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Abstract 1 

This work assesses the potential of multidimensional fluorescence spectroscopy 2 

combined with chemometrics for characterization and authentication of Spanish 3 

Protected Designation of Origin wine vinegars. Seventy-nine vinegars of different 4 

categories (aged and sweet) belonging to the Spanish PDOs “Vinagre de Jerez”, 5 

“Vinagre de Montilla-Moriles” and “Vinagre de Condado de Huelva”, were analyzed by 6 

excitation-emission fluorescence spectroscopy. A visual assessment of fluorescence 7 

landscapes pointed out different trends with vinegar categories. PARAllel FACtor 8 

analysis (PARAFAC) extracted the potential fluorophores and their values in the PDO 9 

vinegars. This information, coupled with different classification methods (Partial Least 10 

Square Discrimination Analysis “PLS-DA” and Support Vectors Machines “SVM”), was 11 

able to discriminate the wine vinegar category within each PDO, for which SVM models 12 

obtained better results (>92% of classification). In each category, SVM also allows the 13 

differentiation between PDOs. The proposed methodology could be used as an 14 

analysis method for the authentication of Spanish PDO wine vinegars. 15 
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1. Introduction 16 

Vinegar is a product used worldwide as a condiment and food preserving agent, 17 

obtained by a double fermentation process (alcoholic and acetic fermentation) of 18 

sugary and starchy substrates (FAO, 1998). Vinegar can be produced by different 19 

methods and raw materials (such as malt, apple, rice, etc.), among which, wine vinegar 20 

is the most commonly produced and consumed vinegar in Mediterranean countries and 21 

Central Europe (Polo & Sanchez-Luengo, 1991). 22 

For many years, wine vinegar has been considered as a low-cost secondary 23 

product spontaneously derived from wine production. However, in recent years wine 24 

vinegar has become a valued food product much appreciated in gastronomy. As a 25 

result, the demand for high-quality wine vinegars has significantly increased over the 26 

last years. In this framework, Spain is one of the major producers of high-quality wine 27 

vinegars, including three of the five types of vinegar registered in Europe (Council 28 

Regulation (EC) No 510/2006) with a “Protected Designation of Origin” (PDO): “Vinagre 29 

de Jerez”, “Vinagre de Montilla-Moriles” and “Vinagre de Condado de Huelva” (Table I 30 

Supplemental Material). The production of these high-quality PDO wine vinegars in 31 

Spain is centered in Andalusia, each of them made from the corresponding protected 32 

wines (Jerez, Montilla-Moriles and Condado de Huelva), which provides singular and 33 

specific characteristics to each vinegar. In addition, the production of high-quality 34 

vinegars requires an ageing period in wooden butts. During the period of aging, some 35 

chemical modifications take place providing them with unique organoleptic properties 36 

and higher sensory quality (Morales, Tesfaye, García-Parrilla, Casas, & Troncoso, 37 

2002). According to the sweetness, time and method of ageing (“criaderas and solera” 38 

and “añada” system), different categories are considered within each Spanish PDO 39 

(Table 1).   40 

The longer aging time is directly related to both the higher quality and production 41 

costs of these wine vinegars. This fact increases the final market price and makes the 42 

quality assurance and authentication of the Spanish PDOs wine vinegars an important 43 

issue. For this reason, objective analytical methodologies are required to guarantee the 44 

wine vinegar authenticity and fight against frauds. However, the most common 45 

analytical techniques used for the characterization and authentication of these vinegars 46 

rely on chromatographic methods that are often expensive and time-consuming 47 

(Aceña, Vera, Guasch, Busto, & Mestres, 2011; Cirlini, Caligiani, Palla, & Palla, 2011). 48 

Thus, in recent years there has been a growing interest in developing rapid, 49 
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inexpensive, non-destructive and direct methodologies based on non-targeted 50 

techniques for food authentication. Fluorescence spectroscopy has been increasingly 51 

applied as a competitive, high sensitivity, fast and non-destructive technique in food 52 

analysis (Karoui & Blecker, 2011). This spectroscopic technique has been more 53 

commonly used in wine (Airado-Rodŕiguez, Galeano-D́iaz, Durán-Merás, & Wold, 54 

2009; Azcarate et al., 2015), but rarely adopted for wine vinegar samples (Callejón et 55 

al., 2012) and hence, there is still scarce information about vinegar fluorescent 56 

components.  57 

In this sense, wine vinegar is a very complex multi-component mixture of chemical 58 

compounds due to its traditional making procedure, the raw material used and the 59 

ageing period and method employed. Some of these chemical compounds are 60 

polyphenols, amino acids and vitamins (Airado-Rodríguez, Durán-Merás, Galeano-61 

Díaz, & Wold, 2011), whose presence is related to the wine chemical basis. To handle 62 

this complexity, fluorescence multidimensional measurements, such as excitation-63 

emission fluorescence spectroscopy, combined with adequate multi-way methods 64 

(Andersen & Bro, 2003; Sádecká & Tóthová, 2007) have been proven to be useful for 65 

characterization of complex food matrices (Callejón et al., 2012; Christensen, Becker, 66 

& Frederiksen, 2005; Elcoroaristizabal et al., 2016; Lenhardt, Bro, Zeković, Dramićanin, 67 

& Dramićanin, 2015). Measuring the emission spectra at different excitation 68 

wavelengths results into a bi-dimensional Excitation-Emission Matrix (EEM), which 69 

contains unique information of each measured sample. Therefore, a three dimensional 70 

array is obtained when all the samples are gathered together, so requiring an 71 

appropriate data processing for its interpretation. 72 

An adequate multiway method, such as PARAllel FACtor Analysis (PARAFAC), can 73 

be used to decompose fluorescence EEMs into different independent groups of 74 

fluorescence components (fluorophores), as well as their relative concentration 75 

(scores) in each sample (Bro, 1997). The information provided by the resolved 76 

fluorophores has been successfully applied in food quality control, since it can reveal 77 

clearer insights into the relationships between the intrinsic food properties and the 78 

quality of the product. For instance, EEM-PARAFAC has been applied for monitoring 79 

the changes occurring during the storage and production of different food samples 80 

(Christensen, Becker, & Frederiksen, 2005; Elcoroaristizabal et al., 2016) and their 81 

characterization (Lenhardt et al., 2015; Tena, Aparicio, & García-González, 2012). 82 

Furthermore, the information obtained after EEM data decomposition by PARAFAC 83 
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modeling could be coupled with different classification methods in order to characterize 84 

and classify different food products or detect fraudulent samples (Callejón et al., 2012).  85 

There are numerous classification algorithms such as Partial Least Square 86 

Discrimination Analysis (PLS-DA), K-Nearest Neighbors (KNN), Support Vector 87 

Machines (SVM) and Soft Independent Modelling of Class Analogy (SIMCA) (Cover & 88 

Hart, 1967; Vapnik, 1999; Wold, 1966; Wold, 1976). Among them, Partial Least 89 

Squares-Discriminant Analysis (PLS-DA) and Support Vectors Machines (SVM) are 90 

two of the most common used ones. PLS-DA is a supervised class-modelling method 91 

used for building linear discriminant models (Nocairi, Qannari, Vigneau, & Bertrand, 92 

2005), which has been successfully applied to a wide variety of food matrices for 93 

classification purposes (Azcarate, Cantarelli, Pellerano, Marchevsky, & Camiña, 2013; 94 

Lenhardt et al., 2015; Liu, He, & Wang, 2008). The main advantage of the PLS-DA 95 

approach is the ability of handling highly collinear and noisy data. However, one of the 96 

main issues is that PLS-DA models need a sufficient and balanced amount of samples 97 

for each class; and sometimes it is difficult to acquire sufficient samples of some 98 

classes, due to their cost of production or their non-availability in the market. Moreover, 99 

classes that are not effectively separated linearly are common in food products. 100 

Support Vector Machines (SVM) is an effective non-linear machine learning technique 101 

suitable for both classification and regression analysis (Xu, Zomer, & Brereton, 2006). 102 

In comparison to PLS-DA, the main advantage of SVM is its flexibility in modelling 103 

complex classification problems that are non-linear. A common disadvantage of SVM is 104 

the lack of transparency of the results, since there are no statistics such as scores and 105 

loadings available for easy visualization. 106 

Several researchers have tested the SVM’s performance in different food 107 

authentication problems obtaining better results than other traditional classification 108 

methods. For instance, Acevedo et al. (2007) (Acevedo, Jiménez, Maldonado, 109 

Domínguez, & Narváez, 2007) observed that SVM performed better than SIMCA, k-110 

NN, and PLS-DA for discrimination of wines according to their PDO, which also 111 

enabled the selection of the most relevant UV-Vis wavelengths for samples 112 

classification. In the same way Callejón et al. (2012) (Callejón et al., 2012) proved that 113 

SVM in conjunction with excitation-emission fluorescence spectroscopy was a more 114 

adequate methodology than PLS-DA for the classification of sherry vinegars according 115 

to their ageing time. However, the aforementioned study was only focused on the 116 

classification of a limited number of wine vinegar categories (aged vinegars) belonging 117 

to one Spanish PDO (“Vinagre de Jerez”).  118 

 119 
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In this context, the aim of this work was to investigate the feasibility of using 120 

excitation-emission fluorescence spectroscopy combined with several chemometric 121 

techniques for characterization and classification of the three Spanish PDOs wine 122 

vinegars and their commercialized categories. First, EEM data will be analyzed by 123 

PARAFAC in order to characterize spectroscopically and chemically different 124 

commercialized wine vinegar categories (aged and sweet) according to each Spanish 125 

PDO. Then, these results will be used to build reliable classification models able to 126 

differentiate between the wine vinegar categories corresponding to each Spanish PDO, 127 

and each PDO within the same wine vinegar category. 128 

 129 

2. Materials and Methods 130 

 131 

2.1 Wine vinegar samples 132 

Seventy-nine wine vinegar samples from the three Spanish PDOs coming from 133 

several producers were analyzed in this study (Table 1): 30 “Vinagre de Jerez”, 18 134 

“Vinagre de Montilla-Moriles” and 21 “Vinagre de Condado de Huelva” samples. 135 

Among the aged categories, these vinegars are aged by the traditional system called 136 

“criaderas and solera”, except for the “Vinagre de Condado de Huelva Añada” which is 137 

aged by using the static aging system called “añada”. Regarding the “Pedro Ximenez” 138 

category, it should be highlighted that this sweet category differs from the aged 139 

category not only by the aging time but also by other factors such as their different 140 

production process. Thus, they are produced by the addition of must of raisined “Pedro 141 

Ximenez” grapes (in the case of “Vinagre de Montilla-Moriles”) or the addition of “Pedro 142 

Ximenez” wine to the vinegar. All the samples were purchased from local wineries 143 

working in compliance with current regulations of each Spanish PDO. The samples 144 

were collected in triplicate and stored in amber vials at room temperature until the 145 

analysis. 146 

Within each PDO, a different number of samples were collected for the established 147 

categories (aged and sweet) according to the production/sale rates of each category 148 

during the last years (2014-2015). In these years, the general trend for the three 149 

Spanish PDOs reveals a higher production of the categories with less ageing time due 150 

to market trends. For instance, “Vinagre de Jerez” (JCR) represented approximately 151 

60% of total sales in the PDO “Vinagre de Jerez”, while sales of “Vinagre de Jerez 152 

Reserva” (JRE) and “Vinagre de Jerez Gran Reserva” (JGR) accounted for 40% and 153 

1% of the total, respectively. Similarly, “Vinagre de Condado de Huelva” (CSC) 154 

category had the highest sales growth up 38% of the total. Meanwhile among the aged 155 
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categories of “Vinagre de Condado de Huelva” PDO, the most commercialized vinegar 156 

categories were, in decreasing order: “Solera” (CSO), “Reserva” (CRE) and “Añada” 157 

(CAN). In the same way, “Vinagre de Montilla-Moriles Crianza” (MCR) was the most 158 

commercialized one of the “Vinagre de Montilla-Moriles” PDO due to the recent 159 

incorporation to the Spanish PDOs. 160 

2.2 Fluorescence analysis 161 

Fluorescence measurements were recorded using a Varian Cary-Eclipse 162 

fluorescence spectrophotometer (Varian Iberica, Madrid, Spain), equipped with two 163 

Czerny-Turner monochromators, and a Xenon discharge lamp pulsed at 80 Hz with a 164 

half peak height of ∼2 µs (peak power equivalent to 75 kW). A high-performance R298 165 

photomultiplier tube detector was used for collection of the fluorescence spectra. Wine 166 

vinegar samples were directly analysed without sample pre-treatment by pipetting them 167 

into 3.5 mL quartz cuvettes before measurement. Standard quartz cells (Hellma 168 

Analytics, Müllheim, Germany) of 1 cm path length were used to carry out the 169 

measurements in a Peltier thermostatted cuvette holder (25.00 ± 0.05 ◦C). The 170 

spectrometer was interfaced to a computer with Cary-Eclipse software for spectral 171 

acquisition and exportation.  172 

The fluorescence Excitation-Emission Matrices (EEMs) were obtained by varying 173 

the excitation wavelength (λex) ranging between 250 and 700 nm (every 5 nm), and 174 

recording the emission spectra (λem) from 300 to 800 (every 2 nm). For these 175 

measurements, excitation and emission slits were both set at 5 nm, and  the scan rate 176 

was fixed to 1200 nm min-1. The system was wavelength calibrated every day by 177 

means of the water Raman peak to account for a possible wavelength drift of the 178 

instrument. EEMs were registered by triplicate for each sample and preprocessed in 179 

order to avoid noisy and non-informative areas by selecting shorter spectral ranges (λex 180 

from 250 to 680 nm, and λem from 310 to 800 nm). 181 

 182 

2.3 Software and data analysis 183 

EEM data analysis was performed by using the PLS_Toolbox 7.9.5 (Eigenvector 184 

Research Inc., Wenatchee, WA) working under Matlab v.8.5.0 environment (The 185 

Mathworks Inc., Natick, MA). Before the analysis, EEMs data were corrected for –186 

Rayleigh and Raman scattering (Elcoroaristizabal, Bro, García, & Alonso, 2015) – by 187 

removing and replacing the scattering areas with interpolated values by using the 188 

FLUCUT function included in the PLS_Toolbox. FLUCUT Removes Rayleigh scattering 189 

(and possibly Raman) by inserting NaN and 0 values in Excitation-Emission Matrices 190 



9 
 

(EEMs) where the Rayleigh bands are. Alternatively, FLUCUT may also be used to 191 

generate weights that can be used for deweighting (instead of eliminating) these 192 

regions.  193 

2.3.1 Parallel Factor Analysis (PARAFAC) 194 

 PARAllel FACtor models were performed on the corrected EEM data in order to 195 

extract the relevant information and develop models for: (1) different wine vinegar 196 

categories belonging to the same Spanish PDO, and (2) similar wine vinegar 197 

categories belonging to different Spanish PDOs.  198 

 Before modelling, the EEM landscapes corresponding to the same Spanish 199 

PDO (1) were rearranged into a three-dimensional structure (X) of size (3 replicated 200 

samples x λem x λex): 90 x 246 x 87 for the PDO “Vinagre de Jerez”; 54 x 246 x 87 for 201 

the PDO “Vinagre de Montilla-Moriles”, and 63 x 246 x 87 for the PDO “Vinagre de 202 

Condado de Huelva”. In a similar way, the EEM landscapes corresponding to similar 203 

wine vinegar categories but different Spanish PDOs (2) were organized into a three-204 

way array (X) of size (3 replicated samples x λem x λex): 78 x 246 x 87 for “Crianza”; 66 205 

x 246 x 87 for “Reserva” category, and 27 x 246 x 87 for “Pedro Ximenez” categories. 206 

No PARAFAC analysis was carried out for the “Gran Reserva” category due to the 207 

limited number of samples. 208 

Then, each three-way dataset (X) was decomposed by PARAFAC (Bro, 1998).  209 

The proper number of factors for each model was determined by using the CORe 210 

CONsistency DIAgnostic test (CORCONDIA) (Bro & Kiers, 2003), the percentage of 211 

variance explained by the model and the visual inspection of the recovered spectral 212 

profiles and residuals. Non-negative constraints for all modes (concentrations and both 213 

spectral profiles) were applied to obtain meaningful chemical solutions. 214 

  215 

2.3.2 Classification methods 216 

Partial Least Squares-Discriminant Analysis (PLS-DA) (Nocairi et al., 2005) and 217 

Support Vectors Machines (SVM) (Vapnik, 1999) algorithms were used to build 218 

classification models for discrimination the wine vinegar category within each Spanish 219 

PDO. On the one hand, PLS-DA is a classification method based on partial least 220 

squares regression (PLS) that transforms the data into a set of linear latent variables 221 

for predicting the dependent or class variable, making models that allow the maximum 222 

separation among classes. The class variable forms a so-called dummy matrix that 223 

indicates whether a sample belongs to a certain class or category. In our study, three 224 
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different wine vinegar categories were considered in each Spanish PDO, therefore, the 225 

dimensions of each dummy matrix was 3x3.  226 

On the other hand, SVM is a relative new chemometric tool based on the statistical 227 

learning theory (SLT). It is a supervised learning method that searchers for the optimal 228 

separating hyperplane between the different data classes by maximizing the distance 229 

between the hyperplane and the closest samples of the training set (the support 230 

vectors), keeping the classification error as low as possible (Xu et al., 2006). Only two 231 

parameters need to be tuned in SVM, including C (cost) and the kernel parameter ƴ in 232 

Gaussian kernel function. C is a tuning parameter, which weights in-sample 233 

classification errors and controls the generalization ability of an SVM. Moreover, within 234 

the different kernel functions, an appropriate ƴ parameter is related to a stable 235 

generalization performance. Furthermore, this method does not need a large number of 236 

samples to be trained, it is not affected by the presence of outliers and it has been 237 

successfully applied to solve a variety of practical classification problems (Acevedo et 238 

al., 2007; Liu et al., 2008; Xu et al., 2006).  239 

As the results obtained in our study for the classification of wine vinegar categories 240 

within each PDO showed that SVM developed better classification models, only 241 

Support Vectors Machines (SVM) was used to build classification models for 242 

distinguishing the Spanish PDOs in each similar wine vinegar category (“Crianza”, 243 

“Reserva” and “Pedro Ximenez”). For both approaches, scores of each sample from 244 

PARAFAC models were used, 95% confidence intervals were considered for the 245 

classification models and vinegar samples were randomly divided into two groups.  246 

The first group of samples (training set), comprising the 75% of samples, was used 247 

for calibration and internal validation of the models by means of a venetian blinds 248 

cross-validation procedure. For discrimination of the wine vinegar category within each 249 

Spanish PDO, this dataset (samples analysed in triplicate) was formed by 63 (“Vinagre 250 

de Jerez”), 33 (“Vinagre de Montilla-Moriles”), and 39 (“Vinagre de Condado de 251 

Huelva”) samples. Meanwhile, this dataset consisted of 54 (“Crianza”), 48 (“Reserva”), 252 

and 18 (“Pedro Ximenez”) samples, in order to distinguish the Spanish PDO 253 

corresponding to each wine vinegar category.  254 

The second group with the remaining samples (test set) was used as external 255 

independent dataset to evaluate the discriminative power of the models (external 256 

validation). This dataset was formed by 25% of the samples, and consisted of (samples 257 

analyzed in triplicate): 21 (“Vinagre de Jerez”), 15 (“Vinagre de Montilla-Moriles”), and 258 

18 (“Vinagre de Condado de Huelva”) samples, in order to discriminate the wine 259 
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vinegar category within each Spanish PDO. For differentiating the Spanish PDO in 260 

each wine vinegar category, this dataset was formed by (samples analyzed in 261 

triplicate): 24 (“Crianza”), 18 (“Reserva”), and 9 (“Pedro Ximenez”) samples. 262 

Afterwards, the samples belonging to each dataset were randomly selected making 263 

sure that in both datasets at least one sample, with the corresponding replicates, of 264 

each category/PDO was included. Samples belonging to “Gran Reserva” and “Añada” 265 

category in each PDO (JGR, MGR and CAN) with a low number of samples (≤ 2) were 266 

not used. Further information about the number of samples used in each case for 267 

calibration and external validation can be found in Table II (Supplementary Material).  268 

The statistical assessment of the quality of both classification models was carried 269 

out by means of the comparison of the sensitivity, specificity and classification error of 270 

calibration (CAL), cross-validation (CV) and prediction (PRED) parameters (Margraf, 271 

Santos, de Andrade, van Ruth, & Granato, 2016) according to Eqs. (5) and (6): 272 

Sensitivity (%) = [TP / (TP+FN)] *100%             (5) 273 

Specificity (%) = [TN / (TN+FP)] *100%                     (6) 274 

whereby TP and TN represent the number of samples correctly classified as their real 275 

class (e.g. the number of JCR samples predicted as JCR and the number of MCR 276 

samples predicted as MCR samples, respectively). On the other hand, FP and FN 277 

represent the number of samples misclassified (e.g. the JCR samples assigned to 278 

MCR class and MCR samples assigned to JCR class, respectively).   279 

 280 

3. Results and discussion 281 

 282 

3.1 Fluorescence landscapes of the Spanish PDO wine vinegars 283 

Typical fluorescence landscapes of several samples belonging to the different wine 284 

vinegar categories of each Spanish PDO are shown in Figure 1 (after removing and 285 

replacing the first and second order Rayleigh scattering). As it can be observed, the 286 

shape of the EEM spectra varies within the same Spanish PDO, which allows us to 287 

confirm a priori differentiation according to the wine vinegar category (aged or sweet).  288 

A visual assessment of the fluorescence features of the aged categories points out a 289 

general tendency for the spectral maxima to be shifted towards longer excitation and 290 

emission wavelengths with the aging of the vinegars. Furthermore, similar fluorescence 291 

maxima were observed for the different Spanish PDOs wine vinegars according to the 292 

aging period. In general, vinegars with a minimum of 6 months of aging (JCR, MCR 293 
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and CSO) show their maximum peaks at 370/450 nm for both excitation/emission 294 

wavelengths (λex/λem), whereas the maximum peaks corresponding to the “Reserva” 295 

category (JRE, MRE and CRE) appear at higher wavelengths, around 370-470 nm of 296 

λex and 470-550 nm of λem. Finally, the most aged “Gran Reserva” category samples 297 

(JGR, MGR and CAN) show their maxima at 470-500 nm of excitation and 550-600 nm 298 

of emission wavelengths, following the general observed trends. The spectral features 299 

of the wine vinegars without aging period (CSC), which shows maximum peaks at the 300 

shortest wavelengths (around 370/440 nm λex/λem), also confirm this tendency. 301 

Interestingly, some samples of the “Reserva” category (e.g. “Vinagre de Montilla-302 

Moriles” PDO, “Reserva” sample “MRE” in Figure 1) show two different maximum 303 

peaks probably due to the broader aging period, which can vary from 24 to 120 months 304 

(“Vinagre de Jerez” PDO and “Vinagre de Montilla-Moriles” PDO) or even to longer 305 

periods (“Vinagre de Condado de Huelva” PDO) (Table 1). These observed spectral 306 

features are probably related to the different chemical complexity of the aged 307 

categories. In fact, a similar fluorescence trend with the aging of wine samples was 308 

observed by Airado-Rodriguez et.al (2011), whose fluorescence landscapes showed a 309 

tendency to increase the emission at longer wavelengths with the ageing of the wine 310 

samples, due an increase in concentration of fluorescence substances (Airado-311 

Rodríguez et al., 2011). 312 

In contrast, the fluorescence landscapes of the sweet vinegar categories, denoted 313 

as “Pedro Ximenez” (JPX and MPX) show a highly intense fluorescent area between 314 

550-570 nm and 600-650 nm of excitation and emission wavelengths, respectively. 315 

Indeed, these sweet vinegars show their excitation and emission maxima even at 316 

longer wavelengths than the ones corresponding to the aged categories. This 317 

phenomenon could be explained by the different production and composition of the 318 

sweet vinegars in comparison with the aged categories. Thus, the sweet vinegars are 319 

produced with the addition of “Pedro Ximenez” Sherry wine in the case of “Vinagre de 320 

Jerez” PDO (containing at least 60 g/L of reducing material from this wine) (Council 321 

Regulation (EC) No 510/2006), or adding must of raisined “Pedro Ximenez” grapes 322 

during the maturing process for the “Vinagre de Montilla-Moriles” PDO (Council 323 

Regulation (EC) No 510/2006). These sweet vinegars have a high carbohydrate 324 

content (glucose and fructose) and other compounds (brown pigments and volatile 325 

compounds) produced by a Maillard reaction of the carbohydrates and free amino 326 

acids (Casale, Sáiz Abajo, González Sáiz, Pizarro, & Forina, 2006), which may be 327 

responsible for the observed fluorescence at longer excitation and emission 328 

wavelengths.  329 
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From these observations, it is clear that the fluorescence landscapes of these 330 

Spanish PDOs vinegars contain several fluorophores that are highly overlapped in both 331 

excitation and emission spectra.  In this sense, further decomposition of EEM spectra 332 

by PARAFAC will help to clarify the potential fluorophores present in each vinegar 333 

category. 334 

3.2 Potential fluorophores of the Spanish PDO wine vinegars  335 

Three individual PARAFAC models were built in order to extract the excitation and 336 

emission profiles of the main fluorophores present in the Spanish PDOs vinegars (as 337 

described in section 2.3.1). The optimum number of factors for each PARAFAC model 338 

was selected comparing the quality parameters of the models built for an increasing 339 

number of factors (ranging from one to seven). Specifically, the best PARAFAC models 340 

obtained for each Spanish PDO were 5-factor PARAFAC models for the “Vinagre de 341 

Jerez” and “Vinagre de Montilla-Moriles” PDOs, and a 4-factor PARAFAC model for the 342 

“Vinagre de Condado de Huelva” PDO. The obtained models were enough robust, 343 

explaining more than 99% of the variance with a core consistency over zero (Table III 344 

Supplementary Material), and represented the underlying chemical spectra of the 345 

fluorophores present in these vinegars. Figure 2 includes the PARAFAC loadings 346 

(excitation and emission spectra) of the extracted factors present in each Spanish PDO 347 

vinegar, whose corresponding fluorescence emission and excitation maxima are listed 348 

in Table IV (Supplementary Material). The fluorescent loading patterns of the modelled 349 

factors can be matched to fluorophores described in the literature (Airado-Rodríguez et 350 

al., 2011; Dufour, Letort, Laguet, Lebecque, & Serra, 2006; Elcoroaristizabal et al., 351 

2016). However, it is important to note that vinegar contains a wide variety of naturally 352 

occurring fluorescent compounds, being each emission/excitation profiles a sum of 353 

related fluorescent molecules and not only to a single one (Airado-Rodríguez et al., 354 

2011). The difference in these modelled factors is probably related to the different 355 

chemical composition of these vinegars as a consequence of the different raw 356 

materials (wines) and production and ageing processes for each Spanish PDO. This is 357 

corroborated by the variation in the score values of the fluorophores modelled for each 358 

Spanish PDO according to the vinegar category (Table V Supplementary Material). 359 

The first factor (F1, blue line in Figure 2) of the PDO “Vinagre de Jerez” has a 360 

maximum excitation centered at 465 nm and a maximum emission around 535 nm. 361 

According to Airado-Rodríguez et al. (2011), this factor could be related to vitamin B2 362 

and its principal forms such as riboflavin, Flavin mononucleotide (FMN), and Flavin 363 

adenine dinucleotide (FAD). In contrast, F1 appears at lower wavelengths, specifically 364 
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at 375/460 nm and 370/470 nm (λex/ λem), for the “Vinagre de Montilla-Moriles” and 365 

“Vinagre de Condado de Huelva” PDOs, respectively. In these PDOs, and taking into 366 

account these wavelengths, F1 could be due to the presence of coumarins, tannins 367 

and other unknown fluorescent compounds originating from wooden casks (Tóthová & 368 

Sádecká, 2008), as well as phenols and flavonols, usually in abundance in these 369 

vinegars and naturally presented in wines (Airado-Rodríguez et al., 2011; Sádecká & 370 

Tóthová, 2007).  371 

The second factor (F2, red line in Figure 2) has a similar profile for the three PDOs 372 

with an excitation and emission maxima between 400-420 nm and 480-505 nm 373 

respectively. 5-Hydroxymethylfurfural (HMF), which has been determined in vinegars 374 

as a product being formed during the Maillard reaction (García Parrilla, Heredia, & 375 

Troncoso, 1999), could match with the wavelengths of F2 according to Zhu et al., 2009 376 

(Zhu, Ji, Eum, & Zude, 2009). Furthermore, caramel, which is frequently added to 377 

vinegars as a colorant, showed a maximum excitation/emission wavelength at 390-378 

410/482-498 nm according to Sádecká et al., 2009 (Sádecká, Tóthová, & Májek, 2009), 379 

and Tóthová et al., 2008 (Tóthová & Sádecká, 2008). Its presence in these vinegars 380 

could be also related to this second factor.  381 

The third factor (F3, yellow line in Figure 2) of “Vinagre de Jerez” PDO is a peak 382 

centered at 500 nm (λex) and 580 nm (λem). This component could be associated to 383 

brown pigments produced by some acetic bacteria strains present in vinegar (Polo & 384 

Sanchez-Luengo, 1991) since they showed similar excitation/emission wavelengths. 385 

However, in “Vinagre de Montilla-Moriles” PDO, this factor F3 shows excitation and 386 

emission maxima around 470/550 nm, which agrees with the presence of vitamin B2 387 

and its principal forms (Lenhardt et al., 2015). Finally, the third factor of “Condado de 388 

Huelva” PDO is centered at 300/425 nm (λex/ λem), and these wavelengths could be 389 

associated with the phenolic compounds present in these vinegars (Rodríguez-390 

Delgado, Malovaná, Pérez, Borges, & García Montelongo, 2001). 391 

The fourth factor (F4, purple line in Figure 2) has 340/420 nm and 350/440 nm of 392 

excitation and emission maxima for the “Vinagre de Montilla-Moriles” and “Vinagre de 393 

Jerez” PDOs. According to the literature, the excitation/emission wavelengths of this 394 

factor could be related to phenolic compounds, the best known fluorescent molecules 395 

naturally present in wine that differ in accordance to the grape variety and the vinegar 396 

ageing. This group of compounds includes phenolic acids and phenolic aldehydes, as 397 

well as oxidation and Maillard reaction products (present due to browning processes 398 

and oxidative mechanisms taking place during ageing and storage), which have shown 399 
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maximum excitation/emission wavelengths around 330/420 nm (Airado-Rodríguez et 400 

al., 2011; Azcarate et al., 2015; Callejón et al., 2012; Dufour et al., 2006; 401 

Elcoroaristizabal et al., 2016; Sádecká & Tóthová, 2007). In contrast, in “Condado de 402 

Huelva” PDO this F4 presents its excitation and emission maxima around 485/560 nm 403 

(λex/ λem), and it could be associated with the aforementioned vitamin B2.  404 

Finally, a fifth factor (F5, green line in Figure 2) appears only for the “Vinagre de 405 

Montilla-Moriles” and “Vinagre de Jerez” PDOs, showing excitation and emission 406 

maxima at 530/605 nm and 585/655 nm (λex/ λem), respectively. There are not reported 407 

fluorophores matching exactly with this emission/excitation profile. However, it seems 408 

to be related to the special characteristics of the category “Pedro Ximenez” for which a 409 

higher mean values of this factor was detected in this category (Table V 410 

Supplementary Material). The absence of this factor in the “Vinagre Condado de 411 

Huelva” model also confirms this hypothesis since this sweet category is not registered 412 

in this PDO. 413 

 414 

3.3 Vinegar category classification within each Spanish PDO  415 

Two different approaches, Partial Least Squares Discriminant Analysis (PLS-DA) 416 

and Support Vector Machines (SVM), were used for the development of classification 417 

models of Spanish PDO vinegars according to their category. In all cases, the best 418 

PLS-DA models were obtained using two latent variables (LVs). This optimum number 419 

of LVs was chosen based on the Root Mean Square Error of Cross-Validation 420 

(RMSECV), the ROC curves and de variance captured. On the other hand, the optimal 421 

parameters for the optimization of SVM models, log10(C) and log10 (γ), were found to 422 

be 2 and between -2 and -0.5, respectively. The statistical assessment of the 423 

performance of both classification models was carried out by calculating and 424 

comparing different classifiers (described in section 2.3.2) such as sensitivity, 425 

specificity and classification error of calibration (CAL), cross-validation (CV) and 426 

prediction (PRED). These statistical results are shown in Table 2. 427 

Regarding the PLS-DA models, high sensitivity and specificity values were 428 

obtained for the sweet category (JPX and MPX) of “Vinagre de Jerez” and “Vinagre de 429 

Montilla-Moriles” PDOs. The classification errors of prediction obtained for these 430 

categories (100% of the samples correctly classified), demonstrated that these 431 

samples can be successfully separated from the rest of classes. This is probably due to 432 

their different chemical and fluorescence spectral features, since this sweet category 433 

emitted at the longest wavelengths (Figure 1). In a similar way, concerning the non-434 
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aged category (CSC) of “Vinagre de Condado de Huelva” PDO, the different 435 

fluorescence profile observed in the landscapes and the higher mean values of F1 and 436 

F3 with respect to the rest of categories (Table V Supplementary Material), could be 437 

related to the lowest errors of classification obtained for this category (25.0% of the 438 

samples misclassified). However, unsatisfactory results were obtained for the rest of 439 

aged categories within each Spanish PDO: JCR, JRE, MCR, CSO and CRE. The low 440 

sensitivity and specificity values (mainly under 65.0%) and high classification errors 441 

obtained in terms of prediction (between 25.0 and 63.0%), confirm the difficulty in 442 

correctly classifying these aged vinegar categories (≥ 6 and ≥ 24 months) by using 443 

linear classification models. This could be related to the similar score values followed 444 

by the modelled factors of these categories within each Spanish PDOs (Table V 445 

Supplementary Material). Among them, the ≥ 6 months aged samples (JCR, MCR and 446 

CSO) were the worst classified ones in all the Spanish PDO vinegar models, showing 447 

classification errors until 63.0%. This may be explained due to these wine vinegars are 448 

aged over a wide range of time (from 6 to 24 months). Thus, those samples aged until 449 

24 months are expected to be spectroscopically and chemically quite similar to the 450 

vinegars of the following category (≥ 24 month). Similar results were obtained by 451 

Callejón et al., (2012).  452 

In contrast, higher sensitivity and specificity levels were obtained for all Spanish 453 

PDO vinegars using SVM models (Table 2). The optimal parameters for the 454 

optimization of SVM models ,log10(C) and log10 (γ), were optimized in the traditional 455 

way by using an independent test set (Cristianini & Shawe-Taylor, 2000). Between 456 

92% and 100% of the samples were correctly classified in all categories. Even more, all 457 

samples belonging to the Spanish PDO “Vinagre de Montilla-Moriles” were perfectly 458 

classified. Further information about the misclassified category samples within each 459 

Spanish PDO is summarized in the confusion matrices shown in Table VI 460 

(Supplementary Material). These results also point out that SVM does not need a large 461 

number of samples to make a good model, as occurs in our study with some 462 

categories, and further, it is not affected by the presence of outliers. These results 463 

demonstrated that this methodology could be successfully used for the authentication 464 

of the vinegar category belonging to each Spanish PDO. 465 

 466 

3.4 Spanish PDO classification within similar vinegar categories (“Crianza”, 467 

“Reserva” and “Pedro Ximenez”)  468 
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In this classification task, the objective was to classify the samples by their PDO for 469 

a single category. Three PARAFAC models were built according to the vinegar 470 

categories under study, i.e. “Crianza”, “Reserva” and “Pedro Ximenez”, in order to 471 

discriminate their corresponding Spanish PDO. In a similar way to the previous 472 

sections, the best PARAFAC models obtained for each vinegar category were selected 473 

comparing the quality parameters of the models, which are shown in Table VII 474 

(Supplementary Material). In this case, a 4-factor PARAFAC model was obtained for 475 

“Crianza”, while a 5-factor PARAFAC model was built for “Reserva”, and a 3-factor 476 

PARAFAC model was constructed for “Pedro Ximenez” category. The obtained models 477 

explained more than 97.0% of the variance with a core consistency over zero. The 478 

related PARAFAC loadings (excitation and emission spectra) obtained for the models 479 

corresponding to each vinegar category are illustrated in Figure 3.  480 

The maxima wavelengths (λex and λem) of the different factors obtained for the 481 

“Crianza”, “Reserva” and “Pedro Ximenez” PARAFAC models match with the different 482 

fluorophores described in detail in section 3.2. As shown in Figure 3, the “Crianza” 483 

category is characterized by factors with excitation and emission ranges between 340-484 

500 nm and 430-580 nm, respectively. These factors are mainly related to fluorescent 485 

compounds naturally presented in high concentration in wine such as phenols, 486 

flavonols and vitamins as previously described (section 3.2). These compounds have a 487 

higher contribution in this category (Table V Supplementary Material) since the less 488 

aged wine vinegars retain more compounds coming from the raw materials. Regarding 489 

the “Reserva” samples, a higher number of factors were required to model this 490 

category, i.e., more fluorescent compounds with a wide range of excitation/emission 491 

spectra were needed to describe its underlying chemical composition. In this case, the 492 

longer aging period undergone by vinegars of the “Reserva” category plays a crucial 493 

role in this chemical complexity. There is an enrichment of these vinegars with more 494 

phenolic compounds (released by the wood barrels) and  oxidation products (derived 495 

from the development of certain chemical reactions among vinegar components), 496 

whose concentration levels have been proven to increase during the aging process 497 

(Callejón, Morales, Silva Ferreira, & Troncoso, 2008). The wavelengths of the factors 498 

modelled for “Pedro Ximenez” category are associated to fluorophores emitting at the 499 

highest excitation and emission wavelengths (upper than 475 and 550 nm, 500 

respectively). However, more information, not available in the literature, is needed to 501 

identify these fluorophores.  502 

For all the categories under study, the relative values of these factors (scores) vary 503 

as a function of the Spanish PDO, which highlights that the composition of the vinegar 504 
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categories depends also on the raw material used (wine) and on the different 505 

production methods to which the vinegars have been subjected in each PDO. Thus, 506 

these particular characteristics reflected by the scores provide the chance to 507 

discriminate the Spanish PDO corresponding to similar wine vinegar categories. In this 508 

case, related to the proven higher ability of prediction previously obtained (Table 2), 509 

only SVM classification models were built. The parameters for the optimization of the 510 

SVM models, log10(C) and log10 (γ), were found to be 2 and between -1 and 0, 511 

respectively. Table 3 summarizes the statistical results (sensitivity, specificity and 512 

errors) of the performance of the SVM models.  513 

Regarding the “Crianza” category, high sensitivity and specificity values were 514 

obtained for these samples according to their origin (Spanish PDO) with classification 515 

errors of prediction lower than 3.5% (Table 3). These results demonstrate that it is 516 

possible to successful differentiate the Spanish PDO of “Crianza” vinegars according to 517 

their fluorescent composition that is highly related to the raw material (wine) used. 518 

Furthermore, all the samples belonging to the “Pedro Ximenez” category were correctly 519 

classified in the “Vinagre de Jerez” and “Vinagre de Montilla-Moriles” PDOs. The high 520 

levels of sensitivity and specificity and the good classification rates obtained were 521 

explained by the different production process employed by each Spanish PDO. 522 

“Reserva” was the worst classified category according to the PDOs, showing sensitivity 523 

and specificity values higher than 70% and predicted errors lower than 15%. In the 524 

case of samples belonging to “Vinagre de Montilla-Moriles”, 100% of the “Reserva” 525 

vinegars were correctly classified, and only some samples were misclassified between 526 

“Vinagre de Jerez” and “Vinagre de Condado de Huelva” PDOs (Table VIII 527 

Supplementary Material). These results are considered acceptable considering the 528 

high variability of these samples due to the wide range of ageing periods that are 529 

reflected by their complex chemical composition (Casale et al., 2006; García Parrilla et 530 

al., 1999).  531 

 532 

4. Conclusions 533 

The analytical methodology proposed in this study, namely fluorescence 534 

excitation–emission spectroscopy coupled to PARAFAC modeling and SVM 535 

classification method, has demonstrated to be able to characterize and classify the 536 

three Spanish PDOs wine vinegars according to their “Protected Denomination of 537 

Origin” as well as their categories (aged and sweet). As a simple preliminary 538 

characterization, a visual assessment of the fluorescence Excitation-Emission Matrices 539 

(EEMs) of the aged categories pointed out similarities in the fluorescence landscapes 540 
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for the three Spanish PDOs wine vinegars: the spectral maxima were shifted towards 541 

longer wavelengths with the aging of these vinegars. Moreover, the sweet category 542 

“Pedro Ximenez” showed its excitation and emission maxima even at longer 543 

wavelengths than the aged categories, probably due to the different production process 544 

to which these vinegars are subjected. PARAFAC was carried out to spectroscopically 545 

and chemically characterize the different wine vinegars. It gave information about the 546 

potential fluorescent compounds present in the wine vinegars as well as their 547 

contribution in each Spanish PDO and category. These dissimilar spectroscopic and 548 

chemical features allowed us their differentiation according to their category and origin 549 

(Spanish PDO) using suitable classification methods. The feasibility of SVM 550 

methodology to classify the different categories of wine vinegars within each PDO was 551 

successfully demonstrated. The built SVM classification models proved a higher ability 552 

of prediction (between 92% and 100% correctly classified samples) than PLS-DA 553 

models, especially for classifying aged vinegar categories with similar spectroscopic 554 

characteristics. Furthermore, SVM models were also able to differentiate the Spanish 555 

PDOs even for similar vinegar categories due to their spectral differences. 556 

The advantages of this methodology, e.g. fast, non-destructive and non- sample 557 

preparation, would allow implementing this method as an alternative tool for PDO 558 

regulatory councils and producers to be implemented in routine analysis. It could be 559 

applied for assessing the authenticity of the Spanish PDO and the vinegar category. 560 

Finally, it is expected that further information about the specific ageing periods to which 561 

these vinegars are subjected will improve the performance of some classification 562 

models.  563 
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 718 

FIGURE CAPTIONS 719 

Figure 1. Excitation-Emission fluorescence landscapes obtained for different 720 

categories of Spanish PDO vinegars. The color scale of fluorescence intensity (in 721 

arbitrary units) varies from dark blue (lowest signal intensity) to yellow (highest signal 722 

intensity).The acronyms for the different wine vinegar categories are defined in Table 1. 723 

 724 

Figure 2. Excitation and Emission spectra (PARAFAC loadings) of the main 725 

fluorophores present in the vinegars of the three Spanish PDOs.  726 

 727 

Figure 3. Excitation and Emission spectra (PARAFAC loadings) of the main 728 

fluorophores present in different vinegars categories of the Spanish PDOs.  729 

  730 
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Table 1. Wine vinegar samples analyzed according to the Spanish PDOs 731 

 732 

*Note: each sample- corresponds to different producers 733 

  734 

Protected 
Designation of 
Origin (PDO) 

Vinegar 
Category 

Category 
Name Acronym Aging time 

(months) 
Number of 
samples* 

“Vinagre de 
Jerez” 

Aged 

“Vinagre de 
Jerez” JCR ≥6 13 

“Reserva” JRE ≥24 11 

“Gran 
Reserva” JGR ≥ 120 2 

Sweet 
“Pedro 

Ximenez” JPX - 4 

“Vinagre de 
Montilla-
Moriles” 

Aged 

“Crianza” MCR ≥6 7 

“Reserva” MRE ≥24 4 

“Gran 
Reserva” MGR ≥120 2 

Sweet 
“Pedro 

Ximenez” MPX - 5 

“Vinagre de 
Condado de 

Huelva” 

Non – 
aged 

“Vinagre 
Condado de 

Huelva” 
CSC 0 6 

Aged 

“Viejo Solera” CSO ≥6 6 

“Viejo 
Reserva” CRE ≥24 7 

“Viejo Añada” CAN ≥36 2 
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Table 2. Sensitivity, specificity and classification errors (%) obtained for SVM and PLS-735 
DA classification models corresponding to the vinegar category of each Spanish PDO. 736 

 737 

 738 

  739 

Spani
sh 

PDO 
“Vinagre de Jerez” “Vinagre de Montilla-

Moriles” 
“Vinagre de Condado de 

Huelva” 

Classi
ficatio

n 
model 

SVM PLS-DA SVM PLS-DA SVM PLS-DA 

Categ
ory 

J
C
R 

J
R
E 

J
P
X 

J
C
R 

J
R
E 

J
P
X 

M
C
R 

M
R
E 

M
P
X 

M
C
R 

M
R
E 

M
P
X 

C
S
C 

C
S
O 

C
R
E 

C
S
C 

C
S
O 

C
R
E 

Sensiti
vity 
CAL 

92
.9 

92
.3 

10
0.
0 

3
8.
7 

10
0.
0 

10
0.
0 

10
0.
0 

10
0.
0 

10
0.
0 

80
.0 

10
0.
0 

10
0.
0 

83
.3 

10
0.
0 

10
0.
0 

75
.0 

10
0.
0 

10
0.
0 

Sensiti
vity 
CV 

10
0.
0 

10
0.
0 

10
0.
0 

3
8.
7 

10
0.
0 

10
0.
0 

10
0.
0 

10
0.
0 

10
0.
0 

80
.0 

66
.7 

10
0.
0 

10
0.
0 

10
0.
0 

10
0.
0 

75
.0 

10
0.
0 

10
0.
0 

Sensiti
vity 
PRED 

92
.9 

92
.3 

10
0.
0 

1
0.
0 

66
.7 

10
0.
0 

10
0.
0 

10
0.
0 

10
0.
0 

50
.0 

10
0.
0 

10
0.
0 

83
.3 

10
0.
0 

10
0.
0 

50
.0 

10
0.
0 

10
0.
0 

Specifi
city 
CAL 

10
0.
0 

94
.4 

96
.3 

9
0.
9 

32
.5 

94
.5 

10
0.
0 

10
0.
0 

10
0.
0 

83
.3 

75
.0 

10
0.
0 

10
0.
0 

92
.3 

10
0.
0 

10
0.
0 

33
.3 

62
.5 

Specifi
city 
CV 

10
0.
0 

10
0.
0 

10
0.
0 

9
0.
9 

25
.0 

94
.5 

10
0.
0 

10
0.
0 

10
0.
0 

83
.3 

62
.5 

95
.8 

10
0.
0 

10
0.
0 

10
0.
0 

10
0.
0 

25
.9 

62
.5 

Specifi
city 
PRED 

10
0.
0 

94
.4 

96
.3 

7
5.
0 

18
.2 

10
0.
0 

10
0.
0 

10
0.
0 

10
0.
0 

10
0.
0 

10
0.
0 

10
0.
0 

10
0.
0 

91
.7 

10
0.
0 

10
0.
0 

0.
0 

25
.0 

Class. 
Error 
CAL 

0.
0 

0.
0 

0.
0 

3
5.
1 

33
.7 

2.
7 

0.
0 

0.
0 

0.
0 

18
.3 

12
.5 

0.
0 

0.
0 

0.
0 

0.
0 

12
.5 

33
.3 

18
.7 

Class. 
Error 
CV 

0.
0 

0.
0 

0.
0 

3
5.
1 

37
.5 

2.
7 

0.
0 

0.
0 

0.
0 

18
.3 

35
.4 

2.
1 

0.
0 

0.
0 

0.
0 

12
.5 

37
.0 

18
.7 

Class. 
Error 
PRED 

3.
5 

6.
6 

1.
8 

6
2.
5 

57
.5 

0.
0 

0.
0 

0.
0 

0.
0 

25
.0 

0.
0 

0.
0 

8.
3 

4.
1 

0.
0 

25
.0 

50
.0 

37
.5 
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Table 3. Sensitivity, specificity and classification errors (%) obtained for Spanish PDO 740 

classification models in similar wine vinegar categories. 741 

 742 

 743 

 744 

 745 

 746 

 747 

 748 

 749 

 750 

 751 

 752 

 753 

 754 

 755 

 756 

 757 

 758 

 759 

 760 

 761 

 762 

  763 

Category CR RE PX 

Classification 
model SVM SVM SVM 

Spanish PDO JCR MCR CSO JRE MRE CRE JPX MPX 

Sensitivity CAL 92.9   100.0   100.0 100.0 100.0 71.4 100.0 100.0 

Sensitivity CV 100.0  100.0   100.0 100.0 100.0 100.0 100.0 100.0 

Sensitivity 
PRED 92.9   100.0 100.0   100.0 100.0 71.4 100.0 100.0 

Specificity CAL 100.0   95.0 100.0   81.8 100.0 100.0 100.0 100.0 

Specificity CV 100.0  100.0   100.0 100.0  100.0   100.0 100.0 100.0 

Specificity 
PRED 1.00.0   95.0 100.0   1.00.0 1.00.0 0.71.4 1.00.0 1.00.0 

Class. Error 
CAL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Class. Error 
CV 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Class. Error 
PRED 3.5 2.5 0.0 9.1 0.0 14.3 0.0 0.0 
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 764 

  765 
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 766 

 767 

 768 

 769 

 770 

  771 
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