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Abstract 16 

Characterizing zone fragility is a significant challenge when managing protected natural areas, but it must 17 

be prioritized in conservation efforts. The most commonly employed methodology is to rely on criteria 18 

established by experts, which can introduce subjectivity. However, more objective approaches should be 19 

used when developing conservation plans. This study proposes one methodology for classifying zone 20 

vulnerability within a protected natural area, taking as a study case a temporal pond network located in 21 

SW Spain; threatened species of aquatic plants were used as a bioindicators. Spatial data were analysed 22 

using geographic information systems (GIS), and potentially vulnerable zones were identified using 23 

multicriteria decision analysis and, more specifically, the weighted overlay method. Criteria weights were 24 

determined using species distribution models, via the maximum entropy algorithm (MaxEnt). The 25 

purpose was to avoid artificial bias in decision-making. The analysis indicated that 42.04% of the study 26 

area was highly vulnerable. In contrast, only the 14.34% of the study area was at very low risk, meaning it 27 

can help maintain pond network biodiversity. These results indicate that potentially vulnerable and crucial 28 

zones can be identified using GIS, facilitating the establishment of conservation priorities in a complex 29 

system. This methodology could be useful for prioritizing and implementing management and 30 

conservation efforts focused on unique species and habitats in protected natural areas. 31 

Keywords: Aquatic plants, Conservation planning, MaxEnt, Protected areas management, Spatial 32 

analysis, Weighted overlay analysis 33 

  34 
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1. Introduction 35 

 Significant work is required to characterize the risks faced by protected natural areas, but this 36 

knowledge is necessary to establish conservation priorities (Margules and Pressey, 2000; Young, 2000). 37 

From an ecological point of view, ecosystem fragility is defined as how well a system can buffer damage 38 

caused by intrinsic or extrinsic forces precipitating environmental change (Nilsson and Grelsson, 1995). 39 

Although quantifying the fragility of different zones is a key part of conservation efforts (Gauthier et al., 40 

2013), this task can be challenging because diverse factors are involved, and any decision must be based 41 

on multiple criteria (Noss et al., 2002). These criteria may relate to habitat vulnerability (Rouget, 2003), 42 

the presence of threatened species (Pressey and Taffs, 2001), or habitat connectivity (Spring et al., 2010). 43 

For this reason, it is important to develop simple and objective methodologies that can quantify the 44 

fragility of protected natural areas, which will facilitate conservation decisions and management strategies 45 

(Gauthier et al., 2013, 2010; Schatz et al., 2014). Indeed, it is now common to use multicriteria decision 46 

analysis (MCDA hereafter) to identify conservation priorities and threats (Forio et al., 2017; Nouri et al., 47 

2017; Sarkar et al., 2016). Furthermore, MCDA can be combined with geographic information systems 48 

(GIS), allowing multiple criteria to be considered in tandem with spatial information (Malczewski and 49 

Rinner, 2015).  50 

 Although different methodologies exist for carrying out MCDA, the most common approach is 51 

to estimate the weight of each selected criterion using the opinions of experts (Malczewski, 2006). A 52 

pairwise comparison matrix is employed—each criterion is evaluated on a ratio scale by examining all 53 

possible pairings with other criteria and its relative importance emerges as a result; this approach is 54 

commonly known as the analytic hierarchy process (AHP) (Saaty, 1990). Consequently, experts’ opinions 55 

and the literature have a major influence on the results (Krois and Schulte, 2014), and the weights that go 56 

into the MCDA could be biased (Sarkar et al., 2016). To deal with this concern, some authors have 57 

proposed combining GIS tools with machine learning techniques to estimate the weight of each used 58 

criterion, which would be more objective (Lu et al., 2012; Zhou et al., 2016). Indeed, the maximum 59 

entropy (MaxEnt) approach to modeling is one of the most effective algorithms for presence-only data, 60 

and it has been shown to work better than other methods, even when sample size is low and there are 61 
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moderate georeferencing errors (Elith et al., 2006; Hernandez et al., 2006; Mateo et al., 2013; Phillips et 62 

al., 2006; Wisz et al., 2008). 63 

 Wetlands are ecosystems of great interest because they harbor high levels of biodiversity 64 

(Dudgeon et al., 2006). However, they are very vulnerable to disturbances and, for this reason, they are 65 

considered to be one of the most threatened ecosystems in the world (Strayer and Dudgeon, 2010). 66 

Topographically, they end up acting as sinks for effluents, which means that they can indicate the quality 67 

of conditions in adjacent areas (Martínez-López et al., 2014). One of the main threats faced by wetlands is 68 

the expansion of urban areas and irrigated farmlands, which, in recent decades, has reduced the number 69 

and quality of freshwater ecosystems, especially in coastal areas (Bustamante et al., 2016; Martínez-70 

López et al., 2014). Of particular concern are Mediterranean temporary ponds (MTPs): because of their 71 

cycles of flooding and desiccation, they are home to unique assemblages of species that cannot survive 72 

elsewhere (Bagella et al., 2010). MTPs are highly threatened by human activities (Zacharias et al., 2007; 73 

Zacharias and Zamparas, 2010), making them a perfect study system for evaluating the ability of MCDA 74 

to assess vulnerability in an objective way. 75 

 Freshwater systems are extremely complex and face myriad pressures, which means that 76 

monitoring efforts must use precise indicators of system vulnerability and effective early warning tools 77 

(Fancy et al., 2009). Sometimes, characterizing physicochemical indicators in wetlands requires intensive 78 

sampling but does not necessarily yield biologically relevant results (Gergel et al., 2002). In contrast, 79 

bioindicators may better reflect system conditions and vulnerability and can be easier to obtain (Niemi 80 

and McDonald, 2004). For example, aquatic plants are very sensitive to environmental changes (O’Hare 81 

et al., 2017), and the Water Framework Directive has proposed that they be used as bioindicators of water 82 

quality and the systems that inhabit (European Commission, 2003). Consequently, characterizing the 83 

distribution of aquatic plants should be an essential part of conservation strategies (Hattab et al., 2013). 84 

Furthermore, species distribution models (SDMs), which utilize distribution data, may be useful tools for 85 

identifying zones of conservation priority in protected natural areas, especially when information on 86 

actual distribution patterns is limited (Hespanhol et al., 2015). 87 

 The main goal of this study was to use MCDA to objectively identify vulnerable zones in a 88 

protected natural area, Doñana’s aeolian sand dunes region (SW Spain), which hosts one of the most 89 
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important MTP networks in western Europe (Díaz-Paniagua et al., 2010). We had three specific 90 

objectives: (1) to establish a GIS-based set of criteria for assessing vulnerability within the pond network; 91 

(2) to develop SDMs for aquatic plants to determine each criterion weight; and (3) to perform MCDA to 92 

reveal the zones of greatest vulnerability.  93 

2. Materials and Methods 94 

2.1. Study area 95 

 Our study took place in the Doñana’s aeolian sand dunes. They comprise one of the most 96 

important protected natural areas in the European Union and shelter a singular and extensive MTP 97 

network. This area is located in southwestern Spain, between the mouths of the Guadalquivir River and 98 

the Tinto River (Fig. 1). The pond network is an extensive system of small, heterogeneous, and dynamic 99 

water bodies; it is fed mainly through rainfall, although its hydrology also directly depends on the 100 

groundwater table (Gómez-Rodríguez et al., 2010). It is considered to play a crucial role in the 101 

maintenance of many species of aquatic flora and fauna (Díaz-Paniagua et al., 2010). Although there are 102 

different levels of protection in place (Fig. 1), there is nonetheless strong negative pressure on the pond 103 

network, which is mainly due to groundwater extraction for agricultural and urban usage (Bustamante et 104 

al., 2016; Díaz-Paniagua and Aragonés, 2015; Dimitriou et al., 2017). 105 

 This study area was chosen because it has been used in many conservation studies. We were 106 

therefore able to compare our results with those of previous studies and, consequently, determine whether 107 

the methodology proposed here could be useful for prioritizing management strategies and conservation 108 

objectives in complex and fragile systems. 109 

 To achieve the objectives described above, three main tasks were carried out: (1) were processed 110 

the spatial data; (2) were developed SDMs to estimate the weight of each criterion; and (3) were 111 

performed a MCDA (Fig. 2).  112 

2.2. Data type and processing 113 

 The pond network vector layer was taken from Bustamante et al. (2016), who used the 114 

methodology proposed by Díaz-Delgado et al. (2016). This method identifies seasonally flooded areas 115 
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within the aeolian sand dunes using a series of Landsat TM and ETM+ images that have been 116 

radiometrically normalized (time period: 1985–2014) via a semi-automatic procedure.  117 

 A database of threatened aquatic plants was compiled, using species occurrence data obtained 118 

from the Natural Resources and Processes Monitoring Team at the Doñana Biological Station (RBD-119 

ICTS, CSIC); FAME, a conservation programme put in place by the Environmental Ministry of the 120 

Andalusian Regional Government, which supports the monitoring, localization, and integration of 121 

information on threatened flora; and Anthos (Anthos, 2017), a webpage that is associated with the Flora 122 

Iberica project and that provides information about plant biodiversity in Spain. R software (R Core 123 

Development Team, 2014) was used to filter the data, eliminate duplicate entries, and remove erroneous 124 

occurrences in the geographical data. In the vector layer, the occurrence data were associated with cells 125 

measuring 30x30 m, a methodological choice that limits the effects of spatial autocorrelation, an issue 126 

that can arise when modeling potential species distributions (García‐ Roselló et al., 2015). A bias layer 127 

was created to limit the possible bias associated with species data sampling, due to the survey effort when 128 

species occurrences data were used in the SDMs (Fernández et al., 2015); the ArcGIS Kernel density 129 

analysis tool was used to calculate the density of presences in the study area (ESRI, 2016). 130 

 The criteria used were associated with variables thought to influence the distribution of aquatic 131 

vegetation in the study area. Table 1 shows the criteria employed in the SDMs, which were subsequently 132 

included in the MCDA. These criteria were classified as intrinsic (i.e., natural variables that are part of the 133 

immediate habitat) or extrinsic (i.e., exterior natural or anthropogenic variables that provoke system or 134 

species stress). In the intrinsic category were pond density, the distance between ponds, and hydroperiod, 135 

which all contribute to species occurrence (Díaz-Paniagua et al., 2010; Fernández-Zamudio et al., 2016). 136 

In the extrinsic category were the distance to urban areas and farmlands (concretely irrigated lands); the 137 

distance to highways, paths, and cattle trails; the distance to streams and the coast; and the distance to 138 

neighbouring habitats, such as the marshes and the La Vera ecotone. This latter is a zone comprising 139 

highly heterogeneous habitats that result from the presence of small intermittent streams—they discharge 140 

into the marshes and less permeable substrate, resulting in the formation of ephemeral water bodies 141 

(Florencio et al., 2014). 142 
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 Each criterion was processed to obtain a distance or density map. All analyses were performed 143 

using ArcGIS (ESRI, 2016). The Euclidean distance tool was used to determine distances, and the Kernel 144 

density analysis tool was used to calculate densities (Antognelli and Vizzari, 2017). All the data were 145 

used to create a raster with a pixel resolution of 30; they were then georeferenced and projected into 146 

ETRS 1989 UTM Zone 30N. 147 

 Criteria must be standardized before they can be used in MCDA (Lu et al., 2012). Here, 148 

standardization was carried out using fuzzy linear functions, which yielded values between zero and one 149 

(Nouri et al., 2017). These functions can take several forms; for example, they can be monotonically 150 

increasing or decreasing (lowest to highest on the measurement scale, respectively; Fuller et al., 2010). In 151 

this study, monotonically increasing functions were used for all the criteria, with the exception of the 152 

distance between water bodies and the distance to the La Vera ecotone. For these latter two, 153 

monotonically decreasing functions were used because shorter distances mean greater water availability 154 

and more available niches for various organisms (Díaz-Paniagua et al., 2010; Fernández-Zamudio et al., 155 

2016; Florencio et al., 2014). This standardization approach was used because fuzzy linear functions can 156 

standardize variables even when no prior knowledge is available, but they can also retain the information 157 

present in the original data (Lu et al., 2012). 158 

Criteria Format Analysis Source 

Pond density Vector Kernel density Bustamante et al., 2016 

Distance between ponds Vector Euclidean distance Bustamante et al., 2016 

Hydroperiod Raster 

 

Bustamante et al., 2016 

Distance to farmlands Vector Euclidean distance REDIEAM
1 

Distance to urban areas Vector Euclidean distance REDIEAM
1 

Distance to the coast Vector Euclidean distance REDIEAM
1 

Distance to marshes Vector Euclidean distance MAPAMA
2 

Distance to the La Vera Vector Euclidean distance MAPAMA
2 

Distance to streams Vector Euclidean distance IECA
3 

Distance to highways Vector Euclidean distance IECA
3 

Distance to paths Vector Euclidean distance IECA
3 

Distance to cattle trails Vector Euclidean distance IECA
3 

 159 

Table 1. GIS data layers used as criteria in the vulnerability assessment: 1. Andalusian Environmental 160 

Information Network (REDIAM, http://www.juntadeandalucia.es/medioambiente/site/rediam); 2. 161 

Ministry of Agriculture, Fisheries, and Environment (MAPAMA, http://www.mapama.gob.es/es/); and 3. 162 
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Institute of Statistics and Cartography of Andalusia (IECA, 163 

https://www.juntadeandalucia.es/institutodeestadisticaycartografia). 164 

2.3. Estimating weights 165 

 MaxEnt´s default parameters defined the models’ parameters (Elith et al., 2011; Phillips et al., 166 

2006; Phillips and Dudík, 2008). To reduce the likelihood of overfitting the model, the value of the 167 

multiple regularization parameter (default = 1) was changed to 2.5 (Elith et al., 2010; Rodríguez-Merino 168 

et al., 2018, 2017). A bias layer was included in models to control the effects of sampling bias (Fernández 169 

et al., 2015). The models were calibrated using 80% of the occurrence data; the other 20% were used to 170 

test the models obtained. In addition, for each model, a 10-fold cross-validation procedure was used to 171 

estimate error (Elith et al., 2011). What the models yielded was a probability of presence for each species, 172 

whose value lay between zero and one (Phillips and Dudík, 2008). Model accuracy was calculated by 173 

determining the area under the curve (AUC), which is one of the most common methods for testing the 174 

performance of presence-only models (Merow et al., 2013). The average percentage contributions of the 175 

model variables were used as weights in the subsequent MCDA (Lu et al., 2012). 176 

2.4. Multicriteria decision analysis 177 

 Once the criteria weights were established, a MCDA was performed using the multicriteria 178 

weighted overlay method. This method is one of the most common GIS approaches for carrying out 179 

MCDAs (Nzeyimana et al., 2014). It involves superposing multiple raster layers based on their relative 180 

importance (Singh and Katpatal, 2017). In this study, the raster associated with each criterion was 181 

multiplied by its weight, which was obtained using the SDMs. The product was a map of the vulnerability 182 

of different areas within the pond network. This output was reclassified using the Jenks method (natural 183 

breaks) in ArcGIS, which identifies small breaks in data sets by grouping similar values (Slocum et al., 184 

2008). The final classes for area vulnerability were: very high, high, moderate, low, and very low. 185 

3. Results 186 

3.1. Data type and processing  187 
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 SDMs were created for a total of 24 species: 5 were hygrophytes, 5 were helophytes, and 14 188 

were hydrophytes (Table S1, Supplementary Material). All 24 species are included in national or regional 189 

lists of threatened flora belonging to different IUCN categories (Table S1). Overall, 478 records were 190 

used to generate the SDMs; the largest number of records was 86 for Eryngium corniculatum. At least 191 

five records were needed to create a model; for this reason, other threatened aquatic plants present in the 192 

study area were excluded from the analysis due to the low number of records to perform adequate SDMs, 193 

and species with fewer than five occurrences were removed. The spatial distribution of the sampling 194 

points used and the bias layer are depicted in Fig. S1A and Fig. S1B (Supplementary Material). 195 

Following standardization, criteria values ranged from zero to one, where a value of zero meant that a 196 

criterion’s utility was very low to null and a value of one meant that a criterion was highly useful in 197 

helping to establish a species’ potential distribution (Fig. S2, Supplementary Material). 198 

3.2. Model accuracy 199 

 Based on the AUC values, accuracy was good for all the SDMs (mean ± SD: 0.874 ± 0.086; min: 200 

0.657; max: 0.992; Table S2, Supplementary Material). This indicates that all models are adequate, since 201 

they are above what is expected by chance (AUC: 0.5). 202 

3.3. Estimating weights 203 

 Among the various criteria, the distance to the La Vera ecotone (25.92%) and the distance 204 

between ponds (20.88%) contributed the most to the SDMs predictions, followed by the distance to the 205 

coast (11.83%) and pond density (8.09%) (Table 2). 206 

Criteria 

Weights 

(Contribution 

percentage) 

Pond density 8.09 

Distance between ponds 20.88 

Hydroperiod 3.87 

Distance to farmlands 3.70 

Distance to urban areas 4.17 

Distance to the coast 11.83 

Distance to marshes 3.45 

Distance to the La Vera 25.92 

Distance to streams 5.76 

Distance to highways 2.62 

Distance to paths 3.80 
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Distance to cattle trails 5.91 

 207 

Table 2. Weight of each criterion based on percent contribution obtained by MaxEnt algorithm. 208 

 209 

3.4. Multicriteria decision analysis 210 

 The MCDA indicated that 42.04% of the study area was potentially highly vulnerable and, more 211 

specifically, that 20.59% of the study area was very highly vulnerable (Table 3). These zones were 212 

located in the northern part of the study area, as well as toward its southern edge (Fig. 3). There are a total 213 

of 755 ponds in these zones, of which 350 are very highly vulnerable based on various criteria (Table 4). 214 

In contrast, the level of vulnerability was low for 36.02% of the study area and, more specifically, very 215 

low for 14.34% of the study area (Table 3). These zones were mainly located in the southern part of the 216 

study area, as well as in the center, which is the part of the network that benefits from the greatest level of 217 

protection (National Park; Fig. 3). Pond density was highest in zones of low vulnerability (60.3% of 218 

ponds were found in these zones; Table 4). 219 

 220 

  221 
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National park  Natural park  Biosphere reserve  Unprotected  Total area 

Vulnerability risk Km
2
 % Km

2
 % Km

2
 % Km

2
 % Km

2
 % 

Very high 0.01 0 39.2 15.27 59.29 18.68 91.53 84.8 190.03 20.59 

High 8.87 3.68 33.74 13.14 139 43.8 16.41 15.2 198.02 21.45 

Moderate 38.37 15.92 56.83 22.14 107.4 33.84 0 0 202.59 21.95 

Low 79.34 32.91 109.32 42.58 11.46 3.61 0 0 200.12 21.68 

Very low 114.49 47.49 17.64 6.87 0.22 0.07 0 0 132.34 14.34 

Total area (Km
2
) 241.07   256.74   317.36   107.94   923.11   

 222 

Table 3. Total area and percent representation associated with the different vulnerability classes in the study area. 223 

 224 

 
National park  Natural park  Biosphere reserve  Unprotected  Total ponds 

Vulnerability risk No. % No. % No. % No. % No. % 

Very high 0 0 37 3.43 1 0.17 312 7.77 350 9.53 

High 34 2.16 80 7.42 188 31.18 103 2.57 405 11.03 

Moderate 181 11.48 165 15.31 357 59.2 0 0 703 19.14 

Low 331 21 474 43.97 52 8.62 0 0 857 23.34 

Very low 1030 65.36 322 29.87 5 0.83 0 0 1357 36.96 

Total ponds 1576   1078   603   415   3672 

  225 

Table 4. Number and percentage of ponds found in zones belonging to different vulnerability classes in the study area. 226 
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4. Discussion 227 

 The benefits of combining MCDA and GIS have been widely discussed in the literature 228 

(Malczewski, 2006). Integrating freely available spatial information into studies that help inform 229 

decision-making has become an important part of conservation efforts (Harris et al., 2005): the ability to 230 

assess and manage habitats and species has grown considerably, notably in situations where data are 231 

incomplete (Rubino and Hess, 2003).  232 

 Fuzzy logic tools are also useful in this type of work because they allow criteria to be 233 

standardized on a scale between 0 and 1, even when imprecision exists, which means more information 234 

can be integrated into the final model. This situation contrasts with that seen in more traditional 235 

standardization methods, where each element must have a binary value (zero or one) (Malczewski and 236 

Rinner, 2015). Fuzzy logic was employed in this way in our study—to standardize different criteria. 237 

Indeed, the relative impact of different criteria was related to the degree of information available; 238 

sometimes nothing was known, or the data could not be used in spatial analyses. An example of this issue 239 

can be seen in the contact zone between the marshes and the aeolian sand dunes, where limitations 240 

associated with high and low values of salinity are unclear. Here, the use of fuzzy logic makes it possible 241 

to create a geographical pattern with a gradual scale, where zones with values of one or close to one will 242 

be highly saline and thus place limits on distributions within the marshes as compared to zones with 243 

salinity values of zero or close to zero. This geographical pattern helps clarify the different effects of each 244 

criterion on potential species distributions (greater or lesser habitat suitability) and, consequently, the 245 

varying vulnerability of different zones within the pond network. 246 

 Here, aquatic plants were chosen to serve as bioindicators of vulnerability because they are very 247 

sensitive to environmental changes (O’Hare et al., 2017). Furthermore, they have been well researched 248 

within the study area (Díaz-Paniagua et al., 2010; Garcia Murillo et al., 2006), as compared to other 249 

groups of organisms for which there are no precise data to perform SDMs (e.g. charophytes). In addition, 250 

the study area is considered one of the richest regions of aquatic plants in the Iberian Peninsula and one of 251 

the most threatened areas by the anthropogenic effect (Rodríguez-Merino et al., unpublished data). The 252 

low number of records of some of the studied species is presented as a challenge for the development of 253 
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SDMs. However, this study employed a maximum entropy approach, which is considered one of the best 254 

ways to generate reliable SDMs when few data are available (Hernandez et al., 2006; Wisz et al., 2008). 255 

 Machine learning methods provide an objective means for determining criteria weights, which 256 

can then be incorporated into models that can assess vulnerability based solely on the data, avoiding the 257 

bias introduced by the use of expert-established criteria (Lu et al., 2012). That said, certain criteria were 258 

weighted more heavily than others, which may be due to the identity of the study species, which were 259 

mainly found within the peridune area, located in the center of the study area (Florencio et al., 2014). This 260 

information is nonetheless key to understanding vulnerability within the pond network because it is in this 261 

area that aquifer discharge occurs: certain water bodies are present almost the entire year (e.g. Dulce, 262 

Santa Olalla or Sopetón ponds), and there are a large number of ponds located very close together (Díaz-263 

Paniagua et al., 2010). This high pond density combined with the proximity of the La Vera ecotone make 264 

this zone one of the richest and most diverse in the entire study area for all the species studied (Fig. S1C, 265 

Supplementary Material). The Doñana pond network provides habitat for species such as Caropsis 266 

verticillato-inundata, which only occurs in the study area and is one of the most threatened aquatic plant 267 

species in Europe (Fig. 4A). Furthermore, it harbors one of the southernmost European populations of 268 

Potamogeton natans, which is separated by hundreds of kilometers from its more northern relatives and is 269 

a species that needs long-hydroperiod ponds to complete its life cycle (Fig. 4B) (Florencio et al., 2014). It 270 

is also equally important for multicriteria analyses to include criteria with less weight, such as the 271 

distance to urban areas and to farmlands. Here, their low relative contribution was likely mainly 272 

attributable to the fact that urban areas and farmlands are located to the north of the study area, where 273 

both species number and pond number are lower. In this study as well as in other studies, these distances 274 

are key indicators of intense groundwater removal, which produces desiccation in certain parts of the 275 

study area (Bustamante et al., 2016; Dimitriou et al., 2017). This phenomenon can be witnessed to the 276 

north of the study area, in an unprotected region where there are a large number of fields dedicated to 277 

berry cultivation (Bea Martínez et al., 2014). Our results also indicate that there is an area between the 278 

National Park and Natural Park, where the vulnerability increase dramatically, in agreement with previous 279 

studies (Fig. 3; see Díaz-Paniagua and Aragonés [2015]). This area coincides with Matalascañas and its 280 

surroundings, a large resort town which demands a large quantity of water, allowing the conflicts between 281 

the wetlands conservation and the groundwater abstractions. Some examples of this are the presence of 282 
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dry ponds closest to Matalascañas (Brezo and Charco del Toro ponds) and others that already show signs 283 

of desiccation, such as the case of the Zahillo pond (Díaz-Paniagua and Aragonés, 2015). 284 

 The results of this study show that more protected zones are less vulnerable, as previously 285 

suggested by others (Bustamante et al., 2016). In contrast, unprotected zones are very highly vulnerable 286 

because they are more seriously impacted by anthropogenic activities. Yet, they remain important because 287 

they contain the sole populations of important species such as Peucedanum lancifolium and Isoetes 288 

setaceum (Fig. 4C, 4D). Another important variable to consider is the presence of streams, especially in 289 

the north, because streams transport nutrients that contribute to eutrophication (Serrano et al., 2006). This 290 

phenomenon affects species such as Rhynchospora modesti-lucennoi (Fig. 4E), which occurs near these 291 

streams and is already facing pressure from the declining level of the groundwater table and modifications 292 

in watercourses (Daoud-Bouattour et al., 2010). It is also important to manage very highly vulnerable 293 

zones because of the presence of floating aquatic plants. Compared to the rest of the Iberian Peninsula, 294 

native species of floating plants are exceptionally diverse in Doñana region. Both Lemna trisulca, found 295 

to the south, and Wolffia arrhiza , found to both the north and the south (Fig. 4F, 4G), generally occur in 296 

permanent artificial ponds, which were created for watering cattle and now act as biodiversity reservoirs 297 

(Fernández-Zamudio et al., 2016; Kloskowski et al., 2009).  298 

 There are ways in which our work could be improved. For example, it is worth highlighting that 299 

there is a paucity of GIS layers that can be used for developing more objective MCDAs. In our case, we 300 

could have benefitted from knowing the distribution of illegal wells, since such wells cause significant 301 

environmental stress in our study area (Dimitriou et al., 2017). It would have been important to 302 

characterize their effects on potential species distributions and pond network vulnerability. However, at 303 

present, we lack enough information to do so.  304 

 It could also have been useful to have a longer list of species for creating SDMs. However, when 305 

the focus is on rare and threatened species, which are of obvious importance from a conservation 306 

perspective, one of the risks is that the number of records available will be too low to carry out a SDMs. 307 

At the same time, the occurrence of threatened species is very well described within the study area, which 308 

means better-quality information with a higher spatial resolution is available. Better data lead to more 309 

reliable SDMs. Our results strongly support the use of aquatic plants as bioindicators. This group helps 310 
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structure freshwater systems, and its members supply habitat and shelter for a multitude of organisms 311 

(Burks et al., 2006; Wang et al., 2015). The number of records required to carry out SDMs is also an 312 

important constraint, since the use of too few records could lead to unrealistic results. Here, we 313 

established a minimum threshold of five records; with five records, it is possible to obtain well-314 

performing models with the techniques employed here (Hernandez et al., 2006).  315 

 These concerns aside, we feel that combining MCDA and GIS can significantly improve the way 316 

in which conservation priorities are established when managing complex systems. Indeed, this objective 317 

approach can reduce costs and time investment in a field where resources are frequently limited. 318 

5. Conclusions 319 

 In management and conservation, an important part of prioritizing efforts involves identifying 320 

those areas that are the most vulnerable. Here, we describe a combination of methodological approach 321 

with which we expect to contribute to the improvement of management and monitoring actions in 322 

protected areas in a more objective context. However, it is only a first step, and more detailed field work 323 

must now take place to move forward. Our results highlight the utility of employing aquatic plants as 324 

bioindicators for evaluating the vulnerability of the Doñana pond network, which contains a combination 325 

of different habitats and whose management and protection can provide refuge for many species that 326 

cannot survive elsewhere. In view of our results, we consider that geography and geographic information 327 

science are fundamental in the study of zone vulnerability. In addition, the advancement of GIS and the 328 

availability of accurate spatial data are fostering our ability to establish priorities in the conservation and 329 

management of singular species and habitats. Finally, we believe that the methodology proposed here can 330 

easily be adapted to other complex and fragile systems and could serve as a powerful tool in the 331 

conservation and management of natural systems. 332 
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Figure Legends 570 

 571 

Figure 1. Location of the study area (Doñana’s aeolian sand dunes, SW Spain), including the pond 572 

network described in Bustamante et al. (2016). The different levels of protection within the study area are 573 

also indicated.  574 

 575 

Figure 2. Flowchart for assessing vulnerability via multicriteria decision analysis. 576 

 577 

Figure 3. Map of vulnerability classes. 578 

 579 

Figure 4. Map of species distribution obtained by applying the 10
th

 percentile training threshold to the 580 

MaxEnt output. The points represent the locations of certain species: A. Caropsis verticillato-inundata, 581 

B. Potamogeton natans, C. Peucedanum lancifolium, D. Isoetes setaceum, E. Rhynchospora modesti-582 

lucennoi, F. Lemna trisulca, and G. Wolffia arrhiza. 583 

 584 

 585 
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Figure S1. A. Spatial distribution of sampling points. B. Bias layer used in the species distribution 

models, created using kernel density analysis. C. Map of potential species richness obtained by summing 

up the potential distribution of each species using MaxEnt algorithm. 

 

Figure S2. Standardized criteria as determined by fuzzy logic. Values ranged from zero (least suitable) to 

one (most suitable). The black points, lines, and polygons are the original spatial information used to 

develop the criteria: A. Pond density, B. Distance between ponds, C. Hydroperiod, D. Distance to 

farmlands, E. Distance to urban areas, F. Distance to the coast, G. Distance to marshes, H. Distance to the 

La Vera ecotone, I. Distance to streams, J. Distance to highways, K. Distance to paths, and L. Distance to 

cattle trails. 
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