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Abstract—Automated test case generation for RESTful APIs
is a thriving research topic due to their critical role in software
integration. Testing approaches can be divided into black-box and
white-box. Black-box approaches exploit the API specification
for the generation of test cases, while white-box approaches
can also leverage the source code. Both strategies have shown
great promise, but they have not been fully compared yet,
hindering the selection of the right tool for the job. In this
paper, we report on our experience comparing black-box and
white-box test case generation for RESTful APIs using the state-
of-the-art tools RESTest (black-box) and EvoMaster (white-box).
Also, we propose integrating both approaches by using black-
box test cases as the seed for white-box search-based test case
generation. Evaluation results on four RESTful APIs involving
over 40 million API calls show that there is no one-size-fits-all
strategy. More importantly, the combination of black-box and
white-box yielded the best results in most case studies in terms
of code coverage and fault finding, paving the way for better
tools integrating the best of both perspectives. As a result of our
work, we provide lessons learned and open challenges for guiding
the use and further development of current tool support.

Index Terms—REST, API, web service, SBST, seeding

I. INTRODUCTION

Web Application Programming Interfaces (APIs) allow het-
erogeneous systems to interact over the network [1], [2].
Web APIs are rapidly proliferating as a key element to foster
software reusability, integration, and innovation, enabling new
consumption models such as wearables and smart home apps.
Companies such as Facebook, Twitter, Google, eBay or Netflix
receive billions of API calls everyday from thousands of
different third-party applications and devices, which consti-
tutes more than half of their total traffic [1]. Modern web
APIs typically adhere to the REpresentational State Transfer
(REST) architectural style [3], being referred to as RESTful
APIs. RESTful APIs provide a standard mechanism to imple-
ment create, retrieve, update, and delete (CRUD) operations
over resources (e.g., a YouTube video) in a distributed way.
The widespread use of RESTful APIs is reflected in the size
of popular API directories such as ProgrammableWeb [4],
currently indexing over 24K RESTful APIs from domains such
as shopping, finances, social, or telephony.

Testing RESTful APIs is critical due to their key role in
software integration. A bug in an organization’s API could
have a huge impact both internally (services relying on

that API) and externally (third-party applications and end
users). To address this challenge, numerous approaches for
test case generation for RESTful APIs have emerged in recent
years [5]–[12]. These approaches can be divided into black-
box and white-box. Black-box approaches [5], [6], [8]–[12]
exploit the specification of the API, typically in the OpenAPI
Specification (OAS) [13] format, to drive the generation of test
cases in the form of (pseudo-)random API calls. They often use
custom data generators, manually implemented by the users,
based on domain knowledge of the application. White-box
approaches [7] leverage the API specification and its source
code to generate test cases that cover as much code as possible,
trying to minimize the amount of manual work from the users.
Both approaches try to identify server errors (i.e., 5XX HTTP
status codes) and mismatches with the API specification.

Both test case generation strategies for RESTful APIs,
black-box and white-box, have been largely evaluated in
isolation, showing their own merits and limitations. However,
they have not been fully compared yet. Thus, many questions
remain unanswered regarding the scope and performance of
each approach. Besides this, both approaches have followed
completely different paths so far, and thus the potential benefits
of their combination remain unexplored.

In this paper, we report on our experience comparing
black-box and white-box test case generation techniques
for RESTful APIs. Specifically, we use the state-of-the-art
tools RESTest [14] (black-box) and EvoMaster [7] (white-
box). Additionally, we propose the integration of both ap-
proaches by using black-box test cases—derived from the
API specification—as the seed for search-based test case
generation—leveraging the source code of the API. We report
on the results of an extensive empirical evaluation comparing
the effectiveness and performance of these three approaches:
black-box, white-box and hybrid (black-box + white-box)
on four open-source RESTful APIs of different sizes and
complexity. The results show that our novel hybrid approach
performed best in most scenarios. In terms of fault finding,
the hybrid approach was the only one capable of uncovering
bugs in all systems under test (SUTs). We provide an in-
depth discussion and analysis of the results obtained by each
technique, and possible causes leading to such results. Our
work contributes to a better understanding of the strengths and
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limitations of black-box and white-box test case generation
for RESTful APIs, and shows the potential of combining both
strategies. However, more work and experimentation will be
required in the future to complement our results including the
use of different testing techniques, tools, and case studies.

After explaining the background (Section II) and discussing
related work (Section III), this paper provides the following
original research and engineering contributions:

• A novel hybrid testing approach based on the use of
black-box test cases as the seed for white-box test
generation, and its implementation in EvoMaster [7]
(Section IV).

• A comparison of black-box, white-box, and hybrid tech-
niques for test case generation for RESTful APIs in
terms of code coverage and fault finding using two
different state-of-the-art tools and four open-source APIs
(Section V).

• Lessons learned from the comparison of the three tech-
niques, including practical guidelines for the selection
of the right approach depending on several factors such
as the size of the SUT and the available resources
(Section VI).

• A list of challenges for the three test case generation
approaches under comparison derived from the results of
the study (Section VII).

We address threats to validity in Section VIII and conclude
the paper in Section IX.

II. BACKGROUND

A. RESTful Web APIs

REST [3] is a software architectural style for building
distributed systems. Most current web services follow the
principles defined by REST and are referred to as RESTful (or
simply REST) web services. RESTful web services provide a
standard approach to interact with resources over the network.
A resource is any piece of data that can be exposed to the
Web, for example, a document (Google Drive API [15]), a
picture (Flickr API [16]), or even a tweet (Twitter API [17]).
Resources can be accessed and manipulated by means of
CRUD operations. These operations can be invoked by sending
HTTP requests to specific API endpoints, each of which is
identified by an HTTP method (e.g., GET) and a path (e.g.,
/documents). A RESTful API may be composed of one or
more RESTful services.

RESTful web APIs are usually described with inter-
face description languages like the OpenAPI Specification
(OAS) [13]. OAS is heavily used nowadays for automating
certain tasks in the API lifecycle such as code generation [18],
monitoring [19] and testing [14]. An OAS document (also
called schema) describes a RESTful API in terms of the
allowed inputs (HTTP requests) and the expected outputs
(HTTP responses). Figure 1 depicts an extract of an OAS
schema, taken from LanguageTool, a proofreading API [20].
As illustrated, the POST /check endpoint allows to detect
mistakes in a text (line 4). The specification details the

Fig. 1. OAS excerpt from the LanguageTool API.

information about the operation parameters (lines 7-59), such
as their data type (line 57), whether they are required or
optional (line 58) and default values (line 59). For every
operation, the set of expected responses is also described (lines
65-69), including their HTTP status code (line 66) and their
format (line 69). Optionally, when the operation contains inter-
parameter dependencies (e.g., mutually exclusive parameters),
these can be specified with the IDL4OAS extension [21] (lines
60-64). For example, the input text fragment can be provided
as a plain string using parameter text (line 8) or as a JSON
document using parameter data (line 13), but only one of
them must be set (line 61). According to a recent study by
Martin-Lopez et al. [22], 4 out of every 5 industrial APIs
contain these inter-parameter dependencies.

B. RESTful API Test Case Generation

Testing a RESTful API at the system level involves gener-
ating HTTP requests and asserting their responses. A test case
comprises one or more requests.
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Black-box testing approaches leverage the specification of
the API under test (e.g., an OAS document) to automatically
generate test cases. However, the specification may not suffice
to generate realistic test inputs, or it may simply be wrong.
For example, the language parameter in Figure 1 is defined
as a string, but only properly formed language codes will
be accepted. Manual work is typically needed to add this
missing information. Another drawback of black-box testing
is that, due to the lack of control over the SUT, test cases are
more costly: stateful interactions (e.g., updating and deleting
a resource) can only be achieved if the SUT is in the proper
state (e.g., a resource exists). This means that every test case
must not only exercise the SUT in a certain way, but also set
it up with previous HTTP calls. As its key strength, black-box
testing does not require access to the source code, and can
therefore be potentially applied to any API regardless of how
it is implemented (e.g., the programming language) or where
it is deployed, locally or remotely.

White-box testing approaches for RESTful APIs exploit the
source code of the SUT to generate test cases. Advanced
heuristics such as taint checking and testability transforma-
tions [23] can be applied to maximize objectives such as code
coverage and fault finding. In contrast to black-box testing,
white-box testing can only be applied when the code of the
API is available, and it is therefore implementation-dependent,
e.g., the heuristics to measure the branch distance must be
adapted to every programming language [23]. However, this
limitation of white-box testing is also its best asset, since the
source code of the system may contain valuable information
for the generation of test cases. Moreover, since there is full
control of the SUT, test cases are less costly. For example, the
SUT can be set to a specific state without the need of using
extra HTTP requests (as required in black-box testing) [24].

C. RESTest

RESTest [14] is a black-box testing framework for RESTful
web APIs. It follows a model-based testing approach [25]:
based on the OAS specification of the API under test (so-
called system model), it automatically generates a test model,
which can be manually augmented to tailor the testing process.
Both models are subsequently used to drive the automated
generation of test cases.

RESTest relies on test data generators to generate input
data. These are automatically configured for every API param-
eter (e.g., a generator of English words for string param-
eters), nevertheless, it is possible to manually configure more
realistic generators according to the parameter’s domain (e.g.,
a generator of valid language codes for the language pa-
rameter in Figure 1). Regarding test case generation, RESTest
leverages constraint programming solvers to automatically
generate requests satisfying the inter-parameter dependencies
of the API. Dependencies must be defined as a part of the
OAS specification using the IDL4OAS extension [21].

We chose RESTest, and in particular its constraint-based test
case generator, as a good representative of black-box testing
tools due to its support for data generators and inter-parameter

dependencies. Both features have shown to be effective in
finding real-world bugs in industrial APIs such as YouTube
and Yelp [8].

D. EvoMaster

EvoMaster [7] is a white-box testing tool for RESTful
web APIs. It integrates a search-based technique for the
automated generation of system-level test cases. The default
search algorithm used in EvoMaster is the Many Independent
Objective (MIO) algorithm [26]. In MIO, test cases are evolved
and evaluated independently, and only at the end of the search,
a test suite is constructed by choosing the combination of test
cases that cover more targets (e.g., source code statements and
HTTP status codes). For the representation of the problem,
EvoMaster considers a solution as a system-level test suite
for the RESTful API, which is composed of one or more test
cases, i.e., individuals. Each test case is a sequence of one or
more HTTP calls. Throughout the search, EvoMaster mutates
the test cases either by modifying their structure (i.e., adding
or removing HTTP calls) or the data of one specific HTTP
call.

EvoMaster comprises two main components: the core,
which handles the generation and evolution of test cases; and a
controller library, used for the manual setup of the SUT, e.g.,
it is responsible for instrumenting the SUT so that metrics
such as the branch distance can be collected.

EvoMaster also provides some basic support for black-box
testing, essentially random generation with no support for
data generators or inter-parameter dependencies. However, the
black-box configuration in EvoMaster performs significantly
worse than the white-box strategy implemented in the own
tool [5]. To the best of our knowledge, EvoMaster is the only
tool supporting white-box system-level testing of RESTful
web APIs.

III. RELATED WORK

RESTful API testing is an active field of research nowadays.
Testing approaches can be divided into black-box and white-
box, the former being more common than the latter. Black-box
approaches mainly differ in three aspects: (1) how they gen-
erate stateful interactions in the SUT; (2) how they generate
the input data to feed into the API; and (3) what test oracles
they use.

Regarding the generation of stateful interactions, some
approaches do not explicitly support them since they test the
API operations in isolation [12]. Other tools, like REStest,
reuse data from previous API operations’ responses (e.g.,
a resource identifier) for subsequent requests to different
operations, thus eventually achieving stateful interactions [14].
Lastly, a number of approaches generate structured se-
quences of requests, either by using predefined templates (e.g.,
POST-PUT-GET) [11], [27], or by dynamically deciding the
next request to execute based on the result of the last one (e.g.,
if a POST was successful, execute a GET, otherwise execute
a POST again) [9], [10].
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Regarding the generation of input data, several strategies can
be followed. Ed-douibi et al. [12] proposed extracting default
and example values from the OAS specification of the API
under test. Atlidakis et al. [11] introduced RESTler, a fuzzing
tool for RESTful APIs. RESTler uses fuzzing dictionaries for
each data type (e.g., 0 and 1 for integer parameters). Other
tools like QuickREST [9] or RESTest [14] support the use
of customizable test data generators (e.g., a generator of real
coordinates for a mapping API). Lastly, Viglianisi et al. [10]
proposed extracting values from API responses and using
them as inputs in subsequent API requests. This last approach
is only applicable for APIs containing producer-consumer
relationships among their operations (i.e., an operation returns
some data that another operation needs as input), which is not
the case for some of the APIs used as case studies in this
paper, for instance.

Lastly, regarding the test oracles used, most testing ap-
proaches rely on the presence of 5XX status codes (i.e., server
errors) and the conformance with the OAS schema [9]–[12].
Other authors have proposed more thorough oracles such as
checking the status code [8], metamorphic relations [6] and
security properties [28].

White-box testing approaches for RESTful APIs are less
common in the literature. Arcuri [7] advocates for a search-
based approach, implemented in the open-source tool Evo-
Master (discussed in the previous section). EvoMaster inte-
grates diverse advanced heuristics such as testability trans-
formations [23] and the handling of SQL databases [24].
Such heuristics drive the generation of input data that is
continuously evolved, aimed at generating test cases that cover
as much code and find as many faults (5XX status codes)
as possible. Besides system-level testing, other tools such as
EvoSuite [29] and Randoop [30] allow to automatically gen-
erate unit tests for Java programs, but they are not specifically
tailored for RESTful web APIs.

Regarding the comparison of black-box and white-box
testing techniques (one of the main contributions of our
work), only one paper has previously addressed this matter:
Arcuri [5] compared black-box and white-box testing in eight
case studies with EvoMaster, showing that the latter always
outperformed the former both in terms of code coverage
and fault finding. However, the black-box approach under
comparison was rather naive, i.e., basic random generation.
Compared to previous work, we evaluate two different state-of-
the-art tools for black-box and white-box test case generation
of RESTful APIs, RESTest and EvoMaster, which provides a
fairer comparison. On the one hand, RESTest is specifically
designed to exploit the information in the API specification
using constraint-programming techniques. On the other hand,
EvoMaster leverages the source code for the generation of ef-
fective test cases using search-based algorithms. Additionally,
we propose a hybrid approach that combines both strategies,
and show its potential to outperform black-box and white-box
testing in isolation.

The hybrid approach presented in this paper is based on
existing open-source testing tools for RESTful APIs, namely,

RESTest [14] and EvoMaster [7]. We extended both tools to
enable their inter-operability, and we introduce system-level
test case seeding as a way to enhance search-based testing of
RESTful web APIs. Previous authors have proposed multiple
seeding strategies for enhancing unit test generation [31],
such as reusing previous solutions or seeding values observed
at runtime. These strategies could be complementary to our
approach, and they could be used to further improve system-
level test case generation.

IV. BLACK-BOX + WHITE-BOX TEST CASE GENERATION

We present a novel system-level test case seeding approach,
where the test cases generated by the black-box approach
are seeded into the search algorithm used by the white-box
approach. Therefore, instead of starting “from scratch”, the
search starts with a (potentially) thorough test suite, which is
subsequently evolved aiming to maximize code coverage and
faults found.

A. Motivation

Let us consider the operation for proofreading a text in
the LanguageTool API, depicted in Figure 1. This operation
accepts 10 input parameters and imposes numerous constraints
on them, including both inter-parameter dependencies (e.g., if
parameter preferredVariants is used, then language
must be set to ‘auto’) and constraints on single parameters
(e.g., parameter motherTongue must be a properly formed
language code). In order for an API call to be valid (i.e., to
obtain a 2XX HTTP status code), it must satisfy all these
constraints. These constraints are reflected in the source code
of the system as multiple branch conditions. If any of these
conditions is not satisfied, processing terminates and a 400
status code is immediately returned.

Automatically generating a valid API call is not trivial.
A valid call must include the specific combination of API
parameters (e.g., motherTongue) set to the specific values
(e.g., ‘en-US’) such that all the input constraints present in
the API are satisfied. This involves generating test inputs that
satisfy the numerous branch conditions found in the source
code before exercising the actual functionality of the API, i.e.,
proofreading the text. Even when using a search algorithm to
leverage the source code, a large number of iterations may be
required.

Listing 1 depicts a test case1 generated by EvoMaster for
the operation in Figure 1 at the beginning of the search. This
test case was rejected by the API, because it did not use
a valid value for parameter language. Listing 2, on the
other hand, shows a test case generated by RESTest. This test
case did obtain a successful response, since it passed all the
input validation logic implemented in the system. RESTest
can generate this type of requests automatically because: (1)
it uses realistic data generators for each parameter (e.g., a
language code generator for parameter language); and (2)
it analyzes the dependencies expressed with IDL4OAS (lines

1Due to space constraints, we do not show the assertions on the returned
responses in this and the subsequent listings.
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1 @Test
2 public void test_17() {
3 RestAssured.given()
4 .contentType("application/x-www-form-urlencoded")
5 .formParam("enabledOnly", "false")
6 .formParam("text", "gh53wgh2")
7 .formParam("enabledRules", "bnyt34yhav")
8 .formParam("language", "b9p1sv")
9 .when()

10 .post("/check");
11 }

Listing 1. Random test case generated by EvoMaster at the start of the search.

Fig. 2. Test-to-test translation approach.

60-64 from Figure 1) and uses constraint solvers to generate
valid combinations of parameters and values [8].

B. Implementation

We implemented our approach as an extension of the open-
source tools RESTest [14] and EvoMaster [7]. RESTest gener-
ates the initial population of test cases (seed), and EvoMaster
subsequently evolves them. This entails a technical challenge:
how to transform RESTest’s test cases into a format that Evo-
Master can handle? Figure 2 depicts the proposed approach for
ensuring inter-operability between different testing approaches
and test case formats. Rather than a direct translation of
the source test cases into the target format, we advocate for
translating the seed into an intermediary format which can
be subsequently parsed. This has several benefits: (1) already
existing test suites (e.g., those manually created by the SUT
developers) can be used as a seed by implementing specific
test translators; (2) seeds can be generated by existing source
test case generators (e.g., RESTest [14]) by implementing test
writers to the intermediary format; (3) only one test parser is
needed for feeding the seed into the search algorithm, thereby
allowing the target test case generator (e.g., EvoMaster [7])
to leverage the seed.

The intermediary format selected for our approach is
Postman. Postman [32] is an industry-standard platform for
web API development. It provides support for several tasks
throughout the API lifecycle, such as the creation of API
clients and documentation, or even basic automated testing.
Postman allows to create test suites for RESTful APIs and
export them to so-called Postman collections, in JSON format.
This makes our approach readily applicable in practice in
those cases where a previous Postman test suite already exists.
When the test suite is in a different format (e.g., JUnit [33]
using the REST Assured library [34]), only a test translator

1 @Test
2 public void test_t4idj2asd3s6_check() {
3 RestAssured.given()
4 .contentType("application/x-www-form-urlencoded")
5 .formParam("preferredVariants", "en-GB,ja-JP,sk-SK")
6 .formParam("motherTongue", "sk-SK")
7 .formParam("language", "en")
8 .formParam("text", "stick around nose")
9 .when()

10 .post("/check");
11 }

Listing 2. Realistic test case generated by RESTest.

TABLE I
CASE STUDIES USED IN THE EVALUATION.

SUT Classes LOCs Endpoints

RESTcountries 20 1,450 22
YouTubeMock 30 3,371 1
Ohsome 75 9,813 122
LanguageTool 1,021 162,341 1

Total 1,146 176,975 147

needs to be created (grayed-out area of Figure 2). For the
implementation of our approach, we extended both RESTest
and EvoMaster with a Postman test writer and a Postman test
parser, respectively.

V. EMPIRICAL STUDY

The aim of this practical experience report is to provide
empirical evidence on the applicability and the limitations
of black-box, white-box and hybrid testing techniques for
RESTful APIs. To this end, we pose the following research
questions:

• RQ1: How do black-box constraint-based testing and
white-box search-based testing compare in terms of code
coverage and fault finding?

• RQ2: How does our novel hybrid approach compare with
the black-box and white-box techniques in terms of code
coverage and fault finding?

A. Case Studies

Table I summarizes the main features of the case studies
selected, including their name and size in terms of Java classes,
lines of code (LOCs) and HTTP endpoints. RESTcountries2

is an API for querying information about countries based on
several filters such as the code, the currency or the conti-
nent. YouTubeMock3 is an open-source implementation of the
search operation of the YouTube API [35]. Ohsome4 allows
to consume OpenStreetMap data [36] of the whole world and
to get aggregated statistics about it. Lastly, LanguageTool5 is
a proofreading API with support for more than 20 languages.

We selected RESTful APIs belonging to varied application
domains and with very different sizes. These APIs are non-
trivial, since they deal with input constraints with varied

2https://github.com/apilayer/restcountries
3https://github.com/opensourcingapis/YouTubeMock
4https://github.com/GIScience/ohsome-api
5https://github.com/languagetool-org/languagetool
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TABLE II
BUDGETS AND SEEDS USED FOR EACH SUT.

SUT Budgets Seeds
Low High Min Med Max

RESTcountries 5K 100K 22 220 2.2K
YouTubeMock 10K 200K 10 100 1K
Ohsome 30K 600K 122 1.22K 12.2K
LanguageTool 100K 1M 100 1K 10K

degrees of complexity, such as the inter-parameter dependen-
cies present in Figure 1 (lines 60-64). In order to make a
fair comparison between black-box and white-box testing, we
selected only stateless APIs, since the API state cannot be
reset between test cases in black-box testing (see Section II-B
for details). For each API under test, we studied its docu-
mentation and extended its OAS schema to explicitly define
inter-parameter dependencies using IDL4OAS [21].

B. Experimental Setup

For each case study, we evaluated three techniques, namely:
• BB: The black-box approach, that is, the constraint-based

testing technique implemented in RESTest.
• WB: The white-box approach, namely, the search-based

technique implemented in EvoMaster.
• HYBRID: Our novel hybrid approach, implemented as

an extension of both tools, i.e., RESTest’s test cases are
seeded into EvoMaster.

Table II shows the budgets with which we evaluated each
testing technique. For HYBRID, the size of the seeds used is
also shown. Both metrics are measured in terms of HTTP calls,
and they were adjusted according to the SUT size (in terms of
LOCs and number of endpoints) since it strongly determines
the time required for white-box heuristics to evolve toward
good solutions. For instance, YouTubeMock was assigned
twice the budget of RESTcountries because it has twice as
many LOCs, and Ohsome was assigned a minimum seed of
122 HTTP calls because it contains 122 endpoints. For BB,
we considered only the minimum of the two budgets used for
WB and HYBRID, to make the experiments affordable.6 This
is in line with how black-box testing is performed in practice,
where resources are often constrained due to restrictive quota
limitations imposed by commercial APIs [8], [37].

For each SUT, we performed a total of 9 experiments: one
for BB (the minimum budget), two for WB (both budgets), and
six for HYBRID (two budgets × three seed sizes). In order
to account for the randomness of the algorithms, we repeated
each experiment 10 times, following the guidelines in [38]. As
an exception, some configurations were run only once, either
because they took too much time to complete (e.g., 24 hours)
or due to technical limitations of the tools used (discussed in
Sections VI and VII).7 Given four SUTs, this led to 4 × 9 ×

6RESTest does not shrink test suites, and so it is time-consuming to measure
the coverage of millions of test cases, which must be done manually and
dozens of times, as explained further on.

7Configurations run only once: for Ohsome, BB; for LanguageTool, WB
with the high budget, HYBRID with the high budget and all seed sizes, and
HYBRID with the low budget and largest seed.

TABLE III
RQ1: COMPARISON OF BB AND WB.

SUT Coverage (%) 5XX
BB WB Â12 p-value BB WB Â12 p-value

RESTcountries 74.9 73.6 0.68 0.136 0.0 0.5 0.25 0.014
YouTubeMock 81.9 26.0 1.00 < 0.001 0.0 0.0 0.50 NaN
Ohsome 74.0 20.4 1.00 0.111 122.0 0.0 1.00 0.004
LanguageTool 46.6 35.3 1.00 < 0.001 1.0 1.0 0.50 NaN

10 – (9 × 6) = 306 experiment runs, for a total of more than
40 million HTTP calls.

In order to make a fair comparison between the three tech-
niques, we manually executed the (hundreds of) generated test
suites and measured the code coverage with IntelliJ IDEA,8

a Java IDE. For the faults found, we relied on the number of
distinct API endpoints returning at least one 5XX status code,
as done in [5], [7].

Tooling Setup: We performed the experiments with two
open-source tools, RESTest and EvoMaster. Both tools require
some manual setup. In the case of RESTest, we modified the
test models of each SUT to include realistic test data genera-
tors for domain-specific parameters (e.g., YouTube video IDs
for the YouTubeMock API). In the case of EvoMaster, we
wrote the required Java classes used by the core component
to start, stop and reset the SUT. In both cases, we used the
default configuration of the tools.

C. Results

To evaluate the effectiveness of each testing technique,
we computed the percentage of code coverage achieved (in
terms of statement coverage of the whole application) and
faults found (in terms of the number of endpoints returning
5XX status codes), out of 10 runs. In order to answer the
research questions, we performed pair comparisons between
the techniques evaluated, using the Vargha-Delaney effect size
Â12 and the Mann-Whitney-Wilcoxon U-test (at α = 0.05
significance level) [38].

1) RQ1: Black-Box vs White-Box: Table III shows the
results achieved by black-box and white-box testing for the
lower budget of HTTP calls (i.e., the only budget used
for BB). “NaN” values obtained for the p-values mean that
both techniques performed exactly in the same way in all
cases (e.g., both BB and WB found one faulty endpoint in
LanguageTool in the 10 experiment runs).

In terms of code coverage, BB outperformed WB with strong
statistical evidence in 2 out of 4 SUTs. However, note that the
high p-value for Ohsome is due to running the BB technique
only once. The largest differences were observed in YouTube-
Mock and Ohsome (>50% code coverage), because these
SUTs present very complex input constraints on and among
their parameters. These constraints need to be satisfied in order
to pass the input validation logic implemented in the system
and exercise their actual functionality (e.g., computing the area
of a city in Ohsome). In fact, none of the requests generated
by EvoMaster for these SUTs obtained a successful response.

8https://www.jetbrains.com/idea/
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TABLE IV
CONFIGURATIONS OF HYBRID.

SUT Budget Coverage (%) 5XX
Min Med Max Min Med Max

RESTcountries 5K 79.5 79.7 79.4 0.9 0.9 0.8
100K 80.2 80.2 80.1 1.0 1.0 1.0

YouTubeMock 10K 68.9 81.4 86.3 0 0 0
200K 74.2 84.5 87.7 0 0.2 0.5

Ohsome 30K 68.7 74.6 75.1 45.3 116.1 122.0
600K 70.3 75.8 75.8 46.0 116.0 122.0

LanguageTool 100K 41.3 42.7 45.0 1.0 1.0 1.0
1M 43.0 43.0 45.0 1.0 1.0 1.0

In the case of RESTcountries and LanguageTool, these SUTs
do not expose as complex constraints, and therefore a search-
based approach can eventually infer those from the source
code and generate high-coverage test cases.

In terms of fault finding, BB and WB performed more simi-
larly. Both of them found one fault9 in LanguageTool and none
in YouTubeMock, and each technique found unique bugs in
one SUT (WB uncovered a faulty endpoint in RESTcountries
and BB found faults in all 122 endpoints of Ohsome). An
endpoint may return a 500 status code due to multiple faults
in the SUT, or vice versa, multiple endpoints might fail due to
the same bug. Without a manual in-depth analysis, out of the
scope of this paper, it is not possible to tell the exact number of
faults found by each of the (hundreds of) test suites generated.
However, an exploratory analysis in the Ohsome API seems
to indicate that most of its failures are due to the same faults.
All operations have nearly the same parameters, therefore all
endpoints implement mostly the same validation logic, where
the faults are located.

RQ1: With a low budget of HTTP calls, black-box
constraint-based testing achieved between 1.3% and
55.9% higher code coverage than white-box testing. In
terms of the faults found, both techniques performed
similarly.

2) RQ2: Hybrid vs Black-Box & White-Box Approaches:
As previously explained, we evaluated HYBRID with three
different seed sizes. Table IV shows the results obtained for
each SUT, budget and the three seed sizes (min, med, and

9Recall that, by “fault” or “bug”, we actually refer to “an endpoint returning
at least one 5XX status code”, as done by previous authors [5], [7].

max) described in Table II. The highest values on each row are
highlighted in boldface. The best configuration was obtained
with the largest seed, except for RESTcountries, where the
medium seed yielded the best results. This may be explained
by the fact that the search algorithm may be overfitted when
seeding many test cases, and instead it is necessary to explore
the search space with more varied test cases.

We compared the best performing configuration of HYBRID
against BB and WB, in pairs. Table V illustrates such com-
parison. Compared both to BB and WB, the improvements
achieved in the code coverage by our novel hybrid approach
are statistically significant with strong effect sizes, in all
possible configurations (all SUTs and budgets) except for
LanguageTool, where BB performed best. This difference may
be caused by the peculiarities of this SUT. LanguageTool is
composed of hundreds of Java classes consisting of “language
rules”, whose code is only executed when the rule is triggered.
A rule is triggered when a text provided as input contains a
mistake matching the rule pattern. Since BB uses a random
text generator, it may be more effective than using a search-
based approach to evolve strings (which is not trivial [23],
[39]) in ways that exercise new code. Overall, and in raw
terms, HYBRID covered 2.2% more code than BB and 28.8%
more code than WB.

Figure 3 shows the coverage achieved by BB (3a), WB (3b,
3d) and HYBRID (3c, 3e) at 5% intervals of the overall budget
used. For WB and HYBRID, two charts are shown, one for the
low budget (3b, 3c) and another for the high budget (3d, 3e).
This figure reveals a significant difference in how the three
techniques perform as the budget is progressively consumed.
While BB needs a small portion of the budget to reach a
coverage close to the maximum achieved, the coverage of
WB and HYBRID evolves more steadily, because the search
algorithm keeps generating test cases that cover new targets
(e.g., source code statements and branches).

Regarding the faults found, we can say with high confidence
(i.e., p-value < 0.05) that HYBRID performed better than
BB in one scenario—RESTcountries, low budget—and better
than WB in three scenarios, namely, YouTubeMock with the
high budget and Ohsome with both budgets. This result in
the Ohsome SUT was expected, since the seeded test suite
already contained fault-revealing test cases, which WB was
not able to generate. It is noteworthy, however, that HYBRID
uncovered a bug in YouTubeMock not uncovered by either

TABLE V
RQ2: COMPARISON OF HYBRID WITH BB AND WB.

SUT Budget Coverage (%) 5XX
HYBRID (h) BB (b) WB (w) Âhb p-value Âhw p-value HYBRID (h) BB (b) WB (w) Âhb p-value Âhw p-value

RESTcountries 5K 79.7 74.9 73.6 1.00 < 0.001 0.98 < 0.001 0.9 0.0 0.5 0.95 < 0.001 0.70 0.064
100K 80.2 - 79.0 - - 0.88 0.002 1.0 - 1.0 - - 0.50 NaN

YouTubeMock 10K 86.3 81.9 26.0 1.00 < 0.001 1.00 < 0.001 0.0 0.0 0.0 0.50 NaN 0.50 NaN
200K 87.7 - 47.3 - - 1.00 < 0.001 0.5 - 0.0 - - 0.75 0.014

Ohsome 30K 75.1 74.0 20.4 1.00 0.035 1.00 < 0.001 122.0 122.0 0.0 0.50 NaN 1.00 < 0.001
600K 75.8 - 21.2 - - 1.00 < 0.001 122.0 - 0.2 - - 1.00 < 0.001

LanguageTool 100K 45.0 46.6 35.3 0.00 0.111 1.00 0.195 1.0 1.0 1.0 0.50 NaN 0.50 NaN
1M 45.0 - 36.0 - - 1.00 1.000 1.0 - 1.0 - - 0.50 NaN

7



(a) BB, low budget. (b) WB, low budget. (c) HYBRID, low budget.

(d) WB, high budget. (e) HYBRID, high budget.

Fig. 3. Trend of coverage evolution for the BB, WB and HYBRID approaches. For BB, only the median test suite (i.e., the fifth best performing in terms of
code coverage) is considered, since this had to be done manually. For WB and HYBRID, the average coverage of all test suites is computed, since EvoMaster
can output these stats automatically.

BB nor WB. This highlights the potential of our proposal:
seeding an evolutionary algorithm with a thorough test suite
can provide a bootstrap for the search, and eventually make
it find new faults. Even in the cases where no new bugs were
uncovered, more code was covered in less time. For example,
in RESTcountries, 5K HTTP calls sufficed to cover 79.7%
code with HYBRID, while WB needed 100K HTTP calls to
reach 79.0% coverage.

RQ2: Our novel hybrid approach covered between
1.2% and 60.3% more code than white-box testing
in all SUTs, and between 1.1% and 4.8% more than
black-box testing in 3 out of 4 SUTs. In terms of
fault finding, the hybrid approach was the only one
uncovering faults in all SUTs.

VI. LESSONS LEARNED

In this section, we provide lessons learned, derived from
the empirical study. We may remark that these lessons are
restricted to the scope of our practical experience and future
research will be needed for generalizing them further.

Lesson 1: Black-box testing is significantly faster than white-
box testing. Figure 3 shows that, for BB, ∼5% of the budget
suffices to reach ∼95% of the code coverage obtained with
the whole budget. In contrast, WB and HYBRID need more
budget, but better results could be obtained. Moreover, since
WB and HYBRID apply several heuristics for collecting metrics
such as the statement coverage or the branch distance [40],
this also translates into a time overhead. This was extreme in
the case of LanguageTool, where a single HYBRID-1M-budget
experiment run took over 10 hours to complete in a standard

PC.10 BB took less than 3 hours to generate a similar test suite.
There might be some scenarios where time can be limited.
For example, from a developer’s viewpoint, when developing
a new feature for an enterprise application, this must be tested
thoroughly before going into production. Taking into account
the previous statement, that is, ∼5% of the budget is enough
to reach ∼95% of the code coverage in black-box testing,
it is worth considering the following question: what would
developers prefer? Obtaining a reasonably thorough test suite
in 10 minutes, or a more exhaustive test suite in 10 hours?
Which of the two test suites would be enough to verify that a
new feature did not break anything? Both approaches could be
complementary, e.g., using BB as a quick check and integrating
HYBRID as a part of a continuous integration (CI) setup.

Lesson 2: Hybrid testing is more effective than black-box
and white-box testing in isolation. This is one of the main
conclusions derived from the evaluation. In terms of code
coverage, HYBRID achieved the best results in 3 out of 4
SUTs, increasing coverage by up to 4.8% and 60.3% compared
to BB and WB, respectively. In terms of fault finding, HYBRID
was the only technique uncovering bugs in all SUTs. Note
that HYBRID could also be applied with already existing test
suites, e.g., one created by the SUT developers. Even small
test suites can mean a significant bootstrap for the search.
For instance, test suites comprising just one test case per
API endpoint in Ohsome (122 in total) and 10 test cases in
YouTubeMock achieved +50% code coverage than when no
seed was provided (Table V). Crafting such kind of test suites
is a trivial task, especially thanks to current tool support, which

10Technical specifications: Intel i5 CPU, 16GB RAM, 256GB SSD, Win-
dows 10, Java 8.
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allows to do it manually (e.g., with the Swagger tool suite [41]
or Postman [32]) or automatically (e.g., with RESTest [14]).
This makes our novel hybrid approach readily applicable in
practice when a test suite already exists, and easily applicable
when it does not.

Lesson 3: Black-box constraint-based testing is generally
preferred for large and complex systems. Based on our
empirical study, WB is more effective than BB for simpler or
smaller SUTs when given high budgets (e.g., RESTcountries).
However, when the SUT contains intricate input constraints,
the black-box approach generally outperforms the white-box,
because the given custom domain knowledge in the data
generators and the handling of inter-parameter dependen-
cies [22] significantly helps in dealing with those constraints.
A search algorithm may struggle to learn how to generate
high-coverage inputs in short time, due to complex branch
conditions implemented in the SUT code. This same limitation
applies to HYBRID as well (since it also leverages the source
code), and it became clear in LanguageTool. LanguageTool
is the biggest SUT, with 10 times more LOCs than the other
SUTs together. It is a CPU-bound application (e.g., no CRUD
operations on a database), doing complex computations on
string text inputs. In this case, some experiment runs of WB
and HYBRID even failed to finish. The EvoMaster Java process
ran out of memory due to the presence of very long regular
expressions in the code. EvoMaster could not handle those
(e.g., with more than 200K characters) and crashed. In other
cases, EvoMaster simply timed out due to very long execution
times (e.g., more than 24 hours). All these results emphasize
the following: (1) white-box testing is subject to technical
limitations, depending on the SUT; and (2) black-box testing
is applicable regardless of how the SUT is implemented, its
size or its complexity.

Lesson 4: A manual setup is required (and recommended)
in all the studied approaches. In RESTful API testing,
as in many other disciplines, there is a trade-off between
automation and test thoroughness. Approaches achieving the
highest automation degree apply fuzz or random testing [5],
[11] or leverage techniques that are simply not applicable in
all scenarios [10], [12]. The three techniques evaluated in this
work require some manual setup. Without a proper empirical
investigation, it is hard to tell which one requires less work, but
based on our experience, EvoMaster is quicker to set up than
RESTest. In fact, EvoMaster’s configuration requires writing
one Java class, while RESTest requires modifying a YAML
file whose size depends on the number of API endpoints and
parameters. However, as suggested by Table V, the manual
setup done for RESTest may play a key role in the final
results obtained, especially for complex APIs dealing with
very domain-specific parameters. Are developers willing to do
some manual work to improve the testing process? Or do they
prefer 100% automation? This is something to be empirically
investigated in future work.

Lesson 5: White-box test suites are deterministic, black-

box test suites are usually not. One of the main differences
between white-box and black-box testing is that, in the former,
the state of the SUT can be reset between test cases (e.g.,
emptying a database). Therefore, it is possible to create a
completely deterministic test suite, where the output of every
test case does not depend at all on the test cases previously
executed. This is not possible in black-box testing for stateful
APIs, where, for instance, the response to the 100th API
request depends entirely on the previous 99 requests executed.
This complicates debugging, since a fault-revealing test case
may not reveal the same fault again, if the state of the SUT
has changed. White-box and hybrid testing can be used to
generate regression test suites, whereas black-box testing is
more typically applied for fuzzing web services for given
periods of time [11].

VII. OPEN CHALLENGES

In the next paragraphs, we discuss open challenges to be
tackled by future research in RESTful API testing. These are
aligned with two primary goals: increasing test automation and
thoroughness.

Challenge 1: Higher degree of automation. As previously
mentioned, the techniques evaluated in this paper require some
manual setup. This is something that may prevent practitioners
from adopting them. For example, EvoMaster requires the
tester to write a driver class defining how to start, stop
and reset the SUT, among others. Automatic code generation
techniques could be applied to ease this task. On the other
hand, black-box testing techniques in general may require the
addition of missing information in the API specification, such
as inter-parameter dependencies. Advanced techniques that can
automatically extract this information are required, e.g., by
analyzing request-response patterns and inferring invariants
present in the API, as hinted in the work by Mirabella et
al. [42].

Challenge 2: Inference of realistic test inputs. Very related
to the previous challenge, testing RESTful APIs thoroughly
depends to a great extent on the inputs (HTTP requests) used.
Creating and maintaining data dictionaries for each parameter
is very costly [9], [14]. Based on the API specification, which
usually describes the available endpoints and parameters, there
is need for techniques that exploit it to infer realistic values
for each API parameter, e.g., with natural language processing
(NLP) capabilities. The work of previous authors in GUI
testing [43], [44] may inspire future research to address this
challenge.

Challenge 3: Advanced white-box heuristics. The effective-
ness of white-box testing, or even its applicability, highly
depends on the heuristics used to leverage the source code.
If these are not correctly implemented, they may make white-
box testing unusable (e.g., like the crashes that we obtained
in EvoMaster with LanguageTool). If the heuristics are too
simple, white-box testing may not be effective. In EvoMaster,
taint checking and testability transformations, among others,
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are applied to generate higher coverage inputs [23]. Nonethe-
less, more techniques could be applied to improve the search
process, such as dynamic symbolic execution [45] and the
seeding strategies discussed in [31]. Furthermore, these heuris-
tics are language-dependent, therefore more engineering effort
is required to extend them to other programming languages
such as JavaScript and C#, heavily used in industry for
building RESTful APIs [46].

Challenge 4: Test oracles. In automated software testing,
generating test inputs is only half of the challenge. Asserting
test outputs is equally important. In RESTful API testing, most
typical oracles include checking the presence of 5XX status
codes, and mismatches with the API specification [7]–[12].
Previous authors have proposed more specific oracles related
to checking security [28] or functional properties [6], [8] of
the SUT. More work is needed to catch more and more varied
types of bugs.

VIII. THREATS TO VALIDITY

Next we discuss the validity threats that apply to our work.

Internal validity. Threats to the internal validity relate to
those factors that may affect the results of our evaluation.
The experiments were performed with two tools, RESTest
and EvoMaster, and we extended both of them to support a
third testing approach. Faults in such tools might compromise
the validity of our conclusions. Even though both tools are
thoroughly tested, it cannot be guaranteed that they are free
of bugs. To mitigate this threat, and to enable replicability of
our results, we intentionally used open-source tools, whose
code is freely available on GitHub [47], [48]. Furthermore,
the source code of the extensions of both tools (developed by
the authors), the case studies and the results obtained (Java
test classes, test reports, etc.) are provided as a part of the
supplementary material of this paper [49].

Given that the testing techniques evaluated in this paper
are based on randomized algorithms, such randomness might
affect the results. To mitigate this problem, each experiment
was repeated 10 times with different random seeds, and
appropriate statistical tests were used to analyze the results.

External validity. Threats to the external validity might affect
the generalizability of our findings. One of the main threats in
this regard comes from the fact that only four RESTful web
APIs were evaluated in the empirical study. This is because
running experiments on system-level test case generation is
very time-consuming. For example, EvoMaster’s experiments
required more than 1,500 days of computational resources in
a cluster of computers. Then, we had to manually run all test
suites generated to measure the code coverage in IntelliJ, in
order to make a fair comparison between the three approaches.
Our results might not completely generalize to other web
APIs (e.g., stateful APIs), however, to mitigate this threat, we
selected non-trivial APIs of different sizes (between 1 and 122
endpoints, and between 1.5K and 162K LOCs), from different
application domains and with varied degrees of complexity.

Besides the three testing techniques compared in this paper,
others could have been evaluated as well. Regarding black-
box testing, we are only aware of one more open-source tool,
RESTler [11]. For white-box testing, EvoMaster seems to be
the only open-source tool supporting system-level testing of
RESTful APIs, although other tools exist for unit testing (e.g.,
EvoSuite [29]). The comparison with these other alternatives
would have yielded interesting insights, but it would have
required a much larger evaluation, which is out of the scope
of this paper. Furthermore, we specifically selected RESTest
and EvoMaster as the tools to compare and integrate because
they are good representatives of black-box and white-box
testing, respectively. RESTest is a sophisticated constraint-
based testing tool that can exploit additional information
provided by the tester (while RESTler cannot), and EvoMaster
generates test cases in a fully automated fashion by leveraging
evolutionary algorithms.

IX. CONCLUSION

In this practical experience report, we presented the first
comparison of different black-box and white-box testing tech-
niques for RESTful web APIs, and we proposed a novel hybrid
testing approach that combines both strategies. We performed
an extensive evaluation involving four case studies with very
different characteristics. The results obtained bring to light two
main conclusions: (1) our novel hybrid technique performed
best in most scenarios, achieving the highest code coverage
in 3 out of 4 SUTs and being the only technique capable
of uncovering bugs in all of them; and (2) there exists no
one-size-fits-all strategy, as they all have their own strengths
and limitations. After an in-depth analysis of the results, we
provide lessons learned that can hopefully provide a better
understanding of the applicability of black-box, white-box and
hybrid testing, according to multiple factors such as the SUT
complexity or the available budget.

In future work, we plan to perform a more comprehensive
evaluation including more case studies of different variety,
as well as other testing techniques such as fuzzing [11],
which could also be used to generate the seed in our hybrid
approach. We also intend to develop more advanced heuristics
to make fully-automated white-box search-based testing as
effective as black-box constraint-based testing with custom
data generators. In theory, given enough budget, the former
should outperform the latter. However, based on the results
from Table III, we are not there yet, and more work is needed.
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