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Introduction: Background and Purpose
A disulfide bond, also known as disulfide bridge or SS-bond, 
plays an important role in the folding process, stability, and 
function of the protein. The oxidation of the thiol group 
(R–SH) of the cysteines is required for the formation of a 
covalent bond between cysteines, known as disulfide bond 
(S–S).1 In this process, two atoms of hydrogen are released. 
These bonds are usually found in proteins that are secreted to 
the extracellular medium.

The prediction of disulfide bonds connectivity can help the 
protein structure prediction (PSP) problem that is an important 
challenge in structural bioinformatics. This issue can be consid-
ered as one of the subproblems to tackle the problem of PSP.2 
The tertiary structure of a protein is the result of the formation of 
disulfide bonds, hydrogen bonds, hydrophobic effect, and other 
interactions between the side chains of the amino acids. Disul-
fide bonds can be formed between cysteine residues in the same 
chain (intrabonded), separated by many amino acids or belong 
to different polypeptide chains of the protein (interbonding). 
Disulfide bonds stabilize protein native structures by lowering 
global-free energy and constraining the unfolded conformation.

Determining the disulfide bondings in an experimental 
way, such as X-ray crystallography, requires time-consuming 
procedures and expensive equipments. On the other hand, sev-
eral computational approaches have been developed for the dis-
ulfide bond prediction problem, providing a fast and effective 

way to understand biological molecules. This problem can be 
divided into two different steps: disulfide bonding state predic-
tion and disulfide connectivity prediction (DCP).3 The aim of 
the methods of the first group is to classify cysteines accord-
ing to their molecular state (bonded to another cysteine of the 
chain or to a free cysteine). Thus, we are addressing a binary 
classification problem, where the class labels are the states of 
the cysteines (reduced or oxidized). Predicting the disulfide 
state of each cysteine is a step toward the location of disulfide 
bridges in proteins. DCP tries to elucidate the different pairs 
of cysteines that are bonded in a protein sequence.4 Currently, 
available predictors are mainly based on neural network (NN) 
approaches and support vector machines (SVMs) as well as 
other predictive methods.

This article presents relevant and ultimate DCP meth-
ods based on soft computing techniques. Section 2 introduces 
some basic concepts of the DCP problem. Section 3 shows the 
most relevant techniques and are briefly described. Finally, 
some conclusions are summarized.

Preliminary Concepts
In order to represent the protein disulfide bondings, we can 
use two different types of encoding: pairwise and pattern-wise 
models, depending on the extraction of local information or 
global information of the protein training data. Some of these 
information features used for the encoding are evolutionary 
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information, physicochemical properties of amino acids, 
prediction of secondary structures (SSs), cysteine separation 
distance, relative order of cysteines, protein length, and pro-
tein molecular weight.

Pairwise vs. pattern-wise model. Pairwise model 
uses the local information of the disulf ide bond.5 Gen-
erally, this encoding consists of two windows of residues 
centered around the two target cysteines. Local properties 
are based on the local environment of the cysteine residue, 
that is, composition of residues and physicochemical prop-
erties of the residues in the local environment of the target 
cysteine. On the other hand, pattern-wise model analyzes 
the global information of the whole protein for the encod-
ing. Specif ically, this encoding contains information such 
as the length of the protein, the position of the cysteines in 
the chain, the composition of amino acids, and the separa-
tion between cysteines.

Input data features. Input data are encoded according to 
several features based on the global and local properties of the 
cysteines. Evolutionary information, physicochemical proper-
ties, SS prediction, distance between cysteines, and protein 
length or protein molecular weight are some of the most used 
features in the literature.

Evolutionary information. Sequence alignment is a stan-
dard technique in bioinformatics for visualizing the rela-
tionships between residues in a collection of evolutionary or 
structurally related proteins. Existing DCP algorithms in the 
literature have used multiple sequence alignment, position-
specific scoring matrices (PSSMs)6,7 and correlated muta-
tions4 as input encoding.

The tendency of residue positions in proteins to mutate 
coordinately is called correlated mutation. For each cysteine 
residue, its frequency of being correlatively mutated with 
respect to all other cysteine residues present in the same chain 
is calculated. This is computed by counting the number of 
times the two cysteine residues are either present or absent 
together and dividing it by the total number of counts.

On the other hand, PSSMs are also obtained from 
sequence alignments. PSSMs determine the substitution 
scores between the amino acids according to their positions 
in the alignment. Each cell of the matrix is calculated as the 
log2 of the observed substitution frequency at a given posi-
tion divided by the expected substitution frequency at that 
position. Thus, a positive score (ratio . 1) indicates that the 
observed frequency exceeds the expected frequency, suggest-
ing that this substitution is surprisingly favored. A negative 
score (ratio , 1) indicates the opposite: the observed substitu-
tion frequency is lower than the expected frequency, suggest-
ing that the substitution is not favored.

Physicochemical properties. The most direct information we 
can extract from the primary sequence of a protein are physi-
cochemical characteristics of its residues. With this informa-
tion, we can generate representations of, for example, how the 
hydrophobicity varies along the sequence of the protein and 

obtain information about hydrophobic areas, which may help 
the prediction of structural characteristics. Properties used 
in the literature are hydrophobicity, polarity, volume of resi-
dues, graph shape index, and isoelectric point, among others. 
Shilton et al.8 and Song et al.9 include amino acid properties 
as input data.

Secondary structures. SS prediction consists of predict-
ing the location of α-helices and β-sheets and turns from 
a sequence of amino acids. The location of these motifs 
could be used by approximation algorithms to obtain the 
tertiary structure of the protein. SS is employed as input 
data by Lin and Tseng7 and Song et  al.9 In particular, a 
relevant study presented by Song et al.9 determines that the 
three most important features to enhance the DCP are SS, 
PSSMs, and normalized sequence distance between oxi-
dized cysteines (DOC).

Cysteine separation distance. The separation distance 
between two cysteines is defined as ||i–j||, where i and j 
are the sequence indices of two cysteines.9 According to the 
sequential distance, we can estimate which pair of cysteines 
is bonded. The higher the distance (.100) between two 
cysteines, the lower the probability of being bonded. A second 
feature related with the positions of cysteines in the sequence 
describes the cysteine sequential ordering difference between 
each pair of cysteines.

Protein length and protein molecular weight. Protein length 
indicates the number of amino acids of each sequence. Molec-
ular weight of a protein is the mass of this molecule. It can be 
calculated as the sum of the individual isotopic masses of all 
the atoms in the molecule. These features correspond to the 
representation of global information of a protein sequence and 
are used in several methods.10

Databases. The benchmark datasets used in the area of 
DCP are extracted from Swiss-Prot 39 (SP39).11 SP39 includes 
726 proteins of the Swiss-Prot database release no. 39, which 
include from two to five cysteine bonds. This dataset was 
experimentally verified and includes intrachain disulfide bridge 
annotations. The sequence homology between the proteins of 
this dataset is #30%. SP43 and SP56 are also employed in sev-
eral proposals. SPX, an extended dataset of SP39 and SP41, is 
also used in the literature.

Other dataset used is called PDBCYS introduced by 
Savojardo et al.10 This dataset was extracted from PDB 
(released May 2010) and contains 1797 Eukaryotic protein 
structures with resolution ,2.5 with at least two cysteine 
residues and global pairwise sequence similarity ,25%. 
PDBCYS includes 7619 free and 3194 bonded cysteines. This 
dataset contains a high number of proteins, and its sequence 
similarity is very low. These characteristics make it a good 
candidate for the evaluation of a method to be used as training 
and test dataset.

Performance metrics. The quality measures used to 
evaluate the accuracy of the connectivity patterns prediction 
methods are mainly two.10
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Rb indicates the number of correctly predicted bonds (Nc) 
divided by the total number of disulfide bonds (Nb) in test pro-
teins. This measure is also named Pb and Qc in the literature.

	
R

N
Nb

c

b
= 	 (1)

Qb is the number of proteins whose connectivity patterns 
are correctly predicted (Nprot) divided by the total number of 
proteins (Nt) in the test set. This measure is also named Qp in 
the literature.

	
Q

N
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t
= 	 (2)

Methods
Support vector machines. SVMs are based on the trans-

formation of the input space into a feature space of higher 
dimensionality. SVM techniques then build a hyperplane, or 
a set of hyperplanes, in this space trying to maximize the mar-
gin between each pair of classes. The function that performs 
the transformation of the space is called kernel function. 
SVMs are used as a machine learning tool to predict tertiary 
structure from the primary sequence. On the other hand, sup-
port vector regression (SVR) machine is a regression model 
based on SVM.

The four following methods employ information about 
the cysteine pairs (local information) and the whole sequence 
protein (global information) indistinctly. Savojardo et  al.4 
incorporate evolutionary information derived from correlated 
mutations as feature encoding for a SVR machine. Correlated 
mutations are represented in the form of corrected mutual 
information (MIp) and inverse of covariance matrix (iCOV). 
SVR was trained using local and global information. As encod-
ing features, they employ two PSSM-based windows centered 
on the pair of cysteines, the relative order of the cysteines in 
the sequences, the separation distance between each pair of 
cysteines, and the cited correlated mutation information. The 
predictions of the SVR constitute the weights of the edges of 
the graph formed by all possible cysteine pairs of the sequence. 
The Edmond–Gabow algorithm12 is used to solve maximum 
weighted matching problem on this graph and obtain the most 
probable disulfide pattern. A 20-fold cross-validation is used to 
evaluate the SVR. Savojardo et al.10 perform a two step-based 
algorithm, which includes bond state prediction and connec-
tivity pattern prediction. They include a protein subcellular 
localization to improve the performance of the disulfide bond 
state predictor method. This model contains local and global 
information for the connectivity pattern prediction. Normal-
ized protein length, protein molecular weight, and amino acid 
composition are the global features. Two PSSM windows of 
length 13, relative order cysteines, and the cysteine separa-
tion distances constitute the local features for the training of 

the SVR. The method described by Liu and Chen13 combines 
global and local information. Cysteine separation profile (CSP) 
and evolutionary information profiles are encoded as input data 
for the SVM. CSP represents the distribution of the cysteines 
in the whole sequence (global information). SVM infers the 
potential of connectivity between each pair of cysteines with 
prior information of the bonding states. Later, Gabow’s algo-
rithm finds the disulfide connectivity pattern. Finally, Chen 
et al.5 propose a two-level framework to predict the disulfide 
connectivity. This method combines two encoding schemes, 
pairwise and pattern-wise models. The bonding probabili-
ties are the outputs of the first level, and this information is 
used as input data in the second level. As local information, 
the algorithm uses DOC and evolutionary profiles. On the 
other hand, as global information of the protein, the method 
employs the confidence scores of the pairwise probabilities, 
CSP, the cysteine ordering, and the protein length. This pro-
posal used SVMs, but artificial neural networks (ANNs) can  
also be used.

Several methods have combined a SVM with a maximum 
weight perfect matching algorithm to predict the disulfide 
connectivity patterns. For instance, Lin and Tseng14 intro-
duce a method, called disulfide bonding connectivity pattern 
prediction web server (DBCP), based on SVM to predict the 
probabilities of the bonding pairs and the Edmond–Gabow 
algorithm to solve the maximum weight perfect matching 
problem. In this work, the atom coordinates of the Cα of 
cysteine amino acids are obtained by MODELLER (http://
salilab.org/modeller/) to calculate the Euclidean distance of 
the cysteine pairs. These pair distances (PDs) are then used 
as input feature of the SVM. The method described by Tsai 
et al.15 introduces a method based on SVM and DOC. They 
use three different normalized scaling schemes of DOC. 
After obtaining the potentials of connectivity between pairs 
of cysteines as outputs of the SVM, the Gabow’s algorithm to 
solve the maximum weight matching problem is applied.

Physicochemical properties and prediction of protein SS 
are used as input features of the SVM approaches in the next 
three methods. The method proposed by Song et al.9 adopts 
an SVR, method based on multiple sequence feature vectors 
and SS predictions as input features. Once the probabilities 
are obtained by the algorithm, a ranking of them is provided, 
determining the predicted disulfide bridges. The cited mul-
tiple sequence feature vector is composed of cysteine–cysteine 
coupling, amino acid compositions, cysteine separation dis-
tance, cysteine ordering, protein molecular weight, and pro-
tein sequence length. Finally, predicted secondary structure 
(PSS), is added to the encoding. Lin and Tseng7 propose a 
method based on four features: PSSM, PSS, normalized 
bond lengths, and amino acid physicochemical properties 
indices. A SVM combined with a maximum weight perfect 
matching algorithm predict the disulfide connectivity pat-
terns. To adjust the parameters of the SVM and the win-
dow sizes of the features, an evolutionary algorithm called  
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multiple trajectory search is employed during the SVM  
training phase. In a previous work,19 the authors introduced 
a normalized PD vector as input feature information for the 
SVM. This vector includes the Euclidean distance between 
all the oxidized cysteines of the training proteins. Finally, 
Shilton et al.8 elaborate an encoding scheme based on physi-
cochemical properties and statistical features. These proper-
ties are hydrophobicity and polarity according to the scales 
described by Kyte and Doolitle21 and Grantham,22 respec-
tively. As statistical feature, the probability of occurrence in 
SS based on Chou–Fassman scale is used. The algorithm uses 
a priori knowledge on their bonding states.

Lu et al.17 develop a method that includes bonding state 
and connectivity pattern prediction using SVM. A genetic 
algorithm (GA) was implemented to optimize the feature 
selection (FS) and to adjust the parameters of the SVM. Each 
individual of the population of the GA is composed of three 
feature vectors, one to represent the different combination of 
features and the other two for the parameters of the SVM. 
A connectivity matrix, which includes the predicted cysteine 
states, is used as input encoding for the SVM to infer the dis-
ulfide connectivity patterns.

The proposal described by Chen and Hwang16 imple-
ments an algorithm based on SVM. Local sequence environ-
ments with evolutionary information of cysteine pairs, cysteine 
sequences separation, and amino acid content constitute the 
biological features of the three input vectors of the SVM. This 
work determines the existence of a clear relationship between 
the disulfide patterns and cysteine sequence separations.

Zhu et al.18 present a SVR method combined with FS to 
improve the performance and avoid the high-dimensional fea-
ture space. The following FS methods were employed: variance 

score, Laplacian score, and the Fisher score. They conclude 
that local features dominate the formation and the prediction 
of disulfide bridges.

The method proposed by Becker et al.6 employs three dif-
ferent classification algorithms for the prediction of disul-
fide bonding probabilities: k-nearest neighbors, SVMs, and 
extremely randomized trees. Therefore, they propose a feature 
function selection, which determines a subset of feature func-
tions and the best setting for associated window sizes. Finally, 
the best performance of the algorithm is obtained with the use 
of PSSM together with the CSP.

As limitations of SVM–SVR methods, we can argue that 
the kernel models overfit the model selection criterion, the 
selection of the optimal kernel function parameters is diffi-
cult, and for large-scale tasks, the algorithmic complexity and 
memory requirements are remarkable.

A summary of SVM-based methods for disulfide bond 
prediction is shown in Table 1. The first column refers to the 
name of the method in the literature. The second column shows 
the reference of the work. Third and fourth columns represent 
the accuracy values of Rb and Qb (equations (1) and (2)). In 
case the value of accuracy is not provided by the authors, it is 
marked with a dash. The fifth column shows the data set used 
for the experimentation. The sixth column shows the main 
characteristics of the method. Finally, if the software is avail-
able, the URL is shown.

A real comparison of the presented methods is quite dif-
ficult. However, we have focused on those methods tested 
using the same recurrent data set (SP39). We can highlight the 
method presented by Lin et al.19, which achieves a high level 
of accuracy (Rb 93.6 and Qb 91.0). This method includes as 
input feature the distance between all the oxidized cysteines 

Table 1. Summary of SVM-based methods for disulfide connectivity pattern prediction in chronological order.

Method Ref. Rb(%) Qb(%) Dataset Description Software

16 57.0 55.0 SP39 Local information

8 59.0 52.0 SPX AA properties, PSS

PreCys 15 70.0 63.0 SP39 DOC http://bioinfo.csie.ntu.edu.tw:5433/Disulfide/

5 – 70.0 SP39, SP43 Probability outputs

13 71.0 65.0 SP39, SP43 CSP, evol. inf.

17 79.2 73.9 SP39 GA for FS

9 77.9 74.4 SP39, SP43 SVR http://foo.maths.uq.edu.au/∼huber/disulfide

DBCP 14 61.2 46.9 CHK25, SP56 MWPM http://biomedical.ctust.edu.tw/edbcp/

18 80.3 76.0 SP39 Feature selection

DISLOCATE 10 60.0 54.0 PDBCYS Local information http://dislocate.biocomp.unibo.it/dislocate

19 93.6 91.0 SP39 NPD

7 – 74.4 SP39 MTS, PSSM

6 – 58.3 PDBCYS, SPX NN, ERT, PSSM, CSP http://m24.giga.ulg.ac.be:81/x3CysBridges

4 66.2 59.3 PDBCYS Corr. mutations
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of the training proteins. According to Song et al.9, this is one 
of the most relevant features for the DCP.

Neural networks. An ANN is a computing system of 
interconnected elements, which process information by their 
dynamic state response to external inputs. The weights of the 
connections can be tuned based on the experience, making 
ANNs adaptive to inputs and capable of learning. ANN can 
be trained to recognize the disulfide connectivity patterns.

PSIPRED20 and PSI-BLAST23 are employed by Ferre and 
Clote24 for the encoding scheme of a diresidue NN. The method 
consists of two phases, one for the bonding state predictor and 
the other for the connectivity predictor. Diresidue PSSMs 
are also used as evolutionary information. ANN provides a 
likelihood of forming a disulfide bond for each cysteine pair. 
Finally, a Rothberg’s implementation of the Gabow’s algo-
rithm (http://elib.zib.de/ppub/Packages/mathprog/matching/ 
weighted) is applied to determine the disulfide connectivity. 
Other methods are based on a two-dimensional recursive 
neural network (2D-RNN). In particular, the method pro-
posed by Cheng et  al.3 presents an algorithm based on a 
2D-RNN and the prediction of SS and solvent accessibility. 
The outputs of the RNN are the probabilities of existence of a 
cysteine bridge. This method can be applied when the infor-
mation of the bonding states is known or unknown and is 
useful for chains with more than five bonds in the sequence. 
The majority of the algorithms only predict sequences with 
two to five cysteine bonds. The method showed by Vullo and 
Frasconi25 uses evolutionary information in the form of mul-
tiple alignment profiles as input data of a 2D-RNN. The dis-
ulfide patterns are presented like graphs. The candidate graphs 
are compared to the correct graphs and are scored according 
to a similarity metric. This method, called DISULFIND, was 
implemented as a prediction server and described by Ceroni 
et  al.26 Finally, Yaseen and Li27 perform an NN encoding 
based on PSSM and context-based statistics using two amino 
acid windows of 15 residues. They calculate the mean-force 
potentials as statistics to estimate the favorability of cysteine 
contacts. The cysteine bonding state is also predicted by this 
method, called Dinosolve.

Martelli et al.28 present a hybrid system based on hidden 
neural networks that combine ANNs and hidden Markov 
models for the prediction of bonding states. A  window 

of 27 residues centered on the cysteine residue is used as 
input feature.

NNs provide a high degree of flexibility. Besides encoded 
input vectors of pair of amino acids, we may include neurons 
with additional information, for example, sequence length or 
evolutionary information. On the other hand, NNs have cer-
tain limitations, for example, constraints on the encoding of 
input data, the use of appropriate parameters of the ANN, 
and overfitting. Comparing NNs and SVMs, we can state that 
ANNs follow a heuristic path, while SVMs are theoretically 
founded. ANNs can find multiple local minima solutions, 
while SVM classifiers converge in global and unique solu-
tions. On the other hand, ANNs consume less storage and 
computational resources than SVMs.

A summary of NN methods for disulfide bond prediction 
is shown in Table 2. According to the results, we can assume 
that the different benchmarks make difficult a real comparison. 
However, Dinosolve clearly achieves the best results. This is 
due to the use of PSSM and statistics that calculates the prob-
abilities of each disulfide bond connectivity as input features 
of the ANN to enhance the predictions. We can conclude that 
statistics and evolutionary information provide a differentiat-
ing factor for the DCPs.

Other predictive methods. In addition to the aforemen-
tioned approaches, there are other important approaches to 
tackle the disulfide connectivity problem, such as nearest neigh-
bor and Monte Carlo simulated annealing (MCSA) approaches. 
In this section, we will cover some of these strategies.

Two proposals are based on nearest neighbor. The 
first method is proposed by Vincent et  al.29 and consists 
of two phases. In the first phase, a binary classifier deter-
mines the prediction of cysteine bonding states and whether 
or not the disulfide bridges correspond to intra- or inter-
chain. The second phase is formed by a simple 1-nearest 
neighbor (1-NN) algorithm based on separation distances 
between cysteines and evolutionary profiles. The second 
proposal, described by Niu et  al.30, is based on a nearest 
neighbor algorithm using a FS method for the intra- and 
inter-disulfide bond prediction. They use an incremental FS 
to determine the optimal number of features. Sequence dis-
tance, PSSMs, residual disorder, and amino acid factor were 
used for the encoding.

Table 2. Summary of ANN-based methods for disulfide connectivity pattern prediction in chronological order.

Method Ref. Rb(%) Qb(%) Dataset Description Software

28 – 88.0 4136, PDB HNN, HMM

25 49.0 – SP39 RNN, evolutionary information

DiANNA 24 58.0 49.0 445 ANN, PSSM, PSS http://clavius.bc.edu/∼clotelab/DiANNA

DISULFIND 26 60.2 54.5 446 RNN http://disulfind.dsi.unifi.it

3 56.0 49.0 SP39, SP41, SPX 2D-RNN, PSS, SA

Dinosolve 27 73.4 82.9 215, 338, CASP9 ANN, PSSM, statistics http://hpcr.cs.odu.edu/dinosolve
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Fariselli and Casadio31 present a method based on MCSA 
and the Gabow’s algorithm to solve the problem of maximum 
weight matching problem. The contact potential between each 
pair of cysteines is calculated with the Edmond–Gabow’s 
algorithm. Hydrophobic and charged amino acids are taken 
into account for the prediction.

A summary of these methods is shown in Table 3. The 
best results are obtained by the method described by Vincent  
et al.29 This 1-NN approach also includes evolutionary profiles 
that enhance the prediction accuracy.

Conclusion
The DCP problem can be considered as a previous step for 
the PSP problem. Once the cysteine bridges are identified and 
established, the protein conformational search space is highly 
reduced. In this paper, we present a compilation of the DCP 
methods based on soft computing techniques. Soft computing 
methods have shown to be well suited for the treatment of 
massive amounts of biological data.33 In this problem, those 
methods that use evolutionary information from sequence 
alignments obtain better results than others.

Comparing the performance of the different approaches, 
we cannot draw clear conclusions to determine which is the 
best methodology. It depends on the data set used, the input 
features of the machine learning algorithm, among other 
factors. However, according to their excellent results, we 
can highlight two previously described approaches: a SVM 
method presented by Lin et  al.19 and Dinosolve.27 These 
methods include the use of PSSM and DOC, two important 
features in DCP.

Although the prediction accuracy is improved in the lat-
est years, existing approaches fail to obtain accurate models in 
DCP. Several methods achieve accuracies of about 80%–90%; 
however, the size of the data sets used in the experimenta-
tions is quite small and a general model to predict any protein 
disulfide connectivity is not found yet. Nowadays, DCP is 
still considered an unresolved problem, in terms of nonspe-
cific approaches. As future lines of work, it is becoming ever 
more evident the important role of evolutionary information 
as input feature for DCP algorithms. Latest methods combine 
cysteine co-evolutionary analysis as a feature to enhance the 
predictions.34 High-quality alignments and phylogenetic trees 
are also recently used by Raimondi et al.35
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