
case generation and execution are interleaved. This enables, for example, fully
autonomous testing of RESTful web APIs, e.g., generating and executing test
cases 24/7 as a part of a Continuous Integration (CI) setup. RESTest supports
both offline and online testing. However, more sophisticated techniques for online
testing remain to be implemented. For example, the test generation algorithms
can react to the actual outputs of the API under test, e.g., to guide search-based
test case generation algorithms based on the coverage achieved so far [13].

4 Evaluation

In this section, we assess the ability of RESTest to generate valid test cases (i.e.,
those satisfying all the input constraints) and to reveal failures in real-world APIs
with inter-parameter dependencies. To this end, we compare random testing
(RT)—state-of-the-art technique for black-box testing of RESTful APIs—and
constraint-based testing (CBT). We address the following research questions:

– RQ1: What is the effectiveness of CBT in generating valid test cases for
real-world APIs with inter-parameter dependencies?

– RQ2: What is the fault-finding capability of CBT in real-world APIs with
inter-parameter dependencies?

4.1 Services Under Test

We tested 9 services from 6 commercial RESTful APIs with millions of users.
We selected both read and write operations from those services. In order to
assess the potential of CBT, we selected operations containing the eight types of
dependencies identified in our study [11], with more than 50% of their parameters
involved in at least one dependency. Table 1 provides a summary of the services
under test (SUTs). For each SUT, the table shows an identifier (used to refer to
it within the rest of the paper), API name, description of the operation tested,
number of input parameters (P), number of IDL dependencies (D), and number
(and percentage) of different parameters involved in at least one dependency



RESTest: Black-Box Constraint-Based Testing of RESTful Web APIs 9

ID API Operation P D PD (%)

Foursquare Foursquare Search venues 17 8 10 (59%)
GitHub GitHub Get user repositories 5 2 3 (60%)
Stripe-CC Stripe Create coupon 9 3 5 (56%)
Stripe-CP Stripe Create product 18 6 11 (61%)
Tumblr Tumblr Get blog likes 5 1 3 (60%)
Yelp Yelp Search businesses 14 3 7 (50%)
YouTube-GCT YouTube Get comment threads 11 5 8 (73%)
YouTube-GV YouTube Get videos 12 5 7 (58%)
YouTube-S YouTube Search 31 16 25 (81%)

Mean 13.6 5.4 8.8 (62%)

Table 1: RESTful API operations used in the evaluation. P = Number of pa-
rameters, D = Number of IDL dependencies, PD = Number and percentage of
parameters involved in at least one dependency.

(PD). On average, the operations have 14 parameters, 5 dependencies and 9
parameters involved in dependencies.

The OAS specification of each API under test, used as input in RESTest,
was taken from the API website or from the APIs.guru repository [1]. When
the specification was not available (Foursquare, Tumblr and Yelp), we created
it manually based on the online API documentation. Then, we looked for inter-
parameter dependencies described in the documentation and included them as
a part of the specification using the IDL4OAS extension. The links to the APIs
under test and their OAS specifications are available as part of the supplementary
material of the paper [21].

4.2 Test Case Generation Techniques

Next, we describe the test case generation techniques used in the evaluation.

Random testing (RT). This is the state-of-the-art approach used as baseline
in our work [4, 9, 23]. Nominal test cases are generated by randomly selecting a
subset of the operation parameters and assigning random values to them within
their domain. All parameters are selected with the same probability (i.e., weight
= 0.5) except mandatory ones, which are always included in the API request.
Notice that this approach neglects inter-parameter dependencies and so the gen-
erated test cases may not be valid, i.e., they may generate responses with 4XX
status codes (client error). Faulty test cases are generated by mutating nominal
test cases as described in Section 3.3, e.g., excluding a mandatory parameter
from the API call.

Constraint-based testing (CBT). Nominal test cases are generated in two
steps. First, the domain of each input parameter is discretised and reduced to a
fixed number of random values, within their domain, using RESTest test data
generators. Then, the analysis operation getRandomValidRequest is invoked on
IDLReasoner to generate a request that satisfies all inter-parameter dependen-
cies. Analogously to RT, faulty test cases can be generated by mutating nominal



10 A. Martin-Lopez et al.

test cases. Additionally, faulty test cases can also be generated by invoking the
getRandomInvalidRequest operation on IDLReasoner to generate an API call
violating one or more inter-parameter dependencies.

4.3 Experiment 1: Generation of Valid Test Cases

In this experiment, we aim to answer RQ1 by evaluating the effectiveness of RT
and CBT in generating valid test cases, i.e., those satisfying all inter-parameter
dependencies. The automated generation of valid test cases has two main bene-
fits. First, these are very helpful during regression testing as a part of Continuous
Integration. Second, and more importantly, valid test cases help identify critical
bugs: those returning an error (i.e., 4XX or 5XX status code) with an input that
should be successfully handled by the service (i.e., 2XX status code). In what
follows, we describe the setup and the results of the experiment.

Setup. For each SUT and test generation technique (RT and CBT), we gener-
ated 1,000 nominal test cases. Recall that a nominal test case is a potentially
valid test case intended to test the API under valid inputs. Then, we ran the test
cases on the services under test and counted the number of actual valid test cases
based on the 2XX responses obtained. Interestingly, we found that some of the
services tested had dependencies not described in the API documentation. This
was observed when obtaining 4XX status codes (client errors) with some input
combinations that should be valid according to the documentation. For example,
when using the channelType parameter in the YouTube API, the type param-
eter must be set to ‘channel’, although this dependency is not documented.
In order to assess the effect of the missing dependencies, we defined them in
the specification and included them in the evaluation as variants of the original
SUTs, denoted with * after their name in Table 2. Overall, we added 4 new
dependencies and updated 9 dependencies in 4 out of the 9 services under test.
The experiments were performed in a standard PC with an Intel i5 processor,
16GB of RAM and an SSD, running on Windows 10 and Java JDK 8.

Results. Table 2 shows the results of the experiment. For each SUT and test
generation technique, the table shows the percentage of valid test cases generated
(column Valid) and the time required to generate the 1,000 test cases in seconds
(column Time). Note that test case execution times are not included since those
are independent of the test case generation approach.

As expected, RT struggled to generate valid test cases in most of the APIs,
with the percentage of valid test cases ranging from 1.3% (Stripe) to 89%
(Foursquare), 40.1% on average. In contrast, CBT successfully managed to gener-
ate 100% valid test cases in the API operations of GitHub, Tumblr and YouTube-
GV. Similarly, CBT generated 100% valid test cases in the operations of Four-
square, Stripe and YouTube-S once the missing dependencies were included in
the specification (rows denoted with *). Some of the test cases generated by
CBT did not obtain successful responses in the SUTs of Yelp and YouTube-
GCT. Interestingly, we found this was due to actual faults in those services, as



RESTest: Black-Box Constraint-Based Testing of RESTful Web APIs 11

SUT
RT CBT

Valid (%) Time (s) Valid (%) Time (s)

Foursquare 89.0 1.4 93.6 107.0
Foursquare* - - 100 105.4
GitHub 62.1 3.6 100 96.8
Stripe-CC 17.1 0.4 82.0 102.9
Stripe-CC* - - 100 105.8
Stripe-CP 1.3 1.7 46.4 109.7
Stripe-CP* - - 100 108.8
Tumblr 65.5 0.2 100 100.3
Yelp 54.6 1.7 97.1 102.8
YouTube-GCT 20.5 0.6 99.9 95.9
YouTube-GV 49.2 7.5 100 114.2
YouTube-S 1.6 1.0 49.2 104.3
YouTube-S* - - 100 104.0

Mean 40.1 2.0 85.4 (99.7) 104.5

Table 2: Percentage of valid test cases and test case generation times.

discussed in the next section. CBT generated an average of 85.4% valid test cases
in the services under test using the dependencies described in their documen-
tation, and 100% (99.7% counting fault-revealing test cases) when considering
all the dependencies, including those missing in the API documentation. Over-
all, out of 1,000 test cases, CBT generated between 11% (FourSquare) and 99%
(Stripe-CP) more valid test cases than RT, 59.9% on average.

RT took 2 seconds on average to generate 1,000 test cases, whereas CBT
took 104.5 seconds (less than 2 minutes) due to the overhead introduced by
the constraint solver. However, the increment in the execution time of CBT is
negligible compared to its potential to generate valid test cases and to detect
failures. To investigate this further, we measured the time required by both
techniques, RT and CBT, to generate and run test cases in the service of Stripe-
CP until having 1,000 successful responses. RT took more than 10 hours and
73K total generated test cases. CBT took 11 minutes and 1K test cases.

Based on the results obtained, we can answer RQ1 as follows:

CBT can generate 100% valid test cases for RESTful web services, pro-
vided that dependencies are correctly specified. This means an average
increment of 60% over RT (99% in highly constrained APIs) at a low
price in terms of generation time.

4.4 Experiment 2: Detection of Failures

In this experiment, we aim to answer RQ2 by evaluating the effectiveness of RT
and CBT in detecting failures in real-world APIs with inter-parameter depen-
dencies. Next, we explain the experimental setup and the main findings.

Setup. For each SUT and test case generation technique, we generated 1,000
nominal test cases and 1,000 faulty test cases, 2,000 test cases in total. Faulty test



12 A. Martin-Lopez et al.

SUT
RT CBT

5XX OAS 2XXP Total 5XX OAS 2XXP 2XXD 4XX Total

Foursquare 0 1,042 127 1,169 1 910 65 424 64 1,464
GitHub 0 0 487 487 0 0 236 0 0 236
Stripe-CC 0 0 0 0 0 0 0 0 180 180
Stripe-CP 0 0 0 0 0 0 0 0 535 535
Tumblr 0 389 806 1,195 0 492 411 160 0 1,063
Yelp 48 19 0 67 50 42 0 68 1 161
YouTube-GCT 0 0 0 0 0 1 0 8 1 10
YouTube-GV 0 0 2 2 0 0 2 114 0 116
YouTube-S 0 0 0 0 0 5 0 0 508 513

Total 48 1,450 1,422 2,920 51 1,450 714 774 1,289 4,278

Table 3: Failures found by RT and CBT.

cases in RT were generated by violating the specification of individual parame-
ters, e.g., omitting a mandatory parameter in the API request. In CBT, however,
faulty test cases were divided into two groups: 500 test cases following the same
approach as in RT, and 500 test cases violating one or more inter-parameter
dependencies. To identify wrong outputs, we used the five test oracles explained
in Section 3.3, i.e., server errors (5XX ), conformance to the OAS specification
(OAS ), faulty requests obtaining successful responses (2XXP and 2XXD) and
valid requests obtaining client error responses (4XX ). Recall that oracles 2XXD

and 4XX are only applicable in CBT as they rely on checking whether inter-
parameter dependencies hold.

Results. Table 3 shows the number of failures detected in the services by each
test case generation technique and test oracle. Both techniques succeeded in
finding failures, but CBT proved more effective, as it uncovered 4,278 failures in
all the services under test, whereas RT revealed 2,920 failures in 5 out of 9.

Regarding test oracles, both techniques uncovered a similar number of failures
with oracles 5XX and OAS. RT found twice the failures with test oracle 2XXP,
but this was expected since it was checked 1,000 times in RT against 500 times in
CBT. The true potential of CBT is leveraged with our two novel oracles 2XXD

and 4XX. In fact, they sufficed to reveal 2,063 failures in 8 out of 9 services
on their own. It is noteworthy that these failures are undetectable by current
state-of-the-art techniques.

Oracle 4XX uncovered a total of 1,289 failures in 6 services. These failures
are specially critical: client errors should not be obtained when requests are well
formed. Since we are using a black-box approach, it is difficult to know the exact
number of distinct faults causing these failures. However, we analysed the error
messages returned by the services and managed to classify the failures in multiple
potential bugs. Due to space limitations, we describe three of the bugs uncovered
with this oracle below, and refer the reader to the supplementary material for a
comprehensive list [21]:

– In the Yelp service, when setting the location to ‘Egypt’ and the locale

to ‘fi FI’ (Finnish), the error LOCATION NOT FOUND (400 status code) is re-



RESTest: Black-Box Constraint-Based Testing of RESTful Web APIs 13

turned. However, we noticed that changing the locale to Italian, for instance,
makes the error disappear and actual results are returned.

– In the YouTube-GCT service, a valid request obtained an error with the
following message: “Check the structure of the commentThread resource in
the request body to ensure that it is valid”. However, no body was included
in the request (actually the operation does not allow it), and so this failure
becomes hard to debug.

– In the YouTube-S service, there exist two undocumented dependencies: (1)
when using the channelType parameter, type must be set to ‘channel’;
and (2) when using the location parameter, type must be set to ‘video’.
These two unspecified dependencies caused 1 of every 2 requests to be invalid.

As for oracle 2XXD, most failures are related to inter-parameter dependencies
being wrongly specified in the API documentation, or not correctly implemented
in the API itself. For instance, the Yelp service defines the parameters open now

and open at as mutually exclusive, nevertheless, a request including both pa-
rameters with open now set to ‘false’ will return a successful response.

In addition to the failures uncovered by our two novel oracles, RESTest suc-
cessfully found other types of errors such as 500 status codes in Foursquare and
Yelp and disconformities with the OAS specification in Tumblr and YouTube,
among others. All things considered, we can answer RQ2 as follows:

CBT is highly effective at revealing failures having found bugs in the nine
services under test. About half of the failures detected by CBT (2K out of
4K) were not detected by RT.

5 Threats to Validity

The evaluation performed is subject to a number of validity threats.

Internal validity. Are there factors that might affect the results of our eval-
uation? A possible threat in this regard is the existence of bugs in the tools
used, namely, RESTest and IDLReasoner. To mitigate this threat, both tools
have been thoroughly tested using standard testing techniques such as equiva-
lence partitioning and combinatorial testing. Furthermore, the tools with their
test suites and the results of our experiments are freely available [21], thereby
allowing full replication of the evaluation performed. Related to this, we had to
manually write the OAS specifications of three services. To minimise bias, we
created them solely based on their online documentation, and all specifications
were independently revised by at least two authors. Another possible threat is
related to the randomness of the testing techniques used (RT and CBT). A
thorough evaluation should have included more repetitions per experiment (e.g.,
10-30) and statistical analysis. However, due to the strict quota restrictions of
the commercial APIs tested, it was not possible to do so (e.g., the YouTube-
S service accepts only 100 requests per day). Despite this limitation, the total



14 A. Martin-Lopez et al.

number of test cases generated (40K) and failures found (7K) make us remain
confident about the significance of the results obtained.

External validity. To what extent can we generalise the findings? We tested
9 services from 6 highly popular web APIs, nevertheless, this might not be a
sufficiently representative sample. To minimise this threat, we selected API op-
erations of different types (read and create), from different application domains
(e.g., financial and social), with different numbers of parameters (from 5 to 31)
and containing the eight patterns of dependencies found in our study of real-
world APIs [11].

6 Related Work

RESTful API testing approaches can be classified into white-box and black-box.
Arcuri [2] is the only author who advocates for white-box testing. He proposed a
search-based approach, where test cases are generated aiming to maximise code
coverage. Black-box testing approaches do not require access to the source code.
Segura et al. [19] proposed to analyse the outputs returned by the service after
similar requests. They managed to find bugs when inconsistencies among those
outputs were detected, e.g., the API returns more data when using a filter than
when no filter is applied. Other approaches achieve a higher degree of automation
by leveraging the OAS specification of the API [3, 4, 9, 23]. Ed-douibi et al. [4]
tested individual API operations using random, default and example parameter
values present in the OAS document. Other authors [3, 9, 23] tested sequences of
operations by inferring dependencies among them (e.g., creating a resource and
retrieving it). For the generation of input test values, Karlsson et al. [9] resorted
to property-based testing (PBT), while Atlidakis et al. [3] and Viglianisi et al.
[23] used data dictionaries. All these approaches are limited in the oracles they
can use, as they can only check the conformance to the OAS document, the
absence of 5XX status codes and the correct management of invalid inputs. They
cannot be certain about whether a given API call is valid or not, since it may
violate some inter-parameter dependency. Neglecting this limitation would lead
to false positives for those APIs containing dependencies, as what happened
to Ed-douibi et al.: “four errors were linked to the limitation of OpenAPI to
define mutually exclusive required parameters” [4]. Atlidakis et al. [3] proposed
four additional oracles related to operation sequences (e.g., a resource that was
deleted must no longer be accessible) but, again, these oracles have no effect if no
valid calls to the service are generated in the first place. In constrast to previous
approaches, RESTest supports the automated management of inter-parameter
dependencies, enabling a deeper and faster evaluation of the SUT through the
systematic generation of valid and invalid input combinations.

In the context of constraint-based testing for web services, the most related
work is probably that of Sun et al. [20]. They proposed CxWSDL, a WSDL [24]
extension to specify six different types of behaviour constraints such as the or-
der in which operations should be invoked. Test cases were automatically derived
from the specification using a constraint solver. Inconsistencies in the services



RESTest: Black-Box Constraint-Based Testing of RESTful Web APIs 15

tested were found when some constraint was violated. Li et al. [10] presented
a constrained combinatorial approach to generate optimal test suites avoiding
forbidden combinations of parameters. Xu et al. [25] proposed testing web ser-
vice robustness by violating constraints, including inter-parameter dependencies,
which were extracted from the OWL-S [16] specification of the service. Compared
to these papers, we support a wider range of inter-parameter dependencies, in-
cluding the eight dependency patterns defined in [11], and we focus on RESTful
APIs as the current de facto standard for web integration. Further, our ap-
proach is integrated into RESTest, an open-source framework that can be easily
extended with other test generation strategies as well as testing frameworks and
libraries.

7 Conclusion and Future Work

This paper presents RESTest, a framework for automated black-box testing of
RESTful web APIs. RESTest implements a novel constraint-based testing ap-
proach that leverages the specification of inter-parameter dependencies to auto-
matically generate valid calls to the service, i.e., those satisfying all input con-
straints. We showed that current random testing techniques can be extremely
inefficient in generating valid requests and therefore are unable to exercise the
actual functionality of the services, e.g., 98 out of every 100 random test cases
violated inter-parameter dependencies in YouTube. In contrast, RESTest can
efficiently generate 100% valid test cases when providing the specification of
inter-parameter dependencies. More importantly, RESTest implements two novel
oracles to evaluate how the API responds to constraint-satisfying and constraint-
violating test cases. This allowed us to reveal more than 4K failures uncovering
bugs in all the services under test.

Several challenges remain for future work. On the one hand, we plan to
implement currently missing features in RESTest, such as testing of sequences
of operations and search-based online testing approaches. This will allow us to
perform a more extensive evaluation of the framework. On the other hand, we
intend to make RESTest SLA-aware with SLA4OAI [6], so that it can be deployed
in API gateways such as Governify [7] and perform autonomous functional and
non-functional testing of microservices architectures.

Acknowledgements

This work has been partially supported by the European Commission (FEDER)
and Junta de Andalucia under projects APOLO (US-1264651) and EKIPMENT-
PLUS (P18-FR-2895), by the Spanish Government under project HORATIO
(RTI2018-101204-B-C21), and by the FPU scholarship program, granted by the
Spanish Ministry of Education and Vocational Training (FPU17/04077). We
would also like to thank Ramon Fernandez for his technical support during the
development of RESTest.



16 A. Martin-Lopez et al.

References

1. APIs.guru, https://apis.guru, accessed April 2020
2. Arcuri, A.: RESTful API Automated Test Case Generation with EvoMaster. ACM

TOSEM 28(1), 1–37 (2019)
3. Atlidakis, V., Godefroid, P., Polishchuk, M.: Checking Security Properties of Cloud

Services REST APIs. In: ICST (2020)
4. Ed-douibi, H., Izquierdo, J.L.C., Cabot, J.: Automatic Generation of Test Cases

for REST APIs: A Specification-Based Approach. In: EDOC. pp. 181–190 (2018)
5. Fielding, R.T.: Architectural Styles and the Design of Network-based Software

Architectures. Ph.D. thesis (2000)
6. Gamez-Diaz, A., Fernandez, P., Ruiz-Cortes, A.: Automating SLA-Driven API

Development with SLA4OAI. In: ICSOC. pp. 20–35 (2019)
7. Gamez-Diaz, A., Fernandez, P., Ruiz-Cortés, A.: Governify for APIs: SLA-Driven

Ecosystem for API Governance. In: ESEC/FSE. pp. 1120–1123 (2019)
8. Gotlieb, A.: Constraint-Based Testing: An Emerging Trend in Software Testing.

In: Advances in Computers, vol. 99, pp. 67–101. Elsevier (2015)
9. Karlsson, S., Causevic, A., Sundmark, D.: QuickREST: Property-based Test Gen-

eration of OpenAPI Described RESTful APIs. In: ICST (2020)
10. Li, Y., Sun, Z.a., Fang, J.Y.: Generating an Automated Test Suite by Variable

Strength Combinatorial Testing for Web Services. CIT 24(3), 271–282 (2016)
11. Martin-Lopez, A., Segura, S., Ruiz-Cortés, A.: A Catalogue of Inter-Parameter

Dependencies in RESTful Web APIs. In: ICSOC. pp. 399–414 (2019)
12. Martin-Lopez, A., Segura, S., Müller, C., Ruiz-Cortés, A.: Specification and Au-

tomated Analysis of Inter-Parameter Dependencies in Web APIs. Submitted to
IEEE Transactions on Services Computing (2020), https://bit.ly/2ECr9rc

13. Martin-Lopez, A., Segura, S., Ruiz-Cortés, A.: Test Coverage Criteria for RESTful
Web APIs. In: A-TEST. pp. 15–21 (2019)

14. MiniZinc: Constraint Modeling Language, https://www.minizinc.org, accessed
April 2020

15. OpenAPI Specification, https://www.openapis.org, accessed April 2020
16. Semantic Markup for Web Services (OWL-S), https://www.w3.org/Submission/

OWL-S, accessed May 2020
17. REST Assured, http://rest-assured.io, accessed April 2020
18. Richardson, L., Amundsen, M., Ruby, S.: RESTful Web APIs. O’Reilly Media, Inc.

(2013)
19. Segura, S., Parejo, J.A., Troya, J., Ruiz-Cortés, A.: Metamorphic Testing of REST-

ful Web APIs. IEEE TSE 44(11), 1083–1099 (2018)
20. Sun, C.a., Li, M., Jia, J., Han, J.: Constraint-Based Model-Driven Testing of Web

Services for Behavior Conformance. In: ICSOC. pp. 543–559 (2018)
21. Supplementary material of the paper, https://github.com/isa-group/

icsoc-2020-supplementary-material

22. Swagger, http://swagger.io, accessed April 2020
23. Viglianisi, E., Dallago, M., Ceccato, M.: RestTestGen: Automated Black-Box Test-

ing of RESTful APIs. In: ICST (2020)
24. Web Services Description Language (WSDL) Version 2.0, https://www.w3.org/

TR/wsdl20, accessed May 2020
25. Xu, L., Yuan, Q., Wu, J., Liu, C.: Ontology-based Web Service Robustness Test

Generation. In: WSE. pp. 59–68 (2009)


